
Constraint-based Round Robin

Tournament Planning

Martin Henz

School of Computing

National University of Singapore

Singapore 117543

henz@comp.nus.edu.sg

Abstract

Sport tournament planning becomes a complex task in the presence of het-

erogeneous requirements from teams, media, fans and other parties. Existing

approaches to sport tournament planning often rely on precomputed tour-

nament schemes which may be too rigid to cater for these requirements.

Existing work on sport tournaments suggests a separation of the planning

process into three phases. In this work, it is shown that all three phases

can be solved using �nite-domain constraint programming. The design of

Friar Tuck, a generic constraint-based round robin planning tool, is outlined.

New numerical results on round robin tournaments obtained with Friar Tuck

underline the potential of constraints over �nite domains in this area.

1 Introduction

In a sport competition, n given teams play against each other over a period

of time according to a certain scheme. The round robin scheme is popular

in many team sports like football and basketball. It determines that every

team t plays against every other team a �xed number of times r during the

competition. If r is 1, the scheme is called single round robin, and if r is

2, it is called double round robin. The matches take place at one of the

opponents' facilities. If a team uses its own facilities in a match, it is said

to have a home match, otherwise it has an away match.

This paper focuses on temporally dense round robin tournaments (ab-

breviated as RR throughout the paper), in which the rn(n � 1)=2 matches

are distributed over a minimal number d of dates such that every team plays

at most one match per date. If n is even, d is r(n� 1). A RR with an odd

number of teams consists of rn dates in each of which n� 1 teams play and

one team does not. This team is said to have a bye.

Table 1 shows a RR for n = 5 and r = 1. The integral value in row t

and column j tells the team against which team t plays in date j; the +

or � symbol indicates that the match is a home match or an away match,

respectively, for team t; and b indicates a bye. A similar notation is used by

Schreuder [16] and Russell and Leung [14].

This basic setup can be re�ned by additional requirements in various

ways. The following list contains common requirements in tournament plan-

ning practice.

� A match between two given teams may be �xed to a certain date. We

shall refer to such constraints as FIX-AGAINST.

1

dates

1 2 3 4 5

1 +2 �4 b +3 �5

2 �1 +3 �5 b +4

3 +5 �2 +4 �1 b

4 b +1 �3 +5 �2

t

e

a

m

s

5 �3 b +2 �4 +1

Table 1: A Single Round Robin with 5 Teams

� A team may be required to play home, or to play away, or to have a

bye at a certain date (FIX-HAB).

� The number of home and away games that a team plays at certain dates

may be �xed (EXACT-HAB). For example, in Table 1, every team

plays twice at home and twice bye, making for a balanced tournament.

� The number of home matches (or away matches or byes) that a team

plays at certain dates may be limited (ATMOST-HAB). For example,

in Table 1, every team plays at least once home in the �rst two dates.

� The number of home matches (or away matches or byes, or certain

combinations of these) that a team plays in sequence may be lim-

ited (ATMOST-HAB-SEQUENCE). For example, in Table 1, no team

plays more than one away match in a row. Furthermore, there are no

occurrences of sequences of more than two away games or byes in a

row.

� There may be a limit on the number of times in which a team plays

in sequence against one of a speci�ed set of (supposedly strong) teams

(ATMOST-AGAINST-SEQUENCE). For example, in Table 1, no team

plays in a row against team 1 and team 2.

Double round robin tournaments|particularly popular in many sports|

often have to ful�ll additional constraints like the following.

� If the �rst match between two teams t

1

and t

2

is is a home match

for t

1

, then the second match is a home match for t

2

and vice versa

(EVEN-HAB).

� The tournament may be split into two halves, requiring that each team

play against the other teams in the same order in both halves (MIR-

ROR). Such a perfectly mirrored RR can be obtained from Table 1 by

simply repeating it once.

Commercial products that support round robin timetabling typically

have a �xed set of timetables up to some n preloaded. The timetabling pro-

cess then consists of assigning the right teams to the rows of this timetable.

For professional sports leagues, where fans, media and teams pose highly

irregular constraints (for an interesting collection of such constraints, con-

sider [12]) these timetables typically do not lead to acceptable solutions.

Existing systematic approaches to round robin planning [3, 1, 2, 16, 14,

15, 12] proceed in two main stages. In the �rst stage, feasible sets of n

patterns are generated. A pattern is a sequence of d home/away/bye tokens

2

that indicates home matches, away matches or byes for a team throughout

the tournament. In the second stage, timetables are generated based on

pattern sets from the �rst stage.

The combination of the following properties makes pattern sets attractive

as an intermediate step towards timetables. On one hand, a pattern set

characterizes a signi�cant aspect of a timetable, namely in which way teams

may alternate between home and away matches and byes. On the other

hand, pattern sets are generic in a sense that they �x neither the teams that

play according to its element patterns, nor the opponent teams. Often many

timetables can be constructed from a given pattern set.

The author showed in [6] that using constraint programming for all

phases of a complex problem provides a vast improvement over techniques

reported in [12]. The aim of this paper is to explain the constraint pro-

gramming approach to all phases of the timetabling process. To this goal, a

number of common constraints are given and corresponding constraints for

constraint programming models of the solution phases are outlined.

Whereas in this work, all phases are handled with constraint program-

ming, Schaerf [15] provides a constraint-based solution only to the second

phase. McAloon, Tretko� and Wetzel [10] deal with a related problem in

which the concept of home and away games is replaced by resources called

periods.

Existing models of the subproblems are described in more detail in the

next section. In Section 3, a brief introduction to the basic ideas of �nite do-

main constraint programming is given before constraint programming mod-

els of pattern generation, pattern set generation and timetable generation are

outlined in Sections 4, 5 and 6, respectively. Section 7 presents Friar Tuck,

a constraint-based tool for RR planning in which these models are accessible

through a graphical user interface which also allows the user to enter a va-

riety of specialized constraints. Section 8 gives the results of computational

experiments conducted with Friar Tuck.

2 Solution Phases

2.1 Patterns

A pattern is a sequence of values from the set of symbols f+;�; bg that

ful�lls the given constraints. Each symbol indicates either a home match

(+), an away match (�) or a bye (b) in the date that corresponds to the

position of the symbol in the sequence. For example, the following pattern

for n = 5 indicates an away match in date 4.

dates

1 2 3 4 5

pattern � + b � +

All possible patterns are generated that meet the required constraints

among EXACT-HAB, ATMOST-HAB, ATMOST-HAB-SEQUENCE, EVEN-

HAB and MIRROR.

2.2 Pattern Sets

From these patterns, sets of n patterns are generated that have the right

number of occurrences of +, � and b per date. For even n, there must be

3

n=2 occurrences of + and � each, and for odd n, there must be (n � 1)=2

occurrences of + and � each and one b. Such sets are called pattern sets.

2.3 Timetables

This step generates complete timetables from a given pattern set. Two

distinct ways to decompose the problem have been taken for this step.

The �rst decomposition|sketched by Cain [2]|assigns teams to pattern

sets �rst. This assignment is subject to the constraints FIX-HAB. Finally,

opponent teams are assigned to the entries of the pattern set such that the

result is a RR that ful�lls all other constraints.

For the second problem decomposition|described by Schreuder [16] and

used by Nemhauser and Trick [12]|it is convenient to introduce the notion

of a team placeholder. Each of n team placeholders stands for a team,

but the assignment of teams to team placeholders is not �xed. The idea

is that a timetable of team placeholders can stand for as many di�erent

actual timetables as there are such assignments. Now matches between team

placeholders are assigned to the entries of the pattern sets such that the

result is a RR of placeholders. Finally, every team is assigned to a di�erent

placeholder such that all relevant constraints are ful�lled.

3 Finite Domain Constraint Programming

For solving the various combinatorial search problems that arise in these

phases, we use �nite domain constraint programming. A central notion is

the constraint store that contains basic constraints on the possible values

of integer (�nite domain) variables. During computation, these constraints

become stronger as integer values are excluded from the domain of variables.

More complex constraints cannot be expressed in general by the constraint

store and thus are operationalized by propagators instead. Propagators ob-

serve the constraint store and amplify it whenever possible by adding basic

constraints to it, implementing a certain notion of consistency. After ex-

haustive propagation, typically not all �nite domain variables are �xed to

unique values. The operational notion of search explores a tree of possi-

ble constraint stores by adding new constraints or propagators according to

a search strategy. Before branching, exhaustive propagation is performed.

The constraint programming approach is described in detail in [9].

4 Patterns

With the usual problem sizes and constraints in tournament planning, pat-

tern generation is a straightforward task. Nemhauser and Trick [12] show

that for the problem they study (double round robin for 9 teams), exhaus-

tive enumeration of all patterns is computationally feasible. In that case, a

declarative description of the constraints can be used for �ltering out admis-

sible patterns. For bigger n, a more algorithmic approach would be needed.

The advantage of constraint programming here is that a declarative for-

mulation of the constraints on patterns can be used for bigger n. A straight-

forward model consists of 0/1 variables h

j

; a

j

(and b

j

, if n odd), 1 � j � d.

A team that plays according to the pattern represented by these variables

plays home (away, bye) at date j if and only if h

j

= 1 (a

j

= 1, b

j

= 1). An

4

obvious constraint is that for every j, the sum of h

j

, a

j

and b

j

must be 1. The

constraints EXACT-HAB, ATMOST-HAB, ATMOST-HAB-SEQUENCE,

EVEN-HAB and MIRROR can be represented with the summation propa-

gator and combinations of 0/1 propagators like conjunction and disjunction.

For example, an ATMOST-HAB constraint that expresses that there must be

at least one home game in the �rst two dates is represented by a propagator

for the disequation h

1

+h

2

� 1. An ATMOST-HAB-SEQUENCE constraint

that expresses that all sequences of home matches should be shorter than s

is expressed by propagators corresponding to constraints of the form

h

1

+ � � �+ h

s

< s ^ � � �h

n�s+1

+ � � �h

n

< s

This approach to such sequence constraints in the context of �nite domain

constraint programming is present in [17]. It seems to be adequate with the

problem sizes at hand; more powerful propagation algorithms are presented

in [13].

In the presence of sequence constraints, the most e�ective search strategy

seems to be to enumerate the h, a and b variables date-wise, i.e. in the order

h

1

; a

1

; b

1

; h

2

; a

2

; b

2

; : : : ; b

d

.

5 Pattern Sets

Graph-theoretical results cover the existence and generation of pattern sets

with useful properties. A well-studied property of pattern sets concerns the

presence of breaks, which are sequences of two home matches or two away

matches in a row or separated only with a bye. Minimizing the number of

breaks in the schedule is a specialization of the constraint ATMOST-HAB-

SEQUENCE. De Werra [4] and Schreuder [16] show that for odd n, there are

pattern sets with no breaks, and for even n, the minimal number of breaks

is n� 2.

In the presence of irregular constraints on patterns, pattern set genera-

tion degenerates to a combinatorial search problem and can be formulated

as a variant of graph coloring. Nemhauser and Trick [12] employ integer

programming to solve this problem, using the following model. Let P be

the set of all feasible patterns. The 0/1 variables for home, away and bye

of a pattern in P with index i for date j are denoted by h

i;j

, a

i;j

and b

i;j

,

respectively. For each pattern index i, a 0/1 variable x

i

indicates whether

this pattern occurs in the desired pattern set. For odd n, the constraints are

as follows.

X

i

h

i;j

x

i

= (n� 1)=2;

X

i

a

i;j

x

i

= (n � 1)=2;

X

i

b

i;j

x

i

= 1; for all dates j:

For even n the constraints are

X

i

h

i;j

x

i

= n=2;

X

i

a

i;j

x

i

= n=2; for all dates j:

Nemhauser and Trick reformulate this model as an optimization problem

and solve it with integer programming.

In [6], the author shows that constraint programming exhibits better

performance for pattern set generation on the problem studied by Nemhauser

and Trick. Constraint programming systems provide summation propagators

for such linear equations.

5

Trick [18] suggests excluding pairs of patterns in which there is no possi-

ble meeting date for corresponding teams. More formally, for every pair i; i

0

s.t. i 6= i

0

, 8

j

(h

i;j

= 0 _ a

i

0

;j

= 0) and 8

j

(a

i;j

= 0 _ h

i

0

;j

= 0) the equation

x

i

+ x

i

0

� 1 must hold.

Adding corresponding propagators is often crucial for a good perfor-

mance. In the example reported in [6], an overall speedup of the scheduling

process by a factor of three is achieved.

When it is not necessary to generate all feasible pattern sets, performance

is greatly improved if not all feasible patterns are used, but a small number

s � n of patterns is randomly selected as input for pattern set generation.

If no pattern set is found, the process is repeated with a new selection.

As enumeration strategy, the most naive one, enumerating x in the order

x

1

; x

2

; : : : ; x

s

was found to be most e�ective.

6 Timetables

The two models for timetable generation mentioned in Section 2.3 are de-

scribed in detail here. Given is a pattern set in form of n� d matrices H , A

and B of 0/1 variables whose entries H

i;j

(A

i;j

, B

i;j

) indicate home matches

(away matches, byes) for pattern i in date j.

Furthermore, common to both approaches is a target timetable, repre-

sented by

� an n� d matrix �, whose entries variables �

t;j

range over 0; : : : ; n and

tell the opponent team against which team t plays in date j (0 stands

for a bye), and

� matrices H, A and B of 0/1 variables whose entries H

t;j

(A

t;j

, B

t;j

)

tell if team t plays home (plays away, has a bye) in date j.

The constraints FIX-HAB and FIX-AGAINST are represented by basic con-

straints on variables of �, H, A and B in an obvious way. Constraints

ATMOST-AGAINST-SEQUENCE can be expressed by sets of propagators

over � similar to the constraints ATMOST-HAB-SEQUENCE in Section 4.

6.1 Cain's Method

Cain's method �rst assigns teams to patterns of the given pattern set. Ac-

cordingly, we introduce n �nite domain variables p

i

, 1 � i � n. Each team

t plays according to the pattern in row p

t

of H , A and B. The constraints

on the vector p and the matrix � are listed in Table 2.

These constraints can be easily implemented by propagators. Of partic-

ular importance is the last one, which links the given pattern set with the

desired timetable, using the variables p

i

as indices. It is expressible with

the so-called element propagator [5]. The element propagator takes as argu-

ments a �nite domain variable k, a vector of integers v and a �nite domain

variable w.

element(k; v; w)

The semantics is v

k

= w. Propagation can restrict the possible values for k,

if a value in v is eliminated from w, and it can eliminate a number x from w,

6

1. For all dates j and teams t, at most one of the values

�

1;j

; : : : ; �

n;j

is t.

2. For all dates j and teams t

1

and t

2

, �

t

1

;j

= t

2

if and only if

�

t

2

;j

= t

1

.

3. For all teams t

1

and t

2

, the number of dates r for which �

t

1

;j

=

t

2

is r.

4. For all dates j and teams t

1

, t

2

, if �

t

1

;j

= t

2

, then

((H

t

1

;j

= 1) ^ (A

t

2

;j

= 1)) _ ((A

t

1

;j

= 1) ^ (H

t

2

;j

= 1))

5. If n is odd, for all dates j and teams t, �

t;j

= 0 if and only if

B

t;j

= 1.

6. For all dates j and all teams t : H

p

t

;j

= H

t;j

, A

p

t

;j

= A

t;j

; and

B

p

t

;j

= B

t;j

for odd n.

Table 2: Constraints on �

if the last index that pointed to an x in v is eliminated from k. The following

propagator implements one of the desired constraints, namely H

p

1

;2

= H

1;2

.

element(p

1

; H

2

;H

1;2

)

where H

2

stands for the second column of matrix H .

The search strategy of Cain's method �rst assigns patterns to teams

by enumerating the variables in p. Note that in the presence of FIX-HAB

constraints, the just-mentioned element propagators can prune the search

tree in this process. Next, the variables in � are enumerated. Here, the

propagators corresponding to the �rst three constraints in 2 may be able

to prune the remaining search tree. Apparently, the best strategy is to

enumerate date-wise, i.e. in the order �

1;1

; �

2;1

; : : : ; �

n;1

; �

1;2

; : : : ; �

n;d

.

6.2 Schreuder's Method

Schreuder proposes to construct a timetable of team placeholders �rst. For

this purpose, a matrix � similar to � is introduced. Its entries �

i;j

�x the

team placeholder against which team placeholder i \plays" in date j. The

�rst three constraints on � given in Table 2 must hold correspondingly for �.

Date-wise enumeration of � constructs a timetable of team placeholders. The

patterns described byH , A, and B are associated with the team placeholders

in sequential order, i.e. team placeholder 1 \plays" at date j according to

H

1;j

, A

1;j

and B

1;j

.

The last step assigns teams to team placeholders. For this assignment,

we introduce n �nite domain variables q

i

, 1 � i � n. The constraints that

link the given pattern set represented by H , A and B, q and H, A and B are

similar to the last constraint in Table 2. The relationship between � and �

is a little more complicated. For all dates j and all teams t:

�

q

t

;j

= q

�

t;j

7

Consider the following instance of this constraint.

�

q

1

;2

= q

�

1;2

This instance can be expressed by two element propagators, introducing an

auxiliary �nite domain variable against, ranging from 1 to n.

element(q

1

; �

2

; against); element(�

1;2

; q; against):

where �

2

stands for the second column of matrix �. The element propagator

as described in [5] takes as second argument a list of integers. Initially the

second argument in both element propagators are vectors of �nite domain

variables. A standard implementation of the element propagator as provided

for example by the Mozart system [11] will wait until all components of the

second argument vector are determined. Thus these propagators become

able to prune the search tree at a relatively late stage. A more power-

ful version of the element propagator that is able to propagate even if the

vector is not determined, would doubtless improve the performance of this

implementation of Schreuder's approach to timetable generation.

7 Friar Tuck

Crucial for planning an irregular RR tournament is a careful design of the

constraints. It seems that a basic understanding of the solution process is

necessary. The user needs to �ne-tune the constraints as well as the solution

process in order come to a satisfactory timetable. Thus, a useful tool should

provide interactive access to all phases and allow �ne-tuning of the solution

process and constraints.

For this purpose, the tool Friar Tuck was designed. Friar Tuck is available

at http://www.comp.nus.edu.sg/~henz/projects/FriarTuck/ in binary

and source form. Friar Tuck is implemented using the �nite domain con-

straint programming system Mozart 1.0 [11].

7.1 Structure

The user interface displays a graph representing the solution process as

shown in Figure 1. Clicking on the nodes in this graph results in the display

of a control panel for the corresponding phase on the right. In Figure 1,

the user chose the control panel for timetable generation. Cain's method of

assigning teams to patterns was selected.

7.2 Entry of Constraints

The interface for entering and editing tasks is displayed on the right af-

ter clicking on phase \Task" on the left. All constraints described in Sec-

tion 1 can be entered by mouse-click, stored to and retrieved from �les.

The interface for the constraints FIX-HAB and FIX-AGAINST performs

constraint propagation and consistency checking and thus supports semi-

automatic timetable construction. Figure 2 shows the corresponding dialog

window.

8

Figure 1: Friar Tuck (timetable interface)

7.3 Solution Process

After loading a task, asking for the \Next" timetable in the \Timetable"

panel results in asking the pattern set phase for a pattern set. The pattern

set phase in turn triggers the computation of all feasible patterns by the

pattern phase. Based on a selection of these patterns, the pattern set phase

computes the �rst pattern set which is sent to the timetable phase. The

timetable phase now tries to construct a timetable based on this pattern set.

If it succeeds, this timetable is provided to the user, and if it fails, it asks

the pattern set phase for the next pattern set, etc.

In addition to this automatic mode, the user can interact with the �rst

two phases separately and thus conduct experiments on pattern and pattern

set generation. A batch mode supports automation of experiments such as

the ones reported in the next section.

This interactive access is possible, since each of the phases' \Patterns",

\Pattern Sets", and \Timetables" are implemented by instances of the class

Search.object, which is provided by the Oz Standard Modules [7]. Search

objects encapsulate constraint-based search and provide an interface to search

from a more conventional programming environment. Newer versions of the

C++ constraint programming library Ilog Solver [8] are based on the same

idea of encapsulation.

9

Figure 2: Friar Tuck (task interface)

P PS T Total

S R S R S R R

2 2 0.05 1 0.05 8 0.50 0.60

4 8 0.05 8 0.12 16 0.07 0.24

6 32 0.06 3824 77.6 32768 2134.0 2211.0

8 128 0.14 ? . ? . .

3 12 0.05 8 0.50 8 0.10 0.65

5 80 0.11 7776 246.2 6144 1654.5 1900.8

#

t

e

a

m

s

7 448 2.31 ? . ? . .

Table 3: Single round robin, no restrictions; P: pattern generation; PS:

pattern set generation; T: timetable generation; S: number of solutions; R:

runtime in seconds.

8 Computational Results

In most examples that we encountered, Cain's method performs better than

Schreuder's, including the ACC example reported in detail in [6]. All exper-

iments reported in this section are run using Cain's method on a PC with a

223 MHz Pentium processor and 64 MBytes main memory running Mozart

1.0 under Windows 95.

8.1 No Restriction

In the unrestricted case, there are no closed formulae known to compute the

number of pattern sets and timetables for a given n. The numbers grow very

quickly with n as shown in Table 3. With no team-speci�c constraints, one

given timetable can be used to generate n! timetables which are identical

up to team permutation. To generate only timetables that are di�erent

modulo team permutation, Friar Tuck allows the �xing of the vectors p

(Cain's method) and q (Schreuder's method). In this section, only timetables

that are di�erent modulo team permutation are counted.

10

P PS T Total

S R S R S R R

2 2 0.05 1 0.01 1 0.01 0.07

4 6 0.05 1 0.11 2 0.02 0.18

6 10 0.06 1 0.21 8 1.76 2.03

8 14 0.07 1 3.8 320 17.1 20.9

#

t

e

a

m

s

10 18 0.07 1 5.0 61440 344.1 349.1

Table 4: Single round robin, minimal number of breaks for even n; P: pattern

generation; PS: pattern set generation; T: timetable generation; S: number

of solutions; R: runtime in seconds.

8.2 Minimal Number of Breaks

For odd n, the timetables with no breaks are unique (up to switching home

and away throughout the timetable) and have a very regular structure. They

can be computed by Friar Tuck up to about n = 35.

For even n, the situation is more interesting. De Werra [4] and Schreuder

[16] show that the minimal number of breaks in this case is n � 2. Table 4

shows the number of possible pattern sets and timetables with minimal num-

ber of breaks for even n � 10. The number of timetables forms an interesting

sequence, although a conjecture for a closed formula is not obvious.

9 Conclusion

Constraint programming proves to be an e�ective solution technique for

various known models of subproblems of round robin tournament planning.

The tool Friar Tuck provides a user interface to the planning process,

from problem de�nition to fully automatic generation of timetables. Fur-

thermore, Friar Tuck supports experimentation on subproblems such as pat-

tern and pattern set generation. Friar Tuck is an example for a hierarchical

problem solver whose implementation bene�ts from an object-oriented en-

capsulation of constraint-based search.

New experimental results regarding the number of patterns, pattern sets

and timetables with regular constraints were presented. Such numbers may

provide new insights into the algebraic and graph-theoretical structure of

the underlying problems.

A separate study provides evidence that constraint programming is com-

petitive with integer programming for pattern set and timetable genera-

tion [6]. More such studies and experiments are needed to assess the relative

merits of competing approaches in this �eld.

Concerning the constraint programming approach, round robin tourna-

ments provide a rich application �eld for specialized propagation techniques.

� More powerful sequence constraints for pattern generation may be con-

sidered [13].

� Pattern set generation may bene�t from a specialized global propaga-

tor.

� The implementation of Schreuder's method may bene�t from a gener-

alized element propagator that allows the argument vector to contain

11

�nite domain variables instead of insisting on a vector of �xed integers.

Experience with challenging timetabling problems is needed to assess the

relative e�ciency of the described constraint-based and other approaches.

Optimization criteria such as minimization of travel distance [3] should be

supported.

References

[1] B. C. Ball and D. B. Webster. Optimal scheduling for even-numbered

team athletic conferences. AIIE Transactions, 9:161{169, 1977.

[2] William O. Cain, Jr. The computer-assisted heuristic approach used

to schedule the major league baseball clubs. In Shaul P. Ladany and

Robert E. Machol, editors, Optimal Strategies in Sports, number 5

in Studies in Management Science and Systems, pages 32{41. North-

Holland Publishing Co., Amsterdam, New York, Oxford, 1977.

[3] Robert T. Campbell and Der-San Chen. A minimum distance basketball

scheduling problem. In Shaul P. Ladany; under the general supervision

of Donald G.Morrison Robert E. Machol, editor, Management Science

in Sports, number 4 in Studies in Management Sciences, pages 15{25.

North-Holland Publishing Co., Amsterdam, New York, Oxford, 1976.

Special issue of the journal Management Science.

[4] D. de Werra. Some models of graphs for scheduling sports competitions.

Discrete Applied Mathematics, 21:47{65, 1988.

[5] Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solving

the car-sequencing problem in constraint logic programming. In Yves

Kodrato�, editor, Proceedings of the European Conference on Arti�cial

Intelligence, pages 290{295, Munich, Germany, August 1988. Pitman

Publishers, London.

[6] Martin Henz. Scheduling a major college basketball conference|

revisited. Operations Research, 2000. to appear.

[7] Martin Henz, Martin M�uller, Christian Schulte, and J�org W�urtz. The

Oz standard modules. DFKI Oz documentation series, German Re-

search Center for Arti�cial Intelligence (DFKI), Stuhlsatzenhausweg 3,

D-66123 Saarbr�ucken, Germany, 1997.

[8] ILOG Inc., Mountain View, CA 94043, USA, http://www.ilog.com.

ILOG Solver 4.0, Reference Manual, 1997.

[9] Kim Marriott and Peter J. Stuckey. Programming with Constraints.

The MIT Press, Cambridge, MA, 1998.

[10] Ken McAloon, Carol Tretko�, and Gerhard Wetzel. Sports league

scheduling. In Proceedings of the 1997 ILOG Optimization Suite In-

ternational Users' Conference, Paris, July 1997.

[11] Mozart Consortium. The Mozart Programming System. Documenta-

tion and system available from http://www.mozart-oz.org, Program-

ming Systems Lab, Saarbr�ucken, Swedish Institute of Computer Sci-

ence, Stockholm, and Universit�e catholique de Louvain, 1999.

12

[12] George L. Nemhauser and Michael A. Trick. Scheduling a major college

basketball conference. Operations Research, 46(1), 1998.

[13] Jean-Charles R�egin and Jean-Fran�cois Puget. A �ltering algorithm for

global sequencing constraints. In Gert Smolka, editor, Principles and

Practice of Constraint Programming|CP97, Proceedings of the Third

International Conference, Lecture Notes in Computer Science 1330,

pages 32{46, Schloss Hagenberg, Linz, Austria, October/November

1997. Springer-Verlag, Berlin.

[14] Robert A. Russell and Janny M. Y. Leung. Devising a cost e�ective

schedule for a baseball league. Operations Research, 42(4):614{625,

1994.

[15] Andrea Schaerf. Scheduling sport tournaments using constraint logic

programming. In Proceedings of the European Conference on Arti�cial

Intelligence, pages 634{639, Budapest, Hungary, 1996. John Wiley &

Sons.

[16] Jan A. M. Schreuder. Combinatorial aspects of construction of competi-

tion dutch professional football leagues. Discrete Applied Mathematics,

35:301{312, 1992.

[17] Barbara Smith. Succeed-�rst or fail-�rst: A case study in variable and

value ordering. In Proceedings of the 1996 ILOG Solver and ILOG

Scheduler International Users' Conference, Paris, July 1996.

[18] Michael Trick. Modi�cations to the problem description of

\scheduling a major college basketball conference". WWW at

http://mat.gsia.cmu.edu/acc mod.html, 1998.

13

