
SUDOKUSAT—A Tool for Analyzing Difficult Sudoku Puzzles

Martin Henz and Hoang-Minh Truong
National University of Singapore

School of Computing
Computing 1, Law Link, Singapore 117590, Singapore

henz@comp.nus.edu.sg, g0605790@nus.edu.sg

Abstract

Sudoku puzzles enjoy world-wide popularity, and a large
community of puzzlers is hoping for ever more difficult puz-
zles. A crucial step for generating difficult Sudoku puz-
zles is the fast assessment of the difficulty of a puzzle. In
a study in 2006, it has been shown that SAT solving pro-
vides a way to efficiently differentiate between Sudoku puz-
zles according to their difficulty, by analyzing which resolu-
tion technique solves a given puzzle. This paper shows that
one of these techniques—unit resolution with failed literal
propagation—does not solve a recently published Sudoku
puzzle called AI Escargot, claimed to be the world’s most
difficult. The technique is also unable to solve any of a list
of difficult puzzles published after AI Escargot, whereas it
solves all previously studied Sudoku puzzles. We show that
the technique can serve as an efficient and reliable com-
putational method for distinguishing the most difficult Su-
doku puzzles. As a proof-of-concept for an efficient difficulty
checker, we present the tool SUDOKUSAT that categorizes
Sudoku puzzles with respect to the resolution technique re-
quired for solving them.

1. Sudoku

Sudoku puzzles have fascinated puzzle solvers since their
invention in 1979. A Sudoku puzzle is a 9× 9 grid of cells,
which is composed of nine 3× 3 non-overlapping boxes of
cells. The objective is to fill the grid with digits from 1 to
9 so that each row, column and box contains any digit at
most once. Some cells are already filled with digits; these
cells are called hints. To be a proper Sudoku puzzle, the
grid must admit a unique way to fill the remaining cells to
meet the objective (Uniqueness Property). Figure 1 shows
a Sudoku puzzle that can be solved within a few minutes by
an experienced puzzler.

Whereas precursors of Sudoku—based on magic squares
and Latin squares—were known since the late 19th century,

7 1 6 8 2

3

8 9 4

7 9

5 3 1

1 9 2 6

9 3

5 2

4 7

Figure 1. A Typical Sudoku Puzzle

modern Sudoku puzzles were first published anonymously
by Dell Magazines in 1979, and are widely attributed to
Howard Garns. The puzzles became popular in Japan start-
ing in the mid 1980s and world-wide in 2005, giving rise
to a large international community of puzzlers who enjoy
solving puzzles of various levels of difficulty.

The Sudoku community spends much effort to generate
new and ever more difficult puzzles. A milestone in this
quest was reached by Arto Inkala in 2006.

2. AI Escargot

In November 2006, Arto Inkala published a Sudoku puzzle
that he called “AI Escargot”1, shown in Figure 2, which he

1The letters “A” and “I” represent Dr. Inkala’s initials.



1 7 9

3 2 8

9 6 5

5 3 9

1 8 2

6 4

3 1

4 7

7 3

Figure 2. AI Escargot

claimed to be “the most difficult Sudoku puzzle known so
far”. In his recently published book [7], Inkala notes:

In addition to my own evaluation method, I gave
AI Escargot to others for evaluation in October
2006. It was soon found to be the most diffi-
cult Sudoku puzzle known according to at least
three established evaluation methods. In the case
of two methods, in fact, AI was the first puzzle
that they were unable to solve. These methods
were RMS (Ravel Minimal Step) and Sudoku Ex-
plainer 1.1. The third and fourth method was Gfsr
and Suexrat9 method. The fifth method I used to
evaluate AI Escargot also found it to be the most
difficult, but that method is my own.

What happened next was what I had antici-
pated: AI Escargot motivated other makers of dif-
ficult Sudoku puzzles to continue the work. It
continues to be the most difficult Sudoku puz-
zle, when the results of all evaluation methods
are combined, but some puzzles can now be rated
more difficult by a particular method.

The quest for difficult Sudoku puzzles continued since pub-
lication of AI Escargot, and a web site lists the most diffi-
cult puzzles discovered since the publication of AI Escar-
got [12]. A common approach for generating difficult Su-
doku puzzles is generate-and-test: generate large numbers
of promising candidate puzzles2, and test each of these can-

2Enumerating possible Sudoku grids is interesting task in itself; for
details, see [4].

didates for the Uniqueness Property and difficulty. In or-
der to efficiently and effectively search for difficult puzzles,
the rating has to be both fast and correspond to the human
intuition of Sudoku difficulty. In the quote above, Inkala
mentions five techniques of rating:

Ravel Minimal Step (RMS). The minimal number of
“difficult steps” needed to solve the puzzle. RMS is
not able to rate AI Escargot. Even if appropriate “dif-
ficult steps” would be added to the rating scheme, a
time-consuming search-based technique is required for
RMS, since the choice of steps and their order greatly
affects the number of steps needed.

Sudoku Explainer. This Java software by Nicolas Juillerat
uses a complex algorithm to assess the difficulty of a
puzzle. Apparently, the more recent version Sudoku
Explainer 1.2 is able to solve AI Escargot, but assess-
ing its difficulty reportedly takes several minutes.

Gfsr. At the time of submission, the authors were not able
to find details on this evaluation method.

Suexrat9. Suexrat9 returns the average number of depth-
first search steps, where only simple reasoning steps
are carried out at each node. This method is slowed
down by the need for multiple runs of a depth-first
solver, and the result does not correspond well to
the experience of human solvers, who typically apply
techniques radidally different from depth-first search.

Inkala’s method. At the time of submission, the authors
were not able to obtain details on this method.

It is not clear whether any of these techniques are able to
serve as an effective testing step in generate-and-test. In
this paper, we propose to use a SAT-based technique called
failed literal propagation (FLP) as effective test. In order to
argue the case, we briefly discuss the computational tech-
niques that have been applied to Sudoku puzzles in the
next section. Section 4 zooms into SAT-based solving tech-
niques. Section 5 discusses how a SAT-based solver can
be augmented with a Sudoku-specific reasoning method to
optimize the test for the Uniqueness Property. Section 6
presents SUDOKUSAT, a SAT-based tool for analyzing the
difficulty of Sudoku puzzles. We have used SUDOKUSAT
for assessing the difficulty of AI Escargot and other difficult
puzzles, and Section 7 establishes the first known Sudoku
puzzles that cannot be solved with FLP, which gives rise to
that hope—expressed in Section 8—that SAT-solving may
prove to be a valuable tool in the quest for the most difficult
Sudoku puzzles.

2



3. Sudoku in AI

The problem of finding solutions of n2 × n2 Sudoku puz-
zles is NP-hard [17]. All known 9 × 9 puzzles can be
quickly solved using a variety of techniques, ranging from
general search algorithms such as Dancing Links [9], over
constraint programming techniques [14, 6] and SAT-based
techniques (see next section), to a host of Sudoku-specific
algorithms such as Sudoku Explainer [8] and Sudoku As-
sistant/Solver [5].

Researchers in Artificial Intelligence have used con-
straint programming and SAT solving to assess the diffi-
culty of Sudoku puzzles. Simonis shows that finite-domain
constraint programming (CP) can be employed to assess
the difficulty of Sudoku puzzles [14]. CP models use fi-
nite domain variables for each cell representing the digit
placed in the cell, as well as finite domain variables that in-
dicate in which cell of a given row/column/box a particular
digit is placed. Both kinds of variables are connected with
all-different constraints. Channeling constraints connect
variables of different kinds. Simonis presents several con-
straints that exploit the interaction between rows, columns
and boxes. Of particular value for solving Sudoku puzzles
is a technique called shaving [15], which speculatively as-
signs a value to a variable. When propagation detects an
inconsistency as a result of the assignment, the value is
removed from the variable domain. Simonis proceeds to
compare the published difficulty of a range of puzzles with
the kinds of propagation techniques required to solve them
without search. Since he did not have access to the difficult
instances published after 2006, the effectiveness of CP to
assess the difficulty of Sudoku puzzles remains a subject of
future work.

Weber presented the first SAT-based tool for solving Su-
doku [16], by translating a puzzle using the theorem prover
Isabelle/HOL into clause form, solving the resulting SAT
problem using the SAT solver zChaff [11], and reporting
that the encoding and solving is done “within milliseconds”.
Lynce and Ouaknine apply various SAT-based resolution
techniques to Sudoku [10]. They confirm that the SAT-
equivalent of shaving called failed literal propagation pro-
vides a very efficient and effective method for solving the
puzzles. Similar to Simonis, Lynce and Ouaknine did not
have access to the difficult puzzles published after 2006, and
thus, the significance of the different resolution techniques
for assessing Sudoku difficulty remains unclear. Compar-
ing constraint programming and SAT solving on Sudoku,
we conclude that SAT solving provides simpler and equally
powerful solving techniques, and therefore focus on SAT
solving for this work.

4. SAT-based Sudoku Solving

Satisfiability is the problem of determining if the variables
in a given Boolean formula can be assigned to truth val-
ues such that the formula evaluates to TRUE. In SAT prob-
lems, the formula is a conjunction of disjunctions of literals,
where a literal is either a variable or the negation of a vari-
able. The disjunctions are called clauses, and the formula
a clause set. If the clause set is satisfiable, complete SAT
solvers provide an assignment of the variables which satis-
fies it. When we encode a given Sudoku puzzle as a SAT
problem, and give it to a complete SAT solver, the solver
returns the solution to the puzzle, encoded in a variable as-
signment.

We use the following extended encoding of Sudoku,
given by Lynce and Ouaknine [10]. With each cell of the
grid, this encoding associates 9 variables, one for each pos-
sible digit. The variable sxyz is assigned to TRUE if and
only if the cell in row x and column y contains the digit z.
The following conjunctions of clauses combined make up
the extended encoding (for a detailed explanation, see [10]):

•
∧9

x=1

∧9
y=1

∨9
z=1 sxyz

•
∧9

y=1

∧9
z=1

∧8
x=1

∧9
i=x+1(¬sxyz ∨ ¬siyz)

•
∧9

x=1

∧9
z=1

∧8
y=1

∧9
i=y+1(¬sxyz ∨ ¬sxiz)

•
∧9

z=1

∧2
i=0

∧2
j=0

∧3
x=1

∧3
y=1

∧3
k=y+1

(¬s(3i+x)(3j+y)z ∨ ¬s(3i+x)(3j+k)z)

•
∧9

z=1

∧2
i=0

∧2
j=0

∧3
x=1

∧3
y=1

∧3
k=x+1

∧3
l=1

(¬s(3i+x)(3j+y)z ∨ ¬s(3i+k)(3j+l)z)

•
∧9

x=1

∧9
y=1

∧8
z=1

∧9
i=z+1(¬sxyz ∨ ¬sxyi)

•
∧9

y=1

∧9
z=1

∨9
x=1 sxyz

•
∧9

x=1

∧9
z=1

∨9
y=1 sxyz

•
∧9

z=1

∧2
i=0

∧2
j=0

∧3
x=1

∧3
y=1 s(3i+x)(3j+y)z

Complete solving techniques for SAT problems are based
on simplification and search. A basic simplification tech-
nique is the unit clause rule [3]. The rule eliminates a unit
clause of the form ωi = (lj), where lj is a literal, by remov-
ing all clauses in which lj appears, and removing ¬lj from
all clauses containing it. Unit resolution applies the unit
clause rule exhaustively until the clause set contains no unit
clause. The most common complete solving technique for
SAT problems is the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm [2], which combines tree search, where
each branching assigns a selected literal to a truth value,

3



with unit resolution. Solving Sudoku puzzles is done by hu-
mans using complex kinds of reasoning such as the “Sword-
fish” pattern [5], as opposed to tree search. Thus, in order to
use SAT solving to assess the difficulty of a puzzle, Lynce
and Ouaknine examine—in addition to unit resolution—the
following three propagation-based techniques. .

Failed literal propagation (FLP). The so-called failed lit-
eral rule is applied to a clause set f and a literal l, by
creating a new clause set f ′ = f∧(l). If unit resolution
applied to f ′ yields a contradiction (an empty clause),
f is simplified by adding ¬l to it and performing unit
resolution. Failed literal propagation repeatedly ap-
plies this failed literal rule to all literals, until no more
simplification is achieved.

Binary failed literal propagation (BFLP). This tech-
nique extends failed literal propagation by considering
pairs of literals l1 and l2. If unit resolution after adding
the clauses (l1) and (l2) to the clause set leads to a
contradiction, the clause (¬l1 ∨ ¬l2) can be added to
the clause set.

Hyper-binary resolution (HBR). This technique infers
from clause subsets of the form

(¬l1 ∨ xi) ∧ (¬l2 ∨ xi)∧
· · ·∧(¬lk∨xi)∧(l1∨ l2∨· · ·∨ lk∨xj)

the clause (xi ∨ xj). Similar to the previous two tech-
niques, unit resolution is peformed after each applica-
tion of the rule, and the rule is applied exhaustively.

5. Grid Analysis

During the search for Sudoku puzzles using generate-and-
test, millions of puzzles need to be assessed, whether they
admit a unique solution. The only known technique for this
problem is to find the set of all solutions, and check whether
that set is a singleton. The DPLL algorithm family is an effi-
cient technique for finding all solutions of Sudoku puzzles.

We are proposing to combine DPLL with the follow-
ing Sudoku-specific propagation rules, which are given by
a technique called Grid Analysis (GA), employed by hu-
man puzzlers and Sudoku software such as Sudoku Assis-
tant/Solver.

• When a candidate digit is possible in a certain set of
cells that form the intersection of a set of n rows and
n columns, but are not possible elsewhere in that same
set of rows, then they are also not possible elsewhere
in that same set of columns.

• Analogously, when a candidate digit is possible in a
certain set of cells that form the intersection of a set of
n rows and n columns, but are not possible elsewhere

in that same set of columns, then they are also not pos-
sible elsewhere in that same set of rows.

At a particular node in the DPLL search tree, the first rule
can be implemented by iterating through all possible digits
k and numbers n, where 1 ≤ 2 ≤ 8. For each value of k and
n, we check whether there are n rows, in which there arel
less than n candidate cells for k, whether all candidate cells
belong to n columns, and whether each of these columns
contains at least one candidate cell. If these conditions are
met, we delete k from all cells in the n columns that do not
belong to any of the n rows, by assigning the corresponding
variable sijk to TRUE. The second rule can be implemented
similarly. The technique can be further improved by switch-
ing the roles of value and row/column index, as explained
in [14].

6. SUDOKUSAT

In order to experiment with FLP, BFLP, HBR and GA for
solving Sudoku puzzles, we implemented a SAT solver, in
which DPLL, FLP, BFLP and HBR can be used as alterna-
tive solving techniques. For each technique, the user can
choose to add GA. In the case of FLP, BFLP and HBR,
GA is performed after propagation. Whenever GA obtains
a simplification, propagation is repeated, leading to a fix-
point with respect to a combination of FLP/BFLP/HBR and
GA. Similarly, during DPLL, GA is combined with unit res-
olution to achieve a combined fixpoint. Figure 3 shows the
user interface of SUDOKUSAT after entering the hints of a
problem and setting the solver options.

Figure 3. Interface of SUDOKUSAT

Figure 4 shows the user interface of SUDOKUSAT after
solving the puzzle, displaying statistics on the size of the
search tree (in case DPLL was chosen), the overall run-

4



Figure 4. Display of solved puzzle and statis-
tics on the search tree size, runtime and re-
maining propositional variables

time, and the percentage of remaining variables (in case
FLP, BFLP or HBR was chosen).

Note that Holst reports on a tool for solving Sudoku puz-
zles, based on constraint logic programming [6].

7. Results

The experiments reported by Lynce and Ouaknine [10] use
a set of 24,260 very difficult Sudoku puzzles collected by
Gordon Royle [13]. These puzzles are minimal in the sense
that they have the smallest known number of hints, while
still admitting a unique solution. The puzzles contain 17
hints, as there are no known Sudoku puzzles with only
16 hints. A common assumption at the time of publica-
tion of previous studies on using AI techniques for Su-
doku [10, 16, 14, 6] was that the most difficult Sudoku puz-
zles would be minimal. Lynce and Ouaknine show that unit
resolution alone can only solve about half of their studied
puzzles, whereas the remaining three techniques solve them
all.

Inkala argues that the number of hints is not indicative of
the difficulty of the puzzle [7], and presents AI Escargot, a
puzzle with 23 hints, which was acknowledged as the most
difficult Sudoku puzzle in November 2006 [1]. The 20 most
difficult Sudoku puzzles known at the time of this writing all
have 21 hints [12].

We have applied the three techniques given in Section 4
to these 20 instances and AI Escargot and obtained the fol-
lowing results:

• Not surprisingly, UR fails to solve any of the puzzles.

• None of the puzzles can be solved using FLP.

000001020300040500000600007002000001080090030400000800500002000090030400006700000 1.062
003000009400000020080600100200004000090800007005030000000900800000005030070010006 0.843
100300000020090400005007000800000100040000020007060003000400800000020090006005007 0.578
100007000020030500004900000008006001090000020700000300000001008030050060000400700 0.937
003400080000009200000060001007010000060002000500800040010000900800000030004500007 0.766
000001020300040500000600007002000006050030080400000900900002000080050400001700000 0.313
003900000040070001600002000800000002070050030009000400200001008000040050000600900 1.594
100007000020080000004300500005400001080000020900000300000005007000020060003100900 1.39
002900000030070000500004100008000002090000030600500400000003008000060070100200500 0.344
000001020300040500000600007001000006040080090500000300800002000050090400006700000 0.391
900004000050080070001200000002600009030000040700000500000009002080050030000700600 1.218
003400000050009200700060000200000700090000010008005004000300008010002900000070060 0.281
000001020300040500000600001001000007050030040800000900400002000090050800006700000 0.422
400009000030010020006700000001000004050200070800000600000004008070030010000500900 0.625
100050080000009003000200400004000900030000007800600050002800060500010000070004000 1.078
100050000006009000080200004040030008007000060900000100030800002000004050000010700 0.656
003200000040090000600008010200000003010006040007000500000001002090040060000500700 0.796
020400000006080100700003000000060300000200005090007040300000800001000090040500002 0.594
002600000030080000500009100006000002080000030700001400000004005010020080000700900 1.188
500000009020100070008000300040702000000050000000006010003000800060004020900000005 0.813

Figure 5. The 20 most difficult Sudoku puz-
zles [12] and the runtimes in seconds re-
quired for (unsuccessfully) attempting to
solve them using FLP. The puzzles are given
by concatenating the rows of cells containing
their hints, where a cell with no hint is repre-
sented by 0.

• All puzzles are solved using BFLP, HBR, and Grid
Analysis.

In our view, the most significant of these results is the sec-
ond. Lynce and Ouaknine [10] report that FLP solves all
puzzles listed by Royle [13], a fact that we verified with
SUDOKUSAT. However, FLP is not able to solve any of
new difficult puzzles. The runtime for attempting to solve
them varies between 0.28 and 1.59 seconds, with an aver-
age of 0.79, using a PC with a Pentium 4 processor running
at 3GHz using Windows Vista. Figure 5 shows the detailed
runtimes for the 20 most difficult puzzles.

For AI Escargot, we obtained the runtime results given
in Table 6. Note that the most efficient method for solving
AI Escargot appears to be DPLL, combined with the Grid
Analysis technique presented in Section 5.

The runtime results indicate that our implementation of
FLP in SUDOKUSAT provides an efficient and reliable test
for identifying the most difficult Sudoku puzzles, and that
DPLL together with Grid Analysis is a promising technique
for quickly checking that a candidate puzzle has a unique
solution.

5



Technique Runtime (s) Size of search tree
DPLL 0.13 50 nodes
DPLL + GA 0.076 20 nodes
BFLP 5.200 1 node (no search needed)
BFLP + GA 4.672 1 node (no search needed)
HBR 48.000 1 node (no search needed)

Figure 6. Runtimes for solving AI Escargot us-
ing SUDOKUSAT using successful techniques
(Pentium 4, 3GHz, Windows Vista). Neither
FLP nor FLP + GA are able to solve AI Escar-
got, and in both cases, 76% of the proposi-
tional variables remain.

8. Conclusions

We have argued in this paper that SAT solvers provide effec-
tive measures of the difficulty of Sudoku puzzles by demon-
strating that the recently discovered puzzle AI Escargot—
claimed to be the most difficult Sudoku puzzle in the
world—is the first known Sudoku puzzle that cannot be
solved by unit resolution combined with failed literal propa-
gation (FLP). We also show that 20 puzzles discovered after
AI Escargot cannot be solved using FLP, whereas the tech-
nique is able to solve all previously studied Sudoku puzzles.
These results lead us to suggest the following method for
generating difficult puzzles:

1. Generate a candidate puzzle p using known enumera-
tion techniques (e.g. [4]).

2. Test if p has a solution and satisfies the Uniqueness
Property. For this step, the runtime results obtained for
AI Escargot suggest a combination of DPLL with grid
analysis. If the test fails, go to 1.

3. Test if FLP solves p. If not, save p as a difficult puzzle.

4. Go to 1.

As a prototype implementation of Steps 2 and 3, we pre-
sented SUDOKUSAT, a Sudoku solver that allows a puzzle
designer to assess the difficulty of candidate Sudoku puz-
zles by applying different resolution techniques in the solv-
ing process. We hope that this tool, or an adaptation of it,
allows Sudoku enthusiasts to generate further difficult Su-
doku instances for the benefit of Sudoku puzzlers around
the world.

References

[1] AFP. Mathematician claims to have penned hardest Sudoku.
USA Today, Nov. 2006.

[2] M. Davis, G. Logemann, and D. Loveland. A machine pro-
gram for theorem proving. Communications of the Associa-
tion for Computing Machinery, 5(7):394–397, 1962.

[3] M. Davis and H. Putnam. A computing procedure for quan-
tification theory. Journal of the Association for Computing
Machinery, 7:201–215, July 1960.

[4] B. Felgenhauer and F. Jarvis. Enumerating possible Sudoku
grids. Online article, 2005. http://www.afjarvis.
staff.shef.ac.uk/sudoku/sudoku.pdf.

[5] B. Hanson. Sudoku Assistant/Solver. Online software writ-
ten in JavaScript, 2007. http://www.stolaf.edu/
people/hansonr/sudoku/.

[6] C. K. Holst. Sudoku—an excercise in constraint program-
ming in Visual Prolog 7. In 1st Visual Prolog Applications
and Language Conference, VIP-ALC 2006, Faro, Portugal,
Apr. 2006.

[7] A. Inkala. AI Escargot—The Most Difficult Sudoku Puzzle.
Lulu, Finland, 2007. ISBN 978-1-84753-451-4.

[8] N. Juillerat. Sudoku Explainer. Version 1.2, Dec. 2006.
http://diuf.unifr.ch/people/juillera/
Sudoku/Sudoku.html.

[9] D. E. Knuth. Dancing links. In J. Davies, B. Roscoe,
and J. Woodcock, editors, Millenial Perspectives in Com-
puter Science, pages 187–214. Palgrave, Houndmills, Bas-
ingstoke, Hampshire, 2000.

[10] I. Lynce and J. Ouaknine. Sudoku as a SAT problem.
In S. Zilberstein, editor, Proceedings of the 9th Interna-
tional Symposium on Artificial Intelligence and Mathemat-
ics, AIMATH 2006, Fort Lauderdale, Florida, USA, Jan.
2006.

[11] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient SAT solver. In Proceed-
ings of the 38th Design Automation Conference, Las Vegas,
USA, June 2001.

[12] ravel. The hardest sudokus. Sudoku Players’ Forums,
Jan 25, 2007. http://www.sudoku.com/forums/
viewtopic.php?t=4212&start=587.

[13] G. Royle. Minimum sudoku. Online article, 2007.
http://people.csse.uwa.edu.au/gordon/
sudokumin.php.

[14] H. Simonis. Sudoku as a constraint problem. In Proceedings
of the CP Workshop on Modeling and Reformulating Con-
straint Satisfaction Problems, pages 13–27, Sitges, Spain,
Oct. 2005.

[15] P. Torres and P. Lopez. Overview and possible extensions
of shaving techniques for job-shop problems. In 2nd Inter-
national Workshop on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization
Problems, CP-AI-OR 2000, pages 181–186, IC-PARC, UK,
Mar. 2000.

[16] T. Weber. A SAT-based Sudoku solver. In G. Sutclife
and A. Voronkov, editors, 12th International Conference on
Logic for Programming, Artificial Intelligence and Reason-
ing, LPAR 2005, pages 11–15, Montego Bay, Jamaica, Dec.
2005. Short Paper Proceedings.

[17] T. Yato. Complexity and completeness of finding another
solution and its application to puzzles. Master’s thesis,
Univ. of Tokyo, Dept. of Information Science, Faculty of
Science, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, JAPAN, Jan

6



2003. http://www-imai.is.s.u-tokyo.ac.jp/
∼yato/data2/MasterThesis.ps.

7


