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Inductive definitions

Often one wishes to define a set with a collection of rules that
determine the elements of that set. Simple examples:

Binary trees
Natural numbers
The syntax of a logic (e.g., propositional logic)

What does it mean to define a set by a collection of rules?
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Example: Binary trees (w/o data at nodes)

• is a binary tree;

if l and r are binary trees, then so is l r

Examples of binary trees:

•
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Example: Binary trees (w/o data at nodes)

• is a binary tree;

if l and r are binary trees, then so is l r

Examples of binary trees:

•

• •
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• is a binary tree;

if l and r are binary trees, then so is l r

Examples of binary trees:

•

• •
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• is a binary tree;

if l and r are binary trees, then so is l r

Examples of binary trees:
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Example 2: Natural numbers in unary (base-1) notation

Z is a natural;

if n is a natural, then so is S(n).
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Example 2: Natural numbers in unary (base-1) notation

Z is a natural;

if n is a natural, then so is S(n).

We pronouce Z as “zed” and “S” as successor. We can now define
the natural numbers as follows:

zero ≡ Z
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Example 2: Natural numbers in unary (base-1) notation

Z is a natural;

if n is a natural, then so is S(n).

We pronouce Z as “zed” and “S” as successor. We can now define
the natural numbers as follows:

zero ≡ Z

one ≡ S(Z )
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Example 2: Natural numbers in unary (base-1) notation

Z is a natural;

if n is a natural, then so is S(n).

We pronouce Z as “zed” and “S” as successor. We can now define
the natural numbers as follows:

zero ≡ Z

one ≡ S(Z )
two ≡ S(S(Z ))
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Example 2: Natural numbers in unary (base-1) notation

Z is a natural;

if n is a natural, then so is S(n).

We pronouce Z as “zed” and “S” as successor. We can now define
the natural numbers as follows:

zero ≡ Z

one ≡ S(Z )
two ≡ S(S(Z ))
. . .
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It’s possible to view naturals as trees, too:

zero ≡ Z Z

one ≡ S(Z ) S

Z

two ≡ S(S(Z )) S

S

Z

. . .
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Definition via rules

Examples (more formally)

Binary trees: The set Tree is defined by the rules

•

tl tr

tl tr

Naturals: The set Nat is defined by the rules

Z

n

S(n)
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Definition via rules

Given a collection of rules, what set does it define?

What is the set of trees?

What is the set of naturals?

Do the rules pick out a unique set?
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Definition via rules

There can be many sets that satisfy a given collection of

rules

IndNum = {Z ,S(Z ), . . .}

CoIndNum = {Z ,S(Z ),S(S(Z )), . . . ,S(S(S(. . .)))}

WeirdNum = MyNum ∪ {∞,S(∞), . . .}, where ∞ is an
arbitrary symbol.

All three of these different sets satisfy the rules defining numerals.
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Definition via rules

An inductively defined set is the least set for the given

rules (i.e., the extremal clause).

Example: IndNum = {Z ,S(Z ),S(S(Z )), . . .} is the least set that
satisfies these rules:

Z ∈ Num

if n ∈ Num, then S(n) ∈ Num.
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Definition via rules

What do we mean by “least”?

Answer: The smallest with respect to the subset ordering on sets.

Contains no “junk”, only what is required by the rules.

Since CoIndNum ) IndNum, CoIndNum is ruled out by the
extremal clause.

Since WeirdNum ) IndNum, WeirdNum is ruled out by the
extremal clause.

IndNum is “ruled in” because it has no “junk”. That is, for
any set S satisfying the rules, S ⊃ IndNum
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Definition via rules

We almost always want to define sets with inductive

definitions, and so have some simple notation to do so
quickly:

S = Constructor1(. . .) | Constructor2(. . .) | . . .

where S can appear in the . . . on the right hand side (along with
other things). The Constructori are the names of the different
rules (sometimes text, sometimes symbols). This is called a
recursive definition.

Examples:

Binary trees: τ = • | τ τ

Naturals: N = Z | S(N)
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Definition via rules

There is a close connection between a recursive definition

and a definition by rules:

Binary trees: τ = • | τ τ

•

tl tr

tl tr

Naturals: N = Z | S(N)

Z

n

S(n)

A definition written in “recursive definition style” is assumed to be
the least set satisfying the rules; that is, the notation means that
the extremal clause holds.CS 3234: Logic and Formal Systems 6—Inductive Proofs
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Definition via rules

CoInductive sets

What about the other two choices? Is there any value in them?

CoIndNum = {Z ,S(Z ),S(S(Z )), . . . ,S(S(S(. . .)))}

WeirdNum = MyNum ∪ {∞,S(∞), . . .}, where ∞ is an
arbitrary symbol.

As a rule, there is no point at all to WeirdNum: it is just a set that
we don’t want—and if we do, we can define it inductively by
WeirdNum = Z | ∞ | S(WeirdNum).
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Definition via rules

CoInductive sets

What about the other two choices? Is there any value in them?

CoIndNum = {Z ,S(Z ),S(S(Z )), . . . ,S(S(S(. . .)))}

WeirdNum = MyNum ∪ {∞,S(∞), . . .}, where ∞ is an
arbitrary symbol.

As a rule, there is no point at all to WeirdNum: it is just a set that
we don’t want—and if we do, we can define it inductively by
WeirdNum = Z | ∞ | S(WeirdNum).

But there is value to the set CoIndNum. This is the greatest set
that can be defined using a set of rules without adding junk like
∞. Such a set is called co-inductively defined, and is useful for
reasoning about infinitely-long objects such as streams.
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Taking cases
Structural induction
Justifying structural induction

What’s the Big Deal with inductively defined sets?

Inductively defined sets “come with” an induction principle.
Suppose I is inductively defined by rules R .

To show that every x ∈ I has property P , it is enough to show
that regardless of which rule is used to “build” x, P holds; this
is called taking cases or inversion.

Note that one can take cases also on co-inductively defined
sets like CoIndNum—but not on sets like WeirdNum.

Sometimes, taking cases is not enough; in that case we can
attempt a more complicated proof where we show that P is
preserved by each of the rules of R ; this is called structural

induction or rule induction. We need to have an inductively
defined set; we cannot do induction over coinductive sets.
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Taking cases
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Example: Sign of a Natural

Consider the following definition:

The natural Z has sign 0.

For any natural n, the natural S(n) has sign 1.

Let P be the following property: Every natural has sign 0 or 1.
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Taking cases
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Example: Sign of a Natural

Consider the following definition:

The natural Z has sign 0.

For any natural n, the natural S(n) has sign 1.

Let P be the following property: Every natural has sign 0 or 1.

Does P satisfy the rules

Z

n

S(n)

?
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Taking cases
Structural induction
Justifying structural induction

How to take cases

To show that every n ∈ Nat has property P , it is enough to show:

Z has property P .

For any n, S(n) has property P .
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Taking cases
Structural induction
Justifying structural induction

How to take cases

To show that every n ∈ Nat has property P , it is enough to show:

Z has property P .

For any n, S(n) has property P .

Recall:

The natural Z has sign 0.

For any natural n, the natural S(n) has sign 1.

Let P = “Every natural has sign 0 or 1.”. Does P hold for all N?

CS 3234: Logic and Formal Systems 6—Inductive Proofs



Recall: Inductive definitions
Formal definitions

Taking cases and proofs by induction
Inductive definitions and proofs by induction in Coq

Extensions to other structures & summary

Taking cases
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Justifying structural induction

How to take cases

To show that every n ∈ Nat has property P , it is enough to show:

Z has property P .

For any n, S(n) has property P .

Recall:

The natural Z has sign 0.

For any natural n, the natural S(n) has sign 1.

Let P = “Every natural has sign 0 or 1.”. Does P hold for all N?

Proof. We take cases on the structure of n as follows:

Z has sign 0, so P holds for Z .
√
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Taking cases
Structural induction
Justifying structural induction

How to take cases

To show that every n ∈ Nat has property P , it is enough to show:

Z has property P .

For any n, S(n) has property P .

Recall:

The natural Z has sign 0.

For any natural n, the natural S(n) has sign 1.

Let P = “Every natural has sign 0 or 1.”. Does P hold for all N?

Proof. We take cases on the structure of n as follows:

Z has sign 0, so P holds for Z .
√

For any n, S(n) has sign 1, so P holds for any S(n).
√

Thus, P holds for all naturals.
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Taking cases
Structural induction
Justifying structural induction

Example: Even and Odd Naturals

The natural Z has parity 0.

If n is a natural with parity 0, then S(n) has parity 1.

If n is a natural with parity 1, then S(n) has parity 0.

Let P be: Every natural has parity 0 or parity 1.
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Taking cases
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Justifying structural induction

Example: Even and Odd Naturals

The natural Z has parity 0.

If n is a natural with parity 0, then S(n) has parity 1.

If n is a natural with parity 1, then S(n) has parity 0.

Let P be: Every natural has parity 0 or parity 1.

Can we prove this by taking cases?
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Taking cases
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Taking cases

We need to show P = “Every natural has parity 0 or parity 1.”,

Z has property P .

For any n, S(n) has property P .

Where parity is defined by

The natural Z has parity 0.

If n is a natural with parity 0, then S(n) has parity 1.

If n is a natural with parity 1, then S(n) has parity 0.
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Taking cases

We need to show P = “Every natural has parity 0 or parity 1.”,

Z has property P .

For any n, S(n) has property P .

Where parity is defined by

The natural Z has parity 0.

If n is a natural with parity 0, then S(n) has parity 1.

If n is a natural with parity 1, then S(n) has parity 0.

Proof. We take cases on the structure of n as follows:

Z has parity 0, so P holds for Z .
√
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Taking cases

We need to show P = “Every natural has parity 0 or parity 1.”,

Z has property P .

For any n, S(n) has property P .

Where parity is defined by

The natural Z has parity 0.

If n is a natural with parity 0, then S(n) has parity 1.

If n is a natural with parity 1, then S(n) has parity 0.

Proof. We take cases on the structure of n as follows:

Z has parity 0, so P holds for Z .
√

For any n, S(n) has parity
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Taking cases

We need to show P = “Every natural has parity 0 or parity 1.”,

Z has property P .

For any n, S(n) has property P .

Where parity is defined by

The natural Z has parity 0.

If n is a natural with parity 0, then S(n) has parity 1.

If n is a natural with parity 1, then S(n) has parity 0.

Proof. We take cases on the structure of n as follows:

Z has parity 0, so P holds for Z .
√

For any n, S(n) has parity well. . .
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Taking cases

We need to show P = “Every natural has parity 0 or parity 1.”,

Z has property P .

For any n, S(n) has property P .

Where parity is defined by

The natural Z has parity 0.

If n is a natural with parity 0, then S(n) has parity 1.

If n is a natural with parity 1, then S(n) has parity 0.

Proof. We take cases on the structure of n as follows:

Z has parity 0, so P holds for Z .
√

For any n, S(n) has parity well. . . hmmm. . .
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Taking cases

We need to show P = “Every natural has parity 0 or parity 1.”,

Z has property P .

For any n, S(n) has property P .

Where parity is defined by

The natural Z has parity 0.

If n is a natural with parity 0, then S(n) has parity 1.

If n is a natural with parity 1, then S(n) has parity 0.

Proof. We take cases on the structure of n as follows:

Z has parity 0, so P holds for Z .
√

For any n, S(n) has parity well. . . hmmm. . . it is unclear;
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Taking cases

We need to show P = “Every natural has parity 0 or parity 1.”,

Z has property P .

For any n, S(n) has property P .

Where parity is defined by

The natural Z has parity 0.

If n is a natural with parity 0, then S(n) has parity 1.

If n is a natural with parity 1, then S(n) has parity 0.

Proof. We take cases on the structure of n as follows:

Z has parity 0, so P holds for Z .
√

For any n, S(n) has parity well. . . hmmm. . . it is unclear; it
depends on the parity of n.

CS 3234: Logic and Formal Systems 6—Inductive Proofs



Recall: Inductive definitions
Formal definitions

Taking cases and proofs by induction
Inductive definitions and proofs by induction in Coq

Extensions to other structures & summary

Taking cases
Structural induction
Justifying structural induction

Taking cases

We need to show P = “Every natural has parity 0 or parity 1.”,

Z has property P .

For any n, S(n) has property P .

Where parity is defined by

The natural Z has parity 0.

If n is a natural with parity 0, then S(n) has parity 1.

If n is a natural with parity 1, then S(n) has parity 0.

Proof. We take cases on the structure of n as follows:

Z has parity 0, so P holds for Z .
√

For any n, S(n) has parity well. . . hmmm. . . it is unclear; it
depends on the parity of n. X
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Taking cases

We need to show P = “Every natural has parity 0 or parity 1.”,

Z has property P .

For any n, S(n) has property P .

Where parity is defined by

The natural Z has parity 0.

If n is a natural with parity 0, then S(n) has parity 1.

If n is a natural with parity 1, then S(n) has parity 0.

Proof. We take cases on the structure of n as follows:

Z has parity 0, so P holds for Z .
√

For any n, S(n) has parity well. . . hmmm. . . it is unclear; it
depends on the parity of n. X

We are stuck! We need an extra fact about n’s parity. . .
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Induction hypothesis

This fact is called an induction hypothesis. To get such an
induction hypothesis we do induction, which is a more powerful
way to take cases. To show that every n ∈ Num has property P ,
we must show that every rule preserves P ; that is:

Z has property P .

if n has property P , then S(n) has property P .

The new part is “if n has property P , then . . . ”; this is the
induction hypothesis.

CS 3234: Logic and Formal Systems 6—Inductive Proofs



Recall: Inductive definitions
Formal definitions

Taking cases and proofs by induction
Inductive definitions and proofs by induction in Coq

Extensions to other structures & summary

Taking cases
Structural induction
Justifying structural induction

Induction hypothesis

This fact is called an induction hypothesis. To get such an
induction hypothesis we do induction, which is a more powerful
way to take cases. To show that every n ∈ Num has property P ,
we must show that every rule preserves P ; that is:

Z has property P .

if n has property P , then S(n) has property P .

The new part is “if n has property P , then . . . ”; this is the
induction hypothesis.

Note that for the naturals, structural induction is just ordinary
mathematical induction!
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Using induction to fix our proof

Every natural has parity 0 or parity 1.

Proof. We take cases on the structure of n as follows:

Z has parity 0, so P holds for Z .
√
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Taking cases
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Using induction to fix our proof

Every natural has parity 0 or parity 1.

Proof. We take cases on the structure of n as follows:

Z has parity 0, so P holds for Z .
√

For any n, we can’t determine the parity of S(n) until we
know something about the parity of n. X

CS 3234: Logic and Formal Systems 6—Inductive Proofs



Recall: Inductive definitions
Formal definitions

Taking cases and proofs by induction
Inductive definitions and proofs by induction in Coq

Extensions to other structures & summary

Taking cases
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Using induction to fix our proof

Every natural has parity 0 or parity 1.

Proof. We take cases on the structure of n as follows:

Z has parity 0, so P holds for Z .
√

For any n, we can’t determine the parity of S(n) until we
know something about the parity of n. X

Proof. We do induction on the structure of n as follows:

Z has parity 0, so P holds for Z .
√
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Taking cases
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Using induction to fix our proof

Every natural has parity 0 or parity 1.

Proof. We take cases on the structure of n as follows:

Z has parity 0, so P holds for Z .
√

For any n, we can’t determine the parity of S(n) until we
know something about the parity of n. X

Proof. We do induction on the structure of n as follows:

Z has parity 0, so P holds for Z .
√

Given an n such that P holds on n, show that P holds on
S(n). Since P holds on n, the parity of n is 0 or 1. If the
parity of n is 0, then the parity of S(n) is 1. If the parity of n
is 1, then the parity of S(n) is 0. In either case, the parity of
S(n) is 0 or 1, so if P holds on n then P holds on S(n).

√

Thus, P holds for an natural n.
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Taking cases
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Justifying structural induction

Extending case analysis and structural induction to trees

Case analysis: to show that every tree has property P , prove that

• has property P .

for all τ1 and τ2, τ1 τ2
has property P .

Structural induction: to show that every tree has property P , prove

• has property P .

if τ1 and τ2 have property P , then
τ1 τ2

has property P .
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Taking cases
Structural induction
Justifying structural induction

Extending case analysis and structural induction to trees

Case analysis: to show that every tree has property P , prove that

• has property P .

for all τ1 and τ2, τ1 τ2
has property P .

Structural induction: to show that every tree has property P , prove

• has property P .

if τ1 and τ2 have property P , then
τ1 τ2

has property P .

Note that we do not require that τ1 and τ2 be the same height!
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Taking cases
Structural induction
Justifying structural induction

Structural induction vs. induction on naturals

You are probably familiar with regular mathematical induction: to
prove something for any natural n, first prove it is true about 0
and then show that if it is true about n then it is true about n+ 1.
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Structural induction vs. induction on naturals

You are probably familiar with regular mathematical induction: to
prove something for any natural n, first prove it is true about 0
and then show that if it is true about n then it is true about n+ 1.

How does structural induction compare to regular mathematical
induction on, say, the height of trees?
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Structural induction vs. induction on naturals

You are probably familiar with regular mathematical induction: to
prove something for any natural n, first prove it is true about 0
and then show that if it is true about n then it is true about n+ 1.

How does structural induction compare to regular mathematical
induction on, say, the height of trees?

For both types of induction, the base case is the same:
• has property P .
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Structural induction vs. induction on naturals

You are probably familiar with regular mathematical induction: to
prove something for any natural n, first prove it is true about 0
and then show that if it is true about n then it is true about n+ 1.

How does structural induction compare to regular mathematical
induction on, say, the height of trees?

For both types of induction, the base case is the same:
• has property P .
For structural induction:
if τ1 and τ2 have property P , then

τ1 τ2
has property P .
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Structural induction vs. induction on naturals

You are probably familiar with regular mathematical induction: to
prove something for any natural n, first prove it is true about 0
and then show that if it is true about n then it is true about n+ 1.

How does structural induction compare to regular mathematical
induction on, say, the height of trees?

For both types of induction, the base case is the same:
• has property P .
For structural induction:
if τ1 and τ2 have property P , then

τ1 τ2
has property P .

For regular mathematical induction on the height of trees:
if τ1 and τ2 are trees of height n and have property P , then

τ1 τ2
is a tree of height n+ 1 and has property P .
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Structural induction vs. induction on naturals

You are probably familiar with regular mathematical induction: to
prove something for any natural n, first prove it is true about 0
and then show that if it is true about n then it is true about n+ 1.

How does structural induction compare to regular mathematical
induction on, say, the height of trees?

For both types of induction, the base case is the same:
• has property P .
For structural induction:
if τ1 and τ2 have property P , then

τ1 τ2
has property P .

For regular mathematical induction on the height of trees:
if τ1 and τ2 are trees of height n and have property P , then

τ1 τ2
is a tree of height n+ 1 and has property P .

Structural induction is more powerful!CS 3234: Logic and Formal Systems 6—Inductive Proofs
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How can we justify case analysis and induction?

Let I be a set inductively defined by rules R .
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How can we justify case analysis and induction?

Let I be a set inductively defined by rules R .

Case analysis is really a lightweight “special case” of structural
induction where we do not use the induction hypothesis. If
structural induction is sound, then case analysis will be as well.
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How can we justify case analysis and induction?

Let I be a set inductively defined by rules R .

Case analysis is really a lightweight “special case” of structural
induction where we do not use the induction hypothesis. If
structural induction is sound, then case analysis will be as well.

One way to think of a property P is that it is exactly the set
of items that have property P . We would like to show that if
you are in the set I then you have property P , that is, P ⊇ I .
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How can we justify case analysis and induction?

Let I be a set inductively defined by rules R .

Case analysis is really a lightweight “special case” of structural
induction where we do not use the induction hypothesis. If
structural induction is sound, then case analysis will be as well.

One way to think of a property P is that it is exactly the set
of items that have property P . We would like to show that if
you are in the set I then you have property P , that is, P ⊇ I .

Remember that I is (by definition) the smallest set satisfying
the rules in R .
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How can we justify case analysis and induction?

Let I be a set inductively defined by rules R .

Case analysis is really a lightweight “special case” of structural
induction where we do not use the induction hypothesis. If
structural induction is sound, then case analysis will be as well.

One way to think of a property P is that it is exactly the set
of items that have property P . We would like to show that if
you are in the set I then you have property P , that is, P ⊇ I .

Remember that I is (by definition) the smallest set satisfying
the rules in R .

Hence if P satisfies (is preserved by) the rules of R , then
P ⊇ I .

CS 3234: Logic and Formal Systems 6—Inductive Proofs



Recall: Inductive definitions
Formal definitions

Taking cases and proofs by induction
Inductive definitions and proofs by induction in Coq

Extensions to other structures & summary

Taking cases
Structural induction
Justifying structural induction

How can we justify case analysis and induction?

Let I be a set inductively defined by rules R .

Case analysis is really a lightweight “special case” of structural
induction where we do not use the induction hypothesis. If
structural induction is sound, then case analysis will be as well.

One way to think of a property P is that it is exactly the set
of items that have property P . We would like to show that if
you are in the set I then you have property P , that is, P ⊇ I .

Remember that I is (by definition) the smallest set satisfying
the rules in R .

Hence if P satisfies (is preserved by) the rules of R , then
P ⊇ I .

This is why the extremal clause matters so much!
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Example: Height of a Tree

To show: Every tree has a height, defined as follows:

The height of • is 0.
If the tree l has height hl and the tree r has height hr , then
the tree l r has height 1 +max(hl , hr ).

Clearly, every tree has at most one height, but does it have
any height at all?
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Example: Height of a Tree

To show: Every tree has a height, defined as follows:

The height of • is 0.
If the tree l has height hl and the tree r has height hr , then
the tree l r has height 1 +max(hl , hr ).

Clearly, every tree has at most one height, but does it have
any height at all?

It may seem obvious that every tree has a height, but notice
that the justification relies on structural induction!

An “infinite tree” does not have a height!
But the extremal clause rules out the infinite tree!
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Example: height

Formally, we prove that for every tree t, there exists a number
h satisfying the specification of height.

Proceed by induction on the structure of trees, showing
that the property “there exists a height h for t” satisfies (is
preserved by) these rules.
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Example: height

Rule 1: • is a tree.
Does there exist h such that h is the height of Empty?
Yes! Take h=0.

Rule 2: l r is a tree if l and r are trees.

Suppose that there exists hl and hr , the heights of l and r ,
respectively (the induction hypothesis).
Does there exist h such that h is the height of Node(l , r)?
Yes! Take h = 1 +max(hl , hr ).

Thus, we have proved that all trees have a height.
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Please see the Coq script.
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Extension: the syntax of propositional logic

We have already seen a major example of a recursive definition in
class: the syntax of propositional logic!

F = Atom(α) | ¬F | F ∨ F | F ∧ F | F → F

It is perfectly reasonable to do case analysis and structural
induction on the syntax of a formula φ. In fact, we will see an
example of this shortly!
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Extension: the structure of a natural deduction proof

We have seen another important kind of tree-like structure in class
already: natural deduction proofs! In homework 1, you did proofs
using a “3 column” style; in homework 2, you will do a few proofs
using the graphical tree-style, such as this proof of p ∧ q ` q ∧ p:

p ∧ q

q
[∧e2]

p ∧ q

p
[∧e1]

q ∧ p

[∧i ]

It is also reasonable to do structural induction on the structure of a
formal proof. We will see an example of this shortly, too!
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An inductively defined set is the least set closed under a
collection of rules.

Rules have the form:
“If x1 ∈ X and . . . and xn ∈ X , then x ∈ X .”

Notation:

x1 · · · xn

x

Notation: sometimes we can define the entire set easily with a
recursive definition: S = C1(. . .) | C2(. . .) | . . .
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Inductively defined sets admit proofs by rule induction.

For each rule

x1 · · · xn

x

assume that x1 ∈ P , . . ., xn ∈ P , and show that x ∈ P .

Conclude that every element of the set is in P .
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