
A Compositional Framework for Searh

Chiu Wo Choi

1

, Martin Henz

1

, Ka Boon Ng

2

1

Shool of Computing, National University Of Singapore, Singapore

fhoihiu,henzg�omp.nus.edu.sg

2

Honeywell Singapore Laboratory

kevin.ng�honeywell.om

Abstrat. Reent developments in onstraint programming systems

show an inreasing emphasis on providing abstrations for on�guring

searh. Existing frameworks for tree searh o�er ustomized exploration,

branhing and state restoration poliies. We argue, however, that most

of these frameworks do not provide adequate abstrations for more om-

plex searh senarios, where di�erent searh tehniques are used in dif-

ferent phases of the searh, where parts of searh trees are systemati-

ally disarded, or where tree searh is embedded in a ontext of loal

optimization. In this paper, we propose to desribe omplex searh se-

narios using a ompositional framework, realized in the Figaro library,

with an abstration alled engine. We demonstrate its expressivity by

re-formulating two omplex searh senarios from the literature.

1 Introdution

Finite domain onstraint programming (CP(FD)) systems provide software ar-

hitetures for the integration of algorithms for propagation and tree searh to

solve ombinatorial searh problems. Reent researh in onstraint program-

ming (CP) systems is paying inreasing attention to the software design in

order to math appliation-spei� requirements. One important aspet is to

provide abstrations for on�guring searh. CP systems like ILOG [Per99℄ and

OPL [VPP00℄ desribe tree searh in terms of searh goals, whih are inherited

from logi programming. The language Oz allows programming of tree searh

algorithms using the built-in data struture alled spaes [Sh97,Sh00℄. SAL-

SA [LC98℄ is a language designed for speifying searh algorithms using the

onept of hoie points.

1

The Figaro library provides a modular arhitetures

for ustomizing the state restoration poliies, in addition to the branhing and

exploration of tree searh [HMN99,CHN00,Ng01,CHN01℄.

Among the existing frameworks for tree searh, we observe that abstrations

are limited to ustomized exploration, branhing and state restoration poliies.

We argue, however, that as the omplexity of appliation-spei� searh algo-

rithms inreases, it beomes more diÆult to desribe the orresponding searh

senarios. Typial omplex searh senarios inlude dividing the searh into mul-

tiple phases where eah phase employs a di�erent searh tehnique; systematial-

ly disarding parts of searh trees; and embedding tree searh in a ontext of loal

1

SALSA also supports loal searh, but this paper only fouses on tree searh



optimization. The existing frameworks fous on low-level abstration details and

thus make it tedious for programmers to apply the right searh algorithms and

tehniques. Furthermore, programming low-level details adds additional om-

plexity to the ode and is usually an error-prone proess.

Modern engineering pratie allows engineers to build omplex systems by

omposing small and well-de�ned units. Suh a ompositional framework leads

to a better understanding of the desired funtionality and struture of the overall

system. Moreover, it enourages reuse, leading to both a faster development yle

and a more robust system.

Searh an be thought of as suh a omplex system, whih an be deom-

posed into smaller funtional units alled engines. We propose a ompositional

framework for desribing omplex searh senarios using engines. Eah engine

performs a single funtion (e.g. , searh, print), and engines an be omposed

together to form more omplex searh senarios. We are designing and imple-

menting the framework using Figaro [HMN99,CHN00,Ng01,CHN01℄, a C++ CP

library, further pursuing its objetive of high reusability and rapid prototyping

for searh omponents. Notie that we design our framework within the objet-

oriented paradigm rather than the logi paradigm.

We present the ompositional framework in Setion 2. Setions 3 and 4 disuss

the details of engines. Setions 5 and 6 disuss the operators that we apply to

engines. The �rst ase study (Setion 7) disusses engines for embedding tree

searh in the ontext of loal optimization. The seond ase study (Setion 8)

on the three-phase approah of round-robin tournament sheduling demonstrates

the pratiality of our framework. Setion 9 ompares the approah with existing

frameworks.

2 Framework

The framework identi�es di�erent engines for desribing searh, and how they

interat with eah other. Eah engine should be a oherent funtional unit and

loosely oupled with one another. Spei� design requirements of the framework

are as follows:

1. a standard interfae for ombining engines to form more omplex engines,

2. a mehanism to expliitly ontrol the exeution of engines for oherent inte-

gration,

3. support for engines to maintain stateful information as the onsequene of

expliit ontrol,

4. orthogonal onepts to provide high reusability, and

5. support for extension to searh senarios other than simple tree searh.

The BNF grammar in Figure 1 gives an overview of the design. Rule 1 is

a omposition rule that spei�es that two engines are ombined to from a new

engine using the ! operator. Engines ommuniate with eah other using on-

straint stores. This ful�lls our design requirement (1). To ahieve requirement

(2) and (3), we implement an engine objet using a demand-driven approah for



Fig. 1 The Syntax of Engine

henginei ::= henginei ! henginei (Rule 1)

j ModelEngine(hmodeli) (Rule 2)

j PrintEngine(hmodeli) (Rule 3)

j TreeSearhEngine(...) (Rule 4)

j First(henginei) (Rule 5)

j Last(henginei) (Rule 6)

produing output. The demand-driven approah will be disussed in the next

setion. Rule 2, 3, and 4 speify how to build primitive engines ModelEngine,

PrintEngine, and TreeSearhEngine. A TreeSearhEngine (details in Setion 4) is

omposed of orthogonal searh omponents, whih design ful�lls requirement (4).

Rule 5 and 6 speify solution �ltering operations over engine: First and Last. The

ability to de�ne with new engines using our objet-oriented framework ahieves

requirement (5). We disuss the details of engines in the subsequent setions.

The simple example below shows how to use our framework for solving the

N-Queen puzzle:

ModelEngine(N-Queen) ! TreeSearhEngine(...) ! PrintEngine(N-Queen)

The framework divides the problem solving proess into three phases. In the

�rst phase (line 1), ModelEngine generates a onstraint store that ontains the

N-Queen problem model. In the seond phase (line 2), TreeSearhEngine takes

in the onstraint store and looks for all the possible solutions using tree searh.

In the third phase (line 3), PrintEngine transforms the solutions obtained from

the tree searh engine to the desired output format.

3 Engines

In CP(FD), a onstraint store (or simply store) represents a omputational state,

hosting �nite-domain variables and onstraints for performing onstraint propa-

gation to eliminate inonsistent values. Refer to [Ng01℄ for a detailed disussion

of stores.

Engine is the basi unit of abstration in our framework. The basi operation

of an engine is to manipulate or transform stores. We an view engine as a

mahinery that takes in a store for proessing; and produes a stream of stores

as output. Output of stores is demand-driven, meaning that the next store to

output is only omputed upon request from a subsequent engine.

Fig. 2 The Design of an Engine

Engine
init(store) ...

next solution()



Fig. 3 The Class Hierarhy of Engines

Abstract Primitive Engine

Model Engine Tree Search Engine

First Operator

Abstract Engine

Print Engine

Last Operator

Composition Operator

Abstract Composite Engine

The two main funtions of engines are init and next solution. Figure 2 shows

the design of an engine. The init funtion aepts a store as argument and pre-

pares the engine for generating the output stream of stores. The next solution

funtion requests the next output store in the stream, realizing the demand-

driven approah. In the engine ontext, solutions of the engine are represented

by stores. For the disussions of engines, we use the terms solution and store

interhangeably.

The lass hierarhy of engines is shown in Figure 3. Engines are instanes

of an abstrat lass (Program 1). There are two types of engines: primitive

engines and omposite engines, also implemented as an abstrat lass. Primitive

engines are built from basi orthogonal omponents. Primitive engines inlude

ModelEngine, PrintEngine, and TreeSearhEngine. Composite engines are build

from one or more other engines. We an view omposite engines as wrappers

around engines to form new engines. They inlude �ltering operators (First and

Last), and the omposition operator!. Notie that the operators are themselves

engines, so that the resulting type after applying the operator is still engine, and

an be further manipulated (refer to the BNF grammar in Figure 1).

ModelEngine is a trivial engine, whose funtion is to return a store ontain-

ing the problem desription. ModelEngine is the omponent that ontains the

desription of the problem to be solved. It takes model as an argument and

performs no operation during init. When there is a request for next solution, it

returns a store imposed with the problem model.

PrintEngine is a trivial engine, whose funtion is to transform solutions to

the desired output format. PrintEngine aepts a model as an argument. During

init, it makes a funtion all to model to print the solution.

Program 1 C++ Abstrat Class Delaration of Engine

1 lass Engine {

2 publi:

3 virtual void init(store*) = 0;

4 virtual store* next_solution() = 0;

5 };



Program 2 Atual C++ Implementation of N-Queen

1 Compose(Compose(new ModelEngine(N_Queen),

2 new TreeSearhEngine(N_Queen->first_fail(),

3 new Copying_Node(),

4 new Depth_First())),

5 new PrintEngine(N_Queen));

4 Tree Searh Engines

Tree searh is a searh algorithm for �nding all solutions of a problem. In

CP(FD), the solutions reside on the leaves of the searh tree, whih together

form the output stream of stores in the engine ontext. The primitive engine

TreeSearhEngine for performs tree searh.

TreeSearhEngine is omposed of three orthogonal omponents: branhing,

node, and exploration as disussed in [CHN01℄. Branhing desribes the shape of

the searh tree. Common branhing algorithms inlude naive enumeration and

�rst-fail. A (searh tree) node enapsulates the store and branhing, and de�nes

the state restoration poliies suh as opying and trailing. Exploration ontrols

the order of traversal of the searh tree.

Program 2 shows the atual C++ implementation of tree searh for solving

the N-Queen puzzle. This orresponded to the high level syntax we gave in

Setion 2. Compose is the pre�x funtion for implementing the ! operator due

to the limitation of C++ operator overloading. For this example, Tree Searh

Engine takes in �rst-fail branhing, opying state restoration and depth �rst

exploration as omponents.

In our framework, exploration needs to adopt a demand-driven approah of

traversing the searh tree to math the design of the engine. Thus, an implemen-

tation requires the exploration to expliitly maintain a state during the ourse

of searh. The funtion one step requests the exploration to perform a single step

of traversal. Refer to [CHN00℄ for implementation details.

Figure 4 shows the design of a TreeSearhEngine. It takes a branhing, a

node, and an exploration as arguments. During init, it uses branhing to reate

a root node to initialize exploration. When there is a request for next solution,

Fig. 4 The Design of TreeSearhEngine

s b

s b

s b

s b

s b

s b

store branching

node:

next solution()

init(store)

exploration:
 = one step()



it repeatedly alls one step on the exploration until it �nds the next leaf node.

Then, it returns the store kept within the leaf node as a solution.

The onept of limit in tree searh [Per99,VPP00℄ is a useful faility to ontrol

the amount of tree searh we want to perform. In our arhiteture, it is easy to

extend the TreeSearhEngine to take in another omponent alled limit. Within

one step, we then hek the urrent exploring node against the limit to verify if

the searh must be terminated.

5 Filtering Operator

The default behavior of an engine is to output all solutions. This behavior is

not desirable, when only one partiular solution is needed. The unary �ltering

operators at as a wrapper to ontrol the out-ow of solutions, and thus to

systematially disard parts of the overall searh tree. Here, we disuss two

ommon �ltering operators: First and Last. It is straightforward to apply the

idea to other �ltering operators.

The unary First operator (left side of Figure 5) is applied to an engine and

yields a new engine, whih keeps a ag to determine if it has already given out

a solution. When the new engine reeives a request for next solution, and if the

ag is true, it indiates that there is no further solution (in our implementation

by returning the null pointer). Otherwise, it will return the �rst solution from

the engine. The example:

First(Tree Searh Engine(naive,Copying Node,Depth-First))

shows a typial senario where we are only interested in the �rst solution of

depth-�rst searh.

The unary Last operator (right side of Figure 5) yields a new engine, whih

has a bu�er to keep trak of the last solution oming out from the argument

engine. When the new engine reeives a request for next solution, it exhausts all

solutions of the argument engine while keeping trak of the latest solution in

its bu�er. When the argument engine has exhausted its searh spae, the new

engine returns the bu�ered solution. The example:

Last(Tree Searh Engine(naive,Copying Node,Branh-and-Bound))

shows a typial senario of solving an optimization problem where we are only

Fig. 5 The Design of Filtering Operator

next
solution() ...

next
solution()init(store) Engine

First Operator

Engine
init(store)

Last Operator



Fig. 6 The E�et of Composition Operator

Engine

init(next
solution())

(a) init(store) Engine
...

init(next
solution())

(b) init(store) Engine Engine

Engine

Engine

...

...

...

...

next solution()

next solution()

interested in the last solution (i. e. , the optimal solution) of branh-and-bound

searh.

6 Composition Operator

The previous two setions show that a unary engine operators an yield in-

teresting funtionality. However, in order to build more omplex engines, we

must provide a way for ombining engines together, whih is the main feature

of our ompositional framework. The ! operator, also alled Composition op-

erator, provides a standard interfae to plug engines together. We an view

the ! operator as an engine to diret the ow of solution streams between

two engines. As a onsequene, the ! operator is assoiative, meaning that

(A! B)! C � A! (B ! C).

TheComposition operator takes two engines as argument to form a omposite

engine. During init, the omposite engine initializes the �rst engine. When there

is a request for next solution, if the seond engine is not initialized, it will take in

the next solution from the �rst engine and initialize the seond engine. Then, it

will return the next solution from the seond engine. If the seond engine has no

more solutions, it will request the next solution from the �rst engine, re-initialize

the seond engine, and the yle will repeat until the �rst engine has no more

solution.

Figure 6 shows the e�et of the Composition operator. Part (a) shows the

e�et of omposing two engines, when the �rst engine an only generate a single

solution. The result is a sequential proessing of stores from the �rst engine to

the seond engine. When the �rst engine an generate more than one solution

as shown in Part (b), the Composition operator enumerates all possible solu-

tions from the �rst engine and feeds them into the seond engine, eah time

re-initializing it with a di�erent store.

The following example demonstrates how to divide a single tree searh into

two phases, with eah phase employing a di�erent tree searh tehnique:



1 ModelEngine(model) !

2 First(TreeSearhEngine(Naive,CopyingNode,DFS) !

3 TreeSearhEngine(FirstFail,TrailingNode,LDS)) !

4 PrintEngine(model)

The searh tree is divided into two parts, upper and lower. The upper part

(line 2) performs depth-�rst searh (DFS) using naive enumeration with opy-

ing, while the lower part (line 3) performs limited-disrepany searh (LDS)

using �rst-fail with trailing.

7 Embedding Tree Searh for Loal Optimization

Tree searh is useful beyond the usual role as a omplete searh algorithm.

In [NP98℄, an approximation algorithm is presented based on tree searh using

ILOG SCHEDULER, whose results exhibit a performane that is ompetitive

with other loal searh algorithms for solving the job shop sheduling problem

(JSSP). The key idea of the approximation algorithm is embedding tree searh

inside a loop to perform loal optimization. During eah iteration, the algorithm

randomly keeps parts of the best solution before restarting the tree searh. This

setion shows that it makes sense to introdue new engines and omponents to

desribe this kind of algorithm in our framework.

We introdue two new engines: the RelaxEngine and Iteration operator, and

give their BNF grammar in Figure 7. The RelaxEngine (Rule 7) takes a model

as argument and uses it to ompute the parts of the best solution to keep for the

next iteration of tree searh. The Iteration operator (Rule 8) takes a ontroller

and an engine as arguments for performing the iteration proess. The ontroller

represents a termination ondition, while the engine de�nes the ation to be

performed in eah iteration. We propose the generi Iteration operator as a

means to ompose engines into a loop.

The design of the Iteration engine is depited in Figure 8. The init opera-

tion initializes the ontroller. The ontroller holds a store in its bu�er. When

the iteration engine reeives a request for next solution, and if its engine is not

initialized, the engine is initialized with the store in the bu�er. The iteration en-

gine then retrieves the next solution from its engine, updates the ontroller and

returns the solution. If the engine has no more solution, it heks the ontroller's

stopping ondition. If the ondition is not satis�ed, the iteration engine repeats

the proess by re-initializing the engine with the bu�ered store.

The RelaxEngine is a primitive engine used to keep the parts of the best

solution. The design of the RelaxEngine is simple. Upon init, it keeps the best

Fig. 7 The Syntax of Iterative Relaxation

henginei ::= RelaxEngine(hmodeli) (Rule 7)

j Iteration(hontrolleri,henginei) (Rule 8)



Fig. 8 The Design of Iteration Operator

buffer

Engine

. . .init(buffer)

update(next solution())

.

..

next solution()

Controller
init(store)

solution found. When there is a request for next solution, it returns a store by

keeping parts of the best solution using ertain heuristis.

The following example shows how to implement the approximation algorithm

mentioned earlier, using our framework with the newly introdued engines:

1 ModelEngine(JSSP) !

2 First(TreeSearhEngine(...) !

3 Last(Iteration(Controller,(RelaxEngine(JSSP) !

4 First(TreeSearhEngine(...))))) !

5 PrintEngine(JSSP)

The proess starts by requesting next solution from this omposite engine. The

sequene of requests are asaded to the ModelEngine (line 1), whih passes the

store ontaining the job shop sheduling model to the TreeSearhEngine (line 2)

to look for the �rst feasible solution. Then, the feasible solution is passed to the

omposite engine (lines 3-4). The omposite engine uses the Iteration operator

to perform loal optimization until the ontroller stopping ondition is met. The

loal optimization is made up of a RelaxEngine that keeps random parts of the

best solution and a TreeSearhEngine that looks for a better solution. The best

solution is then passed to PrintEngine (line 5) for appropriate display.

8 Round Robin Tournament Sheduling

The literature on planning of intermural round robin sports tournaments

[Cai77,dW88,Sh92℄ generally agrees on a deomposition of the sheduling pro-

ess into three phases, namely pattern generation, pattern set generation and

timetable generation. Reently, onstraint programming has been applied to all

three phases [Hen01℄ and ahieved a signi�ant improvement over integer pro-

gramming on a diÆult benhmark problem [NT98℄.

The �rst phase onsists of generating all possible patterns, eah of whih

indiate a possible sequene in whih a team an play home or away in the

round robin. The seond phase onsists of generating feasible sets of patterns,

and the third phase onsists of assigning opponent teams to time slots in the

timetable, whih �nally leads to the desired round robin shedule.



This proess an be ast in our ompositional framework for searh as follows:

1 ModelEngine(PatternSet(ModelEngine(Round-Robin) !

2 TreeSearhEngine(...))) !

3 TreeSearhEngine(Naive,CopyingNode,DFS) !

4 TreeSearhEngine(FirstFail,CopyingNode,LDS) !

5 PrintEngine(...)

The overall model is generated by using an auxiliary engine (lines 1-2) whih

generates all patterns. The auxiliary engine represents the �rst phase of the so-

lution proess. The resulting patterns are used by the model engine to generate

onstraints for pattern sets. The seond and third phases are represented by

the engines in lines 3 and 4. Here, naive enumeration is used for pattern set

generation and �rst-fail for the timetable generation.

9 Comparison with Related Works

This work relates losely to SALSA, a language for searh algorithms [LC98℄,

and the searh part of OPL [Per99,VPP00℄.

The key behind SALSA is that searh is essentially a transition from one state

to another based on the hoie made. By following this priniple, SALSA main

abstration is the hoie point. Choie points an be ombined together to form

a searh algorithm. To provide for branh-and-bound optimization, there are

ways to ombine the hoie points with a funtion evaluation. By using a hoie

point abstration, it makes it easy for SALSA to desribe both loal and global

(tree) searh. Unfortunately, as pointed out in [Per99℄, some searh exploration

like LDS requires an unnatural implementation. The key abstration presented

in this paper is an engine, whih enapsulates not only the branhing algorithm,

but also the state restoration poliy and the exploration algorithm. This leads

to a more exible way of omposing di�erent searh phases. Engines enapsulate

the internal aspets of branhing, restoration and exploration, and thus allow the

software designer to onentrate on the maro view, the omposition of engines

to form the overall solution. We hope that this information hiding leads to a

more eÆient way to design new innovative onstraint-based searh tehniques.

The searh part in OPL is similar to Perron's searh proedures. The key idea

in this ase is the searh goals. Beside goals, there are evaluators, seletors and

limits. Evaluators provide the searh exploration and seletors serve as �lters.

Goals are similar to engines, but do not enapsulate the state restoration poliy.

An important harateristi is that in our demand-driven model, an engine does

not need to ollet all the possible solutions before passing them onto the next

engine. In other words, after a solution is found, we an pass the ontrol to the

next engine. Although we do not know the implementation details of OPL, our

experiene suggests that a demand-driven approah would yield better exibility

and reusability.



10 Conlusion and Future Work

We developed a ompositional framework based on engine for desribing om-

plex searh senarios. Tree searh was enapsulated within an engine. With the

operators on engines, the framework allowed to build omplex searh engines

by omposing the di�erent engines together. Examples and two ase studies

demonstrated the expressivity of our framework.

The ompositional framework will probably inur some overhead to the over-

all system. The investigation to minimize suh overhead is an interesting dire-

tion in the near future. Moreover, the future diretion of this work is to realize

the extension to other dimensions of searh. Visualization is a spei� extension

that is of partiular interest as there is a need to provide tools for performane

debugging. The failities and abstrations to provide parallel searh based on

the onept of engine are also worth investigation. Lastly, it is interesting to see

if it is possible to provide engines that failitate the integration of loal searh

algorithms to tree searh.

Referenes

[Cai77℄ William O. Cain, Jr. The omputer-assisted heuristi approah used to shed-

ule the major league baseball lubs. In Shaul P. Ladany and Robert E.

Mahol, editors, Optimal Strategies in Sports, number 5 in Studies in Man-

agement Siene and Systems, pages 32{41. North-Holland Publishing Co.,

Amsterdam, New York, Oxford, 1977.

[CHN00℄ Tee Yong Chew, Martin Henz, and Ka Boon Ng. A toolkit for onstraint-

based inferene engines. In Enrio Pontelli and V��tor Santos Costa, editors,

Pratial Aspets of Delarative Languages, Seond International Workshop,

PADL 2000, Leture Notes in Computer Siene 1753, pages 185{199, Boston,

MA, 2000. Springer-Verlag, Berlin.

[CHN01℄ Chiu Wo Choi, Martin Henz, and Ka Boon Ng. Components for state

restoration in tree searh. In Toby Walsh, editor, Priniples and Pratie of

Constraint Programming|CP 2001, Proeedings of the Seventh Internation-

al Conferene, Leture Notes in Computer Siene, Cyprus, 2001. Springer-

Verlag, Berlin. to appear.

[dW88℄ D. de Werra. Some models of graphs for sheduling sports ompetitions.

Disrete Applied Mathematis, 21:47{65, 1988.

[Hen01℄ Martin Henz. Sheduling a major ollege basketball onferene|revisited.

Operations Researh, 49(1):163{168, January 2001.

[HMN99℄ Martin Henz, Tobias M�uller, and Ka Boon Ng. Figaro: Yet another onstraint

programming library. In Proeedings of the Workshop on Parallelism and

Implementation Tehnology for Constraint Logi Programming, Las Crues,

New Mexio, USA, 1999. held in onjuntion with ICLP'99.

[LC98℄ Fran�ois Laburthe and Yves Caseau. SALSA: A language for searh al-

gorithms. In Mihael Maher and Jean-Fran�ois Puget, editors, Priniples

and Pratie of Constraint Programming, pages 310{324, Pisa, Italy, 1998.

Springer-Verlag, Berlin.

[Ng01℄ Ka Boon Kevin Ng. A Generi Software Framework For Finite Domain

Constraint Programming. Master's thesis, Shool of Computing, National

University of Singapore, 2001.



[NP98℄ Wim Nuijten and Claude Le Pape. Constraint-based job shop sheduling

with ILOG SCHEDULER. Journal of Heuristis, 3:271{286, 1998.

[NT98℄ George L. Nemhauser and Mihael A. Trik. Sheduling a major ollege

basketball onferene. Operations Researh, 46(1):1{8, 1998.

[Per99℄ Laurent Perron. Searh proedures and paralleism in onstraint program-

ming. In Joxan Ja�ar, editor, Priniples and Pratie of Constraint Pro-

gramming, Alexandria, VA, USA, 1999. Springer-Verlag, Berlin.

[Sh92℄ Jan A. M. Shreuder. Combinatorial aspets of onstrution of ompetition

duth professional football leagues. Disrete Applied Mathematis, 35:301{

312, 1992.

[Sh97℄ Christian Shulte. Programming onstraint inferene engines. In Gert Smol-

ka, editor, Priniples and Pratie of Constraint Programming|CP97, Pro-

eedings of the Third International Conferene, Leture Notes in Comput-

er Siene 1330, pages 519{533, Shloss Hagenberg, Linz, Austria, Oto-

ber/November 1997. Springer-Verlag, Berlin.

[Sh00℄ Christian Shulte. Programming Constraint Servies. Dotoral disserta-

tion, Universit�at des Saarlandes, Naturwissenshaftlih-Tehnishe Fakult�at

I, Fahrihtung Informatik, Saarbr�uken, Germany, 2000. To appear in Le-

ture Notes in Arti�ial Intelligene, Springer-Verlag.

[VPP00℄ Pasal Van Hentenryk, Laurent Perron, and Jean-Fran�ois Puget. Searh

and strategies in OPL. ACM Transations on Computational Logi, 1(2):285{

320, Otober 2000.


