03b—Propositional Logic

CS 3234: Logic and Formal Systems

Martin Henz and Aquinas Hobor

August 26, 2009

Generated on Thursday 26th August, 2010, 15:53

・ロ・ ・ 四・ ・ 回・ ・ 回・

크

CS 3234: Logic and Formal Systems 03b—Propositional Logic

- 2 Semantics of Propositional Logic
- 3 Proof Theory
- 4 Soundness and Completeness (preview)

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

(日)

Atoms and Propositions

- Motivation
- Propositional Atoms
- Constructing Propositions
- Syntax of Propositional Logic
- 2 Semantics of Propositional Logic

3 Proof Theory

Soundness and Completeness (preview)

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロ・ ・ 四・ ・ 回・ ・ 日・

Beyond Traditional Logic

Not just sets

How to express this using traditional logic?

- "1 + 1 = 3"
- "The sun is shining today."
- "Earth has more mass than Mars."

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロト ・雪 ・ ・ ヨ ・

Beyond Traditional Logic

Not just sets

How to express this using traditional logic?

- "1 + 1 = 3"
- "The sun is shining today."
- "Earth has more mass than Mars."

Arguments as Propositions

How to formalize a proposition of the form

If p_1 then p_2 ?

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロン ・雪 > ・ 画 > ・

臣

Atoms

Anything goes

We allow any kind of proposition, for example "The sun is shining today".

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Atoms

Anything goes

We allow any kind of proposition, for example "The sun is shining today".

Convention

We usually use p, q, p_1 , etc, instead of sentences like "The sun is shining today".

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

(日)

Atoms

Anything goes

We allow any kind of proposition, for example "The sun is shining today".

Convention

We usually use p, q, p_1 , etc, instead of sentences like "The sun is shining today".

Atoms

More formally, we fix a set A of propositional atoms.

Meaning of Atoms

Motivation **Propositional Atoms** Constructing Propositions Syntax of Propositional Logic

・ロト ・雪 ト ・ヨ ト

臣

Models assign truth values

A model assigns truth values (F or T) to each atom.

Meaning of Atoms

Motivation **Propositional Atoms** Constructing Propositions Syntax of Propositional Logic

・ロ・ ・ 四・ ・ 回・ ・ 日・

Models assign truth values

A model assigns truth values (F or T) to each atom.

More formally

A model for a propositional logic for the set A of atoms is a mapping from A to $\{T, F\}$.

Meaning of Atoms

Motivation **Propositional Atoms** Constructing Propositions Syntax of Propositional Logic

・ロ・ ・ 四・ ・ 回・ ・ 回・

Models assign truth values

A model assigns truth values (F or T) to each atom.

More formally

A model for a propositional logic for the set A of atoms is a mapping from A to $\{T, F\}$.

How do you call them?

Models for propositional logic are called *valuations*.

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

크

Example

Some valuation Let $A = \{p, q, r\}$. Then a valuation v_1 might assign p to T, q to F and r to T.

Example

Some valuation Let $A = \{p, q, r\}$. Then a valuation v_1 might assign p to T, q to F and r to T.

More formally

$$p^{v_1} = T, q^{v_1} = F, r^{v_1} = T.$$

・ロン ・四 ・ ・ ヨン・

E

・ロン ・四 ・ ・ ヨン・

E

Example

Some valuation Let $A = \{p, q, r\}$. Then a valuation v_1 might assign p to T, q to F and r to T.

More formally

$$p^{v_1} = T, q^{v_1} = F, r^{v_1} = T.$$

write $v_1(p)$ instead of p^{v_1}

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

Building Propositions

We would like to build larger propositions, such as arguments, out of smaller ones, such as propositional atoms. We do this using *operators* that can be applied to propositions, and yield propositions.

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

臣

Unary Operators

Let *p* be an atom.

All possibilities

The following options exist:

•
$$p^{v} = F: (op(p))^{v} = F$$

CS 3234: Logic and Formal Systems 03b—Propositional Logic

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロト ・四ト ・ヨト ・ヨト

臣

Unary Operators

Let *p* be an atom.

All possibilities

1
$$p^{\nu} = F: (op(p))^{\nu} = F. p^{\nu} = T: (op(p))^{\nu} = F.$$

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロト ・四ト ・ヨト ・ヨト

臣

Unary Operators

Let *p* be an atom.

All possibilities

•
$$p^{\nu} = F: (op(p))^{\nu} = F. p^{\nu} = T: (op(p))^{\nu} = F.$$

3
$$p^{v} = F$$
: $(op(p))^{v} = T$. $p^{v} = T$: $(op(p))^{v} = T$.

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロ・ ・ 四・ ・ 回・ ・ 日・

臣

Unary Operators

Let *p* be an atom.

All possibilities

1
$$p^{\nu} = F$$
: $(op(p))^{\nu} = F$. $p^{\nu} = T$: $(op(p))^{\nu} = F$.

3
$$p^{v} = F$$
: $(op(p))^{v} = T$. $p^{v} = T$: $(op(p))^{v} = T$.

3
$$p^{v} = F$$
: $(op(p))^{v} = F$. $p^{v} = T$: $(op(p))^{v} = T$.

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

臣

Unary Operators

Let *p* be an atom.

All possibilities

•
$$p^{v} = F: (op(p))^{v} = F. p^{v} = T: (op(p))^{v} = F.$$

2
$$p^{v} = F: (op(p))^{v} = T. p^{v} = T: (op(p))^{v} = T.$$

3
$$p^{v} = F: (op(p))^{v} = F. p^{v} = T: (op(p))^{v} = T.$$

3
$$p^{\nu} = F$$
: $(op(p))^{\nu} = T$. $p^{\nu} = T$: $(op(p))^{\nu} = F$.

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

臣

Unary Operators

Let *p* be an atom.

All possibilities

•
$$p^{v} = F: (op(p))^{v} = F. p^{v} = T: (op(p))^{v} = F.$$

2
$$p^{v} = F: (op(p))^{v} = T. p^{v} = T: (op(p))^{v} = T.$$

3
$$p^{v} = F: (op(p))^{v} = F. p^{v} = T: (op(p))^{v} = T.$$

3
$$p^{\nu} = F$$
: $(op(p))^{\nu} = T$. $p^{\nu} = T$: $(op(p))^{\nu} = F$.

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロ・ ・ 四・ ・ 回・ ・ 日・

Unary Operators

Let *p* be an atom.

All possibilities

The following options exist:

•
$$p^{v} = F: (op(p))^{v} = F. p^{v} = T: (op(p))^{v} = F.$$

3
$$p^{v} = F$$
: $(op(p))^{v} = T$. $p^{v} = T$: $(op(p))^{v} = T$.

3
$$p^{v} = F$$
: $(op(p))^{v} = F$. $p^{v} = T$: $(op(p))^{v} = T$.

3
$$p^{v} = F$$
: $(op(p))^{v} = T$. $p^{v} = T$: $(op(p))^{v} = F$.

The fourth operator *negates* its argument, *T* becomes *F* and *F* becomes *T*. We call this operator *negation*, and write $\neg p$ (pronounced "not p").

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

Nullary Operators are Constants

The constant op

The constant \top always evaluates to *T*, regardless of the valuation.

CS 3234: Logic and Formal Systems 03b—Propositional Logic

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロ・ ・ 四・ ・ 回・ ・ 日・

Nullary Operators are Constants

The constant op

The constant \top always evaluates to *T*, regardless of the valuation.

The constant \perp

The constant \perp always evaluates to *F*, regardless of the valuation.

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

臣

Binary Operators: 16 choices

р	q	$op_1(p,q)$	$op_2(p,q)$	$op_3(p,q)$	$op_4(p,q)$
F	F	F	F	F	F
F	T	F	F	F	F
T	F	F	F	Т	Т
T	T	F	Т	F	Т

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

臣

Binary Operators: 16 choices (continued)

р	q	$op_5(p,q)$	$op_6(p,q)$	$op_7(p,q)$	$op_8(p,q)$
F	F	F	F	F	F
F	T	Т	T	T	Т
T	F	F	F	Т	Т
T	T	F	Т	F	Т

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロト ・四ト ・ヨト ・ヨト

臣

Binary Operators: 16 choices (continued)

р	q	$op_9(p,q)$	$op_{10}(p,q)$	$op_{11}(p,q)$	$op_{12}(p,q)$
F	F	Т	Т	T	Т
F	T	F	F	F	F
T	F	F	F	T	Т
Т	T	F	Т	F	Т

CS 3234: Logic and Formal Systems 03b—Propositional Logic

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

臣

Binary Operators: 16 choices (continued)

р	q	$op_{13}(p,q)$	$op_{14}(p,q)$	$op_{15}(p,q)$	$op_{16}(p,q)$
F	F	Т	Т	T	Т
F	T	Т	Т	T	Т
Т	F	F	F	Т	Т
Т	Т	F	Т	F	Т

CS 3234: Logic and Formal Systems 03b—Propositional Logic

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロト ・四ト ・ヨト ・ヨト

臣

Three Famous Ones

op_2 : $op_2(p,q)$ is T when p is T and q is T, and F otherwise.

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロ・ ・ 四・ ・ 回・ ・ 日・

3

Three Famous Ones

op_2 : $op_2(p,q)$ is T when p is T and q is T, and F otherwise. Called *conjunction*, denoted $p \land q$.

CS 3234: Logic and Formal Systems 03b—Propositional Logic

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

3

- $op_2 : op_2(p,q)$ is T when p is T and q is T, and F otherwise. Called *conjunction*, denoted $p \land q$.
- op_8 : $op_8(p,q)$ is T when p is T or q is T, and F otherwise.

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロ・ ・ 四・ ・ 回・ ・ 日・

- op_2 : $op_2(p,q)$ is T when p is T and q is T, and F otherwise. Called *conjunction*, denoted $p \land q$.
- op_8 : $op_8(p,q)$ is T when p is T or q is T, and F otherwise. Called *disjunction*, denoted $p \lor q$.

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

3

- op_2 : $op_2(p,q)$ is T when p is T and q is T, and F otherwise. Called *conjunction*, denoted $p \land q$.
- op_8 : $op_8(p,q)$ is T when p is T or q is T, and F otherwise. Called *disjunction*, denoted $p \lor q$.
- op_{14} : $op_{14}(p,q)$ is T when p is F or q is T, and F otherwise.

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

- op_2 : $op_2(p,q)$ is T when p is T and q is T, and F otherwise. Called *conjunction*, denoted $p \land q$.
- op_8 : $op_8(p,q)$ is T when p is T or q is T, and F otherwise. Called *disjunction*, denoted $p \lor q$.
- op_{14} : $op_{14}(p,q)$ is T when p is F or q is T, and F otherwise. Called *implication*, denoted $p \rightarrow q$.

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Inductive Definition

Definition

For a given set A of propositional atoms, the set of *well-formed* formulas in propositional logic is the least set F that fulfills the following rules:

- The constant symbols \perp and \top are in *F*.
- Every element of A is in F.
- If ϕ is in *F*, then $(\neg \phi)$ is also in *F*.
- If ϕ and ψ are in *F*, then $(\phi \land \psi)$ is also in *F*.
- If ϕ and ψ are in *F*, then $(\phi \lor \psi)$ is also in *F*.
- If ϕ and ψ are in *F*, then $(\phi \rightarrow \psi)$ is also in *F*.

Example

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

臣

$(((\neg p) \land q) \rightarrow (\top \land (q \lor (\neg r))))$

is a well-formed formula in propositional logic.
More Compact in BNF

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

臣

$\phi ::= \boldsymbol{p} \mid \bot \mid \top \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$

(Backus Naur Form)

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

3

Convention

The negation symbol \neg binds more tightly than \land and \lor , and \land and \lor bind more tightly than \rightarrow . Moreover, \rightarrow is *right-associative*: The formula $p \rightarrow q \rightarrow r$ is read as $p \rightarrow (q \rightarrow r)$.

Motivation Propositional Atoms Constructing Propositions Syntax of Propositional Logic

・ロ・ ・ 四・ ・ 回・ ・ 回・

Convention

The negation symbol \neg binds more tightly than \land and \lor , and \land and \lor bind more tightly than \rightarrow . Moreover, \rightarrow is *right-associative*: The formula $p \rightarrow q \rightarrow r$ is read as $p \rightarrow (q \rightarrow r)$.

Example

$$(((\neg p) \land q) \rightarrow (p \land (q \lor (\neg r))))$$

can be written as

$$\neg p \land q \rightarrow p \land (q \lor \neg r)$$

Operations on Truth Values Evaluation of Formulas

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Atoms and Propositions

- 2 Semantics of Propositional Logic
 - Operations on Truth Values
 - Evaluation of Formulas

3 Proof Theory

4 Soundness and Completeness (preview)

Operations on Truth Values Evaluation of Formulas

Negating Truth Values

Definition

Function $\setminus : \{F, T\} \rightarrow \{F, T\}$ given in truth table:

$$\begin{array}{c|c}
B & \backslash B \\
\hline
F & T \\
T & F
\end{array}$$

Operations on Truth Values Evaluation of Formulas

Conjunction of Truth Values

Definition

Function & : $\{F, T\} \times \{F, T\} \rightarrow \{F, T\}$ given in truth table:

Operations on Truth Values Evaluation of Formulas

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Disjunction of Truth Values

Definition

Function $|: \{F, T\} \times \{F, T\} \rightarrow \{F, T\}$ given in truth table:

Operations on Truth Values Evaluation of Formulas

E

Implication of Truth Values

Definition

Function $\Rightarrow: \{F, T\} \times \{F, T\} \rightarrow \{F, T\}$ given in truth table:

Operations on Truth Values Evaluation of Formulas

Evaluation of Formulas

Definition

The result of *evaluating* a well-formed propositional formula ϕ with respect to a valuation v, denoted $v(\phi)$ is defined as follows:

- If ϕ is the constant \bot , then $v(\phi) = F$.
- If ϕ is the constant \top , then $v(\phi) = T$.
- If ϕ is an propositional atom p, then $v(\phi) = p^{v}$.
- If ϕ has the form $(\neg \psi)$, then $v(\phi) = \setminus v(\psi)$.
- If ϕ has the form $(\psi \wedge \tau)$, then $v(\phi) = v(\psi) \& v(\tau)$.
- If ϕ has the form $(\psi \lor \tau)$, then $v(\phi) = v(\psi) | v(\tau)$.
- If ϕ has the form $(\psi \to \tau)$, then $v(\phi) = v(\psi) \Rightarrow v(\tau)$.

Operations on Truth Values Evaluation of Formulas

・ロ・ ・ 四・ ・ 回・ ・ 日・

크

Valid Formulas

Definition

A formula is called *valid* if it evaluates to T with respect to every possible valuation.

CS 3234: Logic and Formal Systems 03b—Propositional Logic

Operations on Truth Values Evaluation of Formulas

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Example

ls

 $(((\neg p) \land q) \rightarrow (\top \land (q \lor (\neg r))))$

valid?

CS 3234: Logic and Formal Systems 03b—Propositional Logic

Operations on Truth Values Evaluation of Formulas

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Example

ls

 $(((\neg p) \land q) \rightarrow (\top \land (q \lor (\neg r))))$

valid?

Example

Find a valid formula that contains the propositional atoms p, q, r and w.

Sequents Axioms Derived Rules

2 Semantics of Propositional Logic

3 Proof Theory

- Sequents
- Axioms
- Derived Rules

4 Soundness and Completeness (preview)

(日)

Sequents Axioms Derived Rules

Sequents

Definition

A sequent consists of propositional formulas $\phi_1, \phi_2, \ldots, \phi_n$, called *premises*, where $n \ge 0$, and a propositional formula ψ called *conclusion*. We write a sequent as follows:

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

and say " ψ is provable using the premises $\phi_1, \phi_2, \ldots, \phi_n$ ".

Sequents Axioms Derived Rules

Introducing \top

CS 3234: Logic and Formal Systems 03b—Propositional Logic

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Atoms and Propositions Semantics of Propositional Logic Proof Theory

Sequents Axioms Derived Rules

Soundness and Completeness (preview)

Rules for Conjunction

$$\begin{array}{c}
\phi \quad \psi \\
\hline \phi \wedge \psi
\end{array} [\wedge i]$$

CS 3234: Logic and Formal Systems 03b—Propositional Logic

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ.

Sequents Axioms Derived Rules

Rules for Conjunction

$$\begin{array}{ccc}
\phi & \psi \\
\hline & & & \\ \phi \wedge \psi \\
\hline & & & \\ \phi \wedge \psi \\
\hline & & & \\ \phi \\
\end{array}$$

CS 3234: Logic and Formal Systems 03b—Propositional Logic

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ.

Sequents Axioms Derived Rules

Rules for Conjunction

臣

CS 3234: Logic and Formal Systems 03b—Propositional Logic

Example

Sequents Axioms Derived Rules

 $p \land q, r \vdash q \land r$

CS 3234: Logic and Formal Systems 03b—Propositional Logic

Sequents Axioms Derived Rules

 $p \land q, r \vdash q \land r$

Proof (graphical notation):

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Sequents Axioms Derived Rules

$p \land q, r \vdash q \land r$

CS 3234: Logic and Formal Systems 03b—Propositional Logic

Sequents Axioms Derived Rules

 $p \land q, r \vdash q \land r$

Proof (text-based notation):

1	$(p \wedge q)$	premise
2	q	∧e 1
3	r	premise
4	$q \wedge r$	∧i 2,3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Atoms and Propositions Semantics of Propositional Logic Proof Theory

Sequents Axioms Derived Rules

Soundness and Completeness (preview)

Double Negation Elimination

CS 3234: Logic and Formal Systems 03b—Propositional Logic

Atoms and Propositions Semantics of Propositional Logic Proof Theory

Sequents Axioms Derived Rules

Soundness and Completeness (preview)

Implication Elimination

$$\begin{array}{cc} \phi & \phi \to \psi \\ \hline & \hline \\ \psi \end{array} [\to e]$$

CS 3234: Logic and Formal Systems 03b—Propositional Logic

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Sequents Axioms Derived Rules

We would like...

...to be able to prove:

$$p
ightarrow q dash \neg \neg p
ightarrow \neg q$$

CS 3234: Logic and Formal Systems 03b—Propositional Logic

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ.

Sequents Axioms Derived Rules

A proof should look like this

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Atoms and Propositions Semantics of Propositional Logic Proof Theory

Sequents Axioms Derived Rules

Soundness and Completeness (preview)

Implication Elimination

Sequents Axioms Derived Rules

Rules for Disjunction

CS 3234: Logic and Formal Systems 03b—Propositional Logic

æ.

Sequents Axioms Derived Rules

Rules for Disjunction

æ.

Atoms and Propositions Semantics of Propositional Logic Proof Theory

Sequents Axioms Derived Rules

Soundness and Completeness (preview)

Axioms for \perp and Negation

Atoms and Propositions Semantics of Propositional Logic Proof Theory

Sequents Axioms Derived Rules

Soundness and Completeness (preview)

Axioms for \perp and Negation

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Sequents Axioms Derived Rules

Axioms for \perp and Negation

Sequents Axioms Derived Rules

Double Negation Introduction

Lemma (¬¬*i*)

The following sequent holds for any formula ϕ :

 $\phi \vdash \neg \neg \phi$

・ロト ・四ト ・ヨト ・ヨト

Sequents Axioms Derived Rules

Double Negation Introduction

Lemma (¬¬*i*)

The following sequent holds for any formula ϕ :

 $\phi \vdash \neg \neg \phi$

Proof:

1	ϕ	premise
2	$\neg \phi$	assumption
3	\perp	–e 1,2
4	$\neg \neg \phi$	_i 2–3

・ロト ・四ト ・ヨト ・ヨト

Sequents Axioms Derived Rules

Double Negation Introduction

Lemma (¬¬*i*)

The following sequent holds for any formula ϕ :

 $\phi \vdash \neg \neg \phi$

can be written like an axiom:

Atoms and Propositions Semantics of Propositional Logic Proof Theory

Sequents Axioms Derived Rules

Soundness and Completeness (preview)

Law of Excluded Middle

Lemma (LEM)

$$------[LEM]$$

$$\phi \lor \neg \phi$$

CS 3234: Logic and Formal Systems 03b—Propositional Logic
Entailment Soundness and Completeness

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・

Atoms and Propositions

2 Semantics of Propositional Logic

3 Proof Theory

- 4 Soundness and Completeness (preview)
 - Entailment
 - Soundness and Completeness

Entailment Soundness and Completeness

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

크

Entailment

Definition

If, for all valuations in which all $\phi_1, \phi_2, \ldots, \phi_n$ evaluate to T, the formula ψ evaluates to T as well, we say that $\phi_1, \phi_2, \ldots, \phi_n$ semantically entail ψ , written:

$$\phi_1, \phi_2, \ldots, \phi_n \models \psi$$

Entailment Soundness and Completeness

Soundness and Completeness

Theorem (Soundness of Propositional Logic)

Let $\phi_1, \phi_2, \dots, \phi_n$ and ψ be propositional formulas. If $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$, then $\phi_1, \phi_2, \dots, \phi_n \models \psi$.

Entailment Soundness and Completeness

Soundness and Completeness

Theorem (Soundness of Propositional Logic)

Let $\phi_1, \phi_2, \dots, \phi_n$ and ψ be propositional formulas. If $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$, then $\phi_1, \phi_2, \dots, \phi_n \models \psi$.

Theorem (Completeness of Propositional Logic)

Let $\phi_1, \phi_2, \dots, \phi_n$ and ψ be propositional formulas. If $\phi_1, \phi_2, \dots, \phi_n \models \psi$, then $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$.

Entailment Soundness and Completeness

・ロ・・ (日・・ (日・・ 日・)

Admin

- Coq Homework 1: due 27/8, 9:30pm
- Assignment 2: out on module homepage; due 2/9, 11:00am
- Monday, Wednesday: Office hours
- Tuesday: Tutorials (Assignments 1 and 2)
- Wednesday: Labs (Coq Homework 1; Quiz 1)
- Thursday: Lecture on Predicate Logic