Review of Modal Logic Some Modal Logics Natural Deduction in Modal Logic Knowledge in Multi-Agent Systems

09—Modal Logic II

CS 3234: Logic and Formal Systems

Martin Henz and Aquinas Hobor

October 14, 2010

Generated on Thursday 14th October, 2010, 11:40

CS 3234: Logic and Formal Systems

09-Modal Logic II

- Review of Modal Logic
- 2 Some Modal Logics
- 3 Natural Deduction in Modal Logic
- 4 Knowledge in Multi-Agent Systems

- Review of Modal Logic
 - Motivation
 - Syntax and Semantics
 - Valid Formulas wrt Modalities
 - Correspondence Theory
- Some Modal Logics
- Natural Deduction in Modal Logic
- Knowledge in Multi-Agent Systems

Motivation

Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

Notions of Truth

- Often, it is not enough to distinguish between "true" and "false"
- We need to consider modalities if truth, such as:
 - necessity
 - time
 - knowledge by an agent
- Modal logic constructs a framework using which modalities can be formalized and reasoning methods can be established.

Syntax of Basic Modal Logic

Kripke Models

Definition

A model \mathcal{M} of propositional modal logic over a set of propositional atoms A is specified by three things:

- A W of worlds:
- ② a relation R on W, meaning $R \subseteq W \times W$, called the accessibility relation;
- 3 a function $L: W \to A \to \{T, F\}$, called *labeling function*.

Review of Modal Logic Some Modal Logics

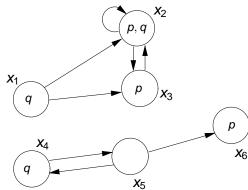
Natural Deduction in Modal Logic Knowledge in Multi-Agent Systems Motivation
Syntax and Semantics
Valid Formulas wrt Modalities
Correspondence Theory

Example

$$W = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$

$$R = \{(x_1, x_2), (x_1, x_3), (x_2, x_2), (x_2, x_3), (x_3, x_2), (x_4, x_5), (x_5, x_4), (x_5, x_6)\}$$

$$L = \{(x_1, \{q\}), (x_2, \{p, q\}), (x_3, \{p\}), (x_4, \{q\}), (x_5, \{\}), (x_6, \{p\})\}$$



Natural Deduction in Modal Logic Knowledge in Multi-Agent Systems Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

When is a formula true in a possible world?

Definition

Let $\mathcal{M} = (W, R, L), x \in W$, and ϕ a formula in basic modal logic. We define $x \Vdash \phi$ via structural induction:

- \circ $x \Vdash \top$
- x ⊮ ⊥
- \bullet $x \Vdash p \text{ iff } p \in L(x)(p) = T$
- \bigcirc $x \Vdash \neg \phi \text{ iff } x \nvDash \phi$
- \bullet $x \Vdash \phi \land \psi$ iff $x \Vdash \phi$ and $x \Vdash \psi$
- \bullet $x \Vdash \phi \lor \psi$ iff $x \Vdash \phi$ or $x \Vdash \psi$

When is a formula true in a possible world?

Definition (continued)

Let $\mathcal{M} = (W, R, L)$, $x \in W$, and ϕ a formula in basic modal logic. We define $x \Vdash \phi$ via structural induction:

- o ...
- \bullet $x \Vdash \phi \to \psi$ iff $x \Vdash \psi$, whenever $x \Vdash \phi$
- \bigcirc $x \Vdash \phi \leftrightarrow \psi$ iff $(x \Vdash \phi \text{ iff } x \Vdash \psi)$
- \bullet $x \Vdash \Box \phi$ iff for each $y \in W$ with R(x, y), we have $y \Vdash \phi$
- $x \Vdash \Diamond \phi$ iff there is a $y \in W$ such that R(x, y) and $y \Vdash \phi$.

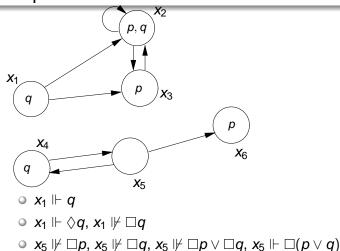
Review of Modal Logic Some Modal Logics

Natural Deduction in Modal Logic Knowledge in Multi-Agent Systems Motivation

Syntax and Semantics

Valid Formulas wrt Modalities Correspondence Theory

Example



 \bullet $x_6 \Vdash \Box \phi$ holds for all ϕ , but $x_6 \not\Vdash \Diamond \phi$

A Range of Modalities

In a particular context $\Box \phi$ could mean:

- ullet It is necessarily true that ϕ
- ullet It will always be true that ϕ
- It ought to be that ϕ
- ullet Agent Q believes that ϕ
- Agent Q knows that φ
- After any execution of program P, φ holds.

Since $\Diamond \phi \equiv \neg \Box \neg \phi$, we can infer the meaning of \Diamond in each context.

Review of Modal Logic Some Modal Logics Natural Deduction in Modal Logic Knowledge in Multi-Agent Systems Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

A Range of Modalities

From the meaning of $\Box \phi$, we can conclude the meaning of $\Diamond \phi$, since $\Diamond \phi \equiv \neg \Box \neg \phi$:

Review of Modal Logic Some Modal Logics Natural Deduction in Modal Logic Knowledge in Multi-Agent Systems Motivation
Syntax and Semantics
Valid Formulas wrt Modalities
Correspondence Theory

Formula Schemes that hold wrt some Modalities

								× 100 × 100	رما
		× Ø		7000	¹ Ø	الم الم		p w Day	
$\Box \phi$	$\Diamond \phi$	$\Diamond \phi$	DØ		$\Diamond \phi$	$\Diamond \phi$, Ma	, DØ / ,	
It is necessary that ϕ		$\sqrt{}$		$\sqrt{}$		×	$\sqrt{}$	×	
It will always be that $\boldsymbol{\phi}$	×	$\sqrt{}$	X	×	×	×	$\sqrt{}$	×	
It ought to be that $\boldsymbol{\phi}$	√ × ×	×	X	$\sqrt{}$	$\sqrt{}$	×	$\sqrt{}$	×	
Agent Q believes that $\boldsymbol{\phi}$	×	$\sqrt{}$		$\sqrt{}$		×	$\sqrt{}$	×	
Agent Q believes that ϕ Agent Q knows that ϕ After running P, ϕ		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	×	$\sqrt{}$	×	
After running P, ϕ	×	×	×	×	×	X	$\sqrt{}$	×	
CS 3234: Logic and	Formal	System	าร	09—Mc	odal Log	gic II			

Modalities lead to Interpretations of R

$\Box \phi$	R(x,y)
It is necessarily true that $\boldsymbol{\phi}$	y is possible world according to info at x
It will always be true that $\boldsymbol{\phi}$	y is a future world of x
It ought to be that ϕ	y is an acceptable world according to the information at x
Agent Q believes that ϕ	y could be the actual world according to Q's beliefs at x
Agent Q knows that ϕ	y could be the actual world according to Q's knowledge at x
After any execution of P, ϕ holds	y is a possible resulting state after execution of P at x

Possible Properties of R

- \circ reflexive: for every $w \in W$, we have R(x, x).
- symmetric: for every $x, y \in W$, we have R(x, y) implies R(y, x).
- \circ serial: for every x there is a y such that R(x, y).
- transitive: for every $x, y, z \in W$, we have R(x, y) and R(y, z) imply R(x, z).
- Euclidean: for every $x, y, z \in W$ with R(x, y) and R(x, z), we have R(y, z).
- functional: for each x there is a unique y such that R(x, y).
- linear: for every $x, y, z \in W$ with R(x, y) and R(x, z), we have R(y, z) or y = z or R(z, y).
- total: for every $x, y \in W$, we have R(x, y) and R(y, x).
- equivalence: reflexive, symmetric and transitive.

Some Modal Logics Natural Deduction in Modal Logic Knowledge in Multi-Agent Systems Motivation Syntax and Semantics Valid Formulas wrt Modalities Correspondence Theory

Reflexivity and Transitivity

Theorem

The following statements are equivalent:

- R is reflexive;
- \mathcal{F} satisfies $\Box \phi \rightarrow \phi$;
- \mathcal{F} satisfies $\Box p \rightarrow p$;

Theorem

The following statements are equivalent:

- R is transitive;
- \mathcal{F} satisfies $\Box \phi \to \Box \Box \phi$;
- \mathcal{F} satisfies $\Box p \rightarrow \Box \Box p$;

Formula Schemes and Properties of R

name	formula scheme	property of R
Т	$\Box \phi o \phi$	reflexive
В	$\phi \to \Box \Diamond \phi$	symmetric
D	$\Box \phi \to \Diamond \phi$	serial
4	$\Box \phi \to \Box \Box \phi$	transitive
5	$\Diamond \phi \to \Box \Diamond \phi$	Euclidean
	$\Box \phi \leftrightarrow \Diamond \phi$	functional
	$\Box(\phi \land \Box\phi \rightarrow \psi) \lor \Box(\psi \land \Box\psi \rightarrow \phi)$	linear

- Review of Modal Logic
- 2 Some Modal Logics
 - K
 - KT45
 - KT4
- Natural Deduction in Modal Logic
- Mowledge in Multi-Agent Systems

Which Formula Schemes to Choose?

Definition

Let \mathcal{L} be a set of formula schemes and $\Gamma \cup \{\psi\}$ a set of formulas of basic modal logic.

- A set of formula schemes is said to be closed iff it contains all substitution instances of its elements.
- Let \mathcal{L}_c be the smallest closed superset of \mathcal{L} .
- Γ entails ψ in \mathcal{L} iff $\Gamma \cup \mathcal{L}_c$ semantically entails ψ . We say $\Gamma \models_{\mathcal{L}} \psi$.

Review of Modal Logic Some Modal Logics Natural Deduction in Modal Logic Knowledge in Multi-Agent Systems

κ

KT45

KT4

Examples of Modal Logics: K

K is the weakest modal logic, $\mathcal{L} = \emptyset$.

Examples of Modal Logics: KT45

$$\mathcal{L} = \{T, 4, 5\}$$

Used for reasoning about knowledge.

name	formula scheme	property of R
Т	$\Box \phi \to \phi$	reflexive
4	$\Box \phi \to \Box \Box \phi$	transitive
5	$\Diamond \phi \to \Box \Diamond \phi$	Euclidean

- T: Truth: agent Q only knows true things.
- 4: Positive introspection: If Q knows something, he knows that he knows it.
- 5: Negative introspection: If Q doesn't know something, he knows that he doesn't know it.

formula scheme

name

property of R

Explanation of Negative Introspection

Harric	iorridia scricific	1	лор	orty or 7
5	$\Diamond \phi \to \Box \Diamond \phi$	E	Eucli	dean
	\Diamond	ϕ	\rightarrow	$\Box\Diamond\phi$
	\Diamond	ψ	\rightarrow	$\Box\Diamond\neg\psi$
	$\neg \Box \neg \neg$	ψ	\rightarrow	$\Box\neg\Box\neg\neg\psi$

If Q doesn't know ψ , he knows that he doesn't know ψ .

 $\neg\Box\psi$ \rightarrow $\Box\neg\Box\psi$

Correspondence for KT45

Accessibility relations for KT45

KT45 hold if and only if *R* is reflexive (T), transitive (4) and Euclidean (5).

Fact on such relations

A relation is reflexive, transitive and Euclidean iff it is reflexive, transitive and symmetric, i.e. iff it is an equivalence relation.

Collapsing Modalities

Theorem

Any sequence of modal operators and negations is KT45 is equivalent to one of the following: $-, \Box, \Diamond, \neg, \neg\Box$, and $\neg\Diamond$, where - indicates the absence of any negation or modality.

Examples

$$\Box \Box \phi \equiv \Box \phi$$

Examples of Modal Logics: KT4

$$\mathcal{L} = \{T, 4\}$$

Used for partial evaluation in computer science.

name	formula scheme	property of R
Т	$\Box \phi \to \phi$	reflexive
4	$\Box \phi \to \Box \Box \phi$	transitive

- T: Truth: agent Q only knows true things.
- 4: Positive introspection: If Q knows something, he knows that he knows it.

K KT45 **KT4**

Correspondence for KT4

Accessibility relations for KT4

KT4 hold if and only if R is reflexive (T), and transitive (4).

Definition

A reflexive and transitive relation is called a preorder.

K KT45 **KT4**

Collapsing Modalities

Theorem

Any sequence of modal operators and negations is KT4 is equivalent to one of the following:

$$-,\Box,\Diamond,\Box\Diamond,\Diamond\Box,\Diamond\Box,\Diamond\Box\Diamond,\neg,\neg\Box,\neg\Diamond,\neg\Box\Diamond,\neg\Diamond\Box,\neg\Diamond\Box,\neg\Box\Diamond\Box,\mathsf{and}\neg\Diamond\Box\Diamond.$$

Connection to Intuitionistic Logic

Definition

A model of intuitionistic propositional logic is a model $\mathcal{M} = (W, R, L)$ of KT4 such that R(x, y) always implies $L(x)(p) \to L(y)(p)$.

Satisfaction in Intuitionistic Logic

Definition

We change the definition of $x \Vdash \phi$ as follows:

- \circ $x \Vdash \top$
- x ⊮ ⊥
- \circ $x \Vdash p \text{ iff } p \in L(x)$
- \bullet $x \Vdash \phi \land \psi$ iff $x \Vdash \phi$ and $x \Vdash \psi$
- \bullet $x \Vdash \phi \lor \psi$ iff $x \Vdash \phi$ or $x \Vdash \psi$

as usual, but now:

- \bullet $x \Vdash \neg \phi$ iff for all y with R(x, y), we have $y \not\Vdash \phi$
- $x \Vdash \phi \to \psi$ iff for all y with R(x, y), we have $y \Vdash \psi$ whenever we have $y \Vdash \phi$.

Example

Let
$$W = \{x, y\}$$
, $R = \{(x, x), (x, y), (y, y)\}$, $L(x)(p) = F, L(y)(p) = T$. Does $x \Vdash p \lor \neg p$ hold? Since

 \bullet $x \Vdash \phi \lor \psi$ iff $x \Vdash \phi$ or $x \Vdash \psi$

we would need: $x \Vdash \neg p$.

Since

• $x \Vdash \neg \phi$ iff for all y with R(x, y), we have $y \not\Vdash \phi$ we cannot establish $x \Vdash \neg p$.

Idea

Do not allow "assumptions", even if they exhaust all possibilities.

- Review of Modal Logic
- Some Modal Logics
- 3 Natural Deduction in Modal Logic
 - More Boxes
 - Rules
 - Extra Rules
 - Example
- Knowledge in Multi-Agent Systems

Dashed Boxes

Idea

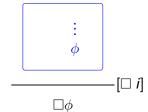
In addition to proof boxes for assumptions, we introduce *blue* boxes that express knowledge about an *arbitrary accessible* world.

Rules about blue boxes

- Whenever $\Box \phi$ occurs in a proof, ϕ may be put into a subsequent blue box.
- Whenever ϕ occurs at the end of a blue box, $\Box \phi$ may be put after that blue box.

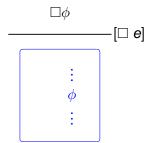
Rules for □

Introduction of \square :



Rules for □

Elimination of \square :



Extra Rules for KT45

$$\begin{array}{cccc}
\Box \phi & \Box \phi & \neg \Box \phi \\
\hline
-----[T] & ------[4] & -----[5]
\end{array}$$

Example Proof

$$\vdash_{\mathcal{K}} \Box p \wedge \Box q \rightarrow \Box (p \wedge q)$$

1	$\Box p \wedge \Box q$	assumption
2	$\Box oldsymbol{ ho}$	∧ <i>e</i> ₁ 1
3	$\Box q$	∧ <i>e</i> ₂ 1
4	р	□e 2
5	q	□e 3
6	$p \wedge q$	<i>∧i</i> 4,5
7	$\Box(ho\wedge q)$	□ <i>i</i> 4–6
8	$\Box p \wedge \Box q o \Box (p \wedge q)$	→ <i>i</i> 1–7

- Review of Modal Logic
- Some Modal Logics
- Natural Deduction in Modal Logic
- 4 Knowledge in Multi-Agent Systems
 - Motivation: The Wise Women Puzzle
 - Modal Logic KT45ⁿ
 - Models of KT45ⁿ
 - Formulation of Wise-Women Puzzle

Wise Women Puzzle

- Three wise women, each wearing one hat, among three available red hats and two available white hats
- Each wise woman is wise, can see other hats but not her own
- Queen asks first wise woman: Do you know the color of your hat.

Answer: No

 Queen asks second wise woman: Do you know the color of your hat.

Answer: No

- Queen asks third wise woman: Do you know the color of your hat?
- What is her answer?

Motivation: The Wise Women Puzzle
Modal Logic KT45ⁿ
Models of KT45ⁿ
Formulation of Wise-Women Puzzle

Motivation

Reasoning about knowledge

We saw that KT45 can be used to reason about an agent's knowledge.

Difficulty

We have three agents (queen does not count), not just one. We want them to be able to reason about *each others* knowledge.

Idea

Introduce a \square operator for each agent, and a \square operator for a group of agents.

Modal Logic KT45ⁿ

Agents

Assume a set $A = \{1, 2, ..., n\}$ of agents.

Modal connectives

Replace □ by:

- K_i for each agent i
- E_G for any subset G of A

Example

 $K_1 p \wedge K_1 \neg K_2 K_1 p$ means:

Agent 1 knows p, and also that Agent 2 does not know that Agent 1 knows p.

Common Knowledge

"Everyone knows that everyone knows" In KT45ⁿ, $E_G E_G \phi$ is stronger than $E_G \phi$.

"Everyone knows everyone knows everyone knows" In KT45ⁿ, E_G E_G E_G ϕ is stronger than E_G E_G ϕ .

Common knowledge

The infinite conjunction $E_G\phi \wedge E_G E_G\phi \wedge \ldots$ is called "common knowledge of ϕ ", denoted, $C_G \phi$.

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Distributed Knowledge

Combine knowledge

If intelligent agents communicate with each other and use the knowledge each have, they can discover new knowledge.

Distributed knowledge

The operator $D_G\phi$ is called "distributed knowledge of ϕ ", denoted, $D_G \phi$.

Models of KT45ⁿ

Definition

A model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ of the multi-modal logic KT45ⁿ is specified by three things:

- 1 A set W, whose elements are called worlds;
- ② For each $i \in A$ a relation R_i on W, meaning $R_i \subseteq W \times W$, called the accessibility relations;
- 3 A labeling function $L: W \to \mathcal{P}(Atoms)$.

Semantics of KT45ⁿ

Definition

Take a model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ and a world $x \in W$. We define $x \Vdash \phi$ via structural induction:

- \circ $x \Vdash p \text{ iff } p \in L(x)$
- \bigcirc $x \Vdash \neg \phi \text{ iff } x \not\Vdash \phi$
- \bullet $x \Vdash \phi \land \psi$ iff $x \Vdash \phi$ and $x \Vdash \psi$
- \bullet $x \Vdash \phi \lor \psi$ iff $x \Vdash \phi$ or $x \Vdash \psi$
- \bullet $x \Vdash \phi \to \psi$ iff $x \Vdash \psi$, whenever $x \Vdash \phi$
- o ..

Semantics of KT45ⁿ (continued)

Definition

Take a model $\mathcal{M} = (W, (R_i)_{i \in \mathcal{A}}, L)$ and a world $x \in W$. We define $x \Vdash \phi$ via structural induction:

- o ..
- \bullet $x \Vdash K_i \phi$ iff for each $y \in W$ with $R_i(x, y)$, we have $y \Vdash \phi$
- $x \Vdash E_G \phi$ iff for each $i \in G$, $x \Vdash K_i \phi$.
- $x \Vdash C_G \phi$ iff for each $k \ge 1$, we have $x \Vdash E_G^k \phi$.
- $x \Vdash D_G \phi$ iff for each $y \in W$, we have $y \Vdash \phi$, whenever $R_i(x,y)$ for all $i \in G$.

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Formulation of Wise-Women Puzzle

Setup

- Wise woman i has red hat: p_i
- Wise woman i knows that wise woman j has a red hat:
 K_i p_i

Formulation of Wise-Women Puzzle

Initial situation

$$egin{aligned} \Gamma &= \{ & C(p_1 ee p_2 ee p_3), \ & C(p_1
ightarrow K_2 p_1), C(
eg p_1
ightarrow K_2 p_1), C(
eg p_1
ightarrow K_3 p_1), C(
eg p_2
ightarrow K_1 p_2), C(
eg p_2
ightarrow K_1 p_2), C(
eg p_2
ightarrow K_3 p_2), C(
eg p_2
ightarrow K_3 p_2), C(
eg p_2
ightarrow K_1 p_3), C(
eg p_3
ightarrow K_1 p_3), C(
eg p_2
ightarrow K_2 p_3), C(
eg p_2
ightarrow K_2 p_3), C(
eg p_2
ightarrow K_2 p_3), C(
eg p_3
ightarrow K_3 p_3), C(
eg p_3
i$$

Announcements

First wise woman says "No"

$$C(\neg K_1p_1 \wedge \neg K_1 \neg p_1)$$

Second wise woman says "No"

$$C(\neg K_2 p_2 \wedge \neg K_2 \neg p_2)$$

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

First Attempt

$$\Gamma, C(\neg K_1 p_1 \wedge \neg K_1 \neg p_1), C(\neg K_2 p_2 \wedge \neg K_2 \neg p_2) \vdash K_3 p_3$$

Problem

This does not take time into account. The second announcement can take the first announcement into account.

Solution

Prove separately:

Entailment 1:

$$\Gamma, C(\neg K_1 p_1 \wedge \neg K_1 \neg p_1) \vdash C(p_2 \vee p_3)$$

Entailment 2:

$$\Gamma, C(p_2 \vee p_3), C(\neg K_2 p_2 \wedge \neg K_2 \neg p_2) \vdash K_3 p_3$$

Proof

Through natural deduction in KT45ⁿ.

Motivation: The Wise Women Puzzle Modal Logic KT45ⁿ Models of KT45ⁿ Formulation of Wise-Women Puzzle

Next Week

Hoare Logic