
Components for State Restoration

in Tree Sear
h

Chiu Wo Choi

1

, Martin Henz

1

, Ka Boon Ng

2

1

S
hool of Computing, National University Of Singapore, Singapore

f
hoi
hiu,henzg�
omp.nus.edu.sg

2

Honeywell Singapore Laboratory

kevin.ng�honeywell.
om

Abstra
t. Constraint programming systems provide software ar
hite
-

tures for the fruitful intera
tion of algorithms for 
onstraint propagation,

bran
hing and exploration of sear
h trees. Sear
h requires the ability

to restore the state of a 
onstraint store. Today's systems use di�erent

state restoration poli
ies. Upward restoration undoes 
hanges using a

trail, and downward restoration (re
omputation) reinstalls information

along a downward path in the sear
h tree. In this paper, we present an

ar
hite
ture that isolates the state restoration poli
y as an orthogonal

software 
omponent. Appli
ations of the ar
hite
ture in
lude three nov-

el state restoration poli
ies, 
alled lazy 
opying, 
oarse-grained trailing,

and bat
h re
omputation, a detailed 
omparison of these and existing

restoration poli
ies with \everything else being equal", and a novel 
lass

of engines that uses di�erent restoration poli
ies in di�erent parts of the

sear
h tree. The ar
hite
ture allows the user to optimize time and spa
e


onsumption of appli
ations by 
hoosing existing or designing new state

restoration poli
ies in response to appli
ation-spe
i�
 
hara
teristi
s.

1 Introdu
tion

Finite domain 
onstraint programming (CP(FD)) systems are software systems

designed for solving 
ombinatorial sear
h problems using tree sear
h. The history

of 
onstraint programming systems shows an in
reasing emphasis on software

design, re
e
ting user requirements for 
exibility in performan
e debugging, and

appli
ation-spe
i�
 
ustomization of the algorithms involved.

A sear
h tree is generated by bran
hing algorithms, whi
h at ea
h node pro-

vide di�erent 
hoi
es that add new 
onstraints to strengthen the store in ea
h


hild. Propagation algorithms strengthen the store a

ording to the operational

semanti
s of 
onstraints in the store, and exploration algorithms de
ide on the

order in whi
h sear
h trees are explored.

Logi
 programming proved to be su

essful in providing elegant means of

de�ning bran
hing algorithms, reusing the built-in notion of 
hoi
e points. Con-

straint programming systems like SICStus Prolog [Int00℄ and GNU Prolog [DC00℄

provide libraries for propagation algorithms and allow the programming of explo-

ration algorithms on top of the built-in depth-�rst sear
h (DFS) by using meta



programming. To a
hieve a more modular ar
hite
ture, re
ent systems moved

away from the logi
 programming paradigm. The ILOG Solver library for 
on-

straint programming [ILO00℄ allows us to implement propagation algorithms in

C++ and exploration algorithms by using an obje
t that en
apsulates the state

of sear
h. The language Claire [CJL99℄ allows for programming exploration al-

gorithms using built-in primitives for state manipulation, and the language Oz

provides a built-in data stru
ture 
alled spa
e [S
h97b,S
h00℄ for implementing

exploration algorithms.

At every node in the sear
h tree, the state of variables and 
onstraints is the

result of 
onstraint propagation of the 
onstraints that were added along the path

from the root to the node. During sear
h, the nodes are visited in the order given

by the exploration algorithm. In this paper, we address the question on how the

state 
orresponding to a node is obtained or restored. Di�erent systems 
urrently

provide di�erent ways of restoring the state 
orresponding to the target node. All

systems/languages ex
ept Oz are based on a state restoration poli
y (SRP) that

re
ords 
hanges on the state in a data stru
ture 
alled trail. The trail is employed

to restore the state to an an
estor node of the target. S
hulte [S
h97b,S
h00℄

presents a few alternatives based on 
opying and re
omputation of states and

evaluates its 
ompetitiveness 
on
eptually and experimentally in [S
h99℄. The

best state restoration poli
y for a given appli
ation depends on the amount of

propagation (state 
hange), the exploration and the bran
hing. The goal of this

work is to identify software te
hniques that enable the employment of di�erent

SRPs in the same system without 
ompromising the orthogonal development of

other 
omponents su
h as propagation, bran
hing and exploration. The ar
hi-

te
ture allows the user to optimize time and spa
e 
onsumption of appli
ations

by 
hoosing existing or designing new SRPs in response to appli
ation-spe
i�



hara
teristi
s. We introdu
e three novel SRP, namely lazy 
opying, bat
h re-


omputation and 
oarse-grained trailing, and show that for many appli
ations,

the �rst two 
onsiderably improve the time and/or spa
e eÆ
ien
y over existing

SRPs. State restoration is an important aspe
t of tree sear
h that deserves the

attention of users and 
onstraint programming systems designers.

We outline in Se
tion 2 a software ar
hite
ture for 
onstraint programming

systems that will form the base for further dis
ussion. The 
omponents are de-

signed and implemented in C++ on the base of the Figaro library for 
onstraint

programming [HMN99,CHN00,Ng01℄. In Se
tion 3, we des
ribe the two SRPs


urrently in use, namely trailing and re
omputation. At the end of Se
tion 3, we

give an overview of the rest of the paper.

2 A Component Design for Sear
h

In CP(FD), the 
onstraint store represents a 
omputational state, hosting �nite-

domain (FD) variables and 
onstraints. A variable has a domain, whi
h is the

set of possible values it 
an take. A 
onstraint maintains a relation among a

set of variables by eliminating values, whi
h are in 
on
i
t with the 
onstraint,

from variable domains a

ording to the propagation algorithm. Every time a



Fig. 1 Depth-First Tree Sear
h

1

2

3 4

5

6 7

Exploration

Branches

Nodes


hange is made to a 
onstraint store, a propagation engine performs 
onstraint

propagation until it rea
hes a �x point, in whi
h no 
onstraint 
an eliminate

any more values. In our framework, we represent a 
onstraint store by a data

stru
ture 
alled store [Ng01℄.

Usually, 
onstraint propagation alone is insuÆ
ient to solve a problem. There-

fore, we need tree sear
h to �nd a solution. A sear
h explores the tree in a top-

down fashion. Nodes and bran
hes build up the sear
h tree. It is adequate to

view sear
h in terms of these 
omponents: bran
hing, node and exploration. Fig-

ure 1 provides an illustration of tree sear
h. Cir
les represent nodes, while lines


onne
ting two nodes represent bran
hes. The numbers inside the nodes give the

order of exploration. This parti
ular example shows a DFS. For simpli
ity, we

only 
onsider binary sear
h trees.

Program 1 De
laration of Bran
hing

1 
lass Bran
hing {

2 publi
:

3 bool done() 
onst;

4 bool fail() 
onst;

5 Bran
hing* 
hoose(store* s,int i) 
onst;

6 };

The bran
hing des
ribes the shape of the sear
h tree. Common bran
hing al-

gorithms in
lude a simple labelling pro
edure (naive enumeration of variables),

variable ordering (su
h as �rst-fail), and domain splitting. For solving s
heduling

problems, there is the ranking of tasks on resour
e (also 
alled resour
e serializa-

tion). In our setting, bran
hing 
oin
ides with the notion of a 
hoi
e point. The


lass Bran
hing shown in Program 1 has a method 
hoose (line 5, for 
on
ise-

ness, we refer to C++ member fun
tions as methods) whi
h adds a 
onstraint

to the store based on the 
hoi
e given and returns the bran
hing (
hoi
e point)

of the 
hild node. Bran
hing also de�nes methods to 
he
k whether it is done

(line 3) or it has failed (line 4).

A node represents a state in the sear
h tree. The 
lass Node shown in Pro-

gram 2 
ontains a store, a bran
hing, and pointers to parent and 
hildren nodes

(line 3-4). The 
onstru
tor (line 7) takes a store and a bran
hing as argu-

ments. The left and right 
hildren nodes are 
reated by 
alling the method

make left 
hild and make right 
hild respe
tively (line 10-11). Ea
h time a


hild node is 
reated, the bran
hing adds a 
onstraint to the store. To pro
eed to



Program 2 De
laration of Node

1 
lass Node {

2 prote
ted:

3 store* 
s;

4 Bran
hing* bran
h;

5 Node* parent,left_
hild,right_
hild;

6 publi
:

7 Node(store* s,Bran
hing* b);

8 bool isLeaf() 
onst;

9 bool isFail() 
onst;

10 Node* make_left_
hild();

11 Node* make_right_
hild();

12 };

the next level of the sear
h tree, 
onstraint propagation must rea
h a �x point.

Node also has methods to 
he
k if the node is a leaf node (line 8) or a failure

node (line 9).

Figure 2 gives a graphi
al representation of nodes and bran
hings. The left

side shows the design of nodes. A tree is linked bi-dire
tionally, where the par-

ent points to the 
hildren and vi
e versa. The right side shows the relation

between nodes and bran
hings during the 
reation of 
hildren nodes. Solid ar-

rows represent pointers, while labelled, dashed arrows represent the respe
tive

method 
alls. Calling either make left 
hild or make right 
hildmethod 
re-

ates a 
hild node, whi
h, in turn, invokes the method 
hoose of the 
urrent node

bran
hing that returns a bran
hing for the 
hild node.

The exploration spe
i�es the traversal order of the sear
h tree. DFS is the

most 
ommon exploration algorithm used in tree sear
h for 
onstraint program-

ming . Program 3 shows the implementation of DFS. Fun
tion DFS takes a node

as an argument and tries to �nd the �rst solution using depth-�rst strategy. It

returns the node 
ontaining the solution (line 2) or NULL if none is found (line

3). Otherwise, it re
ursively �nds the solution on the left (line 4-5) and right

(line 6) subtrees.

3 Restoration Poli
ies

The problem of state restoration o

urs in systems where a state results from a

sequen
e of 
omplex operations, and where the state 
orresponding to di�erent

Fig. 2 Tree Node and Relation with Bran
hing

store

Node Node

Node

branching

branching branching

make_
left_
child child

make_
right_

.. ..
branching

...

Node

parent

left child right child

choose(0) choose(1)



Program 3 Exploration: Depth First Sear
h

1 Node* DFS(Node* node) {

2 if (node->isLeaf()) return node;

3 if (node->isFail()) return NULL;

4 Node* result = DFS(node->make_left_
hild());

5 if (result != NULL) return result;

6 return DFS(node->make_right_
hild());

7 };

(sub)sequen
es are requested over time. For example, in distributed systems,

state restoration is used to re
over from failure in a network node [NX95℄.

In 
onstraint-based tree sear
h, the dominant SRP has been trailing. This

poli
y demands to re
ord the 
hanges done on the state in a data stru
ture,


alled trail. To go from a node to its parent, the re
orded 
hanges are undone.

The reason for this dominan
e lies in the histori
al fa
t that 
onstraint program-

ming evolved from logi
 programming, and trailing is employed in all logi
 pro-

gramming systems for state restoration. The 
ombination of the general idea of

trailing with 
onstraint-programming spe
i�
 modi�
ations [AB90℄, was deemed

suÆ
ient for 
onstraint programming.

S
hulte [S
h00℄ shows that other SRPs have appealing advantages. Starting

from the idea of 
opying an entire 
onstraint store, he introdu
ed several SRPs

that trade spa
e for time by re
omputing the store from a 
opy made in an

an
estor node instead of making a 
opy at every node [S
h99℄. These SRPs

have the advantage of not requiring the re
ording of 
hanges in propagation

algorithms, thereby 
onsiderably simplifying the design of CP(FD) systems.

In the design presented in Se
tion 2, the pla
e where the SRP is determined

is the de�nition of the methods make left 
hild and make right 
hild in the


lass Node. These methods need to 
reate a new node together with its store and

bran
hing from the information present in the 
urrent node. This indi
ates that

we may be able to arrive at di�erent SRPs by providing di�erent implementations

of the Node 
lass, without a�e
ting other 
omponents su
h as bran
hing and

exploration. The next se
tion shows that it is indeed possible.

By isolating the SRP in a separate 
omponent that is orthogonal to the

other 
omponents, the development of new SRPs may be simpli�ed, whi
h may

inspire the development of new SRPs. Indeed, we will present three new SRPs in

Se
tions 5, 6, and 7. By having existing and new SRPs available in one system,

we are able to 
ondu
t an experimental evaluation of them with \everything else

being equal"; we report the results of this evaluation in Se
tion 8. In that se
tion,

we also highlight the possibility of dynami
ally 
hanging the SRP depending on

the progress of the sear
h, using a spe
ial-
ase example.

4 Restoration Components

The previous se
tion showed that the Node 
lass is the 
omponent that de
ides

the SRP. The aim, therefore, is to design di�erent types of nodes for di�erent

SRPs, namely, CopyingNode for 
opying and Re
omputationNode for re
ompu-



tation. All these nodes inherit from the base 
lass Node. Hen
e, we spe
ify the

restoration 
omponent of sear
h by passing the 
orre
t node type as an argu-

ment.

The idea for CopyingNode and Re
omputationNode is presented in [S
h97a℄

and it allows the Oz Explorer to have 
opying and re
omputation as SRP for

DFS exploration. We separate the SRP aspe
t of nodes from the exploration

aspe
t by implementing SRP-spe
i�
 extensions of the Node base 
lass.

The Node base 
lass is similar to the one introdu
ed in Program 2 ex
ept that

it does not 
ontain a store anymore (i. e. , remove line 3). Rather, the de
ision

on whether to keep a store and on the type of store to keep is to be implemented

in the sub
lasses.

The 
opying SRP requires ea
h node of the sear
h tree to keep a 
opy of the

store. Hen
e, the 
lass CopyingNode 
ontains an additional attribute to keep the


opy. As the store provides a method 
lone for 
reating a 
opy of itself, when a

CopyingNode explores and 
reates a 
hild node, it keeps a 
opy of the store and

passes the other 
opy to the 
hild node.

The re
omputation SRP keeps stores for only some nodes, and re
omputes

the stores of other nodes from their an
estors. A parameter, maximum re
om-

putation distan
e (MRD) of n, means that a 
opy of a store is kept at every

n-th level of the tree. Figure 3 shows the di�eren
e between 
opying and re
om-

putation with MRD of 2. Copies of the stores are kept only in shaded nodes.

Copying 
an be viewed as re
omputation with MRD of 1.

For Re
omputationNode, we introdu
e four attributes: (1) a pointer to store;

(2) an integer 
ounter d to 
he
k if we have rea
hed the n-th level of the tree;

(3) an integer 
hoi
e, whi
h indi
ates if the node is the �rst or the se
ond 
hild

of its parent.; (4) and a boolean 
ag 
opy to indi
ate the presen
e of a 
opy of a

store. If d rea
hes the n-th level limit when 
reating a 
hild node, a 
opy of the

store is kept and 
opy is set to true. During the exploration of a node where

re
omputation of the store is needed (i. e. , no 
opy of store is kept), the method

re
ompute shown in Program 4 re
ursively re
omputes for the store from the

an
estors, by 
ommitting ea
h parent's store to the alternative given by 
hoi
e

(line 7).

Adaptive re
omputation [S
h99℄ improves re
omputation performan
e by

keeping only a 
opy of the store at a depth equidistant from the depth of an

existing 
opy (or root, if none exists) and the depth of the last-en
ountered fail-

ure. It is straightforward to implement this by introdu
ing another argument to

the method re
ompute whi
h 
ounts the length of the re
omputation path. The

additional 
opy of the store is made when the 
ounter rea
hes half the length.

Fig. 3 Copying vs. Re
omputation

Copying Recomputation



Program 4 Re
omputing Stores in Sear
h Tree

1 Store* Re
omputationNode::re
ompute(int i) {

2 Store* rs;

3 if (
opy)

4 rs = 
s->
lone();

5 else

6 rs = parent->re
ompute(
hoi
e);

7 bran
h->
hoose(rs,i);

8 return rs;

9 };

During exploration, it is often 
lear that the store of a node is not needed

any longer and 
an be safely passed to a 
hild. For example in the 
ase of DFS,

we passed the store to the se
ond 
hild when the �rst 
hild's subtree is fully

explored. For su
h 
ases, nodes provide methods 
reate last right 
hild and


reate last left 
hild. When a 
opy-holding nodeN is asked for its last 
hild

node A, the node N will pass its store to the 
hild node A, whi
h then be
omes a


opy-holding node. This optimization|des
ribed in [S
h00℄ as Last Alternative

Optimization|saves spa
e. It optimizes to do the re
omputation step N ! A

only on
e.

Best solution sear
h (for solving optimization problem) su
h as bran
h-and-

bound requires dynami
 addition of 
onstraint during sear
h to 
onstrain the

next solution to be better than the 
urrent best solution. The Node 
lass has a

method

State post_
onstraint(BinaryFun
tion* BF,store* s);

to add this 
onstraint to the store inside a node. This addition is similar to

the inje
tion of an 
omputation in an Oz spa
e [S
h97b℄. The method takes in

a binary fun
tion to enfor
e the order, and the best solution store. It returns

FAIL if enfor
ing the order 
auses failure. However, 
are should be taken during

re
omputation, where every node in the tree may not 
ontain a 
opy of the store.

For that, we need to introdu
e extra attributes to keep the 
onstraints, whi
h

will be added as re
omputation is performed.

5 Lazy Copying

Lazy 
opying is essentially a 
opy-on-write te
hnique, whi
h maintains multi-

ple referen
es to an obje
t. A 
opy is made only when we write to the obje
t.

Some operating systems use this te
hnique for managing pro
esses sharing the

same virtual memory [MBKQ96℄. In ACE [PGH95℄, a parallel implementation

of Prolog, an in
remental 
opying strategy redu
es the amount of information

transferred during its share operation. In Or-parallelism, sharing is used to pass

work from one or-agent to another, and is similar to the lazy 
opying strategy.

In other CP(FD) systems, 
onstraints have dire
t referen
es (pointers) to

the variables they use and/or vi
e versa. In su
h systems, lazy 
opying poses the

problem that every time an obje
t (say O) is written to be
ome N , every obje
t



Fig. 4 Comparison between Copying and Lazy Copying

1 2 3 N

1 2 3 N

1 2 3 N

1 2 3 N

vector of variables pointer to object vector of variables pointer to object

Copying scheme Lazy Copying scheme

that is pointing to O would need to be 
opied, too, su
h that ea
h new 
opy

points to N while the old 
opy 
ontinues to point to O. This pro
ess needs to be

exe
uted re
ursively, until 
opies would have been made for the entire 
onne
ted

sub-graph of the 
onstraints and the variables. This problem is avoided through

relative addressing [Ng01℄, where every referen
e to an obje
t is an address,


alled ID, in a ve
tor of pla
eholders.

In our 
ontext, 
onstraint and variable obje
ts enjoy relative addressing.

We introdu
e lazy 
opying stores, whi
h may share individual variable and 
on-

straint obje
ts. When we make a 
opy of the store, the ve
tors of 
onstraints and

variables point to the original obje
ts. Figure 4 shows the di�eren
es between


opying and lazy 
opying.

A requirement for lazy 
opying is that we must keep a referen
e 
ount to the

obje
ts. After we lazily 
opy a store, the 
onstraints' and variables' referen
e


ounts in
rement by 1. During a write operation, if two or more stores share this

obje
t, we 
reate a 
opy of the obje
t, assign a referen
e 
ount of 1 to the new

obje
t and de
rement the referen
e 
ount by 1 for the old obje
t.

Con
eptually, a lazy 
opying store behaves like a 
opying store ex
ept for

its internal implementation, whi
h 
onsists of referen
e 
ounts. The implemen-

tation of LazyCopyNode is straightforward. It is just the same as CopyingNode

by repla
ing store with a lazy 
opying store des
ribed above.

6 Coarse-grained Trailing

Coarse-grained trailing is an approximation of trailing as implemented in most

CP(FD) systems. Instead of trailing updates of memory lo
ations, we trail the


omplete variable obje
t or 
onstraint obje
t when 
hanges o

ur. As mentioned

in se
tion 5, our ar
hite
ture provides a relative addressing s
heme and allows to

make 
opies of variables and 
onstraints, whi
h make the implementation simple.

Coarse-grained trailing only keeps a single store for the entire exploration.

Figure 5 shows its implementation. A half-shaded node represents a trailing

node and arrows represent pointers. A trailing node holds a pointer to a 
ommon

shared trail. The shared trail 
ontains a trailing store and a pointer to the 
urrent

node where the store is de�ned. A trailing store is needed be
ause of the strong

dependen
y between the store and the a
tual trail.



Fig. 5 Coarse-grained Trailing

node
current

Trail

variables

shared trail

trailing store

constraints

Program 5 Shared Trail and Trailing Node

0 
lass TrailingNode : publi
 Node {

1 prote
ted:

2 int i,mark; SharedTrail* trail;

3 publi
: // methods de
laration...

4 };

5

6 
lass SharedTrail {

7 private:

8 TrailingStore* ts; TrailingNode* 
urrent;

9 publi
:

10 SharedTrail(Store* s,TrailingNode* tn);

11 list<TrailingNode*> 
omputePath(TrailingNode* tn);

12 void jump(TrailingNode* tn);

13 };

Program 5 shows the de
laration of the trailing node and shared trail. The


lass TrailingNode implements the 
oarse-grained trailing SRP. It 
ontains an

integer mark, whi
h represents the trail marker for terminating ba
ktra
king

(line 2). This 
orresponds to the time stamping te
hnique [AB90℄. The integer

i (line 2) indi
ates whether the node is the �rst or se
ond 
hild of its parent.

The 
onstru
tor of the 
lass SharedTrail takes a store and a pointer to the root

node as argument (line 10). When exploring a node D, whi
h is not pointed to

by the 
urrent node, the method jump (line 12) 
hanges the trailing store from

the 
urrent node to the node D. First, jump 
omputes the path leading to the


ommon an
estor with method 
omputePath (line 11), then ba
ktra
ks to the


ommon an
estor, and �nally des
ends to node D by re
omputation.

The implementations of trailing and lazy 
opying store are 
losely related,

sin
e both 
reate a 
opy of the 
hanged obje
t before a state modi�
ation o

urs.

Comparing to trailing, the 
oarse granularity imposes an overhead, whi
h will be

signi�
ant as 
onstraints be
ome 
omplex (global 
onstraints). If the 
onstraints


ontain large stateful data stru
tures, trailing may re
ord in
remental 
hanges

as opposed to 
opying the whole data stru
ture on the trail as it is done by


oarse-grained trailing.



7 Bat
h Re
omputation

Re
omputation performs a sequen
e of 
onstraint additions and �x point 
om-

putations. At earlier �x point 
omputations, the impli
it knowledge of later


onstraints is not exploited. This means that work is done unne
essarily, sin
e re-


omputation will never en
ounter failure. Thus, re
omputation 
an be improved

by a

umulating the 
onstraints to be added along the path and invoke the

propagation engine for 
omputing the �x point only on
e. Sin
e re
omputation


onstraints are added all at on
e, we 
all this te
hnique bat
h re
omputation.

Bat
h re
omputation is also appli
able to adaptive re
omputation, whi
h we 
all

bat
h adaptive re
omputation.

The implementation is straightforward. First, bran
hing should provide a

fa
ility to return the 
onstraint that is to be added during re
omputation. A

fa
ility is needed to a

umulate the 
onstraints to the propagation engine. Our

propagation queue already served this purpose. Lastly, we invoke the propaga-

tion of store expli
itly and only on
e. A 
ondition for the 
orre
tness of bat
h

re
omputation is the monotoni
ity of 
onstraints, meaning that di�erent orders

of 
onstraint propagation must result in the same �x point.

8 Experiments

This se
tion 
ompares and analyses the runtime and memory requirement of

the di�erent SRPs. The setup of the platform is a PC with 400 Mhz Pentium

II pro
essor, 256MB main memory and 512MB swap memory, running Linux

(RedHat 6.0 Kernel 2.2.17-14). All experiments are 
ondu
ted using the 
urrent

development version of the Figaro system [HMN99,CHN00,Ng01℄, a C++ library

for 
onstraint programming.

Ea
h SRP is denoted with the following symbols: CP - Copying, TR - Coarse-

grained Trailing, LC - Lazy 
opying, RE - Re
omputation, AR - Adaptive re
om-

putation, BR - Bat
h Re
omputation, BAR - Bat
h Adaptive Re
omputation.

To make 
omparison simple, the MRD for RE, AR, BR and BAR is 
omput-

ed using the formula: MRD = ddepth � 5e where depth is depth of the sear
h

tree. All ben
hmark timings (Time) are the average of 5 runs measured in se
-

onds, and have been taken as wall time. The 
oeÆ
ient of variation is less than

5%. Memory requirements are measured in terms of maximum memory usage

(Max) in kilobytes (KB). It refers to the memory used by the C++ runtime

system rather than the a
tual memory usage be
ause C++ allo
ates memory in


hunks.

The set of ben
hmark problems are: The Alpha 
rypto-arithmeti
 puzzle,

the Knights tour problem on an 18� 18 
hess board, the Magi
 Square puzzle

of size 6, a round robin tournament s
heduling problem with 7 teams and a

resour
e 
onstraint that requires fair distribution over 
ourts (Larry), aligning

for a Photo, a Hamiltonian path problem with 20 nodes, the ABZ6 Job shop

s
heduling ben
hmark, the Bridge s
heduling ben
hmark with side 
onstraints,

and 100-S-Queens puzzle that uses three distin
t (with o�set) 
onstraints.



Table 1 Chara
teristi
s of Example Programs

example sear
h 
hoi
e fail soln depth var 
onstr

Alpha all/naive 7435 7435 1 50 26 21

Knights one/naive 266 12 1 265 7500 11205

Magi
 Square one/split 46879 46829 1 72 37 15

Larry one/naive 389 371 1 40 678 1183

Photo best/naive 23911 23906 6 34 95 53

Hamilton one/naive 7150 7145 1 66 288 195

ABZ6 best/rank 2409 2395 15 91 102 120

Bridge best/rank 1268 1261 8 78 44 88

100-S-Queen one/� 115 22 1 97 100 3

Table 1 lists the 
hara
teristi
s of the problems. These ben
hmarks provide

the evaluation of the di�erent SRPs based on the following 
riteria: problem

size, amount of propagation, sear
h tree depth, and number of failures. Our


omparison of the di�erent SRPs are based on \everything else being equal",

meaning all other elements su
h as store, bran
hing, exploration, et
. are kept

un
hange ex
ept the SRP.

Sin
e di�erent 
omponents of a CP(FD) system is dependent on one anoth-

er, the performan
e may vary. For instan
e, the 
hoi
e of FD representation has

a signi�
ant e�e
t on the performan
e. For these experiments, the FD repre-

sentation is a lists of interval. Some problems may perform di�erently when a

bit ve
tor representation is used. Another remark is that the speed of 
opying

between our system and Mozart is di�erent for the following reasons: di�er-

ent FD representations, amount of data being 
opied, variable wake up s
heme

during propagation, and memory management (Mozart uses automati
 garbage


olle
tion). Therefore, the result does not mat
h exa
tly with S
hulte [S
h99℄.

Table 2 gives the runtime and memory performan
e of 
opying. While Fig-

ure 6 shows the 
omparison of 
oarse-grained trailing and re
omputation. The

numbers are obtained by dividing ea
h SRP's numbers by 
opying's numbers,

below 1 means better performan
e, while above 1 means worse. This group of


omparison 
on�rms the following result of S
hulte [S
h99℄. Copying su�ers from

the problem of memory swapping for large problems with deep sear
h trees su
h

as Knights. Re
omputation improves 
opying by trading spa
e for time. Adap-

tive re
omputation minimize the penalty in runtime of re
omputation by using

more spa
e.

Coarse-grained trailing performs 
omparatively well to 
opying and other

re
omputation s
hemes. The memory peaks in Photo is probably due to STL

library dynami
 array memory allo
ation module whi
h grows the array size by

Table 2 Runtime and Memory Performan
e of Copying

Example Time Max Example Time Max

Alpha 19.200 1956 Hamilton 50.514 2176

Knights 22.086 330352 ABZ6 25.004 4936

Magi
 Square 160.360 2632 Bridge(10x) 8.582 2888

Larry 5.844 5712 100-S-Queen(10x) 8.444 7816

Photo 35.086 1912



Fig. 6 Time and Memory of Coarse-grained Trailing vs. Re
omputation

Time of TR, RE, AR vs. CP Memory of TR, RE, AR vs CP

2

1.5

1

0

0.5

TR/CP AR/CP
TR/CP AR/CP

5.12 2.743.88

RE/CP
RE/CP

Alph
a

Larr
y

Ham
ilt

on
Pho

to

10
0-

S-Q
ue

en

2

1.5

1

0

0.5

Alph
a

Larr
y

Ham
ilt

on
Pho

to

10
0-

S-Q
ue

en

Knig
hts

M
ag

ic 
Squ

are

Knig
hts

M
ag

ic 
Squ

are

Brid
ge

Brid
ge

0.07

0.04

ABZ6
ABZ6

re
ursive doubling. Coarse-grained trailing provides us with an approximation

for 
omparing the performan
e of trailing and re
omputation.

Lazy 
opying aims at 
ombining the advantages of both 
oarse-grained trail-

ing and 
opying. Figure 7 shows its performan
e against both SRPs, the numbers

are obtained by dividing lazy 
opying's numbers by 
opying's and 
oarse-grained

trailing's numbers. Over the ben
hmark problems, in the worst 
ase, lazy 
opying

performs the same as 
opying, while for the 
ases with small amount of propaga-

tion, lazy 
opying 
an save memory and even time. Unfortunately, lazy 
opying

still performs badly for large problems with deep sear
h trees su
h as Knights,

when 
ompared to 
oarse-grained trailing. This is due to the extra a

ounting

data we keep for lazy 
opying. However, lazy 
opying improves the runtime over


oarse-grained trailing for problems like Magi
 Square, Larry and Bridge where

there are many failure nodes. This is be
ause lazy 
opying 
an jump dire
tly

from one node to another upon ba
ktra
king, while 
oarse-grained trailing has

to 
arry out the extra operation of undoing the 
hanges.

Bat
h re
omputation aims at improving the runtime performan
e of re
om-

putation. The memory requirement is the same as re
omputation. Figure 8

shows the runtime performan
e of bat
h re
omputation versus re
omputation

and bat
h adaptive re
omputation versus adaptive re
omputation. Bat
h re
om-

putation improves the runtime of re
omputation for all 
ases. However, bat
h

adaptive re
omputation improve only a little over adaptive re
omputation ex-

Fig. 7 Performan
e of Lazy Copying vs. Copying and Coarse-grained Trailing

Lazy Copying vs. Copying Lazy Copying vs. Coarse-grained Trailing

2

1.5

1

0

0.5

Time Max Time Max
1

0.8

0.6

0.4

0.2

0

4.39

Alph
a

Larr
y

Pho
to

Ham
ilt

on

ABZ6

Brid
ge

10
0-

S-Q
ue

en
Alph

a
Larr

y
Pho

to

Ham
ilt

on

ABZ6

Brid
ge

10
0-

S-Q
ue

en

Knig
hts

M
ag

ic 
Squ

are

Knig
hts

M
ag

ic 
Squ

are




ept for Larry. This is due to the design of adaptive re
omputation whi
h makes

a 
opy in the middle when a failure is en
ountered, whi
h in turn, redu
es the

re
omputation distan
e that bat
h re
omputation 
an take advantage of.

By en
apsulating SRP into tree nodes, we are able to 
ome up with a new

s
heme 
alled swit
hing in whi
h we 
ould apply di�erent SRPs in di�erent

parts of the sear
h tree. This s
heme is useful when di�erent parts of the sear
h

tree exhibit distin
t 
hara
teristi
s. One spe
ial-
ase example is the problem of

�nding the �rst solution for the 510-S-Queen problem. The sear
h tree of this

problem have a straight path from the root node to a node of depth 499 where

there is a small subtree with some failure nodes and the solution. Therefore,

we 
an have re
omputation before depth 499, and 
oarse-grained trailing after

depth 499. The implementation is straightforward, when the exploration rea
hes

depth 499, we will 
reate a 
oarse-grained trailing node instead of re
omputation,

be
ause the SRP of a subtree is di
tated by its root node. Figure 9 shows the

runtime and memory improvement over other SRPs. Its is better than all other

SRPs for this problem.

Comparison with other 
onstraint programming systems are needed in order

to gauge the e�e
t of the 
omponent ar
hite
ture and the overhead for relative

addressing. Initial results are reported in [Ng01℄.

9 Con
lusion

We developed an ar
hite
ture that allows us to isolate the state restoration poli
y

(SRP) from other 
omponents of the system. Its main features are:

Relative addressing: Variable and 
onstraint obje
ts are referred to by IDs,

whi
h are mapped to a
tual pointers through store-spe
i�
 ve
tors.

Bran
hing obje
ts: Sear
h trees are de�ned by bran
hing obje
ts, whi
h are

re
ursive 
hoi
e points.

Exploration algorithms: Exploration algorithms are de�ned in terms of a

small number of operations on nodes.

SRPs are represented by di�erent extensions of the base 
lass Node. Apart from


opying, re
omputation, we introdu
ed three new SRPs.

Fig. 8 Time of Bat
h Re
omputation vs. Re
omputation

BR vs RE and BAR vs AR

1

0.8

0.6

0.4

0.2

0

BAR/ARBR/RE

Alph
a

Larr
y

Pho
to

Ham
ilt

on

ABZ6

Knig
hts

M
ag

ic 
Squ

are

10
0-

S-Q
ue

en

Brid
ge



Fig. 9 Time and Memory of Swit
hing vs. other SRPs

Time Max
1

0.8

0.6

0.4

0.2

0

ratio

CP TR LC AR BAR

0.02 0.02 0.02

BRRE

Lazy 
opying uses a 
opy-on-write te
hnique for variables and 
onstraints and

improves over or is equally good as 
opying on all ben
hmarks. Lazy 
opying

bene�ts from relative addressing.

Coarse-grained trailing is a form of trailing that 
opies the state of variables

and 
onstraints, as opposed to in
remental 
hanges, onto the trail.

Bat
h re
omputation modi�es re
omputation by installing all 
onstraints to

be added to the an
estor at on
e and improves over S
hulte's re
omputation

for all ben
hmarks.

The presented ar
hite
ture allows the user to optimize time and spa
e 
onsump-

tion of appli
ations by 
hoosing existing or designing new SRPs in response to

appli
ation-spe
i�
 
hara
teristi
s. We highlighted the 
exibility of the ar
hi-

te
ture using an example of a problem-spe
i�
 SRP, where the state restoration

poli
y is swit
hed dynami
ally during sear
h. The SRP 
omponents are designed

and implemented in C++ on the base of the Figaro library for 
onstraint pro-

gramming [HMN99,CHN00,Ng01℄, and evaluated on a set of ben
hmarks ranging

from puzzles to realisti
 s
heduling and timetabling problems. State restoration

is an important aspe
t of tree sear
h that deserves the attention of users and


onstraint programming systems designers.

A
knowledgements

We thank Tobias M�uller and Christian S
hulte for valuable feedba
k on this

paper, Ong Kar Loon for 
ontinuous dis
ussions and 
ollaboration on the Figaro

library, and Edgar Tan for 
omments.

Referen
es

[AB90℄ Abderrahamane Aggoun and Ni
olas Beldi
eanu. Time Stamps Te
hniques

for the Trailed Data in Constraint Logi
 Programming Systems. In A
tes

du S�eminaire 1990{Programmation en Logique, pages 487{509, Tregastel,

Fran
e, May 1990. CNET.

[CHN00℄ Tee Yong Chew, Martin Henz, and Ka Boon Ng. A toolkit for 
onstraint-

based inferen
e engines. In Enri
o Pontelli and V��tor Santos Costa, editors,

Pra
ti
al Aspe
ts of De
larative Languages, Se
ond International Work-

shop, PADL 2000, Le
ture Notes in Computer S
ien
e 1753, pages 185{199,

Boston, MA, 2000. Springer-Verlag, Berlin.



[CJL99℄ Yves Caseau, Fran�
ois-Xavier Josset, and Fran�
ois Laburthe. CLAIRE:

Combining sets, sear
h and rules to better express algorithms. In Danny De

S
hreye, editor, Pro
eedings of the International Conferen
e on Logi
 Pro-

gramming, pages 245{259, Las Cru
es, New Mexi
o, USA, 1999. The MIT

Press, Cambridge, MA.

[DC00℄ Daniel Diaz and Philippe Codognet. The GNU prolog systems and its imple-

mentation. In ACM Symposium on Applied Computing, Como, Italy, 2000.

Do
umentation and system available at http://www.gnu.org/software/

prolog.

[HMN99℄ Martin Henz, Tobias M�uller, and Ka Boon Ng. Figaro: Yet another 
on-

straint programming library. In Pro
eedings of the Workshop on Paral-

lelism and Implementation Te
hnology for Constraint Logi
 Programming,

Las Cru
es, New Mexi
o, USA, 1999. held in 
onjun
tion with ICLP'99.

[ILO00℄ ILOG In
., Mountain View, CA 94043, USA, http://www.ilog.
om. ILOG

Solver 5.0, Referen
e Manual, 2000.

[Int00℄ Intelligent Systems Laboratory. SICStus Prolog User's Manual. SICS

Resear
h Report, Swedish Institute of Computer S
ien
e, URL http:

//www.si
s.se/isl/si
stus.html, 2000.

[MBKQ96℄ Marshall Kirk M
Kusi
k, Keith Bosti
, Mi
hael J. Karels, and John S.

Quarterman. The Design and Implementation of the 4.4BSD Operating

System. Addison-Wesley, Reading, MA, 1996.

[Ng01℄ Ka Boon Kevin Ng. A Generi
 Software Framework For Finite Domain

Constraint Programming. Master's thesis, S
hool of Computing, National

University of Singapore, 2001.

[NX95℄ R. H. B. Netzer and J. Xu. Ne
essary and suÆ
ient 
onditions for 
onsistent

global snapshots. IEEE Transa
tions on Parallel and Distributed Systems,

(6):165{169, 1995.

[PGH95℄ Enri
o Pontelli, Gopal Gupta, and Manuel Hermenegildo. &ACE: A high

performan
e parallel prolog system. In 9th International Parallel Pro
essing

Symposium, pages 564{571. IEEE Press, 1995.

[S
h97a℄ Christian S
hulte. Oz Explorer: A visual 
onstraint programming tool.

In Lee Naish, editor, Pro
eedings of the International Conferen
e on Log-

i
 Programming, pages 286{300, Leuven, Belgium, July 1997. The MIT

Press, Cambridge, MA.

[S
h97b℄ Christian S
hulte. Programming 
onstraint inferen
e engines. In Gert Smol-

ka, editor, Prin
iples and Pra
ti
e of Constraint Programming|CP97, Pro-


eedings of the Third International Conferen
e, Le
ture Notes in Comput-

er S
ien
e 1330, pages 519{533, S
hloss Hagenberg, Linz, Austria, O
to-

ber/November 1997. Springer-Verlag, Berlin.

[S
h99℄ Christian S
hulte. Comparing trailing and 
opying for 
onstraint program-

ming. In Danny De S
hreye, editor, Pro
eedings of the International Con-

feren
e on Logi
 Programming, pages 275{289, Las Cru
es, New Mexi
o,

August 1999. The MIT Press, Cambridge, MA.

[S
h00℄ Christian S
hulte. Programming Constraint Servi
es. Do
toral disserta-

tion, Universitt des Saarlandes, Naturwissens
haftli
h-Te
hnis
he Fakultt

I, Fa
hri
htung Informatik, Saarbr
ken, Germany, 2000. To appear in Le
-

ture Notes in Arti�
ial Intelligen
e, Springer-Verlag.


