
Induction

CS 3234: Logic and Formal Systems

Martin Henz and Aquinas Hobor

August 19, 2010

Generated on Tuesday 24 August, 2010, 22:51

1 Motivating Examples

It is common in the study of formal systems to define a set by a collection of
rules that specify the members of the set. Each rule has zero or more premises,
or requirements, and one conclusion.

Example 1 (Numerals, first attempt). We may define the set of unary numerals
(i.e., numerals in base 1) for the natural numbers as follows:

• Zero is a numeral.

• If n is a numeral, then Succ(n) is also a numeral.

Equivalently, we might say that the set Num of numerals is defined by the follow-
ing rules:

• Zero ∈ Num.

• If n ∈ Num, then Succ(n) ∈ Num.

Observe that in each formulation the first rule has no premises, whereas the
second has one. Examples for elements of Num are:
Zero and Succ(Succ(Zero)).

Example 2 (Binary trees, first attempt). We may define the set of binary trees
by the following rules:

• The empty tree, Empty, is a binary tree.

• If tl and tr are binary trees, then Node(tl, tr) is a binary tree.

Equivalently, we might say that the set Tree of binary trees is defined by the
following rules:

• Empty ∈ Tree.

1



• If tl, tr ∈ Tree, then Node(tl, tr) ∈ Tree.

The first rule has no premises; the second has two. Examples for elements of T
are:
Empty and Node(Empty, Node(Node(Empty, Empty), Empty)).

Notice the similarity between these two examples. The empty tree is anal-
ogous to the number 0, and the node formation operation is analogous to the
successor operation (except that it has two predecessors!).

Excursion: Defining Sets by Rules in Java and
Coq

We can directly translate the concept of defining sets by rules into Java. Our
examples translated to Java look like this:

interface Num {}

class Zero implements Num {}

class Succ implements Num {

public Num pred;

Succ(Num p) {pred = p;}

}

interface Tree {}

class Empty implements Tree {}

class Node implements Tree {

public Tree left, right;

Node(Tree l,Tree r) {left = l; right = r;}

}

These class definitions introduce the types Num and Tree, respectively, from
a given set of constructors. Each constructor defines a rule for membership
in that type. The (implicitly defined) constructors Zero() and Empty() have
no arguments; this corresponds to a rule with no premises. The constructor
Succ has one argument, corresponding to the single premise in the inductive
definition; the constructor Node has two arguments, corresponding to the two
premises in the inductive definition. We can construct the example instances of
type Num by

Num my_num = new Zero();

Num my_other_num = new Succ(new Succ(new Zero()));

and the example instances of type Tree by

Tree my_tree = new Empty();

Tree my_other_tree =

new Node(new Empty,

2



new Node(new Node(new Empty(),

new Empty()),

new Empty()));

Exercise 1. Give a collection of rules defining the set of strings over charac-
ters. Give the corresponding Java class definitions (without using Java’s string
class) for the same set.

In Coq, we can define the type Nat containing all natural numbers using the
keyword Inductive as follows.

Inductive Nat : Type :=

| Zero : Nat

| Succ : Nat -> Nat.

Of course, we are free to use Coq variables such as One, Two, and Three to
refer to particular natural numbers.

Definition One : Nat := Succ Zero.

Definition Two : Nat := Succ One.

Definition Three : Nat := Succ Two.

Similarly, we define the type Tree containing all binary trees.

Inductive Tree : Type :=

| Empty : Tree

| Node : Tree -> Tree -> Tree.

Definition exampleTree : Tree :=

Node (Node Empty Empty) Empty.

2 The Extremal Clause

When we say that a set is defined by a set of rules, what precisely do we mean?
Which set do we consider to be defined by those rules? To see why this is an
important question, consider the set

YourNum = {Zero, Succ(Zero), Succ(Succ(Zero)), . . .}
∪{∞, Succ(∞), Succ(Succ(∞)), . . .}

where ∞ is an arbitrary new symbol. Observe that Zero ∈ YourNum; and
that if n ∈ YourNum, then Succ(n) ∈ YourNum—that is, YourNum meets the
requirements of the rules we gave to define the set Num. This means that the

3



rules alone are not sufficient to pick out the intended set Num, since the strictly
bigger set1 YourNum also satisfies these same rules.

To use a set of rules to define a set, we must say something more than just
that the set must obey these rules. What more is needed? We need an extremal
clause that states that nothing else is in the set except those elements that are
required to be there by the rules. This may sound like a bit of legalese, but
mathematically it is essential to include the extremal clause, for otherwise the
rules do not determine a unique set. Thus, the definition of Num should really
be stated as follows.

Example 3 (Numerals, revised). The set Num is defined by the following rules:

• Zero is a numeral.

• If n is a numeral, then Succ(n) is also a numeral.

• nothing else is a numeral.

Equivalently, we may say that Num is the least set that fulfills the first two rules,
by which we mean precisely that nothing else is in the set except as is forced by
the rules. Here ”least” refers to the subset relation over sets; if X is the least
set that fulfills some rules, then for any set Y that fulfills the rules, we have
X ⊆ Y .

To see that YourNum is ruled out by the extremal clause, observe that ∞
has no business being in the specified set because it is not forced to be in there
by the rules. Observe that YourNum is not the least set that fulfills the first two
rules because YourNum ) Num and Num obeys these rules. Thus YourNum is not
defined by the rules.

Similarly, we may revise the definition of binary trees by adding an extremal
clause as follows.

Example 4 (Binary trees, revised). We may define the set of binary trees by
the following rules:

• The empty tree, Empty is a binary tree.

• If tl and tr are binary trees, then Node(tl, tr) is a binary tree.

• Nothing else is a binary tree.

Equivalently, we might say that the set Tree of binary trees is the least set
defined by the following two rules

• Empty ∈ Tree.

• If tl, tr ∈ Tree, then Node(tl, tr) ∈ Tree.

1bigger in the sense that YourNum is a strict superset of Num

4



The extremal clause ensures that a collection of rules of the kind given above
determines a unique set. In practice we do not explicitly state the extremal
clause, but rather we state that the set in question is inductively defined by a
given collection of rules. For example, we may say that the set Num is inductively
defined by the two rules membership rules given in Example 1. In doing so we
are implicitly stating that nothing else is to be a member of that set unless it
is forced to be there by the rules.

3 Inductive Definition with Inference Rules

It is quite common to give an inductive definition by a set of inference rules. For
example, we might say that the set Num is inductively defined by the following
rules:

Zero

n

Succ(n)

Similarly, we might say that the set Tree is inductively defined by the following
rules:

Empty

tl tr

Node(tl, tr)

The horizontal line plays the role of “if . . . then . . .” in our earlier presentations
of the rules. In general, in an inductive definition of a set X, an inference rule
of the form

x1 · · · xn

x

stands for the rule “if x1 . . . xn ∈ X, then x ∈ X.” Why do we say that
the least set defined by a collection of rules is inductively defined by it? As
the terminology suggests, the answer is that there is a close connection with
reasoning by mathematical induction. Here’s why.

Suppose that we wish to prove that every binary tree t has a size s satisfying
the following two requirements:

• The size of Empty is 1.

• If tl and tr have sizes sl and sr, respectively, then the size of Node(tl, tr)
is 1 + sl + sr.

We call these two conditions the specification of the size of a binary tree. The
question is this: how do we know that every binary tree in fact has a size? This
might seem like an odd question at first, but consider that the infinite binary tree

5



Node(Node(. . . , . . .), Node(. . . , . . .)) has no size in the sense specified! Luckily, the
extremal clause rules out such “infinite trees”, which makes it possible to assign
a size to each binary tree.

How do we prove that every binary tree has a size? By induction! We have
to prove that for every binary tree t ∈ Tree, there exists a number s satisfying
the specification of size given above. Given the inductive definition of binary
trees, what might t be? By the first rule defining binary trees, t might be
Empty. In that case, t clearly has a size, namely 1, in accordance with the
specification. By the second rule defining binary trees, t might have the form
Node(tl, tr), where tl and tr are also binary trees. By induction we may assume
that each of them has a size, say sl and sr, respectively. But then the size s of
t is uniquely determined by the equation s = 1 + size(tl) + size(tr) as required
by the specification. Since Tree contains no other elements than are given by
these two rules, we have demonstrated that every binary tree t ∈ Tree has a
size s.

Size of Trees in Java and Coq

Here is another point of view on the same question. Let look at the definition
of the size function for the Java type Tree.

interface Tree {

public int size();

}

class Empty implements Tree {

public int size() {return 1;}

}

class Node implements Tree {

public Tree left, right;

Node(Tree l,Tree r) {left = l; right = r;}

public int size() {

return 1 + size(left) + size(right);

}

}

The question is: why does the call size(t) terminate for every t of type
Tree? Once again, the proof is by induction on the structure of t. If t is
an instance of Empty, then size(t) terminates returning 1, as required. If,
on the other hand, t is an instance of Node, then inductively we may as-
sume that size(left) terminates (returning sl) and that size(right) ter-
minates (returning sr), from which it follows that size(t) terminates with 1 +

size(left) + size(right). This completes the proof.

In Coq, we would like to define the function Size that takes a Tree t as
argument and returns a Nat which represents the size of t. We first need
to define as function Add which adds two given Nats, using the keyword
Fixpoint.

6



Fixpoint Add a b :=

match a with

| Zero => b

| Succ a’ => Succ (Add a’ b)

end.

Now we are ready to define Size.

Fixpoint Size t :=

match t with

| Empty => Zero

| Node t1 t2 => Add One (Add (Size t1) (Size t2))

end.

Note that the Coq environment automatically proves the termination of func-
tions that are defined using Fixpoint.

4 Defining Sets in Stages

Here is another perspective that may help guide your intuition. Since the small-
est set inductively defined by a set of rules contains only those elements explicitly
required by the rules, we might envision elements of this set as being built up in
“stages”. At the first stage we introduce elements that are forced to be in the set
by a rule with no premises. (For example, Zero and Empty would appear at the
first stage of their respective definitions, since the rules introducing them have
no premises.) Now suppose that we have completed stage s of the construction.
At stage s + 1 we add in those elements that are introduced by a rule whose
premises are satisfied by elements of stage s. (For example, if n is a numeral at
stage s, then Succ(n) is a numeral at stage s + 1, and if both tl and and tr are
trees at stage s, then Node(tl, tr) is a tree at stage s + 1.)

We may then think of the set inductively defined by these rules as the set
of elements that appear at some stage s in the construction. Arguments by
induction on the definition of an element of an inductively-defined set may
be replaced by arguments by induction on the stage at which the element is
introduced. (For example, at stage 0 we have only the empty tree, whose size is
0. At stage s+ 1, we add in those nodes whose children are trees at stage s. By
the inductive hypothesis the children have a size, so the node must also have a
size. The proof is complete because we have considered all possible stages s.)

It is important to notice the close interplay between recursive function defini-
tions and inductive proofs illustrated here. Proving by induction and program-
ming by recursion are two sides of the same coin. The concept of an invariant
specification for a recursive function (describing the input/output behavior of

7



that function) corresponds exactly to the idea of an inductive hypothesis for an
inductive argument. Cases in a recursive function that do not make recursive
calls correspond to base cases of inductive proofs. Proving a statement of the
form “for all x there exists y such that . . .” by induction on x corresponds to
writing a recursive function that recurs on x and computes the value y with the
required properties.

8


