
Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

10—Program Verification

CS 3234: Logic and Formal Systems

Aquinas Hobor and Martin Henz

October 21, 2010

Generated on Friday 22nd October, 2010, 08:16

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

1 Core Programming Language

2 Hoare Triples; Partial and Total Correctness

3 Proof Calculus for Partial Correctness

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Program Verification

Specification Documenting and formalizing how a program
should behave

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Program Verification

Specification Documenting and formalizing how a program
should behave

Proof Demonstrating that a program behaves as
specified

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Reasons for Program Verification

Documentation. Program properties formulated as theorems
can serve as concise documentation

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Reasons for Program Verification

Documentation. Program properties formulated as theorems
can serve as concise documentation

Time-to-market. Verification prevents/catches bugs and can
reduce development time

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Reasons for Program Verification

Documentation. Program properties formulated as theorems
can serve as concise documentation

Time-to-market. Verification prevents/catches bugs and can
reduce development time

Reuse. Clear specification provides basis for reuse

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Reasons for Program Verification

Documentation. Program properties formulated as theorems
can serve as concise documentation

Time-to-market. Verification prevents/catches bugs and can
reduce development time

Reuse. Clear specification provides basis for reuse

Certification. Verification is required in safety-critical domains
such as nuclear power stations and aircraft
cockpits

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula φR .

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula φR .

Write program P that meets φR .

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula φR .

Write program P that meets φR .

Prove that P satisfies φR .

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Framework for Software Verification

Convert informal description R of requirements for an
application domain into formula φR .

Write program P that meets φR .

Prove that P satisfies φR .

Each step provides risks and opportunities.

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

1 Core Programming Language

2 Hoare Triples; Partial and Total Correctness

3 Proof Calculus for Partial Correctness

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Motivation of Core Language

Real-world languages are quite large; many features and
constructs

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Motivation of Core Language

Real-world languages are quite large; many features and
constructs

Verification framework would exceed time we have in
CS3234

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Motivation of Core Language

Real-world languages are quite large; many features and
constructs

Verification framework would exceed time we have in
CS3234

Theoretical constructions such as Turing machines or
lambda calculus are too far from actual applications; too
low-level

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Motivation of Core Language

Real-world languages are quite large; many features and
constructs

Verification framework would exceed time we have in
CS3234

Theoretical constructions such as Turing machines or
lambda calculus are too far from actual applications; too
low-level

Idea: use subset of Pascal/C/C++/Java

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Motivation of Core Language

Real-world languages are quite large; many features and
constructs

Verification framework would exceed time we have in
CS3234

Theoretical constructions such as Turing machines or
lambda calculus are too far from actual applications; too
low-level

Idea: use subset of Pascal/C/C++/Java

Benefit: we can study useful “realistic” examples

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Expressions in Core Language

Expressions come as arithmetic expressions E :

E ::= z | x | (E + E) | (E − E) | (E ∗ E)

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Expressions in Core Language

Expressions come as arithmetic expressions E :

E ::= z | x | (E + E) | (E − E) | (E ∗ E)

and boolean expressions B:

B ::= (E <= E) | (!B) | (B‖‖B)

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Expressions in Core Language

Expressions come as arithmetic expressions E :

E ::= z | x | (E + E) | (E − E) | (E ∗ E)

and boolean expressions B:

B ::= (E <= E) | (!B) | (B‖‖B)

What about other kinds of boolean expressions (e.g.,
conjunction)?

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Commands in Language

Commands cover some common programming idioms.
Expressions are components of commands.

C ::= skip | x = E | C;C | if (B) {C} else {C} | while (B) {C}

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Example

Consider the factorial function:

0! def
= 1

(n + 1)! def
= (n + 1) · n!

We shall show that after the execution of the following program,
we have y = x!.

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

1 Core Programming Language

2 Hoare Triples; Partial and Total Correctness

3 Proof Calculus for Partial Correctness

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Example

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Example

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

We need to be able to say that at the end, y is x!

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Example

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

We need to be able to say that at the end, y is x!

That means we require a post-condition y = x!

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Example

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

Do we need pre-conditions, too?

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Example

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

Do we need pre-conditions, too?
Yes, they specify what needs to be the case before
execution.
Example: x > 0

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Example

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

Do we need pre-conditions, too?
Yes, they specify what needs to be the case before
execution.
Example: x > 0

Do we have to prove the postcondition in one go?

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Example

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

Do we need pre-conditions, too?
Yes, they specify what needs to be the case before
execution.
Example: x > 0

Do we have to prove the postcondition in one go?
No, the postcondition of one line can be the
pre-condition of the next!

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Assertions on Programs

Shape of assertions

{φ} P {ψ}

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Assertions on Programs

Shape of assertions

{φ} P {ψ}

Informal meaning

If the program P is run in a state that satisfies φ, then the state
resulting from P ’s execution will satisfy ψ.

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

(Slightly Trivial) Example

Informal specification

Given a positive number x , the program P calculates a number
y whose square is less than x .

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

(Slightly Trivial) Example

Informal specification

Given a positive number x , the program P calculates a number
y whose square is less than x .

Assertion

{x > 0} P {y · y < x}

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

(Slightly Trivial) Example

Informal specification

Given a positive number x , the program P calculates a number
y whose square is less than x .

Assertion

{x > 0} P {y · y < x}

Example for P
y = 0

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

(Slightly Trivial) Example

Informal specification

Given a positive number x , the program P calculates a number
y whose square is less than x .

Assertion

{x > 0} P {y · y < x}

Example for P
y = 0

Our first Hoare triple

{x > 0} y = 0 {y · y < x}

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

(Slightly Less Trivial) Example

Same assertion

{x > 0} P {y · y < x}

Another example for P

y = 0 ;
wh i le (y ∗ y < x) {

y = y + 1 ;
}
y = y − 1 ;

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Hoare Triples

Definition

An assertion of the form {φ} P {ψ} is called a Hoare triple.

φ is called the precondition, ψ is called the postcondition.

A state of a Core program P is a function ρ that assigns
each variable x in P to an integer l(x).

A state ρ satisfies φ if ρ φ—that is, we have a modal logic
where the truth of φ depends on the current state.

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Example

Let ρ(x) = −2, ρ(y) = 5 and ρ(z) = −1. We have:

ρ ¬(x + y < z)

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Partial Correctness

Definition

We say that the triple {φ} P {ψ} is satisfied under partial
correctness if, for all states which satisfy φ, the state resulting
from P ’s execution satisfies ψ, provided that P terminates.

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Partial Correctness

Definition

We say that the triple {φ} P {ψ} is satisfied under partial
correctness if, for all states which satisfy φ, the state resulting
from P ’s execution satisfies ψ, provided that P terminates.

Notation

We write |=par {φ} P {ψ}.

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Extreme Example

{φ} while true { x = 0; } {ψ}

holds for all φ and ψ.

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Total Correctness

Definition

We say that the triple {φ} P {ψ} is satisfied under total
correctness if, for all states which satisfy φ, P is guaranteed to
terminate and the resulting state satisfies ψ.

Notation

We write |=tot {φ} P {ψ}.

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Back to Factorial

Consider Fac1:

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Back to Factorial

Consider Fac1:

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

|=tot {x ≥ 0} Fac1 {y = x!}

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Back to Factorial

Consider Fac1:

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

|=tot {x ≥ 0} Fac1 {y = x!}

6|=tot {>} Fac1 {y = x!}

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Back to Factorial

Consider Fac1:

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

|=tot {x ≥ 0} Fac1 {y = x!}

6|=tot {>} Fac1 {y = x!}

|=par {x ≥ 0} Fac1 {y = x!}

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Back to Factorial

Consider Fac1:

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

|=tot {x ≥ 0} Fac1 {y = x!}

6|=tot {>} Fac1 {y = x!}

|=par {x ≥ 0} Fac1 {y = x!}

|=par {>} Fac1 {y = x!}

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

1 Core Programming Language

2 Hoare Triples; Partial and Total Correctness

3 Proof Calculus for Partial Correctness

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Strategy

We are looking for a proof calculus that allows us to establish

`par {φ} P {ψ}

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Strategy

We are looking for a proof calculus that allows us to establish

`par {φ} P {ψ}

where

|=par {φ} P {ψ} holds whenever `par {φ} P {ψ}
(correctness)

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Strategy

We are looking for a proof calculus that allows us to establish

`par {φ} P {ψ}

where

|=par {φ} P {ψ} holds whenever `par {φ} P {ψ}
(correctness), and

`par {φ} P {ψ} holds whenever |=par {φ} P {ψ}
(completeness).

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Rules for Partial Correctness

{φ} C1 {η} {η} C2 {ψ}

{φ} C1;C2 {ψ}

[Composition]

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Rules for Partial Correctness (continued)

{[x → E]ψ} x = E {ψ}

[Assignment]

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Rules for Partial Correctness (continued)

{φ ∧ B} C1 {ψ} {φ ∧ ¬B} C2 {ψ}

{φ} if B { C1 } else { C2 } {ψ}

[If-statement]

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Rules for Partial Correctness (continued)

{φ ∧ B} C1 {ψ} {φ ∧ ¬B} C2 {ψ}

{φ} if B { C1 } else { C2 } {ψ}

[If-statement]

{ψ ∧ B} C {ψ}

{ψ} while B { C } {ψ ∧ ¬B}

[Partial-while]

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Rules for Partial Correctness (continued)

`AR φ′ → φ {φ} C {ψ} `AR ψ → ψ′

{φ′} C {ψ′}

[Consequence]

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Proof Tableaux

Proofs have tree shape

All rules have the structure

something

something else

As a result, all proofs can be written as a tree.

Practical concern

These trees tend to be very wide when written out on paper.
Thus we are using a linear format, called proof tableaux.

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Interleave Formulas with Code

{φ} C1 {η} {η} C2 {ψ}

{φ} C1;C2 {ψ}

[Composition]

Shape of rule suggests format for proof of C1;C2; . . . ;Cn:
{φ0}
C1;
{φ1} justification
C2;
...
{φn−1} justification
Cn;
{φn} justification

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Working Backwards

Overall goal

Find a proof that at the end of executing a program P, some
condition ψ holds.

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Working Backwards

Overall goal

Find a proof that at the end of executing a program P, some
condition ψ holds.

Common situation

If P has the shape C1; . . . ;Cn, we need to find the weakest
formula ψ′ such that

{ψ′} Cn {ψ}

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Working Backwards

Overall goal

Find a proof that at the end of executing a program P, some
condition ψ holds.

Common situation

If P has the shape C1; . . . ;Cn, we need to find the weakest
formula ψ′ such that

{ψ′} Cn {ψ}

Terminology

The weakest formula ψ′ is called weakest precondition.

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Example

{y < 3}
{y + 1 < 4} Implied
y = y + 1;
{y < 4} Assignment

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Another Example

Can we claim u = x + y after z = x; z = z + y; u = z; ?

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Another Example

Can we claim u = x + y after z = x; z = z + y; u = z; ?

{>}
{x + y = x + y} Implied
z = x;
{z + y = x + y} Assignment
z = z + y;
{z = x + y} Assignment
u = z;
{u = x + y} Assignment

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

An Alternative Rule for If

We have:

{φ ∧ B} C1 {ψ} {φ ∧ ¬B} C2 {ψ}

{φ} if B { C1 } else { C2 } {ψ}

[If-statement]

Sometimes, the following derived rule is more suitable:

{φ1} C1 {ψ} {φ2} C2 {ψ}

{(B → φ1) ∧ (¬B → φ2)} if B { C1 } else { C2 } {ψ}

[If-stmt 2]

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Example

Consider this implementation of Succ:

a = x + 1 ;
i f (a = 1 == 0) {

y = 1 ;
} else {

y = a ;
}

Can we prove {>} Succ {y = x + 1} ?

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Another Example

...
if (a − 1 == 0) {
{1 = x + 1} If-Statement 2
y = 1;
{y = x + 1} Assignment

} else {
{a = x + 1} If-Statement 2
y = a;
{y = x + 1} Assignment

}
{y = x + 1} If-Statement 2

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Another Example

{>}
{(x + 1 − 1 = 0 → 1 = x + 1)∧
(¬(x + 1 − 1 = 0) → x + 1 = x + 1)} Implied
a = x + 1;
{(a − 1 = 0 → 1 = x + 1)∧
(¬(a − 1 = 0) → a = x + 1)} Assignment
if (a − 1 == 0) {
{1 = x + 1} If-Statement 2
y = 1;
{y = x + 1} Assignment

} else {
{a = x + 1} If-Statement 2
y = a;
{y = x + 1} Assignment

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Recall: Partial-while Rule

{ψ ∧ B} C {ψ}

{ψ} while B { C } {ψ ∧ ¬B}

[Partial-while]

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Factorial Example

We shall show that the following Core program Fac1 meets this
specification:

y = 1 ;
z = 0 ;
while (z != x) { z = z + 1 ; y = y ∗ z ; }

Thus, to show:
{>} Fac1 {y = x!}

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Partial Correctness of Fac1

...
{y = z!}
while (z != x) {

{y = z! ∧ z 6= x} Invariant
{y · (z + 1) = (z + 1)!} Implied
z = z + 1;
{y · z = z!} Assignment
y = y ∗ z;
{y = z!} Assignment

}
{y = z! ∧ ¬(z 6= x)} Partial-while
{y = x!} Implied

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Partial Correctness of Fac1

{>}
{(1 = 0!)} Implied
y = 1;
{y = 0!} Assignment
z = 0;
{y = z!} Assignment
while (z != x) {

...
}
{y = z! ∧ ¬(z 6= x)} Partial-while
{y = x!} Implied

CS 3234: Logic and Formal Systems 10—Program Verification

Core Programming Language
Hoare Triples; Partial and Total Correctness

Proof Calculus for Partial Correctness

Next Week

Lecture 11: Total Correctness; Semantics of Hoare Logic

CS 3234: Logic and Formal Systems 10—Program Verification

	Core Programming Language
	Hoare Triples; Partial and Total Correctness
	Proof Calculus for Partial Correctness

