03b—Propositional Logic

CS 3234: Logic and Formal Systems

Martin Henz and Aquinas Hobor

August 26, 2009

Generated on Thursday 26th August, 2010, 15:53

2 Semantics of Propositional Logic

3 Proof Theory

4 Soundness and Completeness (preview)

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

- Atoms and Propositions
- Motivation
- Propositional Atoms
- Constructing Propositions
- Syntax of Propositional Logic

Semantics of Propositional Logic

Proof Theory

Soundness and Completeness (preview)

Semantics of Propositional Logic Proof Theory Soundness and Completeness (preview)

Beyond Traditional Logic

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Not just sets

How to express this using traditional logic?

- "The sun is shining today."
- "Earth has more mass than Mars."

Arguments as Propositions

How to formalize a proposition of the form

If p_1 then p_2 ?

Semantics of Propositional Logic Proof Theory Soundness and Completeness (preview)

Atoms

Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Motivation

Anything goes We allow any kind of proposition, for example "The sun is shining today".

Convention

We usually use p, q, p_1 , etc, instead of sentences like "The sun is shining today".

Atoms

More formally, we fix a set A of propositional atoms.

Semantics of Propositional Logic Proof Theory Soundness and Completeness (preview)

Meaning of Atoms

Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Motivation

Models assign truth values

A model assigns truth values (F or T) to each atom.

More formally

A model for a propositional logic for the set A of atoms is a mapping from A to $\{T, F\}$.

How do you call them?

Models for propositional logic are called *valuations*.

Semantics of Propositional Logic Proof Theory Soundness and Completeness (preview)

Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Motivation

Example

Some valuation Let $A = \{p, q, r\}$. Then a valuation v_1 might assign p to T, q to F and r to T.

More formally $p^{v_1} = T, q^{v_1} = F, r^{v_1} = T.$ write $v_1(p)$ instead of p^{v_1}

Semantics of Propositional Logic Proof Theory Soundness and Completeness (preview)

Building Propositions

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

We would like to build larger propositions, such as arguments, out of smaller ones, such as propositional atoms. We do this using *operators* that can be applied to propositions, and yield propositions.

Soundness and Completeness (preview)

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Unary Operators

Let *p* be an atom.

All possibilities

The following options exist:

1
$$p^{v} = F$$
: $(op(p))^{v} = F$. $p^{v} = T$: $(op(p))^{v} = F$.
2 $p^{v} = F$: $(op(p))^{v} = T$. $p^{v} = T$: $(op(p))^{v} = T$.
3 $p^{v} = F$: $(op(p))^{v} = F$. $p^{v} = T$: $(op(p))^{v} = T$.
4 $p^{v} = F$: $(op(p))^{v} = T$. $p^{v} = T$: $(op(p))^{v} = F$.

The fourth operator *negates* its argument, *T* becomes *F* and *F* becomes *T*. We call this operator *negation*, and write $\neg p$ (pronounced "not p").

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Nullary Operators are Constants

The constant op

The constant \top always evaluates to *T*, regardless of the valuation.

The constant ot

The constant \perp always evaluates to *F*, regardless of the valuation.

Semantics of Propositional Logic Proof Theory Soundness and Completeness (preview) Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Binary Operators: 16 choices

р	q	$op_1(p,q)$	$op_2(p,q)$	$op_3(p,q)$	$op_4(p,q)$
F	F	F	F	F	F
F	T	F	F	F	F
T	F	F	F	Т	T
T	Τ	F	Т	F	Т

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Binary Operators: 16 choices (continued)

р	q	$op_5(p,q)$	$op_6(p,q)$	$op_7(p,q)$	$op_8(p,q)$
F	F	F	F	F	F
F	T	Т	Т	Т	T
T	F	F	F	Т	T
T	T	F	Т	F	Т

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Binary Operators: 16 choices (continued)

р	q	$op_9(p,q)$	$op_{10}(p,q)$	$op_{11}(p,q)$	$op_{12}(p,q)$
F	F	Т	Т	Т	Т
F	T	F	F	F	F
T	F	F	F	Т	Т
Τ	T	F	Т	F	Т

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Binary Operators: 16 choices (continued)

р	q	$op_{13}(p,q)$	$op_{14}(p,q)$	$op_{15}(p,q)$	$op_{16}(p,q)$
F	F	Т	Т	Т	Т
F	T	Т	Т	Т	Т
Τ	F	F	F	Т	Т
Τ	Т	F	Т	F	Т

Semantics of Propositional Logic Proof Theory Soundness and Completeness (preview) Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Three Famous Ones

- $op_2 : op_2(p,q)$ is T when p is T and q is T, and F otherwise. Called *conjunction*, denoted $p \land q$.
- $op_8 : op_8(p,q)$ is T when p is T or q is T, and F otherwise. Called *disjunction*, denoted $p \lor q$.
- $op_{14} : op_{14}(p,q)$ is *T* when *p* is *F* or *q* is *T*, and *F* otherwise. Called *implication*, denoted $p \rightarrow q$.

Semantics of Propositional Logic Proof Theory Soundness and Completeness (preview)

Inductive Definition

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Definition

For a given set A of propositional atoms, the set of *well-formed* formulas in propositional logic is the least set F that fulfills the following rules:

- The constant symbols \perp and \top are in *F*.
- Every element of A is in F.
- If ϕ is in *F*, then $(\neg \phi)$ is also in *F*.
- If ϕ and ψ are in *F*, then $(\phi \land \psi)$ is also in *F*.
- If ϕ and ψ are in *F*, then $(\phi \lor \psi)$ is also in *F*.
- If ϕ and ψ are in *F*, then ($\phi \rightarrow \psi$) is also in *F*.

Semantics of Propositional Logic Proof Theory Soundness and Completeness (preview)

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

$(((\neg p) \land q) \rightarrow (\top \land (q \lor (\neg r))))$

is a well-formed formula in propositional logic.

Semantics of Propositional Logic Proof Theory Soundness and Completeness (preview)

More Compact in BNF

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

$\phi ::= p \mid \perp \mid \top \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$ (Backus Naur Form)

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Convention

The negation symbol \neg binds more tightly than \land and \lor , and \land and \lor bind more tightly than \rightarrow . Moreover, \rightarrow is *right-associative*: The formula $p \rightarrow q \rightarrow r$ is read as $p \rightarrow (q \rightarrow r)$.

Example

$$(((\neg p) \land q) \rightarrow (p \land (q \lor (\neg r))))$$

can be written as

$$\neg p \land q \rightarrow p \land (q \lor \neg r)$$

Operations on Truth Values Evaluation of Formulas

Atoms and Propositions

- 2 Semantics of Propositional Logic
 - Operations on Truth Values
 - Evaluation of Formulas

Proof Theory

Soundness and Completeness (preview)

Operations on Truth Values Evaluation of Formulas

Negating Truth Values

Т

F

Definition Function $\setminus : \{F, T\} \rightarrow \{F, T\}$ given in truth table: $\frac{B \mid \setminus B}{F \mid T}$

Operations on Truth Values Evaluation of Formulas

Conjunction of Truth Values

Definition

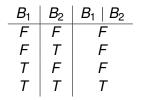
Function & : $\{F, T\} \times \{F, T\} \rightarrow \{F, T\}$ given in truth table:

Operations on Truth Values Evaluation of Formulas

Disjunction of Truth Values

Definition

Function $|: \{F, T\} \times \{F, T\} \rightarrow \{F, T\}$ given in truth table:



Operations on Truth Values Evaluation of Formulas

Implication of Truth Values

Definition

Function $\Rightarrow: \{F, T\} \times \{F, T\} \rightarrow \{F, T\}$ given in truth table:

Operations on Truth Values Evaluation of Formulas

Evaluation of Formulas

Definition

The result of *evaluating* a well-formed propositional formula ϕ with respect to a valuation v, denoted $v(\phi)$ is defined as follows:

- If ϕ is the constant \bot , then $v(\phi) = F$.
- If ϕ is the constant \top , then $v(\phi) = T$.
- If ϕ is an propositional atom p, then $v(\phi) = p^v$.
- If ϕ has the form $(\neg \psi)$, then $\nu(\phi) = \setminus \nu(\psi)$.
- If ϕ has the form $(\psi \wedge \tau)$, then $v(\phi) = v(\psi) \& v(\tau)$.
- If ϕ has the form $(\psi \lor \tau)$, then $v(\phi) = v(\psi) | v(\tau)$.
- If ϕ has the form $(\psi \to \tau)$, then $v(\phi) = v(\psi) \Rightarrow v(\tau)$.

Operations on Truth Values Evaluation of Formulas

Valid Formulas

Definition A formula is called *valid* if it evaluates to *T* with respect to every possible valuation.

Operations on Truth Values Evaluation of Formulas

Examples

Example

ls

 $(((\neg p) \land q) \rightarrow (\top \land (q \lor (\neg r))))$

valid?

Example

Find a valid formula that contains the propositional atoms p, q, r and w.

Sequents Axioms Derived Rules

Atoms and Propositions

Semantics of Propositional Logic

- 3 Proof Theory
 - Sequents
 - Axioms
 - Our Derived Rules

03b—Propositional Logic

Sequents Axioms Derived Rules

Sequents

Definition

A sequent consists of propositional formulas $\phi_1, \phi_2, \ldots, \phi_n$, called *premises*, where $n \ge 0$, and a propositional formula ψ called *conclusion*. We write a sequent as follows:

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

and say " ψ is provable using the premises $\phi_1, \phi_2, \ldots, \phi_n$ ".

Soundness and Completeness (preview)

Introducing \top

Sequents Axioms Derived Rules

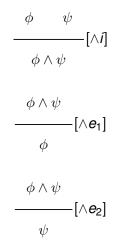
CS 3234: Logic and Formal Systems 03b—Propositional Logic

—_[⊤*i*] ⊤

Sequents Axioms Derived Rules

Soundness and Completeness (preview)

Rules for Conjunction



CS 3234: Logic and Formal Systems

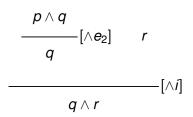
03b—Propositional Logic

Sequents Axioms Derived Rules

Example

 $p \land q, r \vdash q \land r$

Proof (graphical notation):



Example

Sequents Axioms Derived Rules

 $p \land q, r \vdash q \land r$

Proof (text-based notation):

1	$(p \wedge q)$	premise
2	q	∧e 1
3	r	premise
4	$\boldsymbol{q}\wedge \boldsymbol{r}$	∧i 2,3

Sequents Axioms Derived Rules

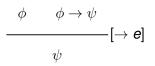
Soundness and Completeness (preview)

Double Negation Elimination

Sequents Axioms Derived Rules

Soundness and Completeness (preview)

Implication Elimination



Sequents Axioms Derived Rules

Soundness and Completeness (preview)

We would like...

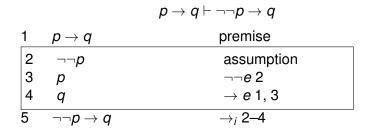
...to be able to prove:

$$p
ightarrow q dash
eg
eg q
ightarrow
eg q$$

Sequents Axioms Derived Rules

Soundness and Completeness (preview)

A proof should look like this

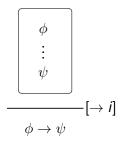


03b—Propositional Logic

Sequents Axioms Derived Rules

Soundness and Completeness (preview)

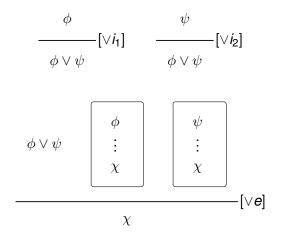
Implication Elimination



Sequents Axioms Derived Rules

Soundness and Completeness (preview)

Rules for Disjunction

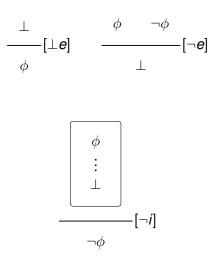


CS 3234: Logic and Formal Systems

Sequents Axioms Derived Rules

Soundness and Completeness (preview)

Axioms for \perp and Negation



CS 3234: Logic and Formal Systems

03b—Propositional Logic

Sequents Axioms Derived Rules

Double Negation Introduction

Lemma $(\neg \neg i)$

The following sequent holds for any formula ϕ :

 $\phi \vdash \neg \neg \phi$

Proof:

1	ϕ	premise
2	$\neg \phi$	assumption
3	\perp	¬e 1,2
4	$\neg \neg \phi$	_i 2–3

Sequents Axioms Derived Rules

Double Negation Introduction

Lemma $(\neg \neg i)$

The following sequent holds for any formula ϕ :

 $\phi \vdash \neg \neg \phi$

can be written like an axiom:

Soundness and Completeness (preview)

Sequents Axioms Derived Rules

Law of Excluded Middle

Lemma (LEM)

$$------[LEM]$$

$$\phi \lor \neg \phi$$

.

Entailment Soundness and Completeness

Semantics of Propositional Logic

Proof Theory

Soundness and Completeness (preview)

- Entailment
- Soundness and Completeness

Entailment

Entailment Soundness and Completeness

Definition

If, for all valuations in which all $\phi_1, \phi_2, \ldots, \phi_n$ evaluate to T, the formula ψ evaluates to T as well, we say that $\phi_1, \phi_2, \ldots, \phi_n$ semantically entail ψ , written:

$$\phi_1, \phi_2, \ldots, \phi_n \models \psi$$

Entailment Soundness and Completeness

Soundness and Completeness

Theorem (Soundness of Propositional Logic)

Let $\phi_1, \phi_2, \dots, \phi_n$ and ψ be propositional formulas. If $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$, then $\phi_1, \phi_2, \dots, \phi_n \models \psi$.

Theorem (Completeness of Propositional Logic) Let $\phi_1, \phi_2, \dots, \phi_n$ and ψ be propositional formulas. If $\phi_1, \phi_2, \dots, \phi_n \models \psi$, then $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$.

Entailment Soundness and Completeness

Admin

- Coq Homework 1: due 27/8, 9:30pm
- Assignment 2: out on module homepage; due 2/9, 11:00am
- Monday, Wednesday: Office hours
- Tuesday: Tutorials (Assignments 1 and 2)
- Wednesday: Labs (Coq Homework 1; Quiz 1)
- Thursday: Lecture on Predicate Logic