
An Overview of Finite Domain Constraint Programming

Martin Henz Tobias M�uller

Shool of Computing Programming Systems Lab

National University of Singapore Universit�at des Saarlandes

henz�omp.nus.edu.sg tmueller�ps.uni-sb.de

Abstrat

In reent years, the repertoire of available tehniques for solving ombinatorial problems has

seen a signi�ant addition: �nite domain onstraint programming. This tehnique is best seen as

a framework for ombining software omponents to ahieve problem-spei� tree searh solvers. Its

strength depends on the synergy that an be ahieved between these omponents. In this paper,

we give an overview of onstraint programming for solving ombinatorial problems. We fous on

pratial aspets and highlight onnetions to Operations Researh tehniques and their appliations.

Keywords: Constraint programming, ombinatorial searh, tree searh.

1 Introdution

Constraint programming is a heterogenous �eld of researh, ranging from theoretial topis in math-

ematial logi to pratial appliations suh as job-shop sheduling. Constraints under onsideration

an be of symboli nature suh as tree onstraints used in natural language proessing, or of numerial

nature, operating on real or integer variables. In this overview, we fous on a branh of onstraint

programming that has reently been applied to ombinatorial searh and optimization problems, namely

�nite domain onstraint programming (CP(FD)). CP(FD) developed in the 1980s out of onstraint logi

programming [JM94℄, an extension of the logi programming paradigm. Sine then, two developments

turned CP(FD) into a solving tehnique that an ompete in some appliation areas with more estab-

lished Operational Researh tehniques for ombinatorial searh. Firstly, tehniques and algorithms from

Operational Researh suh as appliation-spei� �ltering algorithms and branh-and-bound searh and

from Arti�ial Intelligene, suh as onsisteny algorithms [Ma77℄ and limited disrepany searh [HG95℄

were integrated in the onstraint programming framework. Seondly, high quality software systems be-

ame available that support the development of onstraint-based solutions to ombinatorial problems.

Initially, these systems were extensions of programming systems for Prolog; a urrent example is the

CHIP system [DVS

+

88℄. The C++ library Ilog Solver [ILO97℄ demonstrated that the solving paradigm

of onstraint programming is programming language independent. The aim of the onstraint program-

ming languages Oz [Smo95, Moz99℄ and Claire [CL96b℄ and the modeling language OPL [Hen99℄ was

to ombine an expressive symboli language for problem modeling with extensive support for problem

solving.

This paper guides the reader through the proess of solving ombinatorial problems using onstraint

programming. Setion 2 gives an overview of the paradigm, explaining CP(FD) as a framework, in

whih propagation, branhing and exploration algorithms ooperate for problem solving. Setions 3,

Setion 4 and Setion 5 desribe propagation, branhing and exploration algorithms in detail. This

paper is intended as an overview of CP(FD). Stukey and Marriott [MS98℄ give a thorough treatment

of onstraint programming in general, Van Hentenryk [Hen99℄ desribes problem modeling and solving

using CP(FD) and Wallae [Wal96℄ presents an overview of appliations of onstraint programming.

2 Problem Solving with Finite Domain Constraint

Programming

We fous on disrete searh and optimization problems. Thus, deision variables in the onsidered

problem models represent integers. A onstraint store stores information on suh variables in the form

of the set of possible values that the variable an take; this set is alled the urrent domain of the variable.

More formally, the onstraint store is a onjuntion of onstraints of the form x 2 S, where S is a set of

integers. These onstraints are alled basi onstraints. Computation starts with an initial domain for

eah variable as given in the model. Some onstraints an be diretly entered in the onstraint store by

strengthening the basi onstraint on a variable. For example, the onstraint x 6= 5 an be expressed in

the onstraint store by removing 5 from the domain of x.

Other more omplex onstraints are represented by omputational agents alled propagators. Eah

propagator observes the variables given by the orresponding onstraint in the problem. Whenever

possible, it strengthens the onstraint store with respet to these variables by exluding values from

their domain aording to the orresponding onstraint. For example, a propagator for the onstraint

x � y observes the upper and lower bounds of the domains of x and y. A possible strengthening onsists

of removing all values from the domain of x that are greater than the upper bound of the domain of y.

The proess of propagation ontinues until no propagator an further strengthen the onstraint store.

The onstraint store is said to be stable. At this point, many problem variables typially have still non-

singleton domains. Thus the onstraint store does not represent a solution yet, and searh beomes

neessary.

Searh for solutions is implemented by hoie points. A hoie point generates a branhing onstraint

. From the urrent stable onstraint store s, two new onstraint stores are reated by adding and :,

respetively, to s. Typially, the new onstraint stores are not stable, in other words and : trigger

some propagators in the respetive new store. After stability is reahed again, this branhing proess is

ontinued reursively on both sides until the resulting store is either inonsistent or represents a solution

to the problem.

Finite domain onstraint programming is best seen as a software framework for ombining software

omponents to ahieve problem-spei� tree searh solvers. These software omponents an be organized

into three families.

Propagation algorithms implement individual onstraints by desribing how the onstraints an be

employed to strengthen the onstraint store.

Branhing algorithms selet branhing onstraints at eah node of the searh tree after all propaga-

tion has been done. Branhing algorithms de�ne the size and shape of the searh tree.

Exploration algorithms desribe whih part of a given searh tree is explored and in whih order.

The task of CP(FD) programming systems is to provide two servies. The �rst servie is an environ-

ment in whih these algorithms an interat. For example, after branhing, the propagation algorithms

orresponding to the onstraints have to be revisited in order to ahieve a stable onstraint store. The

neessary book-keeping is handled by the programming system. The seond servie is to provide libraries

of ommonly used instanes of the algorithms. All pratial systems for CP(FD) provides extensive li-

braries of propagation, branhing and (more reently) exploration algorithms.

In this tutorial, we onentrate on CP(FD). For ompleteness, we mention two other onstraint

systems that are relevant for many appliations; real intervals [BO97℄ and �nite set [Ger97, MM97℄

onstraints. Real interval onstraints approximate a real number by an interval [a; b℄ and provide the

usual arithmeti propagators.

A set onstraint S over sets of integers approximates a set value whih is a �nite set of integers s.

It approximates a set value by a lower bound s

l

(s

l

� S) and upper bound s

u

(S � s

u

). Models based

on set onstraints often have signi�ant advantages over CP(FD) models. The onstraint programming

systems Ilog Solver (and thus OPL) and Mozart provide real intervals and set onstraints in addition to

�nite domain onstraints.

3 Propagation Algorithms

The onstraint store stores information on variables as basi onstraints of the form x 2 S. More omplex

non-basi onstraints, as for example x+y = z, are represented by propagators, over a set of problem vari-

ables alled propagator parameters. A propagator observes its

propagator � � � propagator

onstraint store

parameters and as soon as a value is removed from one of

their domains, it tries to remove further values from the

domains of its parameters. The algorithm employed in this

proess is alled propagation algorithm. By removing values

it may trigger other propagators whih in turn may remove value from basi onstraints. Eventually, no

further values an be removed and propagation stops at a �x-point. Sine onstraint propagation always

removes values from �nite domains, the proess is guaranteed to terminate.

One run of a propagation algorithm an have three di�erent outomes:

� It may just remove values from its parameter's domains.

� The propagator may detet that it may never be able to remove any values from any domains in

the future, no matter how the parameter domains shrink. In this ase, we say the propagator is

entailed by the onstraint store and the propagator an be removed.

� The propagator may �nd out that it is inonsistent with the onstraint store. It terminates and

signals failure to the exploration algorithm.

Amount of propagation vs. omputational e�ort. The e�ort taken by the propagation algorithm

in ombination with the branhing and exploration algorithms is essential for the e�etiveness and

eÆieny of the onstraint solver. Consider the onstraint 2x = y with domains x 2 f1; : : : ; 5g and

y 2 f0; : : : ; 8g. An often suÆient propagation tehnique is to inspet the bounds of the domains.

That would narrow the bounds to x 2 f1; : : : ; 4g and y 2 f2; : : : ; 8g. A di�erent propagation algorithm

onsiders all values in eah domain and removes them, if there is no onsistent assignment of the other

variables. This tehnique is alled ar-onsistent propagation ar-onsistent propagation [Ma77℄ and

would result in x 2 f1; : : : ; 4g and y 2 f2; 4; 6; 8g.

We use the \send+more=money"-problem to illustrate the trade-o� between the degree of propaga-

tion and eÆieny. In this puzzle, di�erent digits need to be assigned to eah ourring letter suh that

the \equation" holds. The following onstraints must be satis�ed:

(a) (b) ()

Figure 1: \send+more=money"-searh trees for various degrees of propagation. Squares are failure

nodes, diamonds solutions and triangles subtrees with no solution.

e; n; d; o; r; y 2 f0; : : : ; 9g (1)

s;m 2 f1; : : : ; 9g (2)

alldi� (s; e; n; d;m; o; r; y) (3)

1000� s + 100� e + 10� n + d

+ 1000�m + 100� o + 10� r + e

= 10000�m + 1000� o + 100� n + 10� e + y (4)

The onstraints (1) and (2) initialize the problem variables with appropriate domains. Note that

leading zeros are exluded. The symboli onstraint alldi� (3) enfores all problem variables to have

pairwise distint values. The ore onstraint of this puzzle is onstraint (4) imposing the equation

send+more = money. We searh for the �rst solution.

Figure 1(a) shows the searh tree where the propagation algorithm is just heking inonsisteny but

not performing �ltering. The resulting searh is thus generate-and-test searh. Using a simple branhing

algorithms, the resulting searh tree has 2488 hoie nodes and 22325 failure nodes. At the other extreme,

the tree in Figure 1() onsists just of the solution node, beause here, both propagation algorithms of

onstraint (4) and alldi� -onstraint (3) implement ar-onsisteny. An eÆient algorithm to ahieve

ar-onsisteny for the alldi� -onstraint is given by [R�eg94℄. The omputational e�ort of ar-onsistent

propagation is muh higher than for onsisteny heking but avoids searh entirely. Overall, the solution

is found signi�antly faster with ar-onsistent propagation. The most eÆient searh tehnique for this

example, however, employs less powerful propagation algorithms. Here, propagation for onstraint (4)

reasons over the bounds of the domains and propagation for the alldi� onstraint (3) removes a value

v from the other domains as soon as a parameters domain has beome fvg. The resulting solver, whose

searh tree is depited in Figure 1(b), is faster than the other two and strikes the right balane between

the omputational e�ort of the propagation algorithms and the ost for traversing the searh tree.

Complex symboli onstraints are often ruial for solving diÆult problems. If suh onstraints

have many parameters, they are often alled global onstraints. Resoure onstraints in sheduling are

typially modeled using global onstraints. For solving hard sheduling problems, a tehnique alled

edge-�nding [AC91℄ is used, whih has been integrated in the onstraint programming framework in

several variants [CL94a, CL96a, CL97, CL94b, BPN95, W�ur96℄. The basi idea of edge �nding is to

hek whether a ertain task t is to be plaed before or after a set of other tasks T . In ase this an

be determined, the domains of the variable denoting the starting time of t an usually be signi�antly

redued. Constraint programming systems suh as CHIP, Ilog Solver/OPL, Claire and Mozart provide

libraries with several variants of these global onstraints.

4 Branhing Algorithms

Constraint propagation usually does not suÆe to solve a ombinatorial problem. We need to atively

try out di�erent alternative possibilities through hoie points that generate branhing onstraints .

The hoies of the onstraints at eah node determines the size and shape of the tree and thus are

ruial for the performane of the solver. Algorithms that generate branhing onstraints are alled

branhing algorithms.

A popular lass of branhing algorithms that works well for small problems is variable enumeration.

Here always has the form x = n for some integer n from the urrent domain of x. In variable

enumeration, the degrees of freedom are the hoie of variables x to enumerate (variable seletion) and

the hoie of values n to try (value seletion). The most naive variable seletion is to assume a given �xed

ordering and take the �rst variable in that ordering, whih has a non-singleton domain. Other strategies

suh as taking the variable with the smallest domain (�rst-fail) or the variable that is parameter of the

highest number of onstraints often work better.

Apart from enumeration, another generally useful strategy is to suessively split the domains of

variables. That means for a seleted variable x with urrently lowest domain element x

l

and highest

domain element x

h

, the branhing onstraint has the form x < x

l

+ (x

h

� x

l

)=2.

Job-shop sheduling problems are solved using a lass of branhing algorithms alled serialization

algorithms. Tasks t in the sheduling problem are represented by their duration d

t

and �nite domain

variables x

t

denoting their starting time. Serialization algorithms pik suessively ritial resoures

aording to various riteria, pik two ritial tasks t

1

and t

2

that use the resoure and generate branhing

onstraints of the form x

t

1

+ d

t

1

� x

t

2

. Serialization tehniques were originally developed in Operations

Researh [CP89℄, and deployed and extended in the ontext of onstraint programming [BPN95, CL94b,

CL94a℄. Today, a variety of suh serialization algorithms are available in sheduling libraries of CP(FD)

systems.

5 Exploration Algorithms

In the previous setion, we saw that branhing algorithms determine the searh tree. It is the job of

searh algorithms to determine, whih part of the searh tree is explored and in whih order. Exploration

algorithms determine the following properties of the solver.

The exploration order determines the order in whih the nodes are explored.

The interativity determines the mode of interation with other algorithms or the user. An explo-

ration algorithm may return all solutions, ompute solutions one-by-one, explore nodes one-by-one,

et.

The pruning behavior of an exploration algorithm may add additional onstraints as exploration

proeeds.

CP(FD) inherited the most basi exploration strategy, depth-�rst searh, from Prolog. The obser-

vation that depth-�rst searh often does not work well together with good branhing algorithms led to

the development of limited disrepany searh [HG95℄, where the nodes of the searh tree are visited in

an order of inreasing deviations (disrepanies) from the branhing strategy.

The most ommon implementation tehnique for exploration algorithms is trailing-based baktrak-

ing, also inherited from Prolog. This tehnique works well for sequential depth-�rst searh and is em-

ployed by CHIP, Ilog Solver/OPL and Claire. Shulte [Sh99℄ showed that opying of onstraint stores

together with reomputation, whih is employed by Mozart [Moz99℄ and has advantages for exploration

algorithms other than sequential depth-�rst searh, an be ompetitive with baktraking.

In order to ahieve ombinatorial optimization as in sheduling, exploration algorithms an be ex-

tended by a pruning behavior. Whenever a solution is enountered, the exploration algorithm generates

an additional onstraint that expresses that further solutions should be better with respet to optimiza-

tion riteria than the solution found. This tehnique is alled onstraint-based branh-and-bound and

an be seen as a generalization of branh-and-bound used in integer optimization. Branh-and-bound

ensures that solutions are found in inreasing quality. If the onstraints that enode the quality of the

solution are strong and if solutions of high quality are found early in the searh, the tree an be pruned

signi�antly. In job-shop sheduling, the model inludes a variable f representing the overall duration

of the shedule. After �nding a solution with overall duration d, the additional onstraint f < d is

introdued, whih often|via interation with propagation algorithms|leads to pruning of the searh

tree.

Another variant of the exploration algorithms is exempli�ed by the Oz Explorer [Sh97℄, whih|in

addition to depth-�rst searh (with branh-and-bound)|visualizes the resulting searh tree and allows

interative exploration, whih is useful during the development and performane-tuning of onstraint

programs.

6 Modeling Tehniques

This setion presents tehniques to model over-onstraint problems and to improve searh by improving

the onstraint model.

Handling over-onstrained problems. Some problems ontain oniting onstraints, and the task

is �nd to �nd a solution that meets a maximal number of onstraints. The onept of rei�ed onstraints

allows handling of over-onstrained problems by \soften" these onstraints. The idea is to onnet a

onstraint with 0=1-variable B, i.e., (x

1

; : : : ; x

n

) $ b and to reet its validity into b. As long as

b 2 f0; 1g the onstraint does not remove any value from the domains of its parameters x

1

; : : : ; x

n

. In ase

the is entailed by the onstraint store, b = 1. The 0=1-variable beomes 0 if the is inonsistent with

the store. On the other hand, if b is onstrained to 1 (0) then (=neg) is added to the omputation spae

and removes values from the domains of its parameters. Usually the 0=1-variables of an over-onstraint

problem ontribute a objetive funtion whih is then minimized or maximize using branh-and-bound

searh (see Setion 5).

Exluding symmetries. Avoiding symmetries is essential for searhing optimal solutions. This an

be ahieved by simply imposing an order on the solutions and thus signi�antly pruning the searh tree.

We demonstrate the bene�t of this tehnique using the photo-alignment problem. A photo is to be

taken of a group of people. Everybody has a preferene whom she wants to stand next to. Not all of

these preferenes an be met, sine they ontradit eah other, i.e., the problem is over-onstrained. The

objetive is to meet as many preferenes as possible by maximizing the number of ful�lled preferenes

using branh-and-bound searh (see Setion 5).

We model that two persons stand next to eah other by stating that their distane is 1 and reify this

onstraint to be able to use it in the objetive funtion of branh-and-bound searh: 8 two distint persons

p

i

and p

j

: (ja

p

i

� a

p

j

j = 1)$ r

k

. The variable a

p

i

is a �nite domain variable and denotes the position

of the person in the line. The objetive funtion is max �r

k

. Solving the problem for 7 persons takes

313 hoie points and 313 failures to �nd the optimal solution. Adding a symmetry-breaking order

onstraint on two arbitrary person's positions a

p

1

< a

p

2

redues the searh tree to 219 hoie points and

219 failures.

Redundant onstraints. Another tehnique to improve onstraint propagation is to add (semantial-

ly) redundant onstraints, i.e., these onstraints are atually implied by the already present onstraints

but they add extra pruning sine they, e.g., use a di�erent �ltering algorithms. We demonstrate this

tehnique by the example of �nding a so-alled magi sequene (x

0

; : : : ; x

n

) of n elements. The \magi"

is that x

i

determines how often i ours in the sequene. A solution for n = 3 is the sequene (1; 2; 1; 0).

The model of the problem represents every element of the sequene s = (x

0

; : : : ; x

n

) by a �nite

domain variable with an initial domain x

i2f0;:::;ng

2 f0; : : : ; n + 1g. We state for eah position i that

there are exatly x

i

elements i in the sequene s: 8i 2 f0; : : : ; ng : exatly(s[i℄; s; i) where s[i℄ denotes

the ith element of s. Searh uses the �rst-fail branhing algorithm (see Setion 4). Finding the �rst

solution takes 164 hoie points and 160 failures. We an improve the model by adding more onstraints,

e.g., it is straightforward to see that the sum of all elements of the sequene is n+ 1: �

n

i=0

s[i℄ = n (5).

Adding this onstraint redues the number of hoie points to 29 and the number of failures to 25.

But we an do better by adding the onstraint �

n

i=1

(i � 1) � x

i

= 0 (6). This onstraint is perhaps

not as straightforward as the �rst one: it is easy to see that �

n

i=0

i � x

i

= n. The seond redundant

onstraint (6) equates this sum with onstraint (5). This leads to a further redution of the size of the

searh tree to 9 hoie points and 6 failures. Note that the pruning of the searh tree due to redundant

onstraints has to outweigh the omputational e�ort for the extra onstraints as it happens in the magi

sequene example.

7 Conlusion

We introdued �nite domain onstraint programming as a software framework for ombining propagation,

branhing and exploration algorithms. The integration of algorithms and tehniques from Operational

Reseah and Arti�ial Intelligene allow the solving of hard ombinatorial searh problems. We hight-

lighted the importane of global symboli onstraints and appliation-spei� branhing algorithms. Sys-

tems that provide extensive support for �nite domain onstraint programming inlude CHIP [DVS

+

88℄,

Ilog Solver/OPL [ILO97, Hen99℄, Claire [CL96b℄ and Mozart [Moz99℄. Areas of appliation where on-

straint programming has been shown to be superior to Operational Researh tehniques inlude job-shop

sheduling [CL94a, CL96a, CL97, CL94b, BPN95, W�ur96℄ and sport sheduling [Hen00℄. The suess of

onstraint programming relies on the following properties of these appliations:

� fruitful interation of propagation and branhing algorithms,

� existene of eÆient and powerful propagation algorithms for symboli onstraints,

� tightness of the onstraints, allowing for substantial pruning of the searh tree.

In situations where searh tree annot be pruned e�etively, for example in typial time tabling ap-

pliations, onstraint programming an still be used to guide heuristi inomplete tree searh teh-

niques [HW96℄.

Referenes

[AC91℄ D. Applegate and W. Cook. A omputational study of the job-shop sheduling problem.

ORSA Journal on Computing, 3(2):149{156, 1991.

[BO97℄ Frederi Benhamou and William Older. Applying interval arithmeti to real, integer, and

boolean onstraints. Journal of Logi Programming, 32(1), 1997.

[BPN95℄ P. Baptiste, C. Le Pape, , and W. Nuijten. Inorporating eÆient operations researh algo-

rithms in onstraint-based sheduling. In Proeedings of the First International Joint Work-

shop on Arti�ial Intelligene and Operations Researh, 1995.

[CL94a℄ Y. Caseau and F. Laburthe. Improved CLP sheduling with task intervals. In Proeedings of

the International Conferene on Logi Programming, pages 369{383, 1994.

[CL94b℄ Yves Caseau and Fran�ois Laburthe. Improved lp sheduling with task intervals. In Pro-

eedings of the In International Conferene on Logi Programming, pages 369{383, 1994.

[CL96a℄ Y. Caseau and F. Laburthe. Cumulative sheduling with task intervals. In Joint International

Conferene and Symposium on Logi Programming, 1996.

[CL96b℄ Yves Caseau and Fran�ois Laburthe. CLAIRE: Combining objets and rules for problem

solving. In Proeedings of the JICSLP'96 workshop on multi-paradigm logi programming.

TU Berlin, 1996.

[CL97℄ Yves Caseau and Fran ois Laburthe. Solving various weighted mathing problems with

onstraints. In Gert Smolka, editor, Priniples and Pratie of Constraint Programming|

CP97, Proeedings of the Third International Conferene, Leture Notes in Computer Si-

ene 1330, pages 17{31, Shloss Hagenberg, Linz, Austria, Otober/November 1997. Springer-

Verlag, Berlin.

[CP89℄ J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. Management

Siene, 35(2):164{176, 1989.

[DVS

+

88℄ M. Dinbas, P. Van Hentenryk, H. Simonis, A. Aggoun, and T. Graf. The onstraint logi

programming language CHIP. In Proeedings International Conferene on Fifth Generation

Computer Systems, pages 693{702, Tokyo, Japan, Deember 1988. Springer-Verlag.

[Ger97℄ Carmen Gervet. Interval propagation to reason about sets: De�nition and implementation of

a pratial language. Constraints, 1(3):191{244, 1997.

[Hen99℄ Pasal Van Hentenryk. The OPL Optimization Programming Language. The MIT Press,

Cambridge, MA, 1999.

[Hen00℄ Martin Henz. Sheduling a major ollege basketball onferene|revisited. Operations Re-

searh, 2000. to appear.

[HG95℄ William D. Harvey and Matthew L. Ginsberg. Limited disrepany searh. In Chris S.

Mellish, editor, Proeedings of the International Joint Conferene on Arti�ial Intelligene,

pages 607{615, Montr�eal, Qu�ebe, Canada, August 1995. Morgan Kaufmann Publishers, San

Mateo, CA.

[HW96℄ Martin Henz and J�org W�urtz. Using Oz for ollege time tabling. In E.K.Burke and P.Ross,

editors, The Seleted Proeedings of the 1st International Conferene on the Pratie and The-

ory of Automated Time Tabling, Edinburgh 1995, Leture Notes in Computer Siene 1153,

pages 162{177. Springer-Verlag, Berlin, 1996.

[ILO97℄ ILOG In., Mountain View, CA 94043, USA, http://www.ilog.om. ILOG Solver 4.0,

Referene Manual, 1997.

[JM94℄ Joxan Ja�ar and Mihael Maher. Constraint logi programming|a survey. Journal of Logi

Programming, 19/20:503{582, 1994.

[Ma77℄ Alan Makworth. Consisteny in networks of relations. Arti�ial Intelligene, 8:99{118, 1977.

[MM97℄ T. M�uller and M. M�uller. Finite set onstraints in Oz. In Fran�ois Bry, Burkhard Freitag, and

Dietmar Seipel, editors, 13. Workshop Logishe Programmierung, pages 104{115, Tehnishe

Universit�at M�unhen, 17{19 September 1997.

[Moz99℄ Mozart Consortium. The Mozart Programming System. Doumentation and system avail-

able from http://www.mozart-oz.org, Programming Systems Lab, Saarbr�uken, Swedish

Institute of Computer Siene, Stokholm, and Universit�e atholique de Louvain, 1999.

[MS98℄ Kim Marriott and Peter J. Stukey. Programming with Constraints. The MIT Press, Cam-

bridge, MA, 1998.

[R�eg94℄ Jean-Charles R�egin. A �ltering algorithm for onstraints of di�erene in sps. In Proeedings

of the 12th National Conferene on Arti�ial Intelligene. AAAI Press, 1994.

[Sh97℄ Christian Shulte. Oz Explorer: A visual onstraint programming tool. In Lee Naish, editor,

Proeedings of the International Conferene on Logi Programming, pages 286{300, Leuven,

Belgium, July 1997. The MIT Press, Cambridge, MA.

[Sh99℄ Christian Shulte. Comparing trailing and opying for onstraint programming. In Proeedings

of the International Conferene on Logi Programming, 1999. to appear.

[Smo95℄ Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer Siene

Today, Leture Notes in Computer Siene 1000, pages 324{343. Springer-Verlag, Berlin,

1995.

[Wal96℄ Mark Wallae. Pratial appliations of onstraint programming. Constraints, 1(1&2):139{

168, 1996.

[W�ur96℄ J�org W�urtz. Oz Sheduler: A workbenh for sheduling problems. In Proeedings of the 8th

IEEE International Conferene on Tools with Arti�ial Intelligene, pages 132{139, Toulouse,

Frane, November16{19 1996. IEEE Computer Soiety Press.

