Solution: General Store

In this case, it is important how to represent the problem. The "naive" approach would be
declare
proc {Store Root}
   C H E S A B O W P L
  
in
   Root=sol(c:C h:H e:E s:S a:A b:B o:O w:W p:P l:L)
   Root ::: 0#9
 
   {FD.distinct Root}
 
                               10000*C + 1000*H + 100*E + 10*S + S
                                       + 1000*C + 100*A + 10*S + H
                  + 100000*B + 10000*O + 1000*W + 100*W + 10*O + W
                             + 10000*C + 1000*H + 100*O + 10*P + S
                  + 100000*A + 10000*L + 1000*S + 100*O + 10*P + S
      + 1000000*P + 100000*A + 10000*L + 1000*E + 100*A + 10*L + E
                                       + 1000*C + 100*O + 10*O + L
                                       + 1000*B + 100*A + 10*S + S
                                       + 1000*H + 100*O + 10*P + S
                                       + 1000*A + 100*L + 10*E + S
                                       + 1000*H + 100*O + 10*E + S
                  + 100000*A + 10000*P + 1000*P + 100*L + 10*E + S
                                       + 1000*C + 100*O + 10*W + S
                  + 100000*C + 10000*H + 1000*E + 100*E + 10*S + E
                  + 100000*C + 10000*H + 1000*S + 100*O + 10*A + P
                             + 10000*S + 1000*H + 100*E + 10*E + P

     =: 1000000*A + 100000*L + 10000*L + 1000*W + 100*O + 10*O + L

   {FD.distribute ff Root}
end

{ExploreOne Store}


This method, however, does not state anything about some obvious connections concerning the problem, e.g. the third position being the sum of the digits in the second position of the summands plus the carry from the summation of the first position.

It occurs that it might improve propagation to represent the concept of "addition" in a more explicit way - to say something about the carries:


declare
proc {Store Root}
   C H E S A B O W P L
   C11 C12 C21 C22 C31 C32 C41 C42 C51 C52 C61 C62
   Carries
in
   Root=sol(c:C h:H e:E s:S a:A b:B o:O w:W p:P l:L)
   Root ::: 0#9
   Carries=lst( C11 C12 C21 C22 C31 C32 C41 C42 C51 C52 C61 C62 )
   Carries ::: 0#9
   {FD.distinct Root}
   S+H+W+S+S+E+L+S+S+S+S+S+S+E+P+P            =: L+ 10*C11+ 100*C12
   S+S+O+P+P+L+O+S+P+E+E+E+W+S+A+E+ C11       =: O+ 10*C21+ 100*C22
   E+A+W+O+O+A+O+A+O+L+O+L+O+E+O+E+ C21 + C12 =: O+ 10*C31+ 100*C32
   H+C+W+H+S+E+C+B+H+A+H+P+C+E+S+H+ C31 + C22 =: W+ 10*C41+ 100*C42
   C+  O+C+L+L+          P+  H+H+S+ C41 + C32 =: L+ 10*C51+ 100*C52
        B+ A+A+          A+  C+C  + C51 + C42 =: L+ 10*C61+ 100*C62
             P                    + C61 + C52 =: A
   {FD.distribute ff Root}
end

{ExploreOne Store}


But alas! The search space became even worse!

Nevertheless, if we combine both approaches (and adjust the domain for the carries a bit), we get a better result than in both previous cases:


declare
proc {Store Sol}
   local
   CarriesLow=[C11 C21 C31 C41 C51 C61]
   CarriesHigh=[C12 C22 C32 C42 C52]
   A B C E H L O P S W   
   in
   !Sol= crypto(a:A b:B c:C e:E h:H l:L o:O p:P s:S w:W) = {FD.dom 0#9}
   CarriesLow ::: 0#9
   CarriesHigh ::: 0#1

      {FD.distinct Sol}

                               10000*C + 1000*H + 100*E + 10*S + S
                                       + 1000*C + 100*A + 10*S + H
                  + 100000*B + 10000*O + 1000*W + 100*W + 10*O + W
                             + 10000*C + 1000*H + 100*O + 10*P + S
                  + 100000*A + 10000*L + 1000*S + 100*O + 10*P + S
      + 1000000*P + 100000*A + 10000*L + 1000*E + 100*A + 10*L + E
                                       + 1000*C + 100*O + 10*O + L
                                       + 1000*B + 100*A + 10*S + S
                                       + 1000*H + 100*O + 10*P + S
                                       + 1000*A + 100*L + 10*E + S
                                       + 1000*H + 100*O + 10*E + S
                  + 100000*A + 10000*P + 1000*P + 100*L + 10*E + S
                                       + 1000*C + 100*O + 10*W + S
                  + 100000*C + 10000*H + 1000*E + 100*E + 10*S + E
                  + 100000*C + 10000*H + 1000*S + 100*O + 10*A + P
                             + 10000*S + 1000*H + 100*E + 10*E + P

     =: 1000000*A + 100000*L + 10000*L + 1000*W + 100*O + 10*O + L

   S+H+W+S+S+E+L+S+S+S+S+S+S+E+P+P            =: L+ 10*C11+ 100*C12
   S+S+O+P+P+L+O+S+P+E+E+E+W+S+A+E+ C11       =: O+ 10*C21+ 100*C22
   E+A+W+O+O+A+O+A+O+L+O+L+O+E+O+E+ C21+ C12  =: O+ 10*C31+ 100*C32
   H+C+W+H+S+E+C+B+H+A+H+P+C+E+S+H+ C31+ C22  =: W+ 10*C41+ 100*C42
   C+  O+C+L+L+          P+  H+H+S+ C41+ C32  =: L+ 10*C51+ 100*C52
   B+  A+A+          A+  C+C      + C51+ C42  =: L+ 10*C61
   P                              + C61+ C52  =: A

      {FD.distribute ff [A P L B C O H S W E]}
      {FD.distribute naive CarriesHigh}
   end
end
{ExploreOne Store}

This solution is

1#crypto(a:3 b:6 c:4 e:2 h:5 l:7 o:8 p:1 s:0 w:9) 

Markus Löckelt