Components for State Restoration
in Tree Search

Chiu Wo Choi!, Martin Henz!', Ka Boon Ng?2

1 School of Computing, National University Of Singapore, Singapore
{choichiu,henz}@comp.nus.edu.sg
? Honeywell Singapore Laboratory
kevin.ng@honeywell.com

Abstract. Constraint programming systems provide software architec-
tures for the fruitful interaction of algorithms for constraint propagation,
branching and exploration of search trees. Search requires the ability
to restore the state of a constraint store. Today’s systems use different
state restoration policies. Upward restoration undoes changes using a
trail, and downward restoration (recomputation) reinstalls information
along a downward path in the search tree. In this paper, we present an
architecture that isolates the state restoration policy as an orthogonal
software component. Applications of the architecture include three nov-
el state restoration policies, called lazy copying, coarse-grained trailing,
and batch recomputation, a detailed comparison of these and existing
restoration policies with “everything else being equal”, and a novel class
of engines that uses different restoration policies in different parts of the
search tree. The architecture allows the user to optimize time and space
consumption of applications by choosing existing or designing new state
restoration policies in response to application-specific characteristics.

1 Introduction

Finite domain constraint programming (CP(FD)) systems are software systems
designed for solving combinatorial search problems using tree search. The history
of constraint programming systems shows an increasing emphasis on software
design, reflecting user requirements for flexibility in performance debugging, and
application-specific customization of the algorithms involved.

A search tree is generated by branching algorithms, which at each node pro-
vide different choices that add new constraints to strengthen the store in each
child. Propagation algorithms strengthen the store according to the operational
semantics of constraints in the store, and exploration algorithms decide on the
order in which search trees are explored.

Logic programming proved to be successful in providing elegant means of
defining branching algorithms, reusing the built-in notion of choice points. Con-
straint programming systems like SICStus Prolog [Int00] and GNU Prolog [DCO00]
provide libraries for propagation algorithms and allow the programming of explo-
ration algorithms on top of the built-in depth-first search (DFS) by using meta

programming. To achieve a more modular architecture, recent systems moved
away from the logic programming paradigm. The ILOG Solver library for con-
straint programming [ILO00] allows us to implement propagation algorithms in
C++ and exploration algorithms by using an object that encapsulates the state
of search. The language Claire [CJL99] allows for programming exploration al-
gorithms using built-in primitives for state manipulation, and the language Oz
provides a built-in data structure called space [Sch97b,Sch00] for implementing
exploration algorithms.

At every node in the search tree, the state of variables and constraints is the
result of constraint propagation of the constraints that were added along the path
from the root to the node. During search, the nodes are visited in the order given
by the exploration algorithm. In this paper, we address the question on how the
state corresponding to a node is obtained or restored. Different systems currently
provide different ways of restoring the state corresponding to the target node. All
systems/languages except Oz are based on a state restoration policy (SRP) that
records changes on the state in a data structure called trail. The trail is employed
to restore the state to an ancestor node of the target. Schulte [Sch97b,Sch00]
presents a few alternatives based on copying and recomputation of states and
evaluates its competitiveness conceptually and experimentally in [Sch99]. The
best state restoration policy for a given application depends on the amount of
propagation (state change), the exploration and the branching. The goal of this
work is to identify software techniques that enable the employment of different
SRPs in the same system without compromising the orthogonal development of
other components such as propagation, branching and exploration. The archi-
tecture allows the user to optimize time and space consumption of applications
by choosing existing or designing new SRPs in response to application-specific
characteristics. We introduce three novel SRP, namely lazy copying, batch re-
computation and coarse-grained trailing, and show that for many applications,
the first two considerably improve the time and/or space efficiency over existing
SRPs. State restoration is an important aspect of tree search that deserves the
attention of users and constraint programming systems designers.

We outline in Section 2 a software architecture for constraint programming
systems that will form the base for further discussion. The components are de-
signed and implemented in C++ on the base of the Figaro library for constraint
programming [HMN99,CHNOO,Ng01]. In Section 3, we describe the two SRPs
currently in use, namely trailing and recomputation. At the end of Section 3, we
give an overview of the rest of the paper.

2 A Component Design for Search

In CP(FD), the constraint store represents a computational state, hosting finite-
domain (FD) variables and constraints. A variable has a domain, which is the
set of possible values it can take. A constraint maintains a relation among a
set of variables by eliminating values, which are in conflict with the constraint,
from variable domains according to the propagation algorithm. Every time a

Fig. 1 Depth-First Tree Search
Exploration

Nodes

\/ m Branches

change is made to a constraint store, a propagation engine performs constraint
propagation until it reaches a fix point, in which no constraint can eliminate
any more values. In our framework, we represent a constraint store by a data
structure called store [Ng01].

Usually, constraint propagation alone is insufficient to solve a problem. There-
fore, we need tree search to find a solution. A search explores the tree in a top-
down fashion. Nodes and branches build up the search tree. It is adequate to
view search in terms of these components: branching, node and exploration. Fig-
ure 1 provides an illustration of tree search. Circles represent nodes, while lines
connecting two nodes represent branches. The numbers inside the nodes give the
order of exploration. This particular example shows a DFS. For simplicity, we
only consider binary search trees.

Program 1 Declaration of Branching

1 class Branching {

2 public:

3 bool done() const;

4 bool fail() comnst;

5 Branching* choose(storex s,int i) const;
6

};

The branching describes the shape of the search tree. Common branching al-
gorithms include a simple labelling procedure (naive enumeration of variables),
variable ordering (such as first-fail), and domain splitting. For solving scheduling
problems, there is the ranking of tasks on resource (also called resource serializa-
tion). In our setting, branching coincides with the notion of a choice point. The
class Branching shown in Program 1 has a method choose (line 5, for concise-
ness, we refer to C++4 member functions as methods) which adds a constraint
to the store based on the choice given and returns the branching (choice point)
of the child node. Branching also defines methods to check whether it is done
(line 3) or it has failed (line 4).

A node represents a state in the search tree. The class Node shown in Pro-
gram 2 contains a store, a branching, and pointers to parent and children nodes
(line 3-4). The constructor (line 7) takes a store and a branching as argu-
ments. The left and right children nodes are created by calling the method
make_left_child and make right_child respectively (line 10-11). Each time a
child node is created, the branching adds a constraint to the store. To proceed to

Program 2 Declaration of Node

class Node {
protected:

1
2
3 store* cs;

4 Branching* branch;

5 Node* parent,left_child,right_child;
6 public:

7 Node (store* s,Branching#* b);

8 bool isLeaf() const;

9 bool isFail() comnst;

10 Node* make_left_child();

11 Node* make_right_child();

12 };

the next level of the search tree, constraint propagation must reach a fix point.
Node also has methods to check if the node is a leaf node (line 8) or a failure
node (line 9).

Figure 2 gives a graphical representation of nodes and branchings. The left
side shows the design of nodes. A tree is linked bi-directionally, where the par-
ent points to the children and vice versa. The right side shows the relation
between nodes and branchings during the creation of children nodes. Solid ar-
rows represent pointers, while labelled, dashed arrows represent the respective
method calls. Calling either make_left_child or make right_child method cre-
ates a child node, which, in turn, invokes the method choose of the current node
branching that returns a branching for the child node.

The exploration specifies the traversal order of the search tree. DFS is the
most common exploration algorithm used in tree search for constraint program-
ming . Program 3 shows the implementation of DFS. Function DFS takes a node
as an argument and tries to find the first solution using depth-first strategy. It
returns the node containing the solution (line 2) or NULL if none is found (line
3). Otherwise, it recursively finds the solution on the left (line 4-5) and right
(line 6) subtrees.

3 Restoration Policies

The problem of state restoration occurs in systems where a state results from a
sequence of complex operations, and where the state corresponding to different

Fig. 2 Tree Node and Relation with Branching

. N
N pery mice |2 ke chaose(0) enoose(1)
left_ 7 right_ D N
Node child., ~child
Z A ‘branching“branching‘

i Hr
left child right child

Program 3 Exploration: Depth First Search

1 Node* DFS(Node* node) {

2 if (node->isLeaf()) return node;

3 if (node->isFail()) return NULL;

4 Node* result = DFS(node->make_left_child());
5

6

7

if (result != NULL) return result;
return DFS(node->make_right_child());
};

(sub)sequences are requested over time. For example, in distributed systems,
state restoration is used to recover from failure in a network node [NX95].

In constraint-based tree search, the dominant SRP has been trailing. This
policy demands to record the changes done on the state in a data structure,
called trail. To go from a node to its parent, the recorded changes are undone.
The reason for this dominance lies in the historical fact that constraint program-
ming evolved from logic programming, and trailing is employed in all logic pro-
gramming systems for state restoration. The combination of the general idea of
trailing with constraint-programming specific modifications [AB90], was deemed
sufficient for constraint programming.

Schulte [Sch00] shows that other SRPs have appealing advantages. Starting
from the idea of copying an entire constraint store, he introduced several SRPs
that trade space for time by recomputing the store from a copy made in an
ancestor node instead of making a copy at every node [Sch99]. These SRPs
have the advantage of not requiring the recording of changes in propagation
algorithms, thereby considerably simplifying the design of CP(FD) systems.

In the design presented in Section 2, the place where the SRP is determined
is the definition of the methods make left_child and make right _child in the
class Node. These methods need to create a new node together with its store and
branching from the information present in the current node. This indicates that
we may be able to arrive at different SRPs by providing different implementations
of the Node class, without affecting other components such as branching and
exploration. The next section shows that it is indeed possible.

By isolating the SRP in a separate component that is orthogonal to the
other components, the development of new SRPs may be simplified, which may
inspire the development of new SRPs. Indeed, we will present three new SRPs in
Sections 5, 6, and 7. By having existing and new SRPs available in one system,
we are able to conduct an experimental evaluation of them with “everything else
being equal”; we report the results of this evaluation in Section 8. In that section,
we also highlight the possibility of dynamically changing the SRP depending on
the progress of the search, using a special-case example.

4 Restoration Components

The previous section showed that the Node class is the component that decides
the SRP. The aim, therefore, is to design different types of nodes for different
SRPs, namely, CopyingNode for copying and RecomputationNode for recompu-

tation. All these nodes inherit from the base class Node. Hence, we specify the
restoration component of search by passing the correct node type as an argu-
ment.

The idea for CopyingNode and RecomputationNode is presented in [Sch97a]
and it allows the Oz Explorer to have copying and recomputation as SRP for
DFS exploration. We separate the SRP aspect of nodes from the exploration
aspect by implementing SRP-specific extensions of the Node base class.

The Node base class is similar to the one introduced in Program 2 except that
it does not contain a store anymore (i. e. , remove line 3). Rather, the decision
on whether to keep a store and on the type of store to keep is to be implemented
in the subclasses.

The copying SRP requires each node of the search tree to keep a copy of the
store. Hence, the class CopyingNode contains an additional attribute to keep the
copy. As the store provides a method clone for creating a copy of itself, when a
CopyingNode explores and creates a child node, it keeps a copy of the store and
passes the other copy to the child node.

The recomputation SRP keeps stores for only some nodes, and recomputes
the stores of other nodes from their ancestors. A parameter, maximum recom-
putation distance (MRD) of n, means that a copy of a store is kept at every
n-th level of the tree. Figure 3 shows the difference between copying and recom-
putation with MRD of 2. Copies of the stores are kept only in shaded nodes.
Copying can be viewed as recomputation with MRD of 1.

For RecomputationNode, we introduce four attributes: (1) a pointer to store;
(2) an integer counter d to check if we have reached the n-th level of the tree;
(3) an integer choice, which indicates if the node is the first or the second child
of its parent.; (4) and a boolean flag copy to indicate the presence of a copy of a
store. If d reaches the n-th level limit when creating a child node, a copy of the
store is kept and copy is set to true. During the exploration of a node where
recomputation of the store is needed (i. e. , no copy of store is kept), the method
recompute shown in Program 4 recursively recomputes for the store from the
ancestors, by committing each parent’s store to the alternative given by choice
(line 7).

Adaptive recomputation [Sch99] improves recomputation performance by
keeping only a copy of the store at a depth equidistant from the depth of an
existing copy (or root, if none exists) and the depth of the last-encountered fail-
ure. It is straightforward to implement this by introducing another argument to
the method recompute which counts the length of the recomputation path. The
additional copy of the store is made when the counter reaches half the length.

Fig. 3 Copying vs. Recomputation

Snln e

Copying Recomputation

Program 4 Recomputing Stores in Search Tree

Storex RecomputationNode: :recompute(int i) {
Store* rs;
if (copy)

rs = cs->clone();

1

2

3

4

5 else
6 rs = parent->recompute(choice);
7 branch->choose(rs,i);

8 return rs;

9

};

During exploration, it is often clear that the store of a node is not needed
any longer and can be safely passed to a child. For example in the case of DFS,
we passed the store to the second child when the first child’s subtree is fully
explored. For such cases, nodes provide methods create_last_right_child and
create_last_left_child. When a copy-holding node NN is asked for its last child
node A, the node N will pass its store to the child node A, which then becomes a
copy-holding node. This optimization—described in [Sch00] as Last Alternative
Optimization—saves space. It optimizes to do the recomputation step N — A
only once.

Best solution search (for solving optimization problem) such as branch-and-
bound requires dynamic addition of constraint during search to constrain the
next solution to be better than the current best solution. The Node class has a
method

State post_constraint(BinaryFunction* BF,storex* s);

to add this constraint to the store inside a node. This addition is similar to
the injection of an computation in an Oz space [Sch97b]. The method takes in
a binary function to enforce the order, and the best solution store. It returns
FAIL if enforcing the order causes failure. However, care should be taken during
recomputation, where every node in the tree may not contain a copy of the store.
For that, we need to introduce extra attributes to keep the constraints, which
will be added as recomputation is performed.

5 Lazy Copying

Lazy copying is essentially a copy-on-write technique, which maintains multi-
ple references to an object. A copy is made only when we write to the object.
Some operating systems use this technique for managing processes sharing the
same virtual memory [MBKQ96]. In ACE [PGH95], a parallel implementation
of Prolog, an incremental copying strategy reduces the amount of information
transferred during its share operation. In Or-parallelism, sharing is used to pass
work from one or-agent to another, and is similar to the lazy copying strategy.

In other CP(FD) systems, constraints have direct references (pointers) to
the variables they use and/or vice versa. In such systems, lazy copying poses the
problem that every time an object (say O) is written to become N, every object

Fig. 4 Comparison between Copying and Lazy Copying
Copying scheme Lazy Copying scheme
vector of variables pointer to object

that is pointing to O would need to be copied, too, such that each new copy
points to NV while the old copy continues to point to O. This process needs to be
executed recursively, until copies would have been made for the entire connected
sub-graph of the constraints and the variables. This problem is avoided through
relative addressing [Ng01], where every reference to an object is an address,
called ID, in a vector of placeholders.

In our context, constraint and variable objects enjoy relative addressing.
We introduce lazy copying stores, which may share individual variable and con-
straint objects. When we make a copy of the store, the vectors of constraints and
variables point to the original objects. Figure 4 shows the differences between
copying and lazy copying.

A requirement for lazy copying is that we must keep a reference count to the
objects. After we lazily copy a store, the constraints’ and variables’ reference
counts increment by 1. During a write operation, if two or more stores share this
object, we create a copy of the object, assign a reference count of 1 to the new
object and decrement the reference count by 1 for the old object.

Conceptually, a lazy copying store behaves like a copying store except for
its internal implementation, which consists of reference counts. The implemen-
tation of LazyCopyNode is straightforward. It is just the same as CopyingNode
by replacing store with a lazy copying store described above.

6 Coarse-grained Trailing

Coarse-grained trailing is an approximation of trailing as implemented in most
CP(FD) systems. Instead of trailing updates of memory locations, we trail the
complete variable object or constraint object when changes occur. As mentioned
in section 5, our architecture provides a relative addressing scheme and allows to
make copies of variables and constraints, which make the implementation simple.

Coarse-grained trailing only keeps a single store for the entire exploration.
Figure 5 shows its implementation. A half-shaded node represents a trailing
node and arrows represent pointers. A trailing node holds a pointer to a common
shared trail. The shared trail contains a trailing store and a pointer to the current
node where the store is defined. A trailing store is needed because of the strong
dependency between the store and the actual trail.

Fig. 5 Coarse-grained Trailing

shared trail
trailing store

nee
Ganaiy

current
node
d =1 |12l
Program 5 Shared Trail and Trailing Node
0 class TrailingNode : public Node {
1 protected:
2 int i,mark; SharedTrail* trail;
3 public: // methods declarationm...
4 }
5
6 class SharedTrail {
7 private:
8 TrailingStore* ts; TrailingNode* current;
9 public:
10 SharedTrail (Store* s,TrailingNode* tn);
11 list<TrailingNode*> computePath(TrailingNode* tn);
12 void jump(TrailingNode* tn);
13 };

Program 5 shows the declaration of the trailing node and shared trail. The
class TrailingNode implements the coarse-grained trailing SRP. It contains an
integer mark, which represents the trail marker for terminating backtracking
(line 2). This corresponds to the time stamping technique [AB90]. The integer
i (line 2) indicates whether the node is the first or second child of its parent.
The constructor of the class SharedTrail takes a store and a pointer to the root
node as argument (line 10). When exploring a node D, which is not pointed to
by the current node, the method jump (line 12) changes the trailing store from
the current node to the node D. First, jump computes the path leading to the
common ancestor with method computePath (line 11), then backtracks to the
common ancestor, and finally descends to node D by recomputation.

The implementations of trailing and lazy copying store are closely related,
since both create a copy of the changed object before a state modification occurs.
Comparing to trailing, the coarse granularity imposes an overhead, which will be
significant as constraints become complex (global constraints). If the constraints
contain large stateful data structures, trailing may record incremental changes
as opposed to copying the whole data structure on the trail as it is done by
coarse-grained trailing.

7 Batch Recomputation

Recomputation performs a sequence of constraint additions and fix point com-
putations. At earlier fix point computations, the implicit knowledge of later
constraints is not exploited. This means that work is done unnecessarily, since re-
computation will never encounter failure. Thus, recomputation can be improved
by accumulating the constraints to be added along the path and invoke the
propagation engine for computing the fix point only once. Since recomputation
constraints are added all at once, we call this technique batch recomputation.
Batch recomputation is also applicable to adaptive recomputation, which we call
batch adaptive recomputation.

The implementation is straightforward. First, branching should provide a
facility to return the constraint that is to be added during recomputation. A
facility is needed to accumulate the constraints to the propagation engine. Our
propagation queue already served this purpose. Lastly, we invoke the propaga-
tion of store explicitly and only once. A condition for the correctness of batch
recomputation is the monotonicity of constraints, meaning that different orders
of constraint propagation must result in the same fix point.

8 Experiments

This section compares and analyses the runtime and memory requirement of
the different SRPs. The setup of the platform is a PC with 400 Mhz Pentium
IT processor, 256MB main memory and 512MB swap memory, running Linux
(RedHat 6.0 Kernel 2.2.17-14). All experiments are conducted using the current
development version of the Figaro system [HMN99,CHN00,Ng01], a C++ library
for constraint programming.

Each SRP is denoted with the following symbols: CP - Copying, TR, - Coarse-
grained Trailing, LC - Lazy copying, RE - Recomputation, AR - Adaptive recom-
putation, BR - Batch Recomputation, BAR - Batch Adaptive Recomputation.
To make comparison simple, the MRD for RE, AR, BR and BAR is comput-
ed using the formula: M RD = [depth +~ 5] where depth is depth of the search
tree. All benchmark timings (Time) are the average of 5 runs measured in sec-
onds, and have been taken as wall time. The coeflicient of variation is less than
5%. Memory requirements are measured in terms of maximum memory usage
(Max) in kilobytes (KB). It refers to the memory used by the C++ runtime
system rather than the actual memory usage because C++ allocates memory in
chunks.

The set of benchmark problems are: The Alpha crypto-arithmetic puzzle,
the Knights tour problem on an 18 x 18 chess board, the Magic Square puzzle
of size 6, a round robin tournament scheduling problem with 7 teams and a
resource constraint that requires fair distribution over courts (Larry), aligning
for a Photo, a Hamiltonian path problem with 20 nodes, the ABZ6 Job shop
scheduling benchmark, the Bridge scheduling benchmark with side constraints,
and 100-S-Queens puzzle that uses three distinct (with offset) constraints.

Table 1 Characteristics of Example Programs

example search |choice| fail [soln|depth|var |constr
Alpha all/naive | 7435 | 7435| 1 50 26 21
Knights one/naive| 266 12 1 265 (7500 11205
Magic Square| one/split | 46879 |46829| 1 72 | 37 15
Larry one/naive| 389 | 371 | 1 40 |678| 1183
Photo best/naive| 23911 |23906| 6 34 95 53
Hamilton one/naive| 7150 | 7145 | 1 66 |288| 195
ABZ6 best/rank| 2409 |[2395| 15 | 91 |102| 120
Bridge best/rank | 1268 |1261| 8 78 | 44 | 88
100-S-Queen | one/ff 115 22 1 97 100 3

Table 1 lists the characteristics of the problems. These benchmarks provide
the evaluation of the different SRPs based on the following criteria: problem
size, amount of propagation, search tree depth, and number of failures. Our
comparison of the different SRPs are based on “everything else being equal”,
meaning all other elements such as store, branching, exploration, etc. are kept
unchange except the SRP.

Since different components of a CP(FD) system is dependent on one anoth-
er, the performance may vary. For instance, the choice of FD representation has
a significant effect on the performance. For these experiments, the FD repre-
sentation is a lists of interval. Some problems may perform differently when a
bit vector representation is used. Another remark is that the speed of copying
between our system and Mozart is different for the following reasons: differ-
ent FD representations, amount of data being copied, variable wake up scheme
during propagation, and memory management (Mozart uses automatic garbage
collection). Therefore, the result does not match exactly with Schulte [Sch99].

Table 2 gives the runtime and memory performance of copying. While Fig-
ure 6 shows the comparison of coarse-grained trailing and recomputation. The
numbers are obtained by dividing each SRP’s numbers by copying’s numbers,
below 1 means better performance, while above 1 means worse. This group of
comparison confirms the following result of Schulte [Sch99]. Copying suffers from
the problem of memory swapping for large problems with deep search trees such
as Knights. Recomputation improves copying by trading space for time. Adap-
tive recomputation minimize the penalty in runtime of recomputation by using
more space.

Coarse-grained trailing performs comparatively well to copying and other
recomputation schemes. The memory peaks in Photo is probably due to STL
library dynamic array memory allocation module which grows the array size by

Table 2 Runtime and Memory Performance of Copying

Example Time| Max| Example Time|Max
Alpha 19.200| 1956 | Hamilton 50.514| 2176
Knights 22.086|330352||ABZ6 25.004| 4936
Magic Square|160.360| 2632||Bridge(10x) 8.582| 2888
Larry 5.844| 5712|[100-S-Queen(10x)| 8.444| 7816
Photo 35.086| 1912

Fig. 6 Time and Memory of Coarse-grained Trailing vs. Recomputation

Timeof TR, RE, AR vs. CP Memory of TR, RE, AR vsCP

TR/CP mmmm RE/CP mm=m AR/CP 3
512 274

TR/CP mmmm RE/CP mm=m AR/CP =3

recursive doubling. Coarse-grained trailing provides us with an approximation
for comparing the performance of trailing and recomputation.

Lazy copying aims at combining the advantages of both coarse-grained trail-
ing and copying. Figure 7 shows its performance against both SRPs, the numbers
are obtained by dividing lazy copying’s numbers by copying’s and coarse-grained
trailing’s numbers. Over the benchmark problems, in the worst case, lazy copying
performs the same as copying, while for the cases with small amount of propaga-
tion, lazy copying can save memory and even time. Unfortunately, lazy copying
still performs badly for large problems with deep search trees such as Knights,
when compared to coarse-grained trailing. This is due to the extra accounting
data we keep for lazy copying. However, lazy copying improves the runtime over
coarse-grained trailing for problems like Magic Square, Larry and Bridge where
there are many failure nodes. This is because lazy copying can jump directly
from one node to another upon backtracking, while coarse-grained trailing has
to carry out the extra operation of undoing the changes.

Batch recomputation aims at improving the runtime performance of recom-
putation. The memory requirement is the same as recomputation. Figure 8
shows the runtime performance of batch recomputation versus recomputation
and batch adaptive recomputation versus adaptive recomputation. Batch recom-
putation improves the runtime of recomputation for all cases. However, batch
adaptive recomputation improve only a little over adaptive recomputation ex-

Fig. 7 Performance of Lazy Copying vs. Copying and Coarse-grained Trailing

Lazy Copying vs. Copying Lazy Copying vs. Coarse-grained Trailing
Timemmmm Max == 4.39 Time . Max mmmm

cept for Larry. This is due to the design of adaptive recomputation which makes
a copy in the middle when a failure is encountered, which in turn, reduces the
recomputation distance that batch recomputation can take advantage of.

By encapsulating SRP into tree nodes, we are able to come up with a new
scheme called switching in which we could apply different SRPs in different
parts of the search tree. This scheme is useful when different parts of the search
tree exhibit distinct characteristics. One special-case example is the problem of
finding the first solution for the 510-S-Queen problem. The search tree of this
problem have a straight path from the root node to a node of depth 499 where
there is a small subtree with some failure nodes and the solution. Therefore,
we can have recomputation before depth 499, and coarse-grained trailing after
depth 499. The implementation is straightforward, when the exploration reaches
depth 499, we will create a coarse-grained trailing node instead of recomputation,
because the SRP of a subtree is dictated by its root node. Figure 9 shows the
runtime and memory improvement over other SRPs. Its is better than all other
SRPs for this problem.

Comparison with other constraint programming systems are needed in order
to gauge the effect of the component architecture and the overhead for relative
addressing. Initial results are reported in [Ng01].

9 Conclusion

We developed an architecture that allows us to isolate the state restoration policy
(SRP) from other components of the system. Its main features are:

Relative addressing: Variable and constraint objects are referred to by IDs,
which are mapped to actual pointers through store-specific vectors.

Branching objects: Search trees are defined by branching objects, which are
recursive choice points.

Exploration algorithms: Exploration algorithms are defined in terms of a
small number of operations on nodes.

SRPs are represented by different extensions of the base class Node. Apart from
copying, recomputation, we introduced three new SRPs.

Fig. 8 Time of Batch Recomputation vs. Recomputation

BR vsRE and BAR vs AR
BR/RE mmmm BAR/AR mmm

Fig.9 Time and Memory of Switching vs. other SRPs

ratio Time s Max ===

CP TR LC RE AR BR BAR

Lazy copying uses a copy-on-write technique for variables and constraints and
improves over or is equally good as copying on all benchmarks. Lazy copying
benefits from relative addressing.

Coarse-grained trailing is a form of trailing that copies the state of variables
and constraints, as opposed to incremental changes, onto the trail.

Batch recomputation modifies recomputation by installing all constraints to
be added to the ancestor at once and improves over Schulte’s recomputation
for all benchmarks.

The presented architecture allows the user to optimize time and space consump-
tion of applications by choosing existing or designing new SRPs in response to
application-specific characteristics. We highlighted the flexibility of the archi-
tecture using an example of a problem-specific SRP, where the state restoration
policy is switched dynamically during search. The SRP components are designed
and implemented in C++ on the base of the Figaro library for constraint pro-
gramming [HMN99,CHN00,Ng01], and evaluated on a set of benchmarks ranging
from puzzles to realistic scheduling and timetabling problems. State restoration
is an important aspect of tree search that deserves the attention of users and
constraint programming systems designers.

Acknowledgements

We thank Tobias Miiller and Christian Schulte for valuable feedback on this
paper, Ong Kar Loon for continuous discussions and collaboration on the Figaro
library, and Edgar Tan for comments.

References

[AB90] Abderrahamane Aggoun and Nicolas Beldiceanu. Time Stamps Techniques
for the Trailed Data in Constraint Logic Programming Systems. In Actes
du Séminaire 1990-Programmation en Logique, pages 487-509, Tregastel,
France, May 1990. CNET.

[CHNOO] Tee Yong Chew, Martin Henz, and Ka Boon Ng. A toolkit for constraint-
based inference engines. In Enrico Pontelli and Vitor Santos Costa, editors,
Practical Aspects of Declarative Languages, Second International Work-
shop, PADL 2000, Lecture Notes in Computer Science 1753, pages 185-199,
Boston, MA, 2000. Springer-Verlag, Berlin.

[CIL9Y]

[DCO0]

[HMN99]

[ILO00]

[Int00]

Yves Caseau, Francois-Xavier Josset, and Frangois Laburthe. CLAIRE:
Combining sets, search and rules to better express algorithms. In Danny De
Schreye, editor, Proceedings of the International Conference on Logic Pro-
gramming, pages 245-259, Las Cruces, New Mexico, USA, 1999. The MIT
Press, Cambridge, MA.

Daniel Diaz and Philippe Codognet. The GNU prolog systems and its imple-
mentation. In ACM Symposium on Applied Computing, Como, Italy, 2000.
Documentation and system available at http://www.gnu.org/software/
prolog.

Martin Henz, Tobias Miiller, and Ka Boon Ng. Figaro: Yet another con-
straint programming library. In Proceedings of the Workshop on Paral-
lelism and Implementation Technology for Constraint Logic Programming,
Las Cruces, New Mexico, USA, 1999. held in conjunction with ICLP’99.
ILOG Inc., Mountain View, CA 94043, USA, http://www.ilog.com. ILOG
Solver 5.0, Reference Manual, 2000.

Intelligent Systems Laboratory. SICStus Prolog User’s Manual. SICS
Research Report, Swedish Institute of Computer Science, URL http:
//wwu.sics.se/isl/sicstus.html, 2000.

[MBKQ96] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S.

[Ng01]

[NX95]

[PGHO5]

[Sch97a]

[Sch97b]

[Sch99]

[Sch00]

Quarterman. The Design and Implementation of the 4.4BSD Operating
System. Addison-Wesley, Reading, MA, 1996.

Ka Boon Kevin Ng. A Generic Software Framework For Finite Domain
Constraint Programming. Master’s thesis, School of Computing, National
University of Singapore, 2001.

R. H. B. Netzer and J. Xu. Necessary and sufficient conditions for consistent
global snapshots. IEEE Transactions on Parallel and Distributed Systems,
(6):165-169, 1995.

Enrico Pontelli, Gopal Gupta, and Manuel Hermenegildo. &ACE: A high
performance parallel prolog system. In 9th International Parallel Processing
Symposium, pages 564-571. IEEE Press, 1995.

Christian Schulte. Oz Explorer: A visual constraint programming tool.
In Lee Naish, editor, Proceedings of the International Conference on Log-
ic Programming, pages 286-300, Leuven, Belgium, July 1997. The MIT
Press, Cambridge, MA.

Christian Schulte. Programming constraint inference engines. In Gert Smol-
ka, editor, Principles and Practice of Constraint Programming—CP97, Pro-
ceedings of the Third International Conference, Lecture Notes in Comput-
er Science 1330, pages 519-533, Schloss Hagenberg, Linz, Austria, Octo-
ber/November 1997. Springer-Verlag, Berlin.

Christian Schulte. Comparing trailing and copying for constraint program-
ming. In Danny De Schreye, editor, Proceedings of the International Con-
ference on Logic Programming, pages 275-289, Las Cruces, New Mexico,
August 1999. The MIT Press, Cambridge, MA.

Christian Schulte. Programming Constraint Services. Doctoral disserta-
tion, Universitt des Saarlandes, Naturwissenschaftlich-Technische Fakultt
I, Fachrichtung Informatik, Saarbrcken, Germany, 2000. To appear in Lec-
ture Notes in Artificial Intelligence, Springer-Verlag.

