
A Quantitative Summary of XML Structures

Zi Lin1, Bingsheng He2, and Byron Choi1

1 Nanyang Technological University
{linzi, kkchoi}@ntu.edu.sg

2 Hong Kong University of Science and Technology
saven@cs.ust.hk

Abstract. Statistical summaries in relational databases mainly focus
on the distribution of data values and have been found useful for var-
ious applications, such as query evaluation and data storage. As xml
has been widely used, e.g. for online data exchange, the need for (cor-
responding) statistical summaries in xml has been evident. While re-
lational techniques may be applicable to the data values in xml docu-
ments, novel techniques are requried for summarizing the structures of
xml documents. In this paper, we propose metrics for major structural
properties, in particular, nestings of entities and one-to-many relation-
ships, of XML documents. Our technique is different from the existing
ones in that we generate a quantitative summary of an xml structure.
By using our approach, we illustrate that some popular real-world and
synthetic xml benchmark datasets are indeed highly skewed and hardly
hierarchical and contain few recursions. We wish this preliminary find-
ing shreds insight on improving the design of xml benchmarking and
experimentations.

1 Introduction

eXtensible Markup Language (xml) is known to be a flexible [33] medium for
online data exchange. The flexibility of xml is mainly1 due to its capability of
representing nested entities and one-to-many relationships in a tree. In compar-
ison, the relational model is rigid and flat: neither nested entities nor one-to-
many relationships are allowed in a single relation. In addition, the simplicity
of the relational model has been one of its major strengths; implementations of
the relational model have also been widely tested in industrial-strength appli-
cations. While xml repositories have been emerging (e.g. [17,12,21]), there has
been an evident reservation on the advance from relational-based technology to
xml-based technology. The host of work on reusing relational database systems
for storing and querying xml (e.g. [31,30,11,3,14]) might reflect this standpoint.
However, intuitively, relational systems are preferable only when an xml docu-
ment is a mild generalization of relations. Otherwise, the impedance mismatch
between the tree model and the relational model can become problematic where
native xml/xml-based approaches should be adopted.
1 For simplicity, we do not focus on the rich set of scalar data types (e.g. integers) in

xml Schemas.

D.W. Embley, A. Olivé, and S. Ram (Eds.): ER 2006, LNCS 4215, pp. 228–240, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Quantitative Summary of XML Structures 229

In this paper, we define metrics for some structural properties of xml docu-
ments. We hope the metrics answer an informal question: Is an xml document
“tree-like” or “relational-like”? Similar to effective techniques widely used in
relational databases [24], we summarize xml structures using histograms and
tree/graph structures and generate a quantitative summary from these struc-
tures, i.e., our approach does not require dtds/xml Schemas. A goal of having
a quantitative summary is that it may provide xml researchers (i.e. human)
insights on xml documents. The advantage of quantitative approaches may be
summarized by Lord Kelvin’s remarks, “When you can measure what you are
speaking about, and express it in numbers, you know something about it; but
when you cannot express it in numbers, your knowledge is of a meager and un-
satisfactory kind; it may be the beginning of knowledge, but you have scarcely in
your thoughts advanced to the state of science.” As we shall see soon, we focus
on the properties that cannot be derived from dtds/xml Schemas. Specifically,
we examine two important structural properties of xml: (1) entity nestings and
(2) one-to-many relationships.

Knowing the structures of xml datasets, in practice, can be fruitful to xml re-
search, e.g. xml storage.For example, consider a simplified dblp dataset [17] shown
in Figure 1 and the book-author edges in the figure. For illustration purpose, as-
sume that book is an entity and author is another entity. The book-author edges rep-
resent the relationship between book and author. Since dblp is a real-worlddataset,
one may expect the distribution of the number of authors per book is a Gaussian
distribution. However, we discovered the skewness (see Section 3 for the definition
adopted) of this distribution is large. The result is shown in Figure 6. The x-axis
and y-axis are the number of authors of a book and the number of books with
x authors in dblp document, respectively. Similar highly skewed distributions of
inproceeding-author, proceeding-author and article-author are found. The im-
plication of this finding is that if one simply “inlines” three authors into a book

relation, such a book relation covers 97% of the books in dblp and the remain-
ing authors of the books can be stored in a small overflow relation. This storage
scheme allows retrieving the relationship between book and author by a projec-
tion on a book relation and a join between book and the small overflow relation, as
opposed to a join between all books and all authors. We shall discuss some more
research on xml storage in the related work section.

As a side product of our investigation, our metrics shred insights on some prop-
erties of synthetic xml datasets. For example, we report that the xmark dataset
comprises skewed distributions of structures whereas the xbench dataset con-
sists of mostly Gaussian or uniform distributions of structures. While no one has
asserted that xml structures are supposed to be uniform, there does not appear
obvious reasons for using highly skewed data for benchmarking either. Further-
more, xml algorithms, e.g. dtd validation in streaming xml [29] and updates
through xml views [5], for recursive xmls are more technically challenging than
their counterparts for non-recursive xmls. Unfortunately, [9] showed that real-
world dtds are often recursive. This paper reports, in quantitative terms, that
the recursive part, if any, of real-world xml documents is often tiny. Consider a

230 Z. Lin, B. He, and B. Choi

simplified xmark document shown in Figure 3 for example. The percentage of
root-to-leaf paths with recursive elements is only 9.3% of the total number of all
root-to-leaf paths in the xmark document. Hence, algorithms for non-recursive
xmls may often work in practice or “survive” in experimental evaluations; but
problems may occur occasionally.

The two main goals of this paper are (1) to define metrics for describing
structural properties of an xml document, in order to study the informal concept
of tree-ness of an xml document and (2) to survey a few popular xml repositories
using our metrics. Applications of our metrics to specific research problems,
e.g., XPath/XQuery selectivity estimation and xml compression, are beyond
the scope of this paper. For presentation simplicity, we omit the analysis on the
scalar data in xml documents.

Contributions. The main contributions of this paper are listed below:

– We present metrics for describing the nestings of entities and the number of
each kind of attributes of an entity in xml datasets;

– We apply the metrics on a few popular2 real-world and synthetic xml datasets
for experimentation, amongother uses.We reveal that thesedatasets arehighly
skewed and hardly hierarchical and contain few recursions.

Organization. The remainder of the paper is organized as follows. Section 2
presents the background of the computation of our metrics. Section 3 presents
each of our xml metrics in detail. We apply our metrics on a few popular real-
world and synthetic xml datasets in Section 4. Section 5 discusses the related
work on xml metrics and statistics. Conclusions and discussions on future works
are presented in Section 6.

2 Preliminaries

In this section, we present some background information for the subsequent
sections.

Prefix trees. The computation of our metrics of an xml document relies on
the construction of the prefix tree of the document. Specifically, we associate
histograms (structural information) to a prefix tree. A node in a prefix tree
represents a prefix occurred in a document. First, a node in a prefix tree is
associated with the support, sup, of the prefix in the document. Second, we
define a support ratio between each pair of parent-child nodes (A, B) in the
prefix tree, i.e., supB/supA, to estimate the possible location of one-to-many
relationships. There are three possible cases for the support ratio:

1. The support ratio is between 0 to 1. This implies B is probably A’s optional
child;

2. The support ratio is 1. This often implies a one-to-one relationship;
2 According to Google scholars system, http://scholar.google.com, March 2006, the

number of citations on these datasets is over 300.

A Quantitative Summary of XML Structures 231

book

title author

book

authorauthor authortitle

book

title author author

book

title author

book

title author

book

author author authortitle author

book

title author

book

title author author

book

title author

book

title author

dblp

Fig. 1. Simplified dblp document Tdblp

book

title author

dblp

[10]

[1]

[10]

[17]

*10

1 * 1.7

Fig. 2. Prefix tree of
Tdblp, Sdblp

xmark

itemitem item

quantity parlist

listitem

parlist parlist

listitemlistitemlistitemlistitem

...

... ...

... ...

...

Fig. 3. Simplified xmark document
Txmark

xmark

item

quantity parlist

parlist

listitem

*

*

*

Fig. 4. Prefix tree of
Txmark, Sxmark

3. The support ratio is greater than one. This indicates a one-to-many rela-
tionship. We regard the edges in this class as star edges.

There are exceptions for these implications. Consider a pathological document
in which one half of the A nodes do not have any B children and another half
of the A nodes have exactly two B children. The support ratio indicates a false
one-to-one relationship. However, such exceptions are rare, as we observed from
our datasets.

Consider a simplified dblp xml document shown in Figure 1 as an example.
Its prefix tree is shown in Figure 2. We show the support of a node in a square
bracket. Support ratios are placed next to the edges. We mark a star with an
asterisk sign. Similarly, we show the stars of the prefix tree of the simplified
xmark dataset (Figure 3) in Figure 4.

Finally, for each star edge (A, B), we build a histogram for the number of B
nodes of an A node.

Structural properties. In this paper, we focus on two major structural prop-
erties allowed by xml. These two properties can only be determined by the
document instances, not dtds/xml Schemas.

First, we study the nestings of entities in an xml document. In the absence
of user specifications, one could at best “estimate” entities in xml instances.
In this paper, we assume that a star edge is an indication of a one-to-many
relationship between two entities since such edges in the document instance
cannot be naturally represented by a single relation. A complication here is
that entities can be recursively defined in xml. Consider the xmark dataset as
an example. A parlist subtree may contain parlist subtrees. A survey [9] on
dtds shows that a large number of real-world dtds are recursive. We investigate
whether the xml documents are indeed recursive.

232 Z. Lin, B. He, and B. Choi

Second, we investigate the number of each kind of one-to-many relationship.
Such relationship can be modeled by A → B* in dtds, where A and B are two
element types. Obviously, the number of B nodes of an A node can only be
known from document instances. 3

Statistics used. Similar to the techniques developed for relational databases,
we use a few statistical terms to describe the histograms (or distributions) stored
in a prefix tree. Specifically, given a distribution, we compute its minimum, max-
imum, average and variance. Initially, we expect some structural distributions
of real-world xml datasets are normal, i.e. Gaussian. As mentioned in Intro-
duction, our benchmark xml datasets are hardly normal. We found that many
structural distributions are skewed. To understand the distribution, we adopt a
definition of the skewness of a distribution. These numbers form the basis of
our quantitative summary.

3 The Metrics

In this section, we present our metrics for xml structures. Then, we describe its
meaning and possible implications of each metric. For simplicity, we often refer
root-to-leaf paths to as (simple) paths.

Our metrics are listed below. When applicable, we compute the minimum,
maximum, variance and average of these metrics, which quantify the structure
of an xml document.

1. The number of paths;
2. The length of a path;
3. The number of star edges in the prefix tree;
4. The number of star edges of a path;
5. The number of recursive/non-recursive element types;
6. The number of recursive elements of a path;
7. The number of a particular kind of star edges of a node;
8. The skewness of the number of a particular kind of star edges of a node.

The first three metrics are some (arbitrary) basic counts of an xml document.
We shall discuss the next five metrics in more detail.

The number of star edges of a path. A path p in a document must also appear
in the prefix tree. We count the number of edges in p that have a star edge
correspondence in the prefix tree. The number of star edges in a path implies
the number of nested one-to-many relationship in a tree. The larger the number
of star edges is, the more the tree and a relation mismatch.

The number of recursive/non-recursive element types. This metric measures the
number of recursive and non-recursive element types in a document.
3

xml Schemas allow specifying the min- and max-occurrence constraints of a repe-
tition. However, these constraints do not accurately describe the multiplicities in a
conforming document instance.

A Quantitative Summary of XML Structures 233

The number of recursive elements of a path. This metric attempts to quantify
the recursiveness of an xml document to some extent. When elements can be
recursively defined, e.g. parlist is defined in terms of parlist, the star hierarchy
can only be known from the document. We define the number of recursive ele-
ments in a path p in a document T to be

∑
e∈R (the count of e in p - 1), where

R is the set of recursive element types in T . Algorithms for non-recursive xml

may not work on documents with a large number of recursive elements in paths.

The number of a particular kind of star edges of a node. This metric measures
the multiplicity of each kind of star edges of a node. Specifically, given a star
edge (A, B) in a prefix tree, this metric counts the number of B children of an
A node. The edges are often modeled by A → B* in dtds and a one-to-many
relationship between A and B in er diagrams.

The skewness of the number of a particular kind of star edges of a node. The
distributions of the number of a particular kind of star edges of a node, i.e. the
previous metric, of our xml benchmark datasets have a large variance. Hence, we
investigate the distribution of the numbers obtained by the previous metric. In
particular, we compute the skewness of the distributions, since data compression
algorithms often work effectively on skewed data. The skewness is defined as∑n

i=1(xi - x̄)3/(n-1)σ3, where n, xi, x̄ and σ are the size, an individual value,
the mean and the standard derivation of a distribution, respectively.

External construction of prefix trees. When the amount of memory avail-
able is larger than the size of the prefix tree S of the input document T and
the histogram N of star edges, one can easily compute S, the star edges and
Metrics 1, 2, 5 and 6 in one pass of T . Metrics 3 can then be derived from S
in the size of S. The remaining metrics are determined by a second pass of T
followed by a scan on S and N . The overall complexity for computing all metrics
is 2|T |+2|S|+|N |.

When the prefix tree S does not fit into memory, we apply a simple divide-
and-conquer method to construct S, while keeping the structure of depth first
traversal. We outline the construction method as follows. (1) We traverse the
document in depth first manner and maintain a root-to-current-node p as the
traversal proceeds. (2) We construct a tree Ti for each M consecutive edges
encountered during the traversal, where M is the amount of memory available.
Initially, Ti contains p only. The edges in p are annotated as edges in the previous
subtrees. The next M edges are added to Ti in a straightforward manner as in
the internal construction of the prefix tree. (3) For each Ti, we build its prefix
tree Si. We assume that each Si fit into memory comfortably. (4) We merge two
consecutive prefix trees, Si and Si+1, by traversing the two trees “in parallel”.
Note that during the merge, only two edges, and their associated histograms,
are needed to be stored in memory. The edges with annotations in Si+1 are
not merged as they already appeared in the previous subtrees. This operation
requires |Si| + |Si+1|. We obtain S of T by merging Sis iteratively. Once S
is constructed, even its size may be larger than the memory size, the metrics

234 Z. Lin, B. He, and B. Choi

can still be computed in two passes of S. The total number of scans on T for
computing all metrics is 1 + log(|T |/M).

4 A Survey on XML Benchmarks

In this section, we apply our metrics on a few popular xml datasets. The main
goal of this section is to illustrate how these metrics are useful to understand
xml datasets and the current state of experimentations conducted by the xml

community. Hence, we present, compare and visualize numbers obtained from
different xml datasets, as opposed to presenting individual summary of numbers.

XML benchmark datasets. We first describe our real-world datasets. dblp is
the xml version of dblp Computer Science bibliography datasets [17]. It contains
bibliography information of conference papers, articles, books, master and PhD
theses, etc. nasa is the dataset converted from legacy flat file format by nasa

xml project [21]. sp is a curated protein sequence database swissprot [12]. Next,
we describe the synthetic datasets used. We used two xml benchmark datasets,
namely xmark [28] and xbench [34], denoted as xk and xb, respectively. xmark

datasets contain synthetic auction transactions. The xmark generator [27] allows
users to vary the size of the generated dataset by providing a scaling factor. We
used a few scaling factors to generate our synthetic datasets. We noted that the
structural properties of these datasets remained roughly the same as the dataset
size varies. Hence, we report the results from xmark datasets with scaling factor
1. For xbench, we used the four example xbench datasets, namely tc/sd, tc/md,
dc/sd and dc/md, shipped with the data generator [32]. (tc, dc, sd and md

stand for text-centric, data-centric, single document and multiple documents,
respectively.) Note that [32] may also take templates, that describe the abstract
structure of the synthetic data, as an input of data generation. When xbench

produces multiple datasets, we concatenate them into a single dataset before
checking its structural properties.

Results. We apply the first two metrics on the xml datasets. We present the
numbers for these datasets in Table 1.

Table 1. Simple paths in the benchmark xml datasets

Dataset dblp nasa sp xk xb tc/sd xb tc/md xb dc/sd xb dc/md

of paths 7.5M 473K 2.0M 1.2M 250K 34K 158K 225
Minimum length 3 3 3 4 4 4 3 3
Maximum length 6 8 5 12 8 8 8 5
Average length 3.3 6.2 3.7 6.3 6.9 6.1 5.8 4.1

Variance 0.001 1.5 0.48 3.96 0.45 0.29 1.9 0.29

There has been a large body of work on storing xml as an edge table [14]
in relational databases. The number of joins required for evaluating an XPath

A Quantitative Summary of XML Structures 235

descendant step in the absence of xml indexes, is bounded by the depth of a
document. Table 1 shows that the longest path in the datasets surveyed is often
small. One non-trivial fact is that the variance of the length of simple paths of
our datasets is very small. Consider dblp as an example. While the length of
the longest simple path is 6, the variance of the length of paths is close to zero.
This indicates that the paths in dblp are “regular”. There is one exception: The
simple paths in xmark are often lengthy (12) and the variance of their length is
3.96. This shows the paths in xmark is rather complex.

To study the nestings of star edges, we apply the third and the fourth metrics
on the benchmark xml datasets. The number of star edges in the prefix tree of
dblp, nasa, sp, xk, xb tc/sd, xb tc/md, xb dc/sd and xb dc/md are 52, 26, 95,
314, 12, 13, 5 and 9, respectively. Except for dblp, swissprot and xmark, the
number of star edges in the prefix tree is far fewer than 50. Recall that a star can
be modeled by a one-to-many relationship in er diagrams. When a relation is
created to capture a one-to-many relationship, the number of relations required
is small [31]. Therefore, most of these xml datasets can be efficiently stored and
queried by using mature relational technology.

The number of star edges in a prefix tree is not sufficient for describing the
hierarchy of (or the nestings in) the datasets. We apply the fourth metric – the
number of star edges on paths – on the benchmark datasets. For the discussion
purpose, we present the breakdown of the numbers in Table 2.

Table 2. The number of star edges in simple paths of the benchmark xml datasets

Dataset dblp nasa sp xk xb tc/sd xb tc/md xb dc/sd xb dc/md

of paths w. 1 star 3.1M 22.5K 9 521K 713 143 59.4K 160K
of paths w. 2 stars 4.4M 102K 1.06M 452K 14K 2035 82.9K 65K
of paths w. 3 stars 226 227K 972K 176K 224K 2623 15.2K 0
of paths w. 4 stars 0 14.5K 0 57K 12K 24.5K 0 0
of paths w. 5 stars 0 108K 0 4.9K 0 4113 0 0
of paths w. 6 stars 0 0 0 0 0 341 0 0

The maximum number of star edges on paths is 6. Note also that the number
of stars on a path is at least one in practice. For example, consider the dblp

dataset again. The root node, dblp, of dblp has many book children and dblp-
book is a star edge. The breakdown shows that the number of star edges on paths
exhibits a Gaussian distribution. Also the average number of star edges on paths
is small. That is, these datasets can be considered as a mild generalization of
relations, not similar to a tall tree.

Then, we used the fifth metric to measure the number of recursive element
types in the xml benchmark datasets. These datasets, including the text centric
(tc) xbench datasets, contain only one or two recursive element types. The
recursive elements in dblp, nasa, xmark and xbench tc/md are (sub and sup),
(para), (listitem and parlist) and (subsec), respectively.

Next, we used the sixth metric to illustrate the recursions in the paths of
the benchmark datasets. The results are presented in Table 3. We found that

236 Z. Lin, B. He, and B. Choi

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

C
ou

nt

of a particular kind of star edges

subsec-p
authors-author
subsec-subsec

section-p
references-a_id

Fig. 5. The five distributions with the high-
est variance on the number of star edges
(Xbench tc/md)

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25

C
ou

nt

of a particular kind of star edges

book-cite
proceedings-editor

incollection-cite
incollection-author

book-author

Fig. 6. The five distributions with the high-
est variance on the number of star edges
(dblp)

although dtds may often be recursive, the recursions in the document instances
are often simple. The only fairly recursive xml datasets in our benchmark datasets
are xmark and xbench tc/md datasets. The number of recursions in the paths of
xmark is always 2 while that of xbench tc/md is mostly 1. Due to the simplicity
of the benchmark datasets, algorithms for non-recursive xml datasets may con-
tinue to work on these datasets. However, these datasets are insufficient to show
the benefits of algorithms for recursive xml datasets.

Table 3. The number of recursions in simple paths in xml benchmark datasets

Dataset dblp nasa sp xk xb tc/sd xb tc/md xb dc/sd xb dc/md

of paths w. 1 recursion 15 110 0 0 0 4113 0 0
of paths w. 2 recursions 0 0 0 112K 0 341 0 0

% of recursive paths 0% 0% 0% 9.3% 0% 13% 0% 0%

We applied the seventh metric on the xml benchmark datasets. We visualize
our results for discussion purposes. For each star edge (A, B) in the prefix tree,
we obtain a distribution – the number of B children of an A node. Except for
the datasets generated by xbench, such distributions of the datasets are highly
skewed. For example, we show five of such distributions with the highest variance
in xbench in Figure 5. The figure shows that xml structures in xbench appear
random or uniform. In comparison, as shown in Figure 6, such distributions in
dblp are highly skewed.

Another counter-intuitive finding is that while xmark is a synthetic dataset,
such distributions in xmark are highly skewed also, shown in Figure 7. The non-
zero variance of the distributions in xmark dataset is shown in Figure 8. The
x-axis is the value of variance of a distribution and the y-axis shows the number
of distributions with a particular variance. The figure shows that there are many
distributions with a large variance. In addition, a few distributions with a large
variance are found in dblp, nasa and swissprot datasets.

A Quantitative Summary of XML Structures 237

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 5 10 15 20 25 30

C
ou

nt

of a particular kind of star edges

open_auction-bidder
watches-watch
profile-interest

mailbox-mail
mailbox-mail (2)

Fig. 7. The five distributions with the
highest variance on the number of star
edges (Xmark)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 1 3 5 7 9 11 13 15

C
ou

nt

The variance of a distribution in XMark

Fig. 8. The variances of the distribution of
star edges in Xmark

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
ke

w
ne

ss

The distribution of each kind of star edges

DBLP
NASA

SWISSPROT

Fig. 9. Skewness of star edges in real-world
dataset variance

-2

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350

S
ke

w
ne

ss

The distribution of each kind of star edges

XMARK
XBENCH1
XBENCH2
XBENCH3
XBENCH4

Fig. 10. Skewness of star edges in synthetic
dataset

We then apply the next metric to check the skewness of distributions of xml

structures. The skewness of the distributions (with non-zero variance) of the real-
world and synthetic datasets are presented in Figure 9 and Figure 10, respec-
tively. Figure 9 shows that the number of skewed distributions (skewness > 1)
is significant. We sort the distributions according to their skewness. That is, the
x-axis is a canonical number of a distribution. The figure shows that the per-
centage of skewed distributions in dblp, nasa and swissprot are 82%, 100% and
94%, respectively. Datasets that are generated by xbench are not highly skewed
as it is illustrated with Figure 10. When one uses highly skewed datasets for
experimentations, the results are prone to be biased.

Summary and recommendations. While xmark and dblp datasets appear
popular in the xml research community, we found that the majority of these
xml datasets are mild generalization of relations - not “tree-like”. Furthermore,
these datasets are highly skewed. Except xbench tc/md, the other three xbench

datasets are also a mild generalization of relations. The xbench datasets are not
skewed. All the datasets are hardly hierarchical and contain a small number of

238 Z. Lin, B. He, and B. Choi

recursions. To conduct fair experiments on algorithms for recursive xml (e.g. [2]),
one needs to derive a highly recursive schema and datasets by using “xbench-
like” xml generator.

5 Related Work

There has been a host of work on xml summary structures for optimizing xml

query evaluation [19,20,16]. These approaches and ours are orthogonal: Their
approaches are graph-based whereas our approach focuses on producing quan-
titative summaries. There have also been works on deriving statistical sum-
maries of xml structures [7,23,15] for estimating selectivities of a query work-
load. [7] counts the number of simple paths in xml documents and determines
the correlation between paths for estimating the selectivity of a given query
workload. In comparison, our approach does not require query workloads as our
focus is not selectivity estimation. [23] proposes statistical synopses for xml for
path query selectivity estimation. Such synopses are designed for query proces-
sors, as opposed to offering a structural summary for human. Statix [15] builds
histograms on entities of an xml Schema and generates the optimal relational
storage of an xml document for a pariticular query workload. In comparison, our
approach does not require an xml Schema. We derive a prefix tree from an xml

document and use it as the “schema” of the xml document. While [15] stated
that some real-world xmls are highly skewed, our result is more comprehensive
and informative.

In addition to query evaluation, the structure of xml documents influences
the design of xml storage scheme. For example, since xml is flexible, heuristic
algorithms [11,3] has been proposed to mine the optimal storage for xml. The
storage subsequently affects query evaluations. Another stream of work is the
xml query algorithms [4,13,25,22,6] that assume a specific physical layout or xml

index structure. Although encouraging performances have been reported, it was
not clear how the performance of a system may change as the structure of docu-
ments changes. Recently, [26] proposes a microbenchmark for understanding the
strengths and weaknesses of an xml system. Compression can be understood as
a space-efficient storage. Existing xml compression techniques [18,6,10,8] utilize
properties of both scalar data and structures of an xml document. Since (real-
world) xml documents are often skewed, xml compressions have been shown
effective.

Finally, surveys on real-world dtds and xml Schemas are presented in [9]
and [1], respectively. However, nestings of entities and the number of occurrences
of star edges can only be computed from document instances.

6 Conclusions and Future Works

In this paper, we presented quantitative metrics for xml structures. We derived
statistics from a prefix tree of xml structures and used simple paths and star
edges as the basis of our metrics. These metrics are developed to answer our

A Quantitative Summary of XML Structures 239

informal question stated in Introduction: whether an xml structure is tree-like
or relational-like. We applied our metrics on a few popular xml datasets for
experimental evaluations, among others, for xml research. Our result is that
the structures of these xml documents are highly skewed, non-hierarchical and
mostly non-recursive. That is, the datasets are relational-like.

In the future, we will use our metrics to aid the design of our ongoing native
xml system [6,10].

Acknowledgements. We would like to thank Daxin Jiang for discussions on
statistics and databases and our colleagues in CAIS at NTU for providing techni-
cal discussions. This work is supported by CoE startup grant M58020002.601001.

References

1. G. J. Bex, F. Neven, and J. V. den Bussche. DTDs versus XML Schema: A Practical
Study. In WebDB, pages 79–84, 2004.

2. P. Bohannon, B. Choi, and W. Fan. Incremental evaluation of schema-directed
XML publishing. In SIGMOD, 2004.

3. P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML schema to relations: A
cost-based approach to XML storage. In ICDE, 2002.

4. P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner.
MonetDB/XQuery: a fast XQuery processor powered by a relational engine. In
SIGMOD, pages 479–490, 2006.

5. V. P. Braganholo, S. B. Davidson, and C. A. Heuser. From XML view updates to
relational view updates: old solutions to a new problem. In VLDB, 2004.

6. P. Buneman, B. Choi, W. Fan, R. Hutchison, R. Mann, and S. Viglas. Vectorizing
and querying large xml repositories. In ICDE, pages 261–272, 2005.

7. Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan, R. Ng, and
D. Srivastava. Counting twig matches in a tree. In ICDE, 2001.

8. J. Cheney. Compressing XML with multiplexed hierarchical PPM models. In Data
Compression Conference, 2001.

9. B. Choi. What are real DTDs like. In WebDB, pages 43–48, 2002.
10. B. Choi. Document decomposition for XML compression: A heuristic approach.

In DASFAA, pages 202–217, 2006.
11. A. Deutsch, M. F. Fernandez, and D. Suciu. Storing semistructured data with

STORED. In SIGMOD, pages 431–442. ACM Press, Jun. 1999.
12. ExPASy. Swiss-prot and TrEMBL. Available at http://www.expasy.ch/sprot/.
13. T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J. Neumann, R. Schiele, and

T. Westmann. Anatomy of a native XML base management system. VLDB Jour-
nal, 11(4):292–314, Dec. 2002.

14. D. Florescu and D. Kossmann. Storing and querying XML data using an RDMBS.
IEEE Data Engineering Bulletin, 22(3):27–34, 1999.

15. J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J. Siméon. StatiX: making
XML count. In SIGMOD Conference, pages 181–191, 2002.

16. R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local similarity for
efficient indexing of paths in graph structured data. In ICDE, 2002.

17. M. Ley. DBLP Bibliography. Available at http://www.informatik.uni-trier.
de/~ley/db/, Mar 2005.

http://www.expasy.ch/sprot/
http://www.informatik.uni-trier.de/~ley/db/
http://www.informatik.uni-trier.de/~ley/db/

240 Z. Lin, B. He, and B. Choi

18. H. Liefke and D. Suciu. XMILL: An efficient compressor for XML data. In SIG-
MOD, 2000.

19. J. McHugh and J. Widom. Query optimization for XML. In VLDB, 1999.
20. T. Milo and D. Suciu. Index structures for path expressions. In ICDT, 1999.
21. National Aeronautics and Space Administration. The NASA XML project. Avail-

able at http://xml.nasa.gov/xmlwg/index.htm.
22. S. Paparizos, S. Al-Khalifa, A. Chapman, H. V. Jagadish, L. V. S. Lakshmanan,

A. Nierman, J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu.
TIMBER: A native system for querying XML. In SIGMOD, 2003.

23. N. Polyzotis and M. N. Garofalakis. Statistical synopses for graph-structured XML
databases. In SIGMOD, 2002.

24. V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita. Improved histograms
for selectivity estimation of range predicates. In SIGMOD, pages 294–305, 1996.

25. S. Prakash, S. S. Bhowmick, and S. K. Madria. Efficient recursive XML query
processing in relational database systems. In ER, pages 493–510, 2004.

26. K. Runapongsa, J. Patel, H. Jagadish, Y. Chen, and S. Al-Khalifa. The Michigan
benchmark: Towards XML query performance diagnostics, 2003.

27. A. Schmidt. XMark – an XML benchmakr project. Available at http://monetdb.
cwi.nl/xml/generator.html, 2003.

28. A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, and R. Busse. XMark:
A benchmark for XML data management. In VLDB, pages 974–985, 2002.

29. L. Segoufin and V. Vianu. Validating streaming xml documents. In PODS, pages
53–64, 2002.

30. J. Shanmugasundaram, E. Shekita, and J. Kiernan. A general technique for
querying XML documents using a relational database system. SIGMOD Record,
30(3):20–26, 2001.

31. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational databases for querying XML documents: Limitations and
opportunities. VLDB Journal, pages 302–314, 1999.

32. ToXGene. The ToX XML generator. Available at http://www.cs.toronto.edu/
tox/toxgene/, 2005.

33. W3C. Extensible Markup Language (XML). Available at http://www.w3.org/
XML/.

34. B. B. Yao, M. T. Ozsu, and N. Khandelwal. XBench benchmark and performance
testing of XML DBMSs. In ICDE, pages 621–633, 2004.

http://xml.nasa.gov/xmlwg/index.htm
http://monetdb.cwi.nl/xml/generator.html
http://monetdb.cwi.nl/xml/generator.html
http://www.cs.toronto.edu/tox/toxgene/
http://www.cs.toronto.edu/tox/toxgene/
http://www.w3.org/XML/
http://www.w3.org/XML/

	Introduction
	Preliminaries
	The Metrics
	A Survey on XML Benchmarks
	Related Work
	Conclusions and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

