
Implementing CSAT Local Search on FPGAs

Martin Henz, Edgar Tan, and Roland H.C. Yap

School of Computing, National University of Singapore, Singapore

Abstract. Stochastic local search methods such as GSAT, WalkSAT and their
variants have been used successfully at solving propositional satisfiability prob-
lems (SAT). The key operation in these local search algorithms is the speed of
variable flipping. We present a parallel FPGA designs for CSAT capable of one
flip per clock cycle which is achieved by exploiting maximal parallelism and
“multi-try” pipelining. Experimental results show that a speedup of two orders of
magnitude over software implementations can be achieved.

1 Introduction

Stochastic local search (SLS) methods have been used successfully for solving satisfia-
bility problems (SAT).

The key features of local search SAT algorithms are an initial assignment of vari-
ables occurring in the given set of clauses cnf followed by local moves, which flip
(invert) the truth value of a chosen variable until a satisfying assignment is found. The
instances of the algorithm differ in their choice of initial assignment (INIT ASSIGN)
and variable choice (CHOOSE FLIP).

In previous work, we show an implementation of the SLS variant GSAT [HTY01],
which achieves one flip per clock cycle. Here, we extend this design methodology and
approach to the CSAT variant [GW93].

In order to describe and analyze parallel implementations of GenSAT algorithms,
we use a notation close to the parallel functional language NESL [BHSZ95] explained
in [HTY01], which allows an asymptotic complexity analysis with respect to the two
factors that concern hardware implementations. The total size of the design can be mea-
sured by an abstraction of the number of gates needed to run a program P , denoted by
g(P). The analog of time complexity is the depth of program P , denoted by d(P), the
number of time units required for execution of P .

Let V be a set of boolean variables v1, v2, . . . , vn. A SAT problem C is a propo-
sitional formula in conjunctive normal form (CNF) consisting of a conjunction of m
clauses. Each clause ci is a disjunction of one or more literals where each literal is ei-
ther a variable vj or its negation ¬vj . A SAT problem is called a k-SAT problem, if
each clause has at most k literals. Without loss of generality, we consider only 3-SAT
problems in this paper. The formula C is satisfiable, if there is an assignment of truth
values to all variables in V that satisfies all clauses.

2 The CSAT Algorithm

CSAT [GW93] is a variation of GSAT, in which the candidate variables to be flipped
are categorized into three groups with decreasing priority: increase in score (downward

M. Glesner, P. Zipf, and M. Renovell (Eds.): FPL 2002, LNCS 2438, pp. 1156–1159, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Implementing CSAT Local Search on FPGAs 1157

Program 1 The CHOOSE FLIP algorithm for CSAT

procedure CHOOSE FLIP(V, cnf) returns: variable to be flipped
U := []; S := []; s := score(cnf , V);

L1 : for i := 1 to n do /* for all variables */
s′ := scoref (i, cnf , V);
if s′ > s then U := U ∪ [i]
else if s′ = s then S := S ∪ [i]

end ;
if U �= [] then return CHOOSE(U)
else if S �= [] then return CHOOSE(S)
else return CHOOSE(V)

end

moves), no change in score (sideways moves), and decrease in score. Program 1 shows a
sequential implementation; the choice between moves of the same group is done by the
macro CHOOSE, which randomly selects an element of a given sequence. The function
score(cnf , V) returns the number of clauses satisfied by variable assignment V and
scoref (i, cnf , V) the number of satisfied clauses if variable i is flipped.

Our goal is to exploit the parallelism available in a hardware implementation. There
is a trade-off between the degree of parallelism in the implementation and the hard-
ware resource requirements. The time complexity of the sequential implementation of
CHOOSE FLIP for 3-SAT is O(nm). A direct parallel implementation with the sequen-
tial loop L1 in Program 1 with parallelization of scoref by evaluating all clauses in
parallel gives a time complexity of CHOOSE FLIP of O(n log m) for 3-SAT. A fully
parallel implementation can achieve a time complexity of O(log m) at the expense of
replicating the scoring circuit n times.

A more realistic hardware implementation hinges on two key observations: (i) the
selection of the flip variable can be done on the basis of relative contribution to the score
of that variable when flipped; and (ii) the number of clauses which will be affected by
a change to one variable is small, typically much less than m. Program 2 shows the
resulting CSAT hardware design written in our notation.

This implementation assumes 3-SAT clauses where only the clauses relevant to
a variable j are considered in score. Furthermore, the incremental score evaluation
pre-computes for each of the two possibilities of a variable flip i, a simplified set of

clauses. The optimization uses the notation EVAL
C(i+)
j (V) to denote the evaluation

of a new j-th 2-SAT clause formed by deleting variable i from an original clause

where variable i occurs positively (respectively EVAL
C(i−)
j (V) where i is negative).

RECEIVE INITIAL ASSIGNMENT and SEND ASSIGNMENTperform the data transfer from
and to the external software environment, respectively.

The incremental score computation is done in s1 and s2. The following optimization
(not feasible for GSAT), allows to reuse the circuitry for computing the score increments
for negative and positive variables. The Diff array gives the incremental score for flip-
ping from 0 → 1, and the incremental score for the reverse flip needs a negation. Since
CSAT only needs to consider a positive incremental score for downward moves, there
are only two cases to consider for a downward move for variable i: (i) V [i] = 0 and

1158 Martin Henz, Edgar Tan, and Roland H.C. Yap

Program 2 Instance Specific Implementation of the CSAT Algorithm

program MAIN
V := RECEIVE INITIAL ASSIGNMENT();
for i := 1 to maxflips do

s1 (if SATISFIED(V) then break ‖
s1 Dyn0 := {SUM({EVALC(i+)

j (V) : j ∈ [1 . . . |C(i+)|]}) : i ∈ [1 . . . n]} ‖
s1 Dyn1 := {SUM({EVALC(i−)

j (V) : j ∈ [1 . . . |C(i−)|]}) : i ∈ [1 . . . n]});
s2 Diff := {Dyn1 [i] − Dyn0 [i] + Static[i] : i ∈ [1 . . . n]};
s3 (Side := {Diff [i] = 0 : i ∈ [1 . . . n]} ‖
s3 Down := {Diff [i] �= 0 ∧ ISNEG(Diff [i]) = V [i] : i ∈ [1 . . . n]});
s4 if SUM(Down) > 0 then FlipVars := Down
s4 else if SUM(Side) > 0 then FlipVars := Side
s4 else FlipVars := {1 : i ∈ [1 . . . n]};
s5 v := CHOOSE ONE(FlipVars);
s6 V [v] := ¬V [v]

end ;
SEND ASSIGNMENT(V)

Diff [i] > 0 for a 0 → 1 flip; (ii) V [i] = 1 and Diff [i] < 0 for a 1 → 0 flip (note that
Diff [i] is negative for variables whose value is currently 1). This is done in s3 where
ISNEG(x) is a macro returning 1 when x is negative and otherwise 0. Finally, to achieve
a one flip design, we use multi-try pipelining [HTY01] with pipeline stages labeled as
s1 to s6. Assuming each stage is executed in one cycle, this implementation yields a
depth complexity of O(log m + log n) and gate complexity of O(m + n) for 3-SAT.

3 Performance Evaluation

The actual FPGA implementation of CSAT (Program 2) was obtained using Handel-
C programs,which is compiled into a netlist and then turned into a FPGA bitmap file
with Xilinx Foundation Express. The target hardware used was a prototyping board
developed by Celoxica Inc, the RC-1000PP board which contains a XCV1000E FPGA
from Xilinx with 1.5 million system gates grouped into 6144 CLBs of two slices each.

All designs run at one flip per clock cycle and exploit parallel clause evaluation, par-
allel score computation and multi-try pipelining. In order to compare the efficiency of
FPGA implementations, we measure their flip rate , i.e. the number of flips per second
(flips/s). Column 4 of Table 1 shows the flip rate of the GSAT41 software by Selman
and Kautz running CSAT on a Pentium II-400MHZ machine. The FPGA implementa-
tions of CSAT and GSAT are all run at a clock speed of 20MHz, which corresponds to
a flip rate of 20,000 K flips/s. Column 5 shows that the FPGA implementation is two
orders of magnitude faster than software.

In [HTY01], we developed a performance measure for hardware SAT implemen-
tations that takes hardware cost into account. This measure, called flip density, divides
the flip rate by the number of FPGA slices (fps /sl). The last four columns in Table 1
shows that the presented CSAT implementation improves over the GSAT implementa-
tion of [HTY01] by a factor of 1.5 with respect to this performance measure.

Implementing CSAT Local Search on FPGAs 1159

Table 1 Flip Rate Speedup and Flip Density for Hardware Implementations of CSAT
using Selected Benchmarks from SATLIB [SAT]

SAT Problem Var Clause Software Speedup GSAT CSAT GSAT CSAT
(n) (m) K fps factor slices slices fps/sl fps/sl

uf20-01 20 91 52.7 393 1490 1019 13832 20332
uf50-01 50 218 72.8 287 3170 2062 6521 10131
uf100-01 100 430 71.6 291 5918 3860 3484 5391
aim-50-1 6-yes1-1 50 80 138.0 151 1818 1110 11374 18795
aim-50-3 4-yes1-1 50 170 74.3 281 2464 1667 8386 12521
aim-50-6 0-yes1-1 50 300 40.6 514 3506 2600 5897 8022
aim-100-1 6-yes1-1 100 160 138.4 151 3480 2018 5932 10331
aim-100-3 4-yes1-1 100 340 72.7 287 4712 3080 4381 6773
flat30-1 90 300 96.7 216 3515 2141 5883 9744
rti k3 n100 m429 0 100 429 71.2 293 5904 3857 3494 5401
bms k3 n100 m429 0 100 429 107.0 195 4766 2812 4332 7409

4 Conclusion

We show how to achieve a one flip per clock cycle design for the SLS solver CSAT.
This design has comparable asymptotic depth and gate complexity to the one flip GSAT
design in [HTY01] but improves on the flip density. Thus CSAT has the potential of a
smaller implementation compared with GSAT.

The results here also demonstrate the potential hardware acceleration afforded by
an FPGA implementation. The software results were taken on a Pentium II running at
400MHz, while the FPGA was only clocked at 20MHz. In this setting, we observe a
speed-up of two orders of magnitude. Current work—beyond the scope of this paper—
achieves one flip per clock cycle reconfigurable SLS implementations at the expense of
a reduction in flip density. Details of the FPGA implementations with the SLS WalkSAT
[SKC94] algorithm are reported in [Tan01].

References

[BHSZ95] Guy Blelloch, Jonathan Hardwick, Jay Sipelstein, and Marco Zagha. NESL user’s
manual, version 3.1. Technical Report CMU-CS-95-169, Carnegie Mellon Univer-
sity, Pittsburgh, PA, 1995.

[GW93] Ian P. Gent and Toby Walsh. Towards an understanding of hill-climbing procedures
for SAT. In Proceedings of AAAI-93, pages 28–33, 1993.

[HTY01] Martin Henz, Edgar Tan, and Roland Yap. One flip per clock cycle. In Toby Walsh,
editor, Proceedings of the Seventh International Conference on Principles and Prac-
tice of Constraint Programming, Lecture Notes in Computer Science, pages 509–
523, Cyprus, 2001. Springer-Verlag, Berlin.

[SAT] SATLIB – The Satisfiability Library, http://www.satlib.org.
[SKC94] B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local search. In

Proceedings of AAAI-94, pages 337–343, 1994.
[Tan01] Edgar Tan. Local Search Algorithms for SAT on FPGAs. Master’s thesis, School of

Computing, National University of Singapore, 2001.

	Introduction
	The CSAT Algorithm
	Performance Evaluation
	Conclusion

