
Introducing Logic and Formal Methods with Coq

Martin Henz and Aquinas Hobor?

National University of Singapore

Abstract. During the past three years we have been integrating mechanized the-
orem proving into a traditional introductory course on formal methods. We ex-
plain our goals for adding mechanized provers to the course,and illustrate how
we have integrated the provers into our syllabus to meet those goals. We also doc-
ument some of the teaching materials we have developed for the course to date,
and what our experiences have been like.

1 Introduction

National University of Singapore’s School of Computing teaches introductory formal
methods as CS3234 (undergraduate) and CS5209 (graduate). In 2007 and 2008 the first
author taught CS3234 using a traditional approach with the standard undergraduate
textbooksMathematical Logic for Computer Science[BA01] and Logic in Computer
Science[HR00]. Sad to say, the results were equally “traditional”:

1. The module was “hard” in the eyes the students due to the necessity of understand-
ing of an unusual number concepts on several abstraction levels.

2. Students viewed formal systems as a subject far removed from useful applications.
3. Weaker students often found exercises and tutorials unusually “dry” and “boring”.

The first point made for a steep learning curve, the second decreased the motivation of
students to climb the curve, and the third posed further obstacles for those students who
have enough motivation to even try. In short, there was clearroom for improvement.

When the second author joined the team we proceeded to address these problems
(after acknowledging the first one as only partially solvable). The goal was to shorten
the gap between theory and practice by providing relevant and appealing applications
and to implement a “hands-on” approach by introducing adequate didactic tools.

Several tools are popularly used to teach formal systems in computer science, in-
cluding logic programming systems, model checkers, and SATsolvers. We found it
difficult to justify the learning overhead that these tools require given that they are of-
ten only used for one or two sections of a module. Ideally, thesame tool would be
usedthroughoutthe module, reducing overhead to a minimum and allowing for more
sophisticated use as the course progressed into more complex territory.

We determined to use the proof assistant Coq. While not having been developed
specifically for didactic use, Coq’s basic concepts have proved to be sufficiently easy for
third year undergraduates (and even, sometimes, for graduate students). Initial results
have been encouraging: the interactive discovery of proofsusing Coq provided a useful
reinforcement of the conceptual material, and we have been successful in integrating
the theorem prover into almost every part of the course.
? Supported by a Lee Kuan Yew Postdoctoral Fellowship.

2

Remainder of paper.We next go through our course syllabus, focusing for each topic
on how we have added mechanized proving to a more traditionalcurriculum. We then
describe the course format (e.g., the number of assignments, weighting of various com-
ponents in the final grade) and explain its rationale. We conclude with a discussion of
the feedback we have received from our students and our own experiences.

Associated material.We developed a substantial amount of material (hundreds of
pages) as part of modifying this course, including slides, lecture notes, homework as-
signments (both paper and Coq), laboratory exercises, Coq quizzes, and exams [HH10].
For much of the course this material was the primary reference for the students. When
appropriate in what follows we shall provide pointers into specific parts of this mate-
rial; readers are kindly reminded that this supplementary material is drawn from several
iterations of the same course and is very much a work in progress. We eventually hope
to package this material into some kind of book. Note: readers interested in seeing the
solutions to the assignments and exams should contact us directly.

2 Syllabus

Orientation. The National University of Singapore (NUS) follows a relatively short 13-
week semester. After week 13, students have a reading periodbefore exams. In recent
years, CS3234 has had between 30 and 37 students, with an unusually large number
drawn from the strongest undergraduate students in the School of Computing. In con-
trast, CS5209 often has more than 50 students, largely because one of the qualifying
exams (required to proceed with the PhD program) covers formal methods.

2.1 Traditional Logic: weeks 1 and 2

Motivation. Usually, courses in formal methods in computer science start with propo-
sitional logic because it is the simplest modern formal logical system. The challenge is
that students are presented very early with substantially new concepts on two levels.

The conceptual level: the distinction of syntax and semantics, what constitutes aproof,
proof theory (natural deduction), and semantic arguments (models).

The logic-specific level:Propositional formulas as elements of an inductively defined
set (or of a context-free grammar), introduction and elimination rules for proposi-
tional logic, and a valuation-based semantics (truth tables).

We found it desirable to pursue a gentler approach at the beginning of the course, aiming
for a shallower learning curve. The idea is to start with a logic framework that enjoys
very simple syntax, semantics and formal reasoning techniques, allowing the students
to focus on and properly digest the conceptual components. This approach will also
give us the opportunity to introduce the nuts and bolts of Coqgently.

We believe that Aristotle’s term logic [PH91] is appropriate for this purpose. We
have been able to encode the syntax of term logic in Coq so simply that students can
focus on basic Coq concepts like definitions, proofs, and tactics.

3

Basic components of term logic.The atomic unit of meaning in term logic arecategor-
ical terms, e.g., humans, Greeks , andmortal . We encode this in Coq as follows:

Parameter Term : Type.
Parameters Greeks humans mortal : Term.

A categorical propositionthen puts two such terms together as in the famous universal
proposition “all Greeks are humans.” Besides the quantity “universal” (all), we provide
for “particular” (some) propositions, and beside the quality “affirmative”, we provide
for “negative” propositions, leading the the following definitions in Coq:

Record Quantity : Type := universal | particular.
Record Quality : Type := affirmative | negative.

Data structures of typeCategoricalProposition are then constructed from a
Quantity , aQuality , a subjectTerm and an objectTerm.

Record CategoricalProposition : Type := cp {
quantity : Quantity;
quality : Quality;
subject : Term;
object : Term

}.

An appropriate CoqNotation enables the students to (most of the time) write propo-
sitions as natural English sentences such asAll Greeks are humans .

Semantics from naı̈ve set theory.A modelM for a term logic can be given by providing
a universe of objectsUM, and a subset (or unary predicate)tM ⊆ UM, for each termt.
The semantics of a universal proposition is then given by

(All subjectare object)M =

{

T if subjectM ⊆ objectM,

F otherwise

and can be visualized by aVenn diagramas follows:

The reader can see [HH10,notes/Traditional.pdf] for the full exposition.

4

Introducing logical concepts.Categorical propositions are lifted intoProp using

Parameter holds : CategoricalProposition -> Prop.

Axioms can then be introduced interactively, as in:

Axiom HumansMortality: holds (All humans are mortal).
Axiom GreeksHumanity: holds (All Greeks are humans).

A graphical notation for axioms prepares the ground for natural deduction:

All humans are mortal

[HumansMortality]

A more interesting axiom—traditionally called Barbaraas a mnemonic device—expresses
transitivity of the subset relation:

All middleare major All minorare middle

All minorare major

[Barbara]

Its representation in Coq introduces conjunction and implication at the meta-level.

Axiom Barbara : forall major minor middle,
holds (All middle are major) /\ holds (All minor are middle)

-> holds (All minor are major).

Basic tactics such assplit can be observed in action in this proof of Greek mortality:

Lemma GreeksMortality : holds (All Greeks are mortal).
Proof.

apply Barbara with (middle := humans).
split.
apply HumansMortality.
apply GreeksHumanity.

Qed.

Interactive proof sessions.Equipped with the basic reasoning techniques of traditional
logic, students can now proceed to more complex proofs. An attractive realm of “appli-
cations” are Lewis Carroll’s logical puzzles. For example,from the following premises

– No ducks waltz.
– No officers ever decline to waltz.
– All my poultry are ducks.

we should be able to conclude, naturally enough, that no officers are my poultry. After
defining appropriate terms such asthings_that_waltz and a complement con-
structor for negative terms (non), we can define the corresponding lemma in Coq:

5

Lemma No_Officers_Are_My_Poulty :
holds (No ducks are things_that_waltz) /\
holds (No officers are non things_that_waltz) /\
holds (All my_poultry are ducks)
->
holds (No officers are my_poultry).

The proof uses tactics that implement traditional Aristotelian reasoning techniques such
as obversion and contraposition [Bor06]; the interested reader is referred to [HH10,
notes/Traditional.pdf] for details on their implementation in Coq.

We are able to cover the basics of Aristotelian term logic in aweek and a half (the
first half week being reserved for standard course introductory material such as state-
ments on course policy). Afterwards, the students are equipped with an understanding
of the syntax/semantics distinction, models, axioms, lemmas, proofs, and tactics; and
are thus ready to focus on the logic-specific aspects of propositional logic.

2.2 Propositional Logic: weeks 3 and 4

Prelude: rule-defined sets as data structures.First, we have to give some kind of intu-
ition for what an inductive set is, so that we can define the syntax of the logic. However,
we would prefer to defer formal discussion of such sets and their associated proof rules
(i.e., induction) until after we cover predicate logic in week 8 (§2.5).

We have discovered that the simplest way to give this intuition is to take advantage
of the fact that we are teaching computer science majors, andmake the connection be-
tween a (simple) inductive type and a (simple) data structure, such as a linked list. We
provide some simple Java code that uses provides poor man’s versions of the natural
numbers (withZero andSucc(...)) and binary trees; we then demonstrate the cor-
responding Coq code for these types as well [HH10,notes/Induction.pdf]. This
would be simpler, of course, if our students knew ML, but we donot have that luxury.
In practice demonstrating the idea in Java provides some intuition and reinforces the
idea that logical formulas have a well-defined structure; inaddition we can use the Java
code to start to address interesting questions,e.g., about cyclic data structures.

Encoding as an object logic.Our presentation of paper-based propositional logic is
entirely standard: we give the syntax of formulas, define thesemantics (e.g., valuations,
truth tables), give the natural deduction rules, and cover soundness/completeness. One
small departure from the norm is that we bring up the idea of intuitionistic logic quite
early, and informally explain its connection to computability.

More interesting is how we cover the topic in Coq. Because we already introduced
some basic Coq in week 2 (§2.1), we have the advantage that some basic Coq con-
cepts and tactics (e.g., implication andintros) are already sinking in. To reinforce
that idea, and to keep the concepts of object- and metalogic strictly separate, we first
cover propositional logic as an object logic and hew closelyto how we defined it on
paper. That is, we inductively define the syntax of formulas,introduce the idea of
a valuation, and then define an evaluator fixpoint that takes aformula and a valua-
tion and produces a boolean value according to the standard truth table rules [HH10,
notes/Propositional Logic.pdf].

6

We then provide a module type that gives the various natural deduction rules, and
assign two kinds of homework: first, we require that they use those rules to prove various
standard problems in propositional logic using machine-checked natural deduction. One
big advantage of the object-logic encoding is that they mustuse axioms explicitly (e.g.
apply Conj I.) instead of the typical Coq tactics (split.). We have found that
the built-in tactics do a bit too much (e.g., many overloadings for thedestruct tactic),
and by explicitly requiring named axioms we can match in Coq the exact shape of paper-
based natural deduction proofs. For the second part of the homework, we require that
they implement a module matching that module type, thereby proving the soundness
of the rules [HH10,coq/homework 02.v]. For natural deduction, we encourage
cross-pollination by assigning some of the same problems inboth the paper portion of
the homework and in the Coq portion.

Switching between the object logic and the meta logic.Once students have a handle
on propositional logic, and have gotten a bit more of a feel for Coq, it is time to ask
an obvious question: why are we defining our own version of conjunction, when Coq
already provides it? In fact, it is extremely convenient to use Coq’s built-in operators,
since it greatly enhances automation possibilities1. We give some problems to ensure
that students are familiar with the basic tactics; by this point, for most these are quite
simple [HH10,coq/Propositional Logic Lab2.v].

Explaining what Coq is (approximately) doing.Students tend to be mystified by what
Coq is exactly doing. This leads to undue “hacking”, whereinstudents try tactics at
random until for some unknown reason they hit on the right combination. After we
have introduced propositional logic and the students have done some Coq homework,
we try to explain what is going on by a series of diagrams like the one in Figure 1.

H1, . . . ,Hn

...

P ∧ Q
? split

=⇒

H1, . . . ,Hn

...

P
?

H1, . . . ,Hn

...

Q
?

P ∧ Q
∧i

Fig. 1. A diagram that explains thesplit tactic.

This kind of diagram shows a proof state transformation withthe pre-state to the
left and the post-state to the right. Here we show the transformation for thesplit
tactic; the goal of the pre-state, appropriately enough, isa conjunctionP ∧Q. We have
a series of hypothesesH1, . . . , Hn, but Coq is not sure how to proceed from them to the
goal; we symbolize this by labeling the rule with a question mark (boxed for emphasis).
Thesplit tactic tells Coq that the two parts will be proven independently from our
hypotheses; accordingly, afterwards, Coq presents us withtwo fresh goals:P andQ,

1 And when we get to predicate logic the ability to offload binders onto Coq is a godsend.

7

and again asks us how to proceed. Coq has inserted the conjunction introduction axiom
(∧i) to connect those goals into a proof of the conjunction.

We have found that students understand the tactics much moreclearly after we
demonstrate the transformations they perform by using these kinds of diagrams. As an
aside, one time we ran the course, we provided a series of tactics that followed the
axioms of propositional logic a bit more clearly (e.g., we defined a tacticdisj e that
was identical todestruct). This turned out to be a bad idea: not only did it limit
students’ ability to look up documentation online, but it meant that they were not really
able to use Coq in a standard style after completing the course.

Case study: tournament scheduling.Too often, formal systems appear to have little
practical application. To combat this perception, we like to conclude our discussion
of propositional logic with an example of using propositional logic to solve a com-
putational problem, via its encoding as a propositional satisfiability problem: Han-
tao Zhang’s encoding [Zha02] of the Atlantic Coast Conference 1997/98 benchmark
[NT98], as a propositional formula. The fully automated proof of its satisfiability using
the satisfiability checker SATO [Zha93] yields the solutions to the benchmark problem
orders of magnitudes faster than techniques from operations research.

2.3 Predicate Logic: weeks 5 and 6

Just as in the case for propositional logic, our presentation of pen-and-paper predicate
logic is largely standard: syntax, semantics, proof rules,metatheory. We have found
that one place where our pen-and-paper explanation is aidedby the use of the theorem
prover is in substitution. It is quite simple to create some formulas in Coq and then use
therewrite tactic to substitute equalities, observing how Coq managesthe binders.

Since we have already made the distinction between object- and metalogics, we
take full advantage of Coq’s binder management. That is, while we carefully define
substitution for paper methods, and demonstrate how Coq handles the situation as ex-
plained above, we entirely avoid defining any mechanized substitution methods our-
selves2. Among other advantages, this allows us to completely sidestep the quicksand
of computable equality testing, which would be needed to define substitution in Coq.

Most of the tactics for predicate logic in Coq (exists , destruct , andintros)
are fairly simple; one exception is the tactic for universalelimination (generalize),
which is a little bit weird (why has my goal just changed?). Although usually we prefer
to just teach the Coq tactics as-is, in this case we define a custom tactic that does a
universal elimination by combining ageneralize with an intro and aclear .

The students report that the Coq homework on predicate logic(which includes De
Morgan’s laws, etc.) is quite simple. We believe that this isa reflection of the tactics
being straightforward; students having had many hours of experience by now with Coq;
and of course because Coq handles the messy details of predicate logic very nicely.

2 If students are interested we may briefly mention De Bruijn indices.

8

2.4 Midterm exam and case study: week 7

We find it convenient to give a midterm examination after predicate logic. This exam
covers traditional, propositional, and predicate logic and is done entirely on paper. By
this point, the students have already had several Coq quizzes, and so we are able to track
their progress in the theorem prover that way. In addition, the logistics of running an
exam in the laboratory are fairly complicated and so we only do for the final (§3).

Network security analysis.After the midterm, the students are too jumpy to listen to
anything formal, and so we do not want to start a fresh topic. Instead, just as with
propositional logic, we like to present an example of applying predicate logic to a real-
world problem, this time of network security analysis [OGA05].

2.5 Formal Induction: week 8

After predicate logic, we return to the subject of induction. Whereas our treatment of
induction in week 3 (§2.2) was informal and by analogy to data structures in computer
science, by week 8 we are ready to be quite formal.

In previous years, we discovered that students had an extremely hard time under-
standing the nuances of formal structural induction; common errors include: not cov-
ering all cases, not proving the induction hypothesis in a case, assuming the wrong
induction hypothesis in a case, failing to generalize the induction hypothesis, etc. The
advantage of deferring the formal treatment of induction until after predicate logic is
that students have enough familiarity with Coq to be able to use it to explore the topic.
The payoff is substantial; indeed, the single biggest improvement in comprehension for
an individual topic occurred after we introduced mechanized induction.

We were not able to find a textbook that covered structural induction in a way we
were happy about; accordingly, we wrote some fairly extensive lecture notes on the
subject [HH10,notes/Induction.pdf]. By doing so, we were able to develop
the paper and mechanized versions of induction with similarnotation and in parallel,
which allows students to follow along with their own Coq session and experiment.

Another advantage of developing our own materials was that we are able to intro-
duce several related topics that are “off the beaten track”.For example, although we do
not cover it in full detail, we find it useful to explain coinduction as a contrast to in-
duction. We point out that for both inductive and coinductive types, case analysis forms
the basic elimination rules and constructors form the basicintroduction rules. Induc-
tive types get a more powerful kind of elimination rule (fixpoints) whereas coinductive
types get a more powerful kind of introduction rule (cofixpoints). We also point out the
connection to nonterminating vs. terminating computation, a concept which connects
back to earlier discussions about intuitionistic logic.

Generalizing induction hypotheses.The end result of this approach to induction was
that most students were able to write extremely clear inductive proofs, even when the
induction in question was not straightforward,e.g., when it required a generalization
of the induction hypothesis (including the often-confusing situations wherein quan-
tifiers need rearrangement before induction). A good problem for demonstrating the

9

technique of generalizing the induction hypothesis is as follows. Suppose we have the
standard inductive definition of dataless binaryTrees with constructorsLeaf : Tree and
Node : Tree → Tree → Tree; defineleaves(t) as the function that counts all theLeafs
in a Tree, andnodes(t) as the function that counts all of theNodes. Now prove that
for all t : Tree, leaves(t) ≥ nodes(t). Although this seems extremely obvious, the in-
duction hypotheses one gets if one proceeds directly are inconveniently weak and are
not enough to complete the inductive step. One must generalize the goal to the stronger
leaves(t) > nodes(t) before doing induction.

Teaching with Coq becomes a bit entwined with teaching Coq.One of the challenges
of using Coq as a didactic tool is that Coq is extremely complicated. It is amazing how
easily one runs into all kinds of didactically-inconvenient topics at awkward moments.
We try to sprinkle in some of these ideas ahead of time, so thatwhen they come up later
students already have some context. Moreover, covering thenitty-gritty details further a
minor goal, which is to provide the students with a better understanding of Coq, in case
they want to use it going forward for another class or a research project—and indeed,
several did so. While discussing induction we also cover theideas of pattern-matching3,
exhaustive/redundant matching, polymorphic types, and implicit arguments.

2.6 Modal Logic: weeks 9 and 10

Introducing modal logic with Coq was a bit challenging. There are two main problems:

1. The semantics of modal logic is usually introduced on paper by defining a finite
set of worlds, each of which is a finite set of propositional atoms. The relation
between worlds is then a finite set of arrows linking the worlds. Immediately this
runs into trouble in Coq—an example of the already mentionedpropensity for Coq
to force unpleasant didactic issues to the fore,e.g., Coq does not have a simple way
to encode finite sets without using library code and explaining the importance of
constructive tests for equality (both of which we have avoided in the past).

2. Coq does not have a clean way to carry out natural deductionproofs in modal logic.
The best method we have found, a clever encoding by deWind, isstill clunky when
compared to simple paper proofs [dW01]. Current research inCoq using modal
logic tends to prefer semantic methods over natural deduction—that is, modal logic
is used tostate properties and goalsrather thanprove theorems.

In the end, although our initial explanation of modal logic on paper was given in the
standard propositional style, on the Coq side we decided to plunge headlong into a
higher-order encoding of modal logic. Modal formulae are functions from the parame-
terized type of worlds intoProp , and we lift the usual logical operators (conjunction,
etc.) from the metalogic. With judicious use ofNotation , the formulas in Coq can
look pretty close to how we write them on paper. Here is a smallsample of our setup:

3 One detail we have largely avoided discussing is the distinction between computable and in-
computable tests for equality—i.e., those that live inType vs.Prop . This might be a mistake;
one of the advantages of using a mechanical theorem prover isthat it is easy to demonstrate
the importance of maintaining the computable/incomputable distinction by simply observing
that Coq can do much less automation when computability is not maintained.

10

Definition Proposition : Type := world -> Prop.

Definition holds_in (w : world) (phi : Proposition) :=
phi w.

Notation "w ||- phi" := (holds_in w phi) (at level 50).

Definition And (phi psi : Proposition) : Proposition :=
fun w => (w ||- phi) /\ (w ||- psi).

Notation "phi && psi" := (And phi psi).

We also lift the universal and existential quantifiers from the metalogic, giving the stu-
dents a first-order (at least) version of modal logic to play with4. Even better, if we are
careful in how we lift the logical operators then the usual Coq tactics (split , etc.)
work on modal logic formulas “as one might expect”:

Goal forall w P Q,
w ||- P && Q ->
w ||- Q && P.

Proof.
intros w P Q PandQholds.
destruct PandQholds as [Pholds Qholds].
split; [apply Qholds | apply Pholds].

Qed.

This is extremely useful since the cost of learning a new tactic is quite high to a student.
Since our students already have a grasp of quantification, they can understand when

we define the modal box and diamond operators in the standard way (parameterized
over some global binary relation between worldsR).

Definition Box (phi : Proposition) : Proposition :=
fun w => forall w’, R w w’ -> (w’ ||- phi).

Notation "[] phi" := (Box phi) (at level 15).

Definition Diamond (phi : Proposition) : Proposition :=
fun w => exists w’, R w w’ /\ (w’ ||- phi).

Notation "<> phi" := (Diamond phi) (at level 15).

To reason about these operators they must beunfold ed and then dealt with in the
metalogic, but in practice we find that easier than trying to duplicate paper natural de-
duction proofs. In any event, encoding modal logic in this way allows the students to
prove standard modal facts without undue stress, and in addition gives a feel for modal
logics with quantifiers. We also introduce multimodal logics—logics with multiple re-
lations between worlds, by parameterizing Box and Diamond:

Definition BoxR (R’ : world -> world -> Prop)
(phi : Proposition) : Proposition :=

fun w => forall w’, R’ w w’ -> (w’ ||- phi).

4 In fact, we have given them something much more powerful: thequantification is fully im-
predicative, although we do not go into such details.

11

We return to this idea when we study the semantics of Hoare logic in week 12 (§2.7).
Multimodal logics also lead into our investigation of correspondence theory—i.e.,

the connection between the worlds relationR and the modal axioms. Here we are able
use our Coq encoding of modal logic to demonstrate some very elegant proofs of some
of the standard equivalences (e.g., reflexive with T, transitive with 4) in a way that
demonstrates the power of higher-order quantification, giving students a taste of richer
logics. For more details see [HH10,notes/Modal Logic.pdf].

2.7 Hoare Logic: weeks 11 and 12

We turn towards Hoare logic as we near the end of the semester.Our Coq integration
was not very successful in helping students understand concrete program verifications.
The problem seems to be that mechanically verifying even fairly simple programs leads
to huge Coq scripts, and often into tedious algebraic manipulations (e.g., (n+1)×m =
n × m + m, wheren andm are integers, not naturals). These kinds of goals tend to
be obvious on paper, but were either boring or very frustrating for the students to prove
in Coq. Accordingly, we did almost all of the program verifications on paper only.

There were two exceptions: first, we required the students todo a handful of ex-
tremely short (e.g., two-command) program verifications in Coq, just to get a little taste
of what they were like. Secondly, we showed them a verification of the 5-linefactorial
program given as the standard example of Hoare verification in Huth and Ryan [HR00].
Although the Coq verification was more than 100 lines, it was worth demonstrating,
since it found a bug (or at least a woeful underspecification)in the standard textbook
proof5. This got the key point across: one goes through the incredible hassle of me-
chanically checking programs because it is the most thorough way to find mistakes; see
[HH10, slides/slides 11 b.color.pdf , 46–56] for more detail.

Success on the semantic side.We had much better luck integrating Coq into our expla-
nation of the semantics of Hoare logic. This is a topic that several introductory textbooks
skip or only cover informally, but we found that Coq allowed us to cover it in consider-
able detail. In the end, our students were able to mechanically prove the soundness of
Hoare logics of both partial and total correctness for a simple language6. The difficulty
of these tasks were such that we think they demonstrate that our students had reached
both a certain familiarity with Coq and a deeper understanding of Hoare logic.

Part of the challenge with providing a formal semantics for Hoare logic is the
amount of theoretical machinery we need to introduce (e.g., operational semantics).
A second challenge is producing definitions that are simple enough to make sense to
the students, while still allowing reasonably succinct proofs of the Hoare axioms.

Finding the right balance was not so easy, but after several attempts we think we
have developed a good approach. We use a big-step operational semantics for our lan-
guage; for most commands this is quite simple. However, theWhile command is a bit

5 The underspecification comes from not defining how the factorial function (in math, not in
code) behaves on negative input, and the bug from not adjusting the verification accordingly.

6 The proof of theWhile rule was extra credit. Several students solved this rule forthe logic of
partial correctness; to date we have not had any students solve the total correctness variant.

12

trickier; here our step relation recurses inductively, which means that programs that loop
forever cannot be evaluated. Our language is simple enough (e.g., no input/output) that
this style of operational semantics is defensible, even if it is not completely standard.

Hoare logic as a species of modal logic.We use modal logic to give semantics to the
Hoare tuple in the style of dynamic logic [HKT00]. One obvious advantage of such a
choice is thatHoare logic becomes an application for modal logic—that is, it increases
students’ appreciation of the utility of the previous topic. This style allows the defini-
tions to work out very beautifully, as follows. Suppose our (big-)step relation, written
c ` ρ ρ′, relates some starting contextρ to some terminal contextρ′ after executing
the commandc. Define the family of context-relations indexed by commandsSc by

ρ Sc ρ
′ ≡ c ` ρ ρ′

and the multimodal universal�S
c and existential♦Sc operators as usual overSc:

ρ |= �S
c P ≡ ∀ρ′. (ρ Sc ρ

′) → (ρ′ |= P)
ρ |= ♦Sc P ≡ ∃ρ′. (ρ Sc ρ

′) → (ρ′ |= P)

That is, if�S
c P holds on some stateρ, thenP will hold on any state reachable after

running the commandc (recall that only terminating commands can be run); similarly, if
♦Sc P holds on some stateρ, then it is possible to execute the commandc, and afterwards
P will hold. Now we can give semantics to Hoare tuples as follows7:

{P} c {Q} ≡ ∀ρ. ρ |= (P ⇒ �S
cQ)

[

P
]

c
[

Q
]

≡ ∀ρ. ρ |= (P ⇒ ♦Sc Q)

Although this style of definition is not suitable for more complicated languages, they
work very well here and we find them to be aesthetically pleasing. Moreover, they lead
to extremely elegant proofs of the standard Hoare rules. In fact, with the exception of
theWhile rule for total correctness, none of the Hoare axioms took us more than about
10 lines of Coq script to prove, which put them within reach ofour students’ efforts8.
This allowed us to give the entire soundness proof of the Hoare logic as a (fairly long)
homework assignment. For more details, see [HH10,notes/Hoare.pdf].

2.8 Other Topics: week 13

The final week of the course is less formal. Since there is no time to assign homework
on topics covered, we do not want to get into huge amounts of detail, and any final exam
questions on those topics are by convention fairly simple. In addition, we schedule part
of the lecture for students’ questions on material covered in the earlier part of the course.

In various iterations of the course we introduce other topics of interest, including
temporal logic, model checking, theλ-calculus, type theory, and separation logic. The
Curry-Howard isomorphism makes theλ-calculus and type theory an interesting place
to spend some time, but given the informal nature of the final week it is mostly a matter
of taste. We have not made any effort to integrate Coq into anyof these topics to date.

7 Writing ⇒ to mean (lifted) implication,i.e., ρ |= P ⇒ Q ≡ (ρ |= P) → (ρ |= Q).
8 A useful rule of thumb when setting assignments: if the instructors can solve something inn

lines, most of the students can solve the same thing in fewer than5n lines.

13

3 Course Format

We found it crucial for the students to acquire familiarity with Coq early in the course.
Accordingly, we gave Coq assignments and quizzes. This resulted in a student workload
that was significantly above average for comparable courses, since we did not compro-
mise on the number of traditional paper-based assignments.As a result, the assessment
components in the latest incarnation of CS3234 (Sem 1 2010/2011) included:

– 7 paper assignments (at 2% each)
– 5 Coq assignments (at 2% each)
– 6 twenty minute Coq quizzes (at 2% each)
– A one hour paper midterm (10%)
– A two hour final with both Coq and paper problems (22% in Coq, 32% on paper)

As one might imagine, preparing and grading this many assignments requires a serious
commitment on the part of the instructors as well—and in addition, we were preparing
course slides, lecture notes, and laboratory exercises. Fortunately, our department was
able to allocate two teaching assistants to help giving the tutorials/laboratories and do-
ing some of the grading; we ended up having one of the highest support/student ratios
in the department. In the previous year (Sem 1 2009/2010) we did it all ourselves, and
we had very little time to do other work. Of course, as we continue to develop and can
begin to reuse the course materials, a good part of the labor is reduced.

When we last taught the graduate version CS5209 (Sem 2 2009/2010), we tried to
assign less homework, hoping that graduate students would be able to learn the material
without as much supervision. We were mistaken; quite a few ofour graduate students
had a very hard time with Coq, which was related to the lesser amount of homework.
In the future we will assign more work in CS5209. We also triedto give some of the
material as a group project; this also turned out to be a bad idea as some of the team
members did not put in nearly enough work to do well on the Coq part of the final exam.

Academic honesty.A peculiar issue arose as a result of having student turn in Coq
scripts as homework assignments. Since the scripts are usually quite short and appear
to contain little idiosyncratic information, the temptation to copy solutions from other
students seemed to be unusually high. We countered this temptation by:

– Emphasizing the importance of academic integrity from the start.
– Conducting systematic cross-checking of scripts. This turned out to be surprisingly

effective albeit extremely labor-intensive: even relatively simple assignments gave
rise to a large variety of correct solutions, with a surprisingly low likelihood of two
students independently submitting identical scripts to multiple problems.

– Giving a relatively low grade weight to the Coq homework.
– Introducing Coq quizzes, which are conducted in computer labs with internet access

disabled and submitted at the end of the session.
– Changing the structure of the final exam to include a significant Coq component

along with a traditional paper component. We informed students about this very
early in the course and reminded them that if they did not workhard on the Coq
homeworks they would be unlikely to do well on this part of theexam. The actual
exam was conducted in the lab, and students were allowed to choose how they
wanted to split the available two hours between the Coq and paper components.

14

4 Student Feedback

For CS3234, we can do a fair before-and-after comparison, because the two incar-
nations of the module before introduction of Coq were given by the first author in
Semester 1 2007/2008 and Semester 1 2008/2009, and the two incarnations after the in-
troduction of Coq were given by both authors in Semester 1 2009/2010 and Semester 1
2010/2011. The National University of Singapore collects student feedback on lecturers
and courses. Students provide their general opinion of the module using scores rang-
ing from 1 (worst) to 5 (best). The students also provide subjective feedback on the
difficulty of the module, ranging from 1 (very easy) to 5 (verydifficult). The following
table includes the average feedback scores in these two categories, as well as the student
enrollment and survey respondents in the listed four incarnations:

Semester EnrollmentRespondentsOpinionDifficulty
Sem 1 2007/2008 37 24 3.58 3.87
Sem 1 2008/2009 33 20 3.55 3.95
Sem 1 2009/2010 32 17 4.17 4.00
Sem 1 2010/2011 30 19 3.84 4.05

The students can also provide written qualitative feedback, which provides additional
anecdotal evidence for the change that the introduction of Coq made to the module.
Student feedback before the introduction of Coq (all feedback verbatim; please keep in
mind that for many of our students English is not their first language):

– “Suggestion: I would like to see more materials from a (real life) application per-
spective.” (2007/2008)

– “dry module to me, cant see the link in what is taught and that i’d ever going to
apply it. maybe can make it more real life applicable, and talk about how in real
programming life would we use such logics. i mean we just learn the logics but dun
really know where we will really be making use of it.” (2007/2008)

– “Quite good.. But everything is too therotical [sic]..” (2008/2009)
– “There are very complex ideas which are very difficult to explain.” (2008/2009)

Some feedback after the introduction of Coq:

– “Fantastic module. The workload is slightly heavy with all the assignments but that
is fine. Learnt a lot.” (2009/2010)

– “Strengths: help students understand various aspects of logic and how it can be
applied in computer science. Weakness: Only the surfaces ofsome topics. cannot
appreciate their usefulness. Homeworks (paper + coq) everyweek consume a lot of
time” (2009/2010)

– “The strength of this module covers various topic on formal proving, giving me a
deeper understand on the application of discrete structurethat i had taken before.
The lecture slides and some of the additional notes are clearand helpful. I like the
idea of having Coq lab session, whereby we apply what we learn. However, some
of the quiz are very challenging and i think we do need more extra practices (not
included in CA marks) on the Coq besides just the homework. The workload is
rather heavy and each assignment and homework is just 2% (perhaps can increase
percentage ?).” (2010/2011)

15

– “good module with many labs that can give me a good understanding of the module
software COQ” (2010/2011)

We received an email from a student of CS5209 that nicely summarizes the benefits
and challenges from Coq from the students’ perspective: “I would like to thank you for
the Automated Theorem Prover (Coq) you taught in CS5209 course. It makes life easy
while trying to prove theorem as compared to paper part. In addition to this it saves life
of student in Final exam. In the beginning for the course I hated Coq a lot, but slowly
I start liking it as I understood the way tactic works and how to use them. Now it has
become most favorite and interesting part of mine in this course.” (2009/2010)

5 Conclusion

We have outlined a migration of a traditional course on logicfor computer science
to a format that makes extensive use of the theorem prover Coq. Our approach resulted
from teaching the material three times (twice in an undergraduate and once in a graduate
setting). Along the way, we have found a number of didactic techniques to be useful:

– Introduction of Aristotelian term logic prior to propositional logic so that we can
introduce the basic concepts of logic and Coq more gently.

– Keeping the object- and metalogics separate at the beginning; only transitioning to
direct use of Coq’sProp once the distinction is clear.

– Delaying formal discussion of induction until after predicate logic, and then cover-
ing it in detail once students’ familiarity with Coq can provide assistance.

– Presenting a full-powered modal logic in Coq instead of attempting to precisely du-
plicate the experience on paper; a significant exploration of correspondence theory.

– Giving a semantics for Hoare logic so that students can provethe Hoare axioms.
– Presenting several direct applications of formal systems to computational problems:

resource scheduling for propositional logic; network security analysis for predicate
logic; and Hoare logic’s semantics for modal logic.

Comparing the student feedback from CS3234 before and afterthe migration, it is clear
that the introduction of Coq was well received by the students, as shown by a signifi-
cant improvement of the overall student opinion of the module, at the cost of a modest
increase in module difficulty. Anecdotal evidence suggeststhat the students appreciated
the additional learning opportunities afforded by the use of Coq throughout the courses.

The material resulting from the migration (including an extensive collection of Coq
assignments, quizzes and exam questions) is available online [HH10] for the benefit of
the community of academics involved in teaching logic to computer science students.

References

[BA01] Mordechai Ben-Ari.Mathematical Logic for Computer Science. Springer, 2001.
[Bor06] Donald M. Borchert, editor.Glossary of Logical Terms. Encyclopedia of Philosophy.

Macmillan, 2ndedition, 2006.
[dW01] Paulien de Wind. Modal logic in Coq. VU University Amsterdam, IR-488,

http://www.cs.vu.nl/̃ tcs/mt/dewind.ps.gz, 2001.

16

[HH10] Martin Henz and Aquinas Hobor. Course materials for cs3234/cs5209.
http://www.comp.nus.edu.sg/˜ henz/cs3234, 2010.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn.Dynamic Logic. MIT Press, 2000.
[HR00] Michael R. A. Huth and Mark D. Ryan.Logic in Computer Science: Modelling and

reasoning about systems. Cambridge University Press, Cambridge, England, 2000.
[NT98] George L. Nemhauser and Michael A. Trick. Schedulinga major college basketball

conference.Operations Research, 46(1):1–8, 1998.
[OGA05] Xinming Ou, Sudhakar Govindavajhala, and Andrew W.Appel. MulVAL: A logic-

based network security analyzer. In14th USENIX Security Symposium, 2005.
[PH91] William T. Parry and Edward A. Hacker.Aristotelian Logic. State University of New

York Press, 1991.
[Zha93] Hantao Zhang. Sato: A decision procedure for propositional logic. Association of

Automated Resasoning Newsletters, 22, 1993. updated version of November 29, 1997.
[Zha02] Hantao Zhang. Generating college conference basketball schedules by a SAT solver.

In Proceedings of the Fifth International Symposium on Theoryand Applications of
Satisfiability Testing, pages 281–291, Cincinnati, Ohio, 2002.

