
Don't Be Puzzled!Martin HenzProgramming Systems LabUniversity of the SaarlandGeb. 45, Postfach 151150D-66041 Saarbr�ucken, Germanyemail: henz@dfki.uni-sb.deMay 24, 1996AbstractThis paper is about how to solve a class of puzzles, called self-referential quizzes(srq), with constraint programming. An srq is a sequence of multiple choice ques-tions that are about the puzzle itself. srqs are an attractive pastime, when theyprovide the possibility of drawing non-trivial conclusions on the way to the solution.We introduce a typical srq, and represent it as a propositional satis�ability prob-lem. Its straightforward clausal representation is too big for e�ective treatment usingstandard methods. Instead, we solve it with �nite domain constraint programming,using the constraint language Oz. For this application of constraint programming,special support for 0/1 variables is crucial. With their small problem descriptions,srqs are ideal candidates for benchmarks covering the implementation of 0/1 vari-ables in constraint programming languages.1 IntroductionAround 1993, Jim Propp invented a quiz that he called \Self-referential Aptitude Test",or SRAT for short. It contains 20 quiz questions with 5 alternatives each, almost all ofwhich refer to the quiz itself. A typical example is Question 2:2. The only two consecutive questions with identical answers are questions(A) 6 and 7 (B) 7 and 8 (C) 8 and 9 (D) 9 and 10 (E) 10 and 11Distributed over the internet, this quiz attracted much attention among puzzle solvers.It is an attractive quiz, because it allows the solver to draw many non-trivial conclusionsand thus reduce the search space tremendously. An experienced puzzle solver can solveSRAT within half an hour of puzzling fun.To our knowledge, we were the �rst to solve SRAT automatically. We used the con-straint programming language Oz to �nd the solution and prove it to be unique. It issurprizing that the Oz program solves SRAT almost deterministically. The constraints inSRAT are so strong that only one single choice-point su�ces to �nd a solution and proveit to be unique. This nicely re
ects the design goal of the author that the solution couldbe found \without too much trial-and-error" [5].In this paper, we use the Self-Referential Quiz, short SRQ, instead of SRAT. Weinvented SRQ on the base of SRAT for the purpose of this paper. Like SRAT, SRQ has aunique solution and contains a variety of interesting self-referential questions. However,SRQ is more suitable for this presentation, since it is composed of only 10 questions,making the presentation shorter, and since it is a harder problem than SRAT in a sense1



Assuming that exactly one alternative is true for every question, there is a uniquesolution to the following quiz. What is the solution?1. The �rst question whose answer is A is question(A) 4 (B) 3 (C) 2 (D) 1 (E) none of the above2. Identical answers have questions(A) 3 and 4 (B) 4 and 5 (C) 5 and 6 (D) 6 and 7 (E) 7 and 83. The next question with answer A is question (A) 4 (B) 5 (C) 6 (D) 7 (E) 84. The �rst even numbered question with answer B is question(A) 2 (B) 4 (C) 6 (D) 8 (E) 105. The only odd numbered question with answer C is question(A) 1 (B) 3 (C) 5 (D) 7 (E) 96. A question with answer D (A) comes before this one, but not after (B) comes afterthis one, but not before (C) comes before and after this one (D) does not occur atall (E) none of the above7. The last question whose answer is E is question (A) 5 (B) 6 (C) 7 (D) 8 (E) 98. The number of questions whose answers are consonants is(A) 7 (B) 6 (C) 5 (D) 4 (E) 39. The number of questions whose answers are vowels is(A) 0 (B) 1 (C) 2 (D) 3 (E) 410. The answer to this question is (A) A (B) B (C) C (D) D (E) EFigure 1: The Puzzle SRQthat it takes more choice-points to solve it, if the same solution technique is applied.Collected information on srqs can be found in [4].2 The Self-Referential QuizFigure 1 states the puzzle SRQ. A few remarks may be helpful:1. Several alternatives can be excluded immediately. For example, the answer to ques-tion 1 cannot be A, which states that question 4 is the �rst question whose answeris A, because then, question 1 would be the �rst question whose answer is A, whichis a contradiction. Other such examples are the alternatives 7 C and 9 A.2. The questions are heavily intertwined. For example, if the answer to question 1 isC, then it follows from the �rst �ve questions only that the answer to question 2must be A, the answer to question 3 must be B, the answer to question 4 must beB, and the answer to question 5 must be A. The argument is left to the reader.3. The reader may verify that the following is a solution:1:C, 2:A, 3:B, 4:B, 5:A, 6:B, 7:E, 8:B, 9:E, 10:D3 SRQ as a Satis�ability ProblemEvery alternative of every question of SRQ contains a statement, which is either true orfalse. Thus, we are going to express SRQ as a formula f of propositional calculus, usingthe logical connectives ^ for conjunction, _ for disjunction, : for negation and � for2



A1 � A4 ^ :A1 ^ :A2 ^ :A3;B1 � A3 ^ :A1 ^ :A2;C1 � A2 ^ :A1;D1 � A1;E1 � :A1 ^ :A2 ^ :A3 ^ :A4;A2 � 3 �= 4; B2 � 4 �= 5; C2 � 5 �= 6;D2 � 6 �= 7; E2 � 7 �= 8;A3 � A4;B3 � A5 ^ :A4;C3 � A6 ^ :A4 ^ :A5;D3 � A7 ^ :A4 ^ :A5 ^ :A6;E3 � A8 ^ :A4 ^ :A5 ^ :A6 ^ :A7;A4 � B2;B4 � B4 ^ :B2;C4 � B6 ^ :B2 ^ :B4;D4 � B8 ^ :B2 ^ :B4 ^ :B6;E4 � B10 ^ :B2 ^ :B4 ^ :B6 ^ :B8;A5 � C1 ^ :C3 ^ :C5 ^ :C7 ^ :C9;B5 � :C1 ^ C3 ^ :C5 ^ :C7 ^ :C9;C5 � :C1 ^ :C3 ^ C5 ^ :C7 ^ :C9;D5 � :C1 ^ :C3 ^ :C5 ^ C7 ^ :C9;E5 � :C1 ^ :C3 ^ :C5 ^ :C7 ^ C9;

A6 � (D1 _D2 _D3 _D4 _D5)^:(D7 _D8 _D9 _D10);B6 � :(D1 _D2 _D3 _D4 _D5)^(D7 _D8 _D9 _D10);C6 � (D1 _D2 _D3 _D4 _D5)^(D7 _D8 _D9 _D10);D6 � Pi2f1:::10gDi = 0;E6 � D6;A7 � E5 ^ :E6 ^ :E7 ^ :E8 ^ :E9 ^ :E10;B7 � E6 ^ :E7 ^ :E8 ^ :E9 ^ :E10;C7 � E7 ^ :E8 ^ :E9 ^ :E10;D7 � E8 ^ :E9 ^ :E10;E7 � E9 ^ :E10;A8 � Pi2f1:::10gBi + Ci +Di = 7;B8 � Pi2f1:::10gBi + Ci +Di = 6;C8 � Pi2f1:::10gBi + Ci +Di = 5;D8 � Pi2f1:::10gBi + Ci +Di = 4;E8 � Pi2f1:::10gBi + Ci +Di = 3;A9 � Pi2f1:::10gAi +Ei = 0;B9 � Pi2f1:::10gAi +Ei = 1;C9 � Pi2f1:::10gAi +Ei = 2;D9 � Pi2f1:::10gAi +Ei = 3;E9 � Pi2f1:::10gAi +Ei = 4Figure 2: SRQ as Satis�ability Problemequivalence. A solution to SRQ is then an assigment of the symbols occurring in f totruth values such that f is satis�ed.We introduce 50 truth symbols li stating that the answer to question i is l, for i 2f1 : : : 10g and l 2 fA;B;C;D;Eg. For example, if B4 is true, then the answer to question4 is B.The �rst sentence in SRQ states that exactly one alternative must be true for everyquestion. Thus, for every j 2 f1 : : : 10g, the formulaAj ^ :Bj ^ :Cj ^ :Dj ^ :Ej _ :Aj ^Bj ^ :Cj ^ :Dj ^ :Ej _:Aj ^ :Bj ^ Cj ^ :Dj ^ :Ej _ :Aj ^ :Bj ^ :Cj ^Dj ^ :Ej _:Aj ^ :Bj ^ :Cj ^ :Dj ^ Ej (1)must hold. As an abbreviation for this formula, we introduceAj +Bj + Cj +Dj +Ej = 1 (2)We allow the generalization to any integer instead of 1, and the usual summation notationP. As another convenient abbreviation, let us introduce:i �= j ::= (Ai � Aj) ^ (Bi � Bj) ^ (Ci � Cj) ^ (Di � Dj) ^ (Ei � Ej) (3)Using this notation, Figure 2 gives the translation of the further information provided byQuestions 1 through 9. Note that Question 10 provides no further information.The problem can now be stated as follows: Find an assignment of the variablesAi; Bi; Ci; Di; Ei, i 2 f1 : : : 10g, to truth values such that the conjunction of all for-3



mulae (1) for j 2 f1 : : :10g and all formulae in Figure 2 holds. The general problem ofsatis�ability of formulae in propositional calculus (SAT) is the �rst problem, for whichNP-completeness has been shown [1].The representation of f in clausal form as required by the standard algorithms forsatis�ability [3, 2] becomes so big that it is questionable, whether these algorithms can beused here: A clausal form of the formula associated with alternative 8 A (see Figure 2)alone contains at least 2.035.800 clauses. Thus, we did not attempt to run a conventionalalgorithm on our formula f . Instead, we translate f to a constraint program, making use ofthe fact that some constraint languages provide for propagation of arbitrary combinationsof conjunction, disjunction, equivalence, and summation.4 SRQ as a Constraint ProgramWe know that humans can solve SRQ; after distributing SRQ on the internet, severalpeople reported the correct answer and a solving time of 10 minutes to half an hour. Ahuman problem solver usually employs the following strategy:Propagation: Try to exclude as many alternatives as possible.Distribution: Choose one of the still possible alternatives and assume it to be true, andcontinue with Propagation.When a contradiction is encountered, jump to a branch of the search tree, where thereare still alternatives.For example, a human problem solver can (among others) immediately exclude thealternative A for question 1 (see Remark 1 on page 2). Therefore, let us assume she picksalternative B for question 1. Now, 1 B states 3 A, which states 4 A, which implies 2A. This is a contradiction, since question 2 states that there are only two consecutivequestions with identical answers and we have 1 A, 2 A, and 3 A.Thus she tries alternative C for question 1, leading to the conclusions given in Remark 2on page 2.Concurrent constraint programming [6] (ccp) turns exactly this principle of \propa-gation and distribution" into a programming paradigm.An obvious approach to translate SRQ into a constraint program is to model everytruth variable li from the previous section as a �nite domain variable ranging over valuesfrom f0; 1g, where 0 represents \false" and 1 represents \true". Such variables, we call0/1 variables. In the following, we are going to use the constraint language Oz as imple-mentation language [8, 9]. In the following Oz program, we are de�ning a list Answers of�ve tuples A, B, C, D, and E, each containing ten 0/1 variables:
declare Answers=[A B C D E]

{ForAll Answers fun {$} {FD.tuple q 10 0#1} end}The variable B4 in the previous section corresponds to B.4. Note the dot syntax forfeature access and {...} for procedure application. In the rest of this paper, we aregoing to discuss the implementation of a problem solver for SRQ given in Figure 3. Incomments %% we indicate the section that explains the respective part of the program.We refer to lines in the program by using marks of the form %1C , implementing thecorresponding alternative, here alternative C of Question 1.For each formula in f , we are going to install anumber of propagators, whose declarative seman-tics is given by the formula. The propagators con-currently inspect a constraint store, which in our storepropagator � � � propagatorcase contains only basic constraints of the form X = 0, X = 1, X 2 f0; 1g, and X = Y.The setup is depicted above. During search, these propagators may amplify the store by4



adding basic constraints to it, which possibly triggers further propagation.Consider for example line %1C in Figure 3
C.1 = A.2 * ˜A.1In slight abuse of notation, we rede�ned the arithmetic operators *, +, and ˜ in thethird line in Figure 3 to propagators FD.conj (conjunction), FD.disj (disjunction), and
FD.nega (negation). Thus, the above line stands for
local N in

{FD.nega A.1 N}

{FD.conj A.2 N C.1}

endThe propagator {FD.nega A.1 N} is straightforward: It waits until one of its argumentsbecomes determined (bound to 0 or 1) and binds the other one to the other value (1 or 0).The propagator {FD.conj A.2 N C.1} can propagate in several ways:1. If A.2 or N is determined to 0, then C.1 is determined to 0,2. If A.2 and N are determined to 1, then C.1 is determined to 1,3. if A.2 is determined to 1, then the constraint N = C.1 is added, and vice versa for
N,4. if C.1 is determined to 1, then both A.2 and N are determined to 1, and5. if C.1 is determined to 0 and A.2 determined to 1 then N is determined to 0, andvice versa for N.The other formulae in Figure 2 are implemented in a similar way. Note that Question2 uses the equivalence propagator =:. Among other propagations, the propagator B =

A.I=:A.J imposes the constraint A.I=A.J, if B becomes bound to 1. Question 6 makesuse of the disjunction propagator FD.disj, denoted by +. Questions 6, 8 and 9 make useof the procedure Sm, which computes the sum over all �nite domain variables in a giventuple or list, using the propagator FD.sum. Thus, SmBCD is the number of questions whoseanswers are consonants.Note that adding A.1=1 will immediately result in a failure, since the conjunctionpropagators in %1A will trigger ˜A.1 = 1, which will try to bind A.1 to 0, contradictingits previous binding to 1. Compare this result with Remark 1 on page 2.5 The General ConditionThe general condition (1) on page 3 has the potential for strong constraint propagation:If one pi is 1, it allows to set all values li with l 6= p to 0.As suggested by the notation (2) on page 3, we represent the general condition byarithmetic propagators of the form
{FD.sum [A.i B.i C.i D.i E.i] ´=:´ 1}As soon as one of the �ve variables becomes bound to 1, this propagator will bind allothers to 0. The prede�ned procedure For allows to iterate from 1 to 10. Thus, theprogram
{For 1 10 1

proc {$ I} {FD.sum [A.I B.I C.I D.I E.I] ´=:´ 1} end}installs a propagator of the above form for each of the ten questions.5



proc {SRQ Answers}

!Answers=[A B C D E]

`*`=FD.conj `+`=FD.disj `˜`=FD.nega

{ForAll Answers

fun {$} {FD.tuple q 10 0#1} end}

% General Condition (Section 5)
{For 1 10 1

proc {$ I}

{FD.sum [A.I B.I C.I D.I E.I]

´=:´ 1}

end}

% Question 1 (Section 4)
A.1=A.4*˜A.1*˜A.2*˜A.3 %1A
B.1=A.3*˜A.1*˜A.2

C.1=A.2*˜A.1 %1C
D.1=A.1

E.1=˜A.1*˜A.2*˜A.3*˜A.4

%% Question 2 (Section 4)
fun {Eq I J} (A.I=:A.J)*(B.I=:B.J)

*(C.I=:C.J)*(D.I=:D.J)*(E.I=:E.J)

end

A.2 = {Eq 3 4} %2A
B.2 = {Eq 4 5}

C.2 = {Eq 5 6}

D.2 = {Eq 6 7}

E.2 = {Eq 7 8}

%% Question 3
A.3=A.4

B.3=A.5*˜A.4 %3B
C.3=A.6*˜A.4*˜A.5

D.3=A.7*˜A.4*˜A.5*˜A.6

E.3=A.8*˜A.4*˜A.5*˜A.6*˜A.7

%% Question 4
A.4=B.2 %4A
B.4=B.4 *˜B.2

C.4=B.6 *˜B.2*˜B.4

D.4=B.8 *˜B.2*˜B.4*˜B.6

E.4=B.10*˜B.2*˜B.4*˜B.6*˜B.8

%% Question 5
A.5=C.1 %5A
B.5=C.3 C.5=C.5 D.5=C.7 E.5=C.9

%% Question 6 (Section 4)
Bef=D.1+D.2+D.3+D.4+D.5

Aft=D.7+D.8+D.9+D.10

A.6=Bef*˜Aft

B.6=Aft*˜Bef

C.6=Bef*Aft

proc {Sm L S}

{FD.decl S} {FD.sum L ´=:´ S}

end

D.6={Sm D} =: 0

E.6=D.6

%% Question 7
A.7=E.5*˜E.6*˜E.7*˜E.8*˜E.9*˜E.10

B.7=E.6*˜E.7*˜E.8*˜E.9*˜E.10

C.7=E.7*˜E.8*˜E.9*˜E.10

D.7=E.8*˜E.9*˜E.10

E.7=E.9*˜E.10

%% Question 8 (Section 4)
SmBCD={Sm [{Sm B} {Sm C} {Sm D}]}

A.8 = SmBCD=:7 B.8 = SmBCD=:6

C.8 = SmBCD=:5 D.8 = SmBCD=:4

E.8 = SmBCD=:3

%% Question 9 (Section 4)
SmAE={Sm [{Sm A} {Sm E}]}

A.9 = SmAE=:0 B.9 = SmAE=:1

C.9 = SmAE=:2 D.9 = SmAE=:3

E.9 = SmAE=:4

in

{FD.distribute %% (Section 7)
generic(value:max

order:constraints)

{FoldR

{Map Answers Record.toList}

Append nil}}

endFigure 3: SRQ as a Constraint Program6 Don't Be Puzzled!With this machinery in place, we will show in this section, why determining the answer toquestion 1 to C leads to a propagation strong enough to yield the conclusions in Remark 2on page 2.What happens if we assume the answer to question 1 to be C by imposing the constraint
A.1 = 3? The constraint %5A binds A.5 to 1. The constraint A.1 = 3 triggers thepropagator %1C , resulting in propagation 4 of FD.conj (see Section 4), which binds A.2to 1. Propagation of the general condition (see Section 5) binds B.2 to 0, which also binds
A.4 to 0, due to %4A . Since A.2 = 1, the conjunction propagators in Eq for %2A resultin imposing the constraints A.3=A.4, and B.3=B.4, among others. Since A.4=0, A.3 isalso bound to 0. Since A.5=1 and A.4=0, the conjunction propagator in %3B �res bypropagation 2 in Section 4 and binds B.3 to 1. Since B.3=B.4, B.4 is also bound to 1.Thus, we have shown how only assuming the answer to question 1 to be C results6



in the conclusions given in 2, using only simple propagators for negation, conjunction,equivalence, and summation. The argument also nicely demonstrates the necessity ofconcurrency for propagators: It is impossible to determine statically the order in whichthey do their job.7 The Solver for SRQProgram 3 implements a solver, which is a unary procedure, here SRQ, abstracting from aroot variable, here Answers. In the solver, constraints on this root variable are established.In our case, Answers is bound to the list [A B C D E].The solver also determines a distribution strategy. The line
{FD.distribute generic(value:max order:constraints) ...}indicates that we chose the following prede�ned distribution strategy: If no more prop-agation is possible, choose the variable on which most propagators depend, and try itsmaximal value �rst, which is always 1 in our example. This heuristic roughly correspondsto the most-constrained-�rst heuristic used in [2]. We choose �rst 1 instead of 0, sincethe general condition can propagate much better in this case.The solver can be given to an inference engine, which performs the search. A particularinference engine is the Explorer tool [7]. It allows to visualize the search tree, comprizedof choice nodes (circles), failure nodes (squares) and solution nodes (diamonds). The lefttree in Figure 4 shows the search tree of the program in Figure 3 for all-solution search.It contains 7 choice nodes; its exploration took 117 milliseconds.

Figure 4: The Oz ExplorerAn important programming technique in constraint programming is to allow for furtherpruning in the search with redundant constraints. An obvious redundant constraint is
SmAE+SmBCD = 10. The right tree in Figure 4 shows the tree after inserting the propagator
{FD.sum [SmAE SmBCD] ´=:´ 10}, which only contains 4 choice nodes.Using the Explorer, it is straightforward to invent new puzzles of this kind, judge theirdi�culty by analysing the search tree and verify that they have unique solutions. In fact,we invented a sequence of three puzzles with increasing di�culty (as measured by the sizeof the search tree), each having 10 questions and a unique solution [4]. We propose to7



create a test-suite of srqs so that we can compare the propagation involving 0/1 variablesprovided by di�erent implementations of constraint languages.8 ConclusionWe showed how a formulation of srq as a satis�ability problem can be translated to aconstraint program and solved e�ciently using propagators for 0/1 variables providedby Oz. To evaluate the competitiveness of constraint programming in the satis�abilitydomain, an evaluation of other SAT-algorithms with respect to srq-like problems is neces-sary. For a comparison of the implementation of propagators for 0/1 variables in di�erentconstraint languages, a more comprehensive suite of srq-like problems is needed.AcknowledgementsI would like to thank Jim Propp for inventing SRAT and giving me background informa-tion on the puzzle. I thank Gert Smolka for pointing out the importance of consistentlyusing 0/1 variables, J�org W�urtz and Tobias M�uller, the designers and implementors ofthe �nite domain system of Oz, for always lending me an ear for my questions, JoachimWalser for commenting on an earlier version of this paper, and last but not least the folkson the newsgroup rec.puzzles for solving my puzzles, pointing out bugs and problemsand always asking for more.References[1] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rdAnnual ACM Symposium on Theory of Computing, pages 151{158. Association forComputing Machinery, New York, 1971.[2] J. Crawford and L. Auton. Experimental results on the crossover point in satis�abilityproblems. In Proc. of AAAI-93, Washington, DC, 1993.[3] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.Communications of the ACM, 5:394{397, 1962.[4] M. Henz. Collected information on SRATs, available via WWW fromhttp://ps-www.dfki.uni-sb.de/~henz/oz/puzzles/srat/, Apr. 1996.[5] J. Propp. private communication, Apr. 1996.[6] V. Saraswat and M. Rinard. Concurrent constraint programming. In Proceedingsof the 7th Annual ACM Symposium on Principles of Programming Languages, pages232{245, San Francisco, CA, January 1990.[7] C. Schulte. Solver|a search debugger for Oz. In WOz'95, International Workshop onOz Programming, Institut Dalle Molle d'Intelligence Arti�cielle Perceptive, Martigny,Switzerland, 29 November{1 December 1995.[8] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer ScienceToday, Lecture Notes in Computer Science, vol. 1000, pages 324{343. Springer-Verlag,Berlin, 1995.[9] G. Smolka and R. Treinen. DFKI Oz documentation series. Available on paperor via WWW from http://ps-www.dfki.uni-sb.de/oz/, Deutsches Forschungszen-trum f�ur K�unstliche Intelligenz, Stuhlsatzenhausweg 3, D{66123 Saarbr�ucken, Ger-many, 1994. 8


