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Abstrat. Constraint programming systems provide software arhite-

tures for the fruitful interation of algorithms for onstraint propagation,

branhing and exploration of searh trees. Searh requires the ability

to restore the state of a onstraint store. Today's systems use di�erent

state restoration poliies. Upward restoration undoes hanges using a

trail, and downward restoration (reomputation) reinstalls information

along a downward path in the searh tree. In this paper, we present an

arhiteture that isolates the state restoration poliy as an orthogonal

software omponent. Appliations of the arhiteture inlude three nov-

el state restoration poliies, alled lazy opying, oarse-grained trailing,

and bath reomputation, a detailed omparison of these and existing

restoration poliies with \everything else being equal", and a novel lass

of engines that uses di�erent restoration poliies in di�erent parts of the

searh tree. The arhiteture allows the user to optimize time and spae

onsumption of appliations by hoosing existing or designing new state

restoration poliies in response to appliation-spei� harateristis.

1 Introdution

Finite domain onstraint programming (CP(FD)) systems are software systems

designed for solving ombinatorial searh problems using tree searh. The history

of onstraint programming systems shows an inreasing emphasis on software

design, reeting user requirements for exibility in performane debugging, and

appliation-spei� ustomization of the algorithms involved.

A searh tree is generated by branhing algorithms, whih at eah node pro-

vide di�erent hoies that add new onstraints to strengthen the store in eah

hild. Propagation algorithms strengthen the store aording to the operational

semantis of onstraints in the store, and exploration algorithms deide on the

order in whih searh trees are explored.

Logi programming proved to be suessful in providing elegant means of

de�ning branhing algorithms, reusing the built-in notion of hoie points. Con-

straint programming systems like SICStus Prolog [Int00℄ and GNU Prolog [DC00℄

provide libraries for propagation algorithms and allow the programming of explo-

ration algorithms on top of the built-in depth-�rst searh (DFS) by using meta



programming. To ahieve a more modular arhiteture, reent systems moved

away from the logi programming paradigm. The ILOG Solver library for on-

straint programming [ILO00℄ allows us to implement propagation algorithms in

C++ and exploration algorithms by using an objet that enapsulates the state

of searh. The language Claire [CJL99℄ allows for programming exploration al-

gorithms using built-in primitives for state manipulation, and the language Oz

provides a built-in data struture alled spae [Sh97b,Sh00℄ for implementing

exploration algorithms.

At every node in the searh tree, the state of variables and onstraints is the

result of onstraint propagation of the onstraints that were added along the path

from the root to the node. During searh, the nodes are visited in the order given

by the exploration algorithm. In this paper, we address the question on how the

state orresponding to a node is obtained or restored. Di�erent systems urrently

provide di�erent ways of restoring the state orresponding to the target node. All

systems/languages exept Oz are based on a state restoration poliy (SRP) that

reords hanges on the state in a data struture alled trail. The trail is employed

to restore the state to an anestor node of the target. Shulte [Sh97b,Sh00℄

presents a few alternatives based on opying and reomputation of states and

evaluates its ompetitiveness oneptually and experimentally in [Sh99℄. The

best state restoration poliy for a given appliation depends on the amount of

propagation (state hange), the exploration and the branhing. The goal of this

work is to identify software tehniques that enable the employment of di�erent

SRPs in the same system without ompromising the orthogonal development of

other omponents suh as propagation, branhing and exploration. The arhi-

teture allows the user to optimize time and spae onsumption of appliations

by hoosing existing or designing new SRPs in response to appliation-spei�

harateristis. We introdue three novel SRP, namely lazy opying, bath re-

omputation and oarse-grained trailing, and show that for many appliations,

the �rst two onsiderably improve the time and/or spae eÆieny over existing

SRPs. State restoration is an important aspet of tree searh that deserves the

attention of users and onstraint programming systems designers.

We outline in Setion 2 a software arhiteture for onstraint programming

systems that will form the base for further disussion. The omponents are de-

signed and implemented in C++ on the base of the Figaro library for onstraint

programming [HMN99,CHN00,Ng01℄. In Setion 3, we desribe the two SRPs

urrently in use, namely trailing and reomputation. At the end of Setion 3, we

give an overview of the rest of the paper.

2 A Component Design for Searh

In CP(FD), the onstraint store represents a omputational state, hosting �nite-

domain (FD) variables and onstraints. A variable has a domain, whih is the

set of possible values it an take. A onstraint maintains a relation among a

set of variables by eliminating values, whih are in onit with the onstraint,

from variable domains aording to the propagation algorithm. Every time a



Fig. 1 Depth-First Tree Searh
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hange is made to a onstraint store, a propagation engine performs onstraint

propagation until it reahes a �x point, in whih no onstraint an eliminate

any more values. In our framework, we represent a onstraint store by a data

struture alled store [Ng01℄.

Usually, onstraint propagation alone is insuÆient to solve a problem. There-

fore, we need tree searh to �nd a solution. A searh explores the tree in a top-

down fashion. Nodes and branhes build up the searh tree. It is adequate to

view searh in terms of these omponents: branhing, node and exploration. Fig-

ure 1 provides an illustration of tree searh. Cirles represent nodes, while lines

onneting two nodes represent branhes. The numbers inside the nodes give the

order of exploration. This partiular example shows a DFS. For simpliity, we

only onsider binary searh trees.

Program 1 Delaration of Branhing

1 lass Branhing {

2 publi:

3 bool done() onst;

4 bool fail() onst;

5 Branhing* hoose(store* s,int i) onst;

6 };

The branhing desribes the shape of the searh tree. Common branhing al-

gorithms inlude a simple labelling proedure (naive enumeration of variables),

variable ordering (suh as �rst-fail), and domain splitting. For solving sheduling

problems, there is the ranking of tasks on resoure (also alled resoure serializa-

tion). In our setting, branhing oinides with the notion of a hoie point. The

lass Branhing shown in Program 1 has a method hoose (line 5, for onise-

ness, we refer to C++ member funtions as methods) whih adds a onstraint

to the store based on the hoie given and returns the branhing (hoie point)

of the hild node. Branhing also de�nes methods to hek whether it is done

(line 3) or it has failed (line 4).

A node represents a state in the searh tree. The lass Node shown in Pro-

gram 2 ontains a store, a branhing, and pointers to parent and hildren nodes

(line 3-4). The onstrutor (line 7) takes a store and a branhing as argu-

ments. The left and right hildren nodes are reated by alling the method

make left hild and make right hild respetively (line 10-11). Eah time a

hild node is reated, the branhing adds a onstraint to the store. To proeed to



Program 2 Delaration of Node

1 lass Node {

2 proteted:

3 store* s;

4 Branhing* branh;

5 Node* parent,left_hild,right_hild;

6 publi:

7 Node(store* s,Branhing* b);

8 bool isLeaf() onst;

9 bool isFail() onst;

10 Node* make_left_hild();

11 Node* make_right_hild();

12 };

the next level of the searh tree, onstraint propagation must reah a �x point.

Node also has methods to hek if the node is a leaf node (line 8) or a failure

node (line 9).

Figure 2 gives a graphial representation of nodes and branhings. The left

side shows the design of nodes. A tree is linked bi-diretionally, where the par-

ent points to the hildren and vie versa. The right side shows the relation

between nodes and branhings during the reation of hildren nodes. Solid ar-

rows represent pointers, while labelled, dashed arrows represent the respetive

method alls. Calling either make left hild or make right hildmethod re-

ates a hild node, whih, in turn, invokes the method hoose of the urrent node

branhing that returns a branhing for the hild node.

The exploration spei�es the traversal order of the searh tree. DFS is the

most ommon exploration algorithm used in tree searh for onstraint program-

ming . Program 3 shows the implementation of DFS. Funtion DFS takes a node

as an argument and tries to �nd the �rst solution using depth-�rst strategy. It

returns the node ontaining the solution (line 2) or NULL if none is found (line

3). Otherwise, it reursively �nds the solution on the left (line 4-5) and right

(line 6) subtrees.

3 Restoration Poliies

The problem of state restoration ours in systems where a state results from a

sequene of omplex operations, and where the state orresponding to di�erent

Fig. 2 Tree Node and Relation with Branhing
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Program 3 Exploration: Depth First Searh

1 Node* DFS(Node* node) {

2 if (node->isLeaf()) return node;

3 if (node->isFail()) return NULL;

4 Node* result = DFS(node->make_left_hild());

5 if (result != NULL) return result;

6 return DFS(node->make_right_hild());

7 };

(sub)sequenes are requested over time. For example, in distributed systems,

state restoration is used to reover from failure in a network node [NX95℄.

In onstraint-based tree searh, the dominant SRP has been trailing. This

poliy demands to reord the hanges done on the state in a data struture,

alled trail. To go from a node to its parent, the reorded hanges are undone.

The reason for this dominane lies in the historial fat that onstraint program-

ming evolved from logi programming, and trailing is employed in all logi pro-

gramming systems for state restoration. The ombination of the general idea of

trailing with onstraint-programming spei� modi�ations [AB90℄, was deemed

suÆient for onstraint programming.

Shulte [Sh00℄ shows that other SRPs have appealing advantages. Starting

from the idea of opying an entire onstraint store, he introdued several SRPs

that trade spae for time by reomputing the store from a opy made in an

anestor node instead of making a opy at every node [Sh99℄. These SRPs

have the advantage of not requiring the reording of hanges in propagation

algorithms, thereby onsiderably simplifying the design of CP(FD) systems.

In the design presented in Setion 2, the plae where the SRP is determined

is the de�nition of the methods make left hild and make right hild in the

lass Node. These methods need to reate a new node together with its store and

branhing from the information present in the urrent node. This indiates that

we may be able to arrive at di�erent SRPs by providing di�erent implementations

of the Node lass, without a�eting other omponents suh as branhing and

exploration. The next setion shows that it is indeed possible.

By isolating the SRP in a separate omponent that is orthogonal to the

other omponents, the development of new SRPs may be simpli�ed, whih may

inspire the development of new SRPs. Indeed, we will present three new SRPs in

Setions 5, 6, and 7. By having existing and new SRPs available in one system,

we are able to ondut an experimental evaluation of them with \everything else

being equal"; we report the results of this evaluation in Setion 8. In that setion,

we also highlight the possibility of dynamially hanging the SRP depending on

the progress of the searh, using a speial-ase example.

4 Restoration Components

The previous setion showed that the Node lass is the omponent that deides

the SRP. The aim, therefore, is to design di�erent types of nodes for di�erent

SRPs, namely, CopyingNode for opying and ReomputationNode for reompu-



tation. All these nodes inherit from the base lass Node. Hene, we speify the

restoration omponent of searh by passing the orret node type as an argu-

ment.

The idea for CopyingNode and ReomputationNode is presented in [Sh97a℄

and it allows the Oz Explorer to have opying and reomputation as SRP for

DFS exploration. We separate the SRP aspet of nodes from the exploration

aspet by implementing SRP-spei� extensions of the Node base lass.

The Node base lass is similar to the one introdued in Program 2 exept that

it does not ontain a store anymore (i. e. , remove line 3). Rather, the deision

on whether to keep a store and on the type of store to keep is to be implemented

in the sublasses.

The opying SRP requires eah node of the searh tree to keep a opy of the

store. Hene, the lass CopyingNode ontains an additional attribute to keep the

opy. As the store provides a method lone for reating a opy of itself, when a

CopyingNode explores and reates a hild node, it keeps a opy of the store and

passes the other opy to the hild node.

The reomputation SRP keeps stores for only some nodes, and reomputes

the stores of other nodes from their anestors. A parameter, maximum reom-

putation distane (MRD) of n, means that a opy of a store is kept at every

n-th level of the tree. Figure 3 shows the di�erene between opying and reom-

putation with MRD of 2. Copies of the stores are kept only in shaded nodes.

Copying an be viewed as reomputation with MRD of 1.

For ReomputationNode, we introdue four attributes: (1) a pointer to store;

(2) an integer ounter d to hek if we have reahed the n-th level of the tree;

(3) an integer hoie, whih indiates if the node is the �rst or the seond hild

of its parent.; (4) and a boolean ag opy to indiate the presene of a opy of a

store. If d reahes the n-th level limit when reating a hild node, a opy of the

store is kept and opy is set to true. During the exploration of a node where

reomputation of the store is needed (i. e. , no opy of store is kept), the method

reompute shown in Program 4 reursively reomputes for the store from the

anestors, by ommitting eah parent's store to the alternative given by hoie

(line 7).

Adaptive reomputation [Sh99℄ improves reomputation performane by

keeping only a opy of the store at a depth equidistant from the depth of an

existing opy (or root, if none exists) and the depth of the last-enountered fail-

ure. It is straightforward to implement this by introduing another argument to

the method reompute whih ounts the length of the reomputation path. The

additional opy of the store is made when the ounter reahes half the length.

Fig. 3 Copying vs. Reomputation
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Program 4 Reomputing Stores in Searh Tree

1 Store* ReomputationNode::reompute(int i) {

2 Store* rs;

3 if (opy)

4 rs = s->lone();

5 else

6 rs = parent->reompute(hoie);

7 branh->hoose(rs,i);

8 return rs;

9 };

During exploration, it is often lear that the store of a node is not needed

any longer and an be safely passed to a hild. For example in the ase of DFS,

we passed the store to the seond hild when the �rst hild's subtree is fully

explored. For suh ases, nodes provide methods reate last right hild and

reate last left hild. When a opy-holding nodeN is asked for its last hild

node A, the node N will pass its store to the hild node A, whih then beomes a

opy-holding node. This optimization|desribed in [Sh00℄ as Last Alternative

Optimization|saves spae. It optimizes to do the reomputation step N ! A

only one.

Best solution searh (for solving optimization problem) suh as branh-and-

bound requires dynami addition of onstraint during searh to onstrain the

next solution to be better than the urrent best solution. The Node lass has a

method

State post_onstraint(BinaryFuntion* BF,store* s);

to add this onstraint to the store inside a node. This addition is similar to

the injetion of an omputation in an Oz spae [Sh97b℄. The method takes in

a binary funtion to enfore the order, and the best solution store. It returns

FAIL if enforing the order auses failure. However, are should be taken during

reomputation, where every node in the tree may not ontain a opy of the store.

For that, we need to introdue extra attributes to keep the onstraints, whih

will be added as reomputation is performed.

5 Lazy Copying

Lazy opying is essentially a opy-on-write tehnique, whih maintains multi-

ple referenes to an objet. A opy is made only when we write to the objet.

Some operating systems use this tehnique for managing proesses sharing the

same virtual memory [MBKQ96℄. In ACE [PGH95℄, a parallel implementation

of Prolog, an inremental opying strategy redues the amount of information

transferred during its share operation. In Or-parallelism, sharing is used to pass

work from one or-agent to another, and is similar to the lazy opying strategy.

In other CP(FD) systems, onstraints have diret referenes (pointers) to

the variables they use and/or vie versa. In suh systems, lazy opying poses the

problem that every time an objet (say O) is written to beome N , every objet



Fig. 4 Comparison between Copying and Lazy Copying
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that is pointing to O would need to be opied, too, suh that eah new opy

points to N while the old opy ontinues to point to O. This proess needs to be

exeuted reursively, until opies would have been made for the entire onneted

sub-graph of the onstraints and the variables. This problem is avoided through

relative addressing [Ng01℄, where every referene to an objet is an address,

alled ID, in a vetor of plaeholders.

In our ontext, onstraint and variable objets enjoy relative addressing.

We introdue lazy opying stores, whih may share individual variable and on-

straint objets. When we make a opy of the store, the vetors of onstraints and

variables point to the original objets. Figure 4 shows the di�erenes between

opying and lazy opying.

A requirement for lazy opying is that we must keep a referene ount to the

objets. After we lazily opy a store, the onstraints' and variables' referene

ounts inrement by 1. During a write operation, if two or more stores share this

objet, we reate a opy of the objet, assign a referene ount of 1 to the new

objet and derement the referene ount by 1 for the old objet.

Coneptually, a lazy opying store behaves like a opying store exept for

its internal implementation, whih onsists of referene ounts. The implemen-

tation of LazyCopyNode is straightforward. It is just the same as CopyingNode

by replaing store with a lazy opying store desribed above.

6 Coarse-grained Trailing

Coarse-grained trailing is an approximation of trailing as implemented in most

CP(FD) systems. Instead of trailing updates of memory loations, we trail the

omplete variable objet or onstraint objet when hanges our. As mentioned

in setion 5, our arhiteture provides a relative addressing sheme and allows to

make opies of variables and onstraints, whih make the implementation simple.

Coarse-grained trailing only keeps a single store for the entire exploration.

Figure 5 shows its implementation. A half-shaded node represents a trailing

node and arrows represent pointers. A trailing node holds a pointer to a ommon

shared trail. The shared trail ontains a trailing store and a pointer to the urrent

node where the store is de�ned. A trailing store is needed beause of the strong

dependeny between the store and the atual trail.



Fig. 5 Coarse-grained Trailing
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Program 5 Shared Trail and Trailing Node

0 lass TrailingNode : publi Node {

1 proteted:

2 int i,mark; SharedTrail* trail;

3 publi: // methods delaration...

4 };

5

6 lass SharedTrail {

7 private:

8 TrailingStore* ts; TrailingNode* urrent;

9 publi:

10 SharedTrail(Store* s,TrailingNode* tn);

11 list<TrailingNode*> omputePath(TrailingNode* tn);

12 void jump(TrailingNode* tn);

13 };

Program 5 shows the delaration of the trailing node and shared trail. The

lass TrailingNode implements the oarse-grained trailing SRP. It ontains an

integer mark, whih represents the trail marker for terminating baktraking

(line 2). This orresponds to the time stamping tehnique [AB90℄. The integer

i (line 2) indiates whether the node is the �rst or seond hild of its parent.

The onstrutor of the lass SharedTrail takes a store and a pointer to the root

node as argument (line 10). When exploring a node D, whih is not pointed to

by the urrent node, the method jump (line 12) hanges the trailing store from

the urrent node to the node D. First, jump omputes the path leading to the

ommon anestor with method omputePath (line 11), then baktraks to the

ommon anestor, and �nally desends to node D by reomputation.

The implementations of trailing and lazy opying store are losely related,

sine both reate a opy of the hanged objet before a state modi�ation ours.

Comparing to trailing, the oarse granularity imposes an overhead, whih will be

signi�ant as onstraints beome omplex (global onstraints). If the onstraints

ontain large stateful data strutures, trailing may reord inremental hanges

as opposed to opying the whole data struture on the trail as it is done by

oarse-grained trailing.



7 Bath Reomputation

Reomputation performs a sequene of onstraint additions and �x point om-

putations. At earlier �x point omputations, the impliit knowledge of later

onstraints is not exploited. This means that work is done unneessarily, sine re-

omputation will never enounter failure. Thus, reomputation an be improved

by aumulating the onstraints to be added along the path and invoke the

propagation engine for omputing the �x point only one. Sine reomputation

onstraints are added all at one, we all this tehnique bath reomputation.

Bath reomputation is also appliable to adaptive reomputation, whih we all

bath adaptive reomputation.

The implementation is straightforward. First, branhing should provide a

faility to return the onstraint that is to be added during reomputation. A

faility is needed to aumulate the onstraints to the propagation engine. Our

propagation queue already served this purpose. Lastly, we invoke the propaga-

tion of store expliitly and only one. A ondition for the orretness of bath

reomputation is the monotoniity of onstraints, meaning that di�erent orders

of onstraint propagation must result in the same �x point.

8 Experiments

This setion ompares and analyses the runtime and memory requirement of

the di�erent SRPs. The setup of the platform is a PC with 400 Mhz Pentium

II proessor, 256MB main memory and 512MB swap memory, running Linux

(RedHat 6.0 Kernel 2.2.17-14). All experiments are onduted using the urrent

development version of the Figaro system [HMN99,CHN00,Ng01℄, a C++ library

for onstraint programming.

Eah SRP is denoted with the following symbols: CP - Copying, TR - Coarse-

grained Trailing, LC - Lazy opying, RE - Reomputation, AR - Adaptive reom-

putation, BR - Bath Reomputation, BAR - Bath Adaptive Reomputation.

To make omparison simple, the MRD for RE, AR, BR and BAR is omput-

ed using the formula: MRD = ddepth � 5e where depth is depth of the searh

tree. All benhmark timings (Time) are the average of 5 runs measured in se-

onds, and have been taken as wall time. The oeÆient of variation is less than

5%. Memory requirements are measured in terms of maximum memory usage

(Max) in kilobytes (KB). It refers to the memory used by the C++ runtime

system rather than the atual memory usage beause C++ alloates memory in

hunks.

The set of benhmark problems are: The Alpha rypto-arithmeti puzzle,

the Knights tour problem on an 18� 18 hess board, the Magi Square puzzle

of size 6, a round robin tournament sheduling problem with 7 teams and a

resoure onstraint that requires fair distribution over ourts (Larry), aligning

for a Photo, a Hamiltonian path problem with 20 nodes, the ABZ6 Job shop

sheduling benhmark, the Bridge sheduling benhmark with side onstraints,

and 100-S-Queens puzzle that uses three distint (with o�set) onstraints.



Table 1 Charateristis of Example Programs

example searh hoie fail soln depth var onstr

Alpha all/naive 7435 7435 1 50 26 21

Knights one/naive 266 12 1 265 7500 11205

Magi Square one/split 46879 46829 1 72 37 15

Larry one/naive 389 371 1 40 678 1183

Photo best/naive 23911 23906 6 34 95 53

Hamilton one/naive 7150 7145 1 66 288 195

ABZ6 best/rank 2409 2395 15 91 102 120

Bridge best/rank 1268 1261 8 78 44 88

100-S-Queen one/� 115 22 1 97 100 3

Table 1 lists the harateristis of the problems. These benhmarks provide

the evaluation of the di�erent SRPs based on the following riteria: problem

size, amount of propagation, searh tree depth, and number of failures. Our

omparison of the di�erent SRPs are based on \everything else being equal",

meaning all other elements suh as store, branhing, exploration, et. are kept

unhange exept the SRP.

Sine di�erent omponents of a CP(FD) system is dependent on one anoth-

er, the performane may vary. For instane, the hoie of FD representation has

a signi�ant e�et on the performane. For these experiments, the FD repre-

sentation is a lists of interval. Some problems may perform di�erently when a

bit vetor representation is used. Another remark is that the speed of opying

between our system and Mozart is di�erent for the following reasons: di�er-

ent FD representations, amount of data being opied, variable wake up sheme

during propagation, and memory management (Mozart uses automati garbage

olletion). Therefore, the result does not math exatly with Shulte [Sh99℄.

Table 2 gives the runtime and memory performane of opying. While Fig-

ure 6 shows the omparison of oarse-grained trailing and reomputation. The

numbers are obtained by dividing eah SRP's numbers by opying's numbers,

below 1 means better performane, while above 1 means worse. This group of

omparison on�rms the following result of Shulte [Sh99℄. Copying su�ers from

the problem of memory swapping for large problems with deep searh trees suh

as Knights. Reomputation improves opying by trading spae for time. Adap-

tive reomputation minimize the penalty in runtime of reomputation by using

more spae.

Coarse-grained trailing performs omparatively well to opying and other

reomputation shemes. The memory peaks in Photo is probably due to STL

library dynami array memory alloation module whih grows the array size by

Table 2 Runtime and Memory Performane of Copying

Example Time Max Example Time Max

Alpha 19.200 1956 Hamilton 50.514 2176

Knights 22.086 330352 ABZ6 25.004 4936

Magi Square 160.360 2632 Bridge(10x) 8.582 2888

Larry 5.844 5712 100-S-Queen(10x) 8.444 7816

Photo 35.086 1912



Fig. 6 Time and Memory of Coarse-grained Trailing vs. Reomputation
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reursive doubling. Coarse-grained trailing provides us with an approximation

for omparing the performane of trailing and reomputation.

Lazy opying aims at ombining the advantages of both oarse-grained trail-

ing and opying. Figure 7 shows its performane against both SRPs, the numbers

are obtained by dividing lazy opying's numbers by opying's and oarse-grained

trailing's numbers. Over the benhmark problems, in the worst ase, lazy opying

performs the same as opying, while for the ases with small amount of propaga-

tion, lazy opying an save memory and even time. Unfortunately, lazy opying

still performs badly for large problems with deep searh trees suh as Knights,

when ompared to oarse-grained trailing. This is due to the extra aounting

data we keep for lazy opying. However, lazy opying improves the runtime over

oarse-grained trailing for problems like Magi Square, Larry and Bridge where

there are many failure nodes. This is beause lazy opying an jump diretly

from one node to another upon baktraking, while oarse-grained trailing has

to arry out the extra operation of undoing the hanges.

Bath reomputation aims at improving the runtime performane of reom-

putation. The memory requirement is the same as reomputation. Figure 8

shows the runtime performane of bath reomputation versus reomputation

and bath adaptive reomputation versus adaptive reomputation. Bath reom-

putation improves the runtime of reomputation for all ases. However, bath

adaptive reomputation improve only a little over adaptive reomputation ex-

Fig. 7 Performane of Lazy Copying vs. Copying and Coarse-grained Trailing
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ept for Larry. This is due to the design of adaptive reomputation whih makes

a opy in the middle when a failure is enountered, whih in turn, redues the

reomputation distane that bath reomputation an take advantage of.

By enapsulating SRP into tree nodes, we are able to ome up with a new

sheme alled swithing in whih we ould apply di�erent SRPs in di�erent

parts of the searh tree. This sheme is useful when di�erent parts of the searh

tree exhibit distint harateristis. One speial-ase example is the problem of

�nding the �rst solution for the 510-S-Queen problem. The searh tree of this

problem have a straight path from the root node to a node of depth 499 where

there is a small subtree with some failure nodes and the solution. Therefore,

we an have reomputation before depth 499, and oarse-grained trailing after

depth 499. The implementation is straightforward, when the exploration reahes

depth 499, we will reate a oarse-grained trailing node instead of reomputation,

beause the SRP of a subtree is ditated by its root node. Figure 9 shows the

runtime and memory improvement over other SRPs. Its is better than all other

SRPs for this problem.

Comparison with other onstraint programming systems are needed in order

to gauge the e�et of the omponent arhiteture and the overhead for relative

addressing. Initial results are reported in [Ng01℄.

9 Conlusion

We developed an arhiteture that allows us to isolate the state restoration poliy

(SRP) from other omponents of the system. Its main features are:

Relative addressing: Variable and onstraint objets are referred to by IDs,

whih are mapped to atual pointers through store-spei� vetors.

Branhing objets: Searh trees are de�ned by branhing objets, whih are

reursive hoie points.

Exploration algorithms: Exploration algorithms are de�ned in terms of a

small number of operations on nodes.

SRPs are represented by di�erent extensions of the base lass Node. Apart from

opying, reomputation, we introdued three new SRPs.

Fig. 8 Time of Bath Reomputation vs. Reomputation
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Fig. 9 Time and Memory of Swithing vs. other SRPs
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Lazy opying uses a opy-on-write tehnique for variables and onstraints and

improves over or is equally good as opying on all benhmarks. Lazy opying

bene�ts from relative addressing.

Coarse-grained trailing is a form of trailing that opies the state of variables

and onstraints, as opposed to inremental hanges, onto the trail.

Bath reomputation modi�es reomputation by installing all onstraints to

be added to the anestor at one and improves over Shulte's reomputation

for all benhmarks.

The presented arhiteture allows the user to optimize time and spae onsump-

tion of appliations by hoosing existing or designing new SRPs in response to

appliation-spei� harateristis. We highlighted the exibility of the arhi-

teture using an example of a problem-spei� SRP, where the state restoration

poliy is swithed dynamially during searh. The SRP omponents are designed

and implemented in C++ on the base of the Figaro library for onstraint pro-

gramming [HMN99,CHN00,Ng01℄, and evaluated on a set of benhmarks ranging

from puzzles to realisti sheduling and timetabling problems. State restoration

is an important aspet of tree searh that deserves the attention of users and

onstraint programming systems designers.
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