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Abstract

Many real world problems have requirements and

constraints which conict with each other and are

not well de�ned. One framework for dealing with

such over-constrained/fuzzy problems is provided by

constraint hierarchies, where constraints are divided

into ranks, and where a comparator selects preferred

solutions over others. In this paper, we present

a framework for formulating hierarchical constraint

problems over �nite domains (HCPs). We show,

how the recent framework of over-constrained in-

teger programs (OIPs) can be extended to handle

non-linear constraints and to exploit constraint hi-

erarchies.

The motivation for this work arose from solving

large airport gate allocation problems. We show how

gate allocation problems can be formulated as HCPs

using typical gate allocation constraints. Using gate

allocation benchmarks with varying problem charac-

teristics, we compare local search on the given HCPs

with local search and integer programming on linear

reformulations of the HCPs.

1 Introduction

The goal in solving constraint satisfaction prob-

lems (CSPs) is to �nd a solution which satis�es all
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given constraints. Approaches to CSPs such as con-

straint programming have proven successful for a

wide range of problems. However, many real world

problems cannot be represented directly as CSPs,

because there may either be conicting constraints,

or there may be di�culties in de�ning the problem

constraints precisely. Problems with such features

are typically over-constrained, and hence by de�ni-

tion it is not possible to satisfy all given constraints.

There are two general approaches to dealing with

over-constrained problems. Constraint hierarchies

[2] (HCLP [10] exempli�es this approach) addresses

the over-constrainedness by resolving the conict

with preferences on the importance of constraints

and solutions. The other approach exempli�ed by

PCSP (Partial CSP) [4] is to relax the problem def-

inition so that it is consistent. Some even more gen-

eral approaches are semiring-based CSPs and valued

CSPs [1] which are beyond the scope of this paper.

These and other papers can be found in the collec-

tion in [6].

Since we were confronted with user-speci�ed con-

straint ranks in an project on gate allocation, we

focus on constraint hierarchies. Section 2 presents

the framework for constraint hierarchies that is

used throughout this paper. The size of the gate

allocation problems makes it impossible to reach

globally optimal solutions using integer optimiza-

tion (see Section 4 for a discussion). Thus we re-

sort to local search. The local search algorithm

WSAT(OIP) [7, 9] is a walk search algorithm de-

signed for solving over-constrained linear integer

programs and provides a good starting point for
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this work. In Section 3, we extend WSAT(OIP)

in two directions. Firstly, we allow arbitrary con-

straints as opposed to linear ones, and secondly, we

exploit the structure of constraint hierarchies during

the search. We propose several variants of the algo-

rithm to handle constraint hierarchies. Section 4

describes airport gate allocation and reports on ex-

periments on solving them with hierarchical local

search. We compare the performance of the local

search algorithm on two models for gate allocation:

a 0/1 model that uses only linear constraints and a

�nite domain model that uses symbolic constraints.

Furthermore, we evaluate the variants of the local

search algorithm on gate allocation data sets.

2 Constraint Hierarchies

In this section, we describe the framework of con-

straint hierarchies roughly following [2].

Let X be a set of variables. To each variable x 2

X belongs a set D

x

denoting the �nite set of values

that x can take. A k-ary constraint c over variables

x

1

; : : : ; x

k

is a relation over D

x

1

� � � � � D

x

k

. The

constraints are organized in a vector C

H

of the form

hC

0

; C

1

; : : : ; C

n

i, where for each i, 0 � i � n, C

i

is

a multiset constraints of rank i.

The constraints in C

0

denote required constraints

(or hard constraints), which must be satis�ed. The

constraints in C

1

; C

2

; :::; C

n

denote preferential con-

straints (or soft constraints), which must not nec-

essarily be all sati�ed and which range from the

strongest rank C

1

to the weakest rank C

n

.

A valuation � is a function that maps the vari-

ables in X to elements in the domain D. The

set of solutions S

0

= f�j8c 2 C

0

; c� holdsg con-

tains those valuations that satisfy the required con-

straints, i.e. for every constraint c over x

1

; : : : ; x

k

,

(x

1

�; : : : ; x

k

�) 2 c.

A partial ordering better over solutions describes

their quality and is called a comparator. The so-

lution set S

better

contains only those solutions that

are optimal respect to better:

S

better

= f� 2 S

0

j8� 2 S

0

: :better(�; �)g

There are many suitable choices for comparators

in a constraint hierarchy (see [2]). We found the fol-

lowing weighted-sum-better comparator most useful

in our application and thus concentrate on it in this

paper.

Weighted-sum-better uses an error function

e(c; �) which returns a non-negative real number in-

dicating the degree of violation of constraint c with

valuation �. We require that the error function e

has the property that e(c; �) = 0 i� c; � holds, and

e(c; �) > 0 otherwise. A simple error function re-

turns 0 when � satis�es c and 1 if not.

weighted-sum-better(�; �) � 9k: 1 � k � n such that

8i 2 f1 : : :k � 1g:

weighted-sum(�; C

i

) = weighted-sum(�;C

i

)

^ weighted-sum(�; C

k

) < weighted-sum(�;C

k

)

The function weighted-sum requires for each con-

straint c the de�nition of a weight w(c), a posi-

tive real number. Using weights for constraints, the

function weighted-sum combines the error values of

constraints in a given rank into a single number as

follows.

weighted-sum(�; C

i

) �

X

c2C

i

w(c)e(c�)

In summary, a constraint hierarchy is de�ned|

for the purpose of this paper|by the tuple

hX ; C

H

; e; wi. The goal is to �nd solutions

in S

weighted�sum�better

, where weighted-sum-better

uses the given error function e and weight function

w.

3 Hierarchical Local Search

Local search techniques such as randomized search,

simulated annealing, genetic algorithms, arti�cial

neural networks, etc. have shown to be quite e�ec-

tive in solving large combinatorial problems. We

extend WSAT(OIP) [7, 9], which has been shown

to be e�ective for a range of application areas, such

that it can handle arbitrary (not necessarily linear)

constraints and exploit constraint hierarchies during

search.
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3.1 The WalkSearch Algorithm

The WalkSearch algorithm is given in Figure 1 as

a generalization of WSAT(OIP) so that the form

of constraints is not speci�ed. The algorithm is

parameterized by Max moves, Max tries and vari-

ous probabilities. WalkSearch always works with

a full assignment for all the variables X . It be-

gins with an initial not necessarily feasible solu-

tion, for example a random assignment. The inner

loop starts a local search by selecting a constraint

c with select-unsatis�ed-constraint. The current

assignment is then perturbed using select-partial-

repair which changes the value of one variable in

c. Local search continues until Max moves or some

solution stopping criteria are met. To escape be-

ing stuck in local minima, the outer loop restarts

local search Max tries times. WalkSearch returns

the best solution found, and this is determined us-

ing improve(�; �

best

; C) which compares whether so-

lution � is better than the saved �

best

.

WalkSearch leaves unspeci�ed the three pro-

cedures improve, select-unsatis�ed-constraint and

select-partial-repair. WSAT(OIP) tailors these

procedures for over-constrained integer programs.

We use the global comparator weighted-sum-better

for improve. The function select-partial-repair is

adapted from [9]. Value changes of variables are se-

lected according to weighted-sum-better, subject to

history and tabu mechanisms and a noise factor.

For the performance of hierarchical local search,

it is crucial to exploit the constraint hierarchy for

constraint selection

3.2 Constraint Selection Schemes

We present four reasonable variations for select-

ing a violated constraint with select-unsatis�ed-

constraint(C

H

;X ; �) from the di�erent hierarchy

ranks. The di�erence between the various strategies

lies in the emphasis placed on di�erentiating con-

straints between ranks, and how greedy is the selec-

tion with respect to the hierarchy. These selection

schemes are evaluated experimentally in Section 4.

proc WalkSearch(C;X ;Max moves;Max tries)

for i := 1 to Max tries do

� := an initial assignment;

� best := �;

for j := 1 to Max moves do

if � meets solution stopping condition

then return �;

if � is feasible ^ improve(�; �

best

; C) then

�

best

:= �;

c := select-unsatis�ed-constraint(C;X ; �);

hx

k

; vi := select-partial-repair(C;X ; c; �);

� := �[x

k

! v];

end

end

return � best;

end

Figure 1: Basic WalkSearch algorithm

HardOrSoft Constraint Selection. If all hard

constraints are satis�ed, randomly select a vi-

olated soft constraint from C

1

; : : : ; C

n

. Oth-

erwise, choose a violated hard constraint from

C

0

with probability P

hard

, and with probabil-

ity 1�P

hard

a soft constraint from C

1

; : : : ; C

n

.

This selection scheme is similar to that used

in WSAT(OIP) [9]. HardOrSoft does not dis-

tinguish between soft constraints in di�erent

ranks.

TopOrRest Constraint Selection. This is simi-

lar to HardOrSoft, however instead of the choice

between hard and soft, the choice is between the

top most unsatis�ed constraint rank and the

rest of the ranks. Choose the smallest i such

that C

i

contains unsatis�ed constraints, call

this rank Top. The unsatis�ed constraints in

the remaining ranks C

i+1

; : : : ; C

n

are denoted

by Rest. If Rest is empty, choose a constraint

randomly from Top, otherwise with probability

P

Top

, choose a constraint randomly from Top

and with probability 1� P

Top

from Rest.

RankProb Constraint Selection. RankProb

chooses the violated constraint based on
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its rank. Each constraint rank C

i

, where

i 2 f0::ng, is associated with probability P

i

.

First, a rank i is selected with probability

P

i

. Then a violated constraints in rank C

i

is

randomly selected. If there is no violated con-

straint in C

i

, then randomly choose a violated

constraint in rank C

i+1

; :::; C

n

. If there are no

violated constraints in rank C

i+1

; :::; C

n

, then

randomly choose a violated constraint in rank

C

0

; :::; C

i�1

.

ConsProb Constraint Selection. Using

RankProb, a probability is associated with

each rank. In constrast to RankProb, the

probability of a constraint in a rank to be

selected by ConsProb is inuenced dynamically

by the number of unsatis�ed constraints at

each rank. Each constraint rank C

i

, where

i 2 f0::ng, is associated with probability P

i

.

The dynamic probability of selecting a rank C

i

is de�ned as

P

i

jC

i

j

violated

P

j2f0:::ng

P

j

jC

j

j

violated

where jC

i

j

violated

is the number of violated con-

straints in C

i

.

4 Airport Gate Allocation

The problem of allocating gates to arriving and de-

parting aircrafts is an integral aspect of airport oper-

ations and can have a decisive impact the quality of

service of an airport. Most work in Operations Re-

search (see [5] for further references) concentrated

on the minimization of passenger walking distance,

a particular aspect of quality of service. Yu Cheng

[3] addresses a more general problem using knowl-

edge representation techniques and simulation. Op-

timal gate allocation is a hard problem. Even with

rigorous simpli�cation of the problem, only unre-

alistically small problems can be solved optimally

with reasonable computational e�ort [5, 3], and thus

heuristic solutions such as local search are indispens-

able.

4.1 Gate Allocation Problems

In practice, gate allocation is subject to numerous

operational constraints. Naturally hard constraints

include, for example:

� No two aircraft can be allocated to the same

gate simultaneously.

� Particular gates can be restricted to admit only

certain aircraft types.

� An aircraft leaving a gate (\push-back") will

restrict other operations in close temporal or

spatial vicinity.

Typical soft constraints include:

� Airlines and ground handlers prefer to use par-

ticular gates or terminals.

� Passengers prefer to walk short distances to

reach the exit or their connecting gate.

� Passengers prefer gates connected to terminal

buildings rather than remotely located gates.

The users �nd it hard to quantify the cost of vi-

olations of soft constraints. They prefer instead to

state that some soft constraints are absolutely more

important compared to the others. Hence, the use of

constraint hierarchies to group the constraints into

ranks of importance is a natural way express the

quality of solutions. In collaboration with the Civil

Aviation Authority of Singapore, we identi�ed 25

classes of constraints, which we organized in a con-

straint hierarchy with four ranks, according to their

relative importance as judged by the users. The

highest rank is reserved for hard constraints.

4.2 Models

Let us assume a gate allocation problem with m

aircrafts and n gates.

� In a 0/1 model, m � n 0/1 variables Y

ij

are in-

troduced where 1 � i � m and 1 � j � n,

which express whether aircraft i uses gate j.

4



� In a �nite domain model, for each aircraft i, a

variableX

i

ranging from 1 tom indicates which

gate aircraft i uses.

In the 0/1 model, all 25 constraint classes can

be expressed as linear inequality constraints. Thus

integer programming and a hierarchical extension of

WSAT(OIP) can be used for solving this model. For

example, the constraint that no two aircraft can be

allocated to the same gate can be expressed by one

constraint for each gate j and aircrafts i and k with

overlapping ground time of the form Y

ij

+ Y

kj

� 1.

For the �nite domain model, it was necessary to

introduce three new symbolic constraints besides the

usual linear constraints in order to express the 25

constraint classes in this model. The �rst symbolic

constraint expresses that all variables among a given

set are assigned to di�erent integers. This constraint

allows a natural encoding of the non-overlap require-

ment for aircraft. For each maximal set of aircraft

S whose ground time overlaps, we introduce a con-

straint alldi� S.

The second symbolic constraint is used for concise

encoding of unary constraints. This constraint maps

the possible values that a variable can take to an in-

teger value that reects a degree of violation. For

example, airline preferences for particular gates can

be encoded using this constraint by giving low inte-

ger values for preferred gates. The third symbolic

constraint extends this concept to the binary case

and is used for minimization of passenger walking

distance.

4.3 Benchmark Data

We focus on the following goals for this experimental

study.

� evaluate hierarchical local search for realistic

gate allocation problems,

� compare the performance of the two models,

and

� compare the performance of the clause selection

schemes.

In order to gauge the peformance of the di�erent

algorithms for gate allocation, we use a historic data

set of 24 hours from Changi Airport, containing 257

ights and using 104 gates.

Problems P2 P5 P12

# Flights 20 50 257

# Gates 20 50 104

Model FD 0/1 FD 0/1 FD 0/1

# Variables 20 137 30 380 257 12956

jC

0

j 95 233 140 702 953 25926

jC

1

j 17 17 24 24 217 217

jC

2

j 40 27 69 169 2057 65523

jC

3

j 19 19 27 27 303 45576

Table 1: Speci�cations of the Selected Data Sets

We study the performance of the variants of local

search using the full 24 hour data (P12) and smaller

benchmark sets generated from the test data (P1

to P11). Table 1 indicates the size of three of the

twelve benchmark problems in terms of the number

of variables and the number of constraints in each

hierarchy. The numbers of variables and constraints

indicate that the �nite domain (FD) model is a more

compact representation than the 0/1 model.

The smaller benchmarks (P1 - P4) are included

because optimal solutions for them are known. This

allows a more precise method of comparison of the

di�erent heuristics (see next section).

4.4 Setup of Experiments

The performance of the local search algorithm de-

pends on the noise level and on the selection prob-

abilities of constraint selection schemes. The best

setting of these parameters depends on the chosen

model, selection scheme and benchmark data. In

order to gauge the performance of the models and

selection schemes, we tried di�erent parameter set-

tings for each benchmark data.

For all combinations of problem model, problem

set and constraint selection scheme, we tried 6 dif-

ferent noise levels (0.0, 0.1, : : :, 0.5). In most of our

5



benchmarks, a lower noise level (about 0.1) works

best for for the 0/1 model, whereas a higher noise

level (about 0.4) works best for the FD model.

For the constraint selection schemes ConsProb

and RankProb, we tried �ve probability distribu-

tions. As expected, probability distributions that

emphasize the higher ranks work best. In our

benchmarks, we found that the probability ratio of

1000:100:10:1 works �ne for most of the test cases.

However, sometimes inversions of probability ratios

such as 8:0.5:0.5:1 perform better.

In all �gures given in the next section, the best

noise level and probability distribution for each

model, problem set and constraint selection scheme

was used, in order to ensure a fair comparison.

For the smaller problems (P1 through P4) we used

the 0/1 model for �nding optimal solutions using in-

teger programming with CPLEX. This allowed us to

use a more accurate comparison technique of mod-

els and selection schemes (see next section). The

conversion from the 0/1 model to an integer pro-

gram with linear optimization function is adapted

from [8]. Hierarchies are expressed by multiplying

each error value with a factor computed using the

weight of the constraint, its rank and the number of

constraints in the rank.

The given runtimes were achieved on a Sun Ultra

30 workstation.

4.5 Experimental Results

The �rst observation is that integer programming

using the tool CPLEX on the 0/1 model allows to

solve only problem cases of about 25 ights How-

ever, the optimal solution found by integer program-

ming allows us to judge the performance of di�erent

variants and models of local search on the smaller

benchmark problems.

For the full 24 hour problem, local search is

able to �nd good solutions within 6 minutes cpu

time using either one of the given models. Here

\good" solutions means solutions that signi�cantly

improve over the (also computer-generated) sched-

ules currently used by the airport, with respect to

weighted-sum-better using a user-de�ned constraint

Figure 2: Performance of Finite Domain vs 0/1

Model using Best Constraint Selection Scheme

Figure 3: Performance of Di�erent Constraint Se-

lection Scheme on FD Model
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Figure 4: Performance of Di�erent Constraint Se-

lection Scheme on FD Model for bigger test cases

hierarchy.

For the smaller problems (P1 through P4), we can

use a comparison technique that relies on known

optimal solutions (obtained using integer program-

ming, see previous section). In this comparison tech-

nique, we count how often a run of local search

encounters an optimal solution. The optimality of

the solutions to problems P1 to P4 is shown using

CPLEX.

The �rst set of experiments is directed to eval-

uating the relative performance of the 0/1 model

vs the �nite domain model. The vertical axis of

Figure 3 shows the number of times the optimal so-

lution is found (for P5 and P6, optimality is not

proven, but conjectured) among 20 tries with di�er-

ent random seeds, using the best constraint selec-

tion scheme (which was always ConsProb) for the

0/1 model and the �nite domain model. Di�erent

models and selection schemes require di�erent times

per move. Therefore, we allocated a �xed cpu time

to each try. This time is proportional to the num-

ber of ights in the benchmark), ranging from 24

seconds to 6 minutes. This timing corresponds to

about 10000 moves in the 0/1 model and 3000 moves

in the �nite domain model.

Figure 2 shows that the �nite domain model per-

forms better for all of the smaller benchmarks. The

more concise representation of the problem seems to

allow to explore more fruitful local neighbourhoods.

Our experiments show that this continues to be the

case for the large benchmark problems.

We use the same technique to judge the perfor-

mance of the proposed constraint selection schemes.

Figure 3 shows that as the problem size and dif-

�culty increases, the ConsProb scheme is superior

to the other schemes. Figure 4 gives a comparison

of the performance of di�erent constraint selection

scheme over the bigger problems. Due to the prob-

lem size, an optimal solution cannot be found using

integer programming. Hence for every problem, we

can only rank the constraint selection schemes rela-

tive to each other according to their performance.

The �gure shows that ConsProb is still the best

scheme, when the problem size increases.

In all described benchmarks, the optimization as-

pect dominated over the satisfaction of hard con-

straints; it was almost always easy to �nd feasible

solutions and most computation time was spent on

optimizing the ful�llment of soft constraints.

4.6 Summary

Our experiments indicate that hierarchical local

search is a promising technique for solving large gate

allocation problems. Local search on the �nite do-

main model is superior to local search on the 0/1

model. The constraint selection scheme ConsProb

is superior to the proposed alternatives.
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