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Abstract 
 

 
Information-rich search tree visualization is very useful in constraint programming. 

The entire process of solving a constraint problem is captured by the search tree. We 

will develop a component based visual tool to visualize the search trees in Figaro (a 

finite domain constraints solver) independent of search strategies. Users can interact 

with the visual tool to achieve various objectives. The report will describe how to 

draw trees that suit aesthetic rules, the design criteria and the implementation details 

of the visual tool.  

 

 

Subject Descriptors: 
 
 D.2.2 User interfaces 

G.2.2 Graph Theory 
I .2.8  Problem Solving, Control Methods, and Search 
F.4.1  Logic and constraint programming 

 
Keywords: 
 Constraint programming, search tree, tree drawing, visualization 
 
Implementation Software and Hardware: 

Software:  RedHat7.2 GNU/Linux (kernel 2.4.9-34), gcc (GCC) 3.0.4,  
      Figaro-1.1.0, X-win32 5.4  

 Hardware: Intel Pentium 4 CPU 1500 MHz, 899644K main memory 
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Chapter 1: Introduction 
 

1.1 Constraint Programming 
In the last two decades, constraint programming, especially finite domain constraint 

programming, has become popular in many application areas. A problem can be 

solved using constraint programming as long as it can be modeled as a constraint 

satisfaction problem. Now let us know about constraint programming by introducing 

important terms. 

 

1.1.1 Constraints 

The central notion in constraint programming is that of a constraint. Informally, a 

constraint on a sequence of variables is a relation on their domains (Krzysztof 2002). 

It can be viewed as a requirement imposed on the variables as it explains which 

combinations of values from the variable domains are admitted. 

 

For example, ]3...1[,, ∈< BABA  is a constraint. It stipulates a relation that must hold 

between any values chosen to replace the variables A and B, namely the chosen value 

of A must be smaller than the chosen value of B. A substitution of variables by values 

from their domains is a solution of the constraint if the substitution yields truth. For 

example, the substitution }2/,1/{ BA  is a solution to the constraint since 21 <  yields 

truth while the substitution }1/,2/{ BA is not a solution to the constraint since 12 <  

yields failure. 

 

1.1.2 Constraint Satisfaction Problems 

A constraint satisfaction problem (CSP) consists of a finite set of constraints. 

Modeling a problem as a CSP is very the first step to solve the problem using 

constraint programming. A substitution of all the variables by values in their domains 

is called a solution of the CSP if the substitution offers the solutions to all constraints. 

Two CSP’ s are equivalent regarding to a set of variables if they have the same 

solutions for these variables. 
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Example: SEND MORE MONEY. In the problem under consideration we are asked 

to replace each letter by a different digit so that the sum 

SEND 
   + MORE 
    MONEY 

is correct.  

CSP representation:  

 Variables and Domains: ]90[,,,,,],91[, �� ∈∈ YRODNEMS . 

Constraints: An equality constraint 

YENOM

EROM

DNES

+×+×+×+×=
+×+×+×+

+×+×+×

10100100010000

101001000

101001000

 

and 28 disequality constraints x ≠ y for x, y∈{S,E,N,D,M,O,R,Y} with x 

preceding y in the presented order. 

The unique solution of the CSP is 9567 + 1085 = 10652. It corresponds to the 

substitution }2/,8/,0/,1/,7/,6/,5/,9/{ YROMDNES . 

 

Example: SIMPLE ENEQUALITY.   

 Variables and Domains: ]31[,, �∈ZYX . 

 Constraints: ZYYX << , . 

 

We express a CSP in form of domainsandVariablessConstra ;int . Thus the 

examples SIMPLE EQUALITY can be represent as 

]41[],41[],41[;, ��� ∈∈∈<< ZYXZYYX  

 

Once we formalized a problem as a CSP, we can solve it using either domain specific 

methods or general method. The domain specific methods are usually provided in 

form of specific purpose algorithms. In turn, the general methods are concerned with 

the ways of reducing the searching space (constraint propagation) and with specific 

search methods. And this is how a CSP is solved using constraint programming. 

 

1.1.3 Constraint Propagation 
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Constraint propagation replaces a given CSP by a “simpler” one, yet equivalent 

(Krzysztof 2002). The idea is that such a replace, if efficient, is profitable, since the 

search space becomes smaller. Typically, “simpler” means that the domains and/or 

constraints become smaller. The constraint propagation is performed by repeatedly 

reducing domains and/or reducing constraints using some rules while maintaining 

equivalence.  

 

Now consider the CSP SIMPLE ENEQUALITY. Suppose we have the constraint 

propagation rule LINEAR INTEGER INEQUALITY 1: 

])1,[max()],1,min([;

][],[;

yxyyxx

yyxx

hllyhhlxyx

hlyhlxyx

��

��

+∈−∈<

∈∈<
 

 

Repeatedly applying this rule, we can finally transform the CSP SIMPLE 

ENEQUALITY as follows: 

]41[],41[],41[;, ��� ∈∈∈<< ZYXZYYX  

]}41[],42[],31[;, ��� ∈∈∈<<⇒
<

ZYXZYYX
yx

 

]}43[],32[],31[;, ��� ∈∈∈<<⇒
<

ZYXZYYX
zy

 

]}43[],32[],21[;, ��� ∈∈∈<<⇒
<

ZYXZYYX
yx

. 

So we reduced all three variable domains. 

 

1.1.4 Search and Search Trees 

Search and search trees are the central notions of the project so we must know them in 

the beginning. In general, constraint propagation gives us a simpler CSP but the 

resulting CSP is not solved yet. SIMPLE ENEQUALITY is such an example. In such 

a situation, a progress can be achieved only by splitting the current CSP P into two or 

more CSP’ s the union of which is equivalent to P. So the general pattern consists of 

an alternating use of constraint propagation and splitting. This leads to what we call 

search trees. Conceptually, it is helpful to have in mind the following slogan: 

Search Algorithm = Search Trees + Traversal Algorithm. 

 



 4 

We explain this part using the example SIMPLE ENEQUALITY. Figure 1.1 shows 

the complete search tree for SIMPLE ENEQUALITY. Usually we combine 

enumeration and constraint propagation as one step so that the tree becomes smaller. 

 

 

Figure 1.1: Complete search tree for SIMPLE ENEQUALITY 

 

1.2 Figaro 

Figaro is developed to provide researchers and software practitioners with a library 

for solving discrete constraint satisfaction and optimization problems using tree 

search and local search in a unified software architecture (Martin, Tobias and Ka 

Boon, 1999). 

 

The implementation of problem solving algorithms is a challenging task. Sources of 

complexity are the problem models to be used, the need for heuristics and the need for 

experimentation and performance tuning. Another major source of complexity is the 

emerging need to interleave and combine different problem solving algorithms, such 
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as tree search and local search, at runtime. Figaro project is a software architecture 

designed for mastering this complexity. This architecture will serve as the base for the 

Figaro library for problem solving. The Figaro library is public domain software that 

supports finite domain constraint programming and local search and is open to 

extension to other techniques for problem solving.   

 
1.3 Tree search Visualization 

The development of constraint programming solutions requires extensive 

experimentation which is ideally supported with a tool for visualization of tree search. 

A successful example of such a tool is the Oz Explorer (Christian, 1997). This tool is 

limited to depth-first search, but allows us to visualize any single-pass tree search. 

The aim of this project is to use Figaro's component-based architecture to provide a 

search tree visualization that is independent of the search engines (such as depth-first-

search) and that can be used easily in complex solutions where search engines are 

combined hierarchically. This task will likely require a redesign of parts of the current 

Figaro library and will lead to a significant contribution to the constraint 

programming community. 

 

1.4 Report Overview 

The report will talk about the visualization of search tree in Figaro. In chapter 2, the 

Figaro system will be explained in more details. After that, in chapter 3, general 

topics about tree search visualization in Figaro will be talked about. Then we talk 

about the algorithms and implementations in the following 2 chapters, namely chapter 

4, and 5. More specifically, chapter 4 talks about the tree position algorithm used in 

drawing search trees; chapter 5 talks about main implementation issues. Near the end, 

chapter 6 gives some information about testing and performance. We will conclude 

the report in chapter 7. 
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Chapter 2: Figaro 
 

2.1 Figaro Description 

Figaro contains many components (Choi Chiu, Martin and Ka Boon, 2001). And the 

components can be combined to solve a CSP. Figaro system has some basic solutions 

to finite domains, constraints and constraint propagation algorithms. The variables 

and domains of a CSP are represented as stores. And each node object represents a 

CSP together with branching methods. Besides these basic components, Figaro 

system has various engines and problem models. The overall structure of Figaro 

system is shown in figure 2.1. 

 

Figure 2.1: Overall structure of Figaro system 

 
I will talk more about some important components, namely models, engines and 

branching, separately. 

 

2.1.1 Models 

To use Figaro system, users must describe their CSP’ s in a desired way. Figaro 

provides problem models to let the users describe their problems. All the problems 

must be specified following the model. Users must define the store within the model, 

post constraints into the model. The model must be able to output its store and 

generating branching.  

 

2.1.2 Engines 

Figaro has many types of engines. Once an engine is created and initialized, it can 

find its next solution. There are some types of engines each of which perform 

different task. Here are the engines provided in Figaro with short comments. 

 

Engines 

Explorer Models 

Nodes 

Stores Constraints Branching 
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• First Engine: find the first solution of the CSP. 

• Last Engine: find the last solution of the CSP. 

• Compose Engine: compose two engines and form a new engine. 

• Solution Engine: help to output solutions and related information. 

• Tree Search Engine:  use search methods to find solutions.  

• Model Engine: modify the store and constrains while finding the CSP’ s solutions. 

 

Since the report is about the tree search visualization and the tree search engine 

performs the search, it is necessary to know more about tree search engine. Tree 

search engines are the most import or basic type of engine in solving CSP’ s. Each tree 

search engine uses an explorer, which specifies the search strategy. There are 

currently three types of explorers available so far: depth-first explorer, breadth-first 

explorer and branch-and-bound explorer. 

 

Figaro Engines can be combined in many ways base on the users’  requirements (Choi 

Chiu et al, 2001). Figure 2.2 is a sample engine combination. This combination is to 

find the first solution of the CSP represented by the model engine using depth-first 

search. 

 
Figure 2.2 Combine Figaro engines 

 
 
 
 
 

Compose Engine 

First Engine 

Compose Engine 

Model Engine Tree Search Engine 

Node 

Solution Engine 

Depth-first Explorer Model 
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2.1.3 Branching 

Figaro provides three branching strategies used in search. They are naïve, first-fail 

and split. Users can select whichever they want. Branching algorithms define the size 

and the shape of the search trees (Martin and Tobias, 2000). 

 

2.2 Use Figaro to Solve Problems 

We can use Figaro to solve our problem. First we construct the problem model. In the 

model we specify the variables and their domains, constrains, branching method, 

output methods. After define the model, we create an engine combination that can 

solve the problem. Then we just solve the engine combination to solve the problem. 

Figure 2.3 is a sample program solving n queen problem using Figaro.  

 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

#include "figaro.h" 
using namespace figaro; 
 
class NQueen : public Model { 
private: 
  int n; 
  vector<varId> Row; 
public: 
  NQueen(int x) : n(x) { } 
  ~NQueen() { } 
  StoreState impose(store* s) {  
    int i; 
    for (i=0; i<n; i++) 
      Row.push_back(s->newvar(1,n)); 
    vector<int> L1N(n); 
    vector<int> LM1N(n); 
    for (i=1; i<=n; i++) { 
      L1N[i-1] = i; 
      LM1N[i-1] = -i; 
    } 
    RETONFAIL(s->addcon(new Distinct(Row))); 
    RETONFAIL(s->addcon(new DistinctOffset(Row,LM1N))); 
    RETONFAIL(s->addcon(new DistinctOffset(Row,L1N))); 
    return SLEEP; 
  } 
  branching* generateBranching() {  
    return (new firstfail(Row.begin(),Row.end())); 
  } 
  void output(store* s) {  
    vector<varId>::const_iterator idx = Row.begin(); 
    for (; idx != Row.end(); ++idx) { 
      cout << (*(*idx))+1 << "=>" << s->getMin(*idx) << endl; 
    } 
  } 
}; 
 
int main (int argc, char** argv) {   
 
  int n = (argc > 1) ? atoi(argv[1]) : 100; 
 
  NQueen* nqueen = new NQueen(n); 
  solve( 
     EngineCompose( 
        Last( 
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45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

           EngineCompose( 
    new ModelEngine(nqueen), 
    new VisualTreeSearchEngine( 
       new DepthFirstExplore(), 
       new CopyNode(), 
       nqueen 
    ) 
           ) 
        ), 
   new SolutionEngine(nqueen) 
     ) 
  ); 
  delete(nqueen); 
  return 0; 
} 
 

 

Figure 2.3. Program solving n queen CSP using Figaro 

 

In the example, the n queen problem is specified use a Figaro Model. In the n queen 

model class, lines 12-14 specify the variables and their domains, lines 15-23 post the 

constrains, lines 26-28 state the branching method and lines 29-34 give the output 

method for the store. After the model is created, an engine combination is created 

(lines 43-55) and solved (lines 42). Figure 2.2 shows the structure of the engine 

combination. 
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Chapter 3: Tree Search Visualization in Figaro 
 

3.1 Concepts 

The visualization of tree search in Figaro has several concepts. They are visual tree 

search engine, solve interactive, stepping engine. 

� Visual tree search engine. The visual tree search engine is an alternative of 

existing tree search engine from which it is derived. Users can use visual tree 

search engine if they want to see the tree search visually. This means users just 

need to replace tree search engines by visual tree search engines in the 

structure of the engine combination. 

� Solve interactive. Solve interactive is an alternative of solve. It is used with 

visual tree search engine. It will keep the window which visualizes the tree 

search when the search job finishes so that users can do more interaction with 

the tree search. If solve instead of solve interactive is used, the program will 

quit when visual tree search engine finishes its job. 

� Stepping engine. Sometimes, users want to control from the search starts. 

Stepping engine will stop the engine once the engine is initialized and let the 

user interact with the visual tree.  
 

3.2 Features 

The features are the functionalities that the visual window can provide to users. After 

this section, the readers will have the idea what the visual tool works. Now I will 

describe the features by dividing them into groups. 

 

The first group concern about the search engine. The search engine uses explorer 

which specifies the search strategies. When visualizing the search, users can modify 

the search tree in three ways. 

� Show all nodes.  All the nodes in the search tree will be displayed. The user 

can interact with any part of the search tree. 

� Delete fail subtrees. All the failed subtrees are deleted and the user can not 

view them any more. Deleting failed subtrees can save memory space since 

the trees constructed are smaller. Rendering a smaller tree is faster and the tree 

will takes less space in screen. If users are only interested in the solutions and 
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solution paths or want to find the solutions faster, deleting fail subtrees will be 

a good choice.  

� Hide fail subtrees. It is similar with deleting fail subtrees except the failed 

subtrees are kept in memory and user can expand them. It has the advantages 

of deleting fail subtrees but it save less memory space comparing deleting fail 

subtrees since the tree structure must be kept. 

 

During search, the tree will be refreshed frequently to show search process. Since the 

positions of all the nodes will be affected when new nodes are added to the tree, the 

whole tree will be considered to be redrawn once a single node is added. If we refresh 

the tree once a new node is added, or each search step, much time will be spent on the 

redrawing. So the user can specify how frequently the search tree is refreshed. There 

are two choices: 

� Refresh every n nodes. Refresh every n nodes. This is often used with 

showing all ndoes. 

� Refresh every n solutions. Refresh every n solutions are found. This is often 

used with deleting or hiding failed subtrees. 

 

Users can also always see the last node searched by selecting 

� Trace last node 

 

Users can also control the search engine using the visual tool: 

� Reset/pause/resume/stop search. Reset the tree search engine so that users 

can search from beginning. Stopping the engine search will also keep the 

window for interactions. 

 

Once the search engine is stopped, user can do the following search: 

� One step. Let the engine search one more step. 

� Find next solution. Let the engine search for next solution. 

� Find all solutions. Let the engine search for all solutions. 

 

The second group concerns about viewing and traversing the search tree. When users 

view the search tree, user can  

� Hide/Unhide/Delete a subtree.  
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The visual tool also provides following functionalities to facilitate users in finding 

node and traverse the tree. 

� Find top node/last node/up node/left child/right child. 

� Zoom in/out the tree. 

 

The third group is concern about the search that is driven by users instead of the 

search engine. Only one such feature is provided. 

� Make child. The user can search one step from any node that node finish 

searching. And users can search in the way they like instead of use the strategy 

of the explorer. 

 

The final group is the general features. 

� Close/Exit/Help/About. Close is different from exit. Close is just close the 

window and exit is exit the program. 

 

3.3. Design Ideas 

The design of the visual tool focuses mainly on two criteria: compatibility and search 

strategy independence. 

 

Compatibility 

The visual tool is just a component or a layer built on Figaro library. The existing 

Figaro system should not be affected by the visualization. In another word, the 

underline Figaro library should not care about the visualization. 

 

Search strategy independence 

The tree search visualization should not care about the search strategies. Existing Oz 

explore is a successful tool to visualize tree search in constraint programming, but it 

can only visualize depth-first tree search. Our visual tool can visualize any kinds of 

tree search such as depth-first, breadth-first, branch-and-bound search. The visual tool 

need not know the search strategies used when visualize the search. 
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3.4 Overall Design 

The overall design structure of the visual tool is can be viewed as figure 3.1. There are 

mainly 4 parts in the structure: visual tree search engine, tree, window and explorer. 

Since the explorer has already exist in Figaro library. So it need not do this part of job 

any more. 

 
 

Figure 3.1: Visual tool design structure 

 

Before visualize the search tree, the tree must be constructed first. The tree is 

constructed by visual tree search engine. More precisely, every visual tree search 

engine corresponds to a search tree. The visual tree search engine obtains nodes from 

the explorer it uses and adds nodes to its search tree. The tree object has the position 

algorithms to determine how to draw itself. Then the visual tree search engine draws 

the tree on the corresponding window using Gtk/Gnome graphic library. During 

search, the window will handle the user’ s actions. After the engine is stopped, an 

action loop will be run in the main thread to response the user’ s interactions that are 

permitted to run in this phase. Some response needs to use the explorer and tree draw 

methods as well. The program runs as visualization by using two threads. 

 
 

Explorer 

VisualTreeSearchEngine 

Node 

Tree 
(position algorithm) 

Window 

visualize 

Main thread 

Visual thread 

Stop 

Action loop 

Gnome/Gtk 

USER INTERACTION 
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Chapter 4: Node-Positioning Algorithm of General 
Trees 

 

4.1 Drawing Trees 

Drawing a tree consists of two stages: determine the position of each node, and 

actually rendering the individuals nodes and interconnecting branches. Figure 4.1 

shows a well-drawn general tree.  

 

Figure 4.1. A well drawn general tree 

 

Wetherell and Shannon first describe a set of aesthetic rules against which a good 

positioning algorithm must be judged (Wetherell and Shannon, 1979). 

 

Tidy drawings of trees occupy as little space as possible while satisfying certain 

aesthetics: 

1. Nodes at the same level of the tree should lie among a straight line, and the 

straight line defining the levels should be parallel. 

2. A parent should be centered over its offspring. 

3. A tree and its mirror image should be drawn the same way regardless of 

one another; moreover, a subtree should be drawn the same way regardless 

of where it occurs in the tree. In some application, one wishes to examine 

A 

B C 

D 

E F 

G 

H I J K L 

M

N 

O 
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large trees to find repeated patterns; the search for patterns is facilitated by 

having isomorphic subtree drawn isomorphically. 

This implies that small subtrees should not appear arbitrarily among 

larger subtrees. 

(a) Small, interior subtrees should be spaced out evenly among 

larger subtrees (where the larger subtrees are adjacent at one or 

more levels) (node F in figure 4.1). 

(b)  Small subtrees at the far left or far right should be adjacent to 

larger subtrees. 

 

4.2 Node-Positioning Algorithm of Fixed General Trees 

 

4.2.1 Walker’s algorithm 

John Q. Walker II has already given a node-positioning algorithm for fixed general 

trees that satisfies all the aesthetic rules (John, 1990). In general tree, there is no limit 

on the number of offspring per node. I will explain the algorithm and give some 

comments. 

 

Walker’ s algorithms can calculate the position of the nodes of any general trees in 

O(n) time, where n is the number of nodes or the size of the tree (John, 1990). This 

algorithm initially assumes the common practice among computer scientists of 

drawing trees with the root at the top of the drawing. Node-positioning algorithms are 

concerned only with determining the x-coordinates of the nodes; the y-coordinate of a 

node can easily be determined from its level in the tree, owing to the aesthetics rule 1 

and the natural convention of a uniform vertical separation between consecutive 

levels. 

 

The algorithm uses two concepts. First is the concept of building subtrees as rigid 

units. When a node is moved, all of its descendants are also moved – the entire 

subtree being thus treated as a rigid unit. A general tree is positioned by building it up 

recursively from its leaves towards its root. 
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Second is the concept of using two fields for the positioning of each node. These two 

fields are 

i. a preliminary x-coordinate, and 

ii. a modifier field. 

 

Two tree traversals are used to produce the final x-coordinate of a node. The first 

traversal assigns the preliminary x-coordinate and modifier fields for each node; the 

second traversal computes the final x-coordinate with the modify fields of all its 

ancestors. 

 

In the following, walker’ s algorithm will be given with small modification. The 

algorithm is involved by calling the procedure POSITION. The tree position need 

traverse the tree twice (figure 4.2). 

 
Procedure Tree::POSITION (Node) 

Begin  
/* Do the preliminary positioning with a postorder walk */ 
FIRSTWALK (0); 

 
/* Do the final positioning with a preorder walk */ 
SECONDWALK (0, 0) 

End; 
End; 

 

Figure 4.2 Procedure POSITION. 
 

The first tree traversal (figure 4.3) is a post order traversal, positioning the smallest 

subtrees (the leaves) first and recursively proceeding from left to right to build up the 

position of the large subtrees. Sibling nodes are always separated from one another by 

at least a predefined SUBTREE_SEPARATION. Subtrees of a node are formed 

independently and placed as close together as these separation values allow. 

 

Procedure Tree:: FIRSTWALK(level) 
Begin 

SET_NEIGHBORS 
If (ISLEAF) then 

Begin  
If  HAS_LEFT_SIBLING then 

PRELIM ←  LEFT_SIBLING → PRELIM + 
 SIBLING_SEPARATION+  
 NODE_SIZE; 

Else 
       PRELIM ← 0; 
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        End; 
Else 
        Begin 
 For each OFFSPEING from left to right do 
       OFFSPRING → FIRSTWALK(leve+1); 
        End; 
        MidPoint ←  (LEFT_OFFSPRING → PRELIM+RIGHT_OFFSPRING → PRELIM)/2; 
        If HAS_LEFT_SIBLING then 
 Begin 
        PRELIM ←  LEFT_SIBLING → PRELIM + 
   SIBLING_SEPARATION +  

NODE_SIZE; 
         MODIFIER ← PRELIM – MidPoint; 
        APPORTION (level); 
  End; 
         Else 
  PRELIM ← MidPoint; 

End; 
End; 
 

Figure 4.3.  Procedure FIRSTWALK. 
 

As the tree walk moves from the leaves to the apex, it combines smaller subtrees and 

their root to form a large subtree. For a given node, its subtrees are positioned one by 

one, moving from left to right following a second traversal (Figure 4.4). Imagine that 

its newest subtree has been drawn and cut out of paper along its contour. Superimpose 

the new subtree atop its neighbor to the left, and move them apart until no two points 

are touching. Initially their root their roots are separated by the sibling separation 

value; then at next low level, they are pushed apart until the subtree separation value 

is established between the adjacent subtrees at the low level. This process continues at 

success at successively lower levels  

 
Procedure Tree::SECONDWALK (level, ModSum) 
Begin 

XCOORD = PRELIM + ModSum; 
YCOORD = level * LEVEL_SEPARATION; 
For each OFFSPRING from left to right do 
      OFFSPRING → SECONDWALK(level+1, ModSum+MODIFIER); 
End 

End 
 

Figure 4.4. Procedure SECONDWALK. 
 

The second walk us a preorder walk (Figure 4.4). During the walk, each node is given 

a final x-coordinate by summing its preliminary x-coordinate and the modifiers of all 

the node’ s ancestors. The y-coordinate depends on the height of the tree. If the actual 

position of an interior node is right of its preliminary place, the subtree must be 

moved right to center the sons around the father. Rather than immediately readjust all 
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the nodes in the subtree, each node remembers the distance to the provisional place in 

a modifier field. In this second pass down the tree, modifiers are accumulated and 

applied to every node. 

 

When pushing a new, large subtree further and further to the right, a gap may open 

between the large subtree and the smaller subtree that had been previously positioned 

correctly, but now appears to be bunched on the left with an empty area to their right 

(figure 4.5). This produces an undesirable appearance; this characteristic of left-to-

right gluing will be removed by APPORTION procedure. APPORTION will shift the 

smaller subtrees to uniformly distributed between the larger subtrees (Figaro 4.6). For 

more information of the procedure, please refer to Walker’ s paper (John, 1990).  

     

Figure 4.5: left-to-right gluing  

 

Figaro 4.6. left-to-right gluing eliminated using APPORTION procedure. 

 

4.1.2 An example 

The tree shown in figure 4.1 is a tree positioned using Walk’ s algorithm. Let’ s see 

how Walker’ s algorithm computes the position of each node using two walks. 

   

Gap 
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Suppose the node-size is 4, both sibling-separation and subtree-separation is 4. After 

the first walk, the preliminary x-coordinate and modifier value of each node are 

computed (table 4.1). Then the final x-coordinate value is computed in second walk 

(table 4.2). 

 

Nodes A B C D E F G H I J K L M N O 

Prelim 0 0 6 6 3 13.5 0 0 6 12 18 24 6 24 13.5 

Modifier 0 0 0 3 0 4.5 0 0 0 0 0 0 -6 21 0 

 

Table 4.1.  Preliminary x-coordinate and modifier value for each node after first walk. 

 

Node A B C D E F G H I J K L M N O 

Xcoord 0 3 9 6 3 13.5 21 15 21 27 33 39 27 24 13.5 

 

Table 4.2. Final x-coordinates of the nodes computed after second walk. 

 

4.3 Incremental Node-Positioning Algorithm for General 

Trees 

 

4.3.1 Analysis on Walker’s Algorithm 

Walker’ s algorithm positions general trees well. But when the tree are changed, if we 

applies walker’ s algorithms again, the calculation will starts from very beginning. 

This causes a lot of extra work since the preliminary x-coordinate, modifier or x-

coordinates of some nodes will not change and it is better to just use the values has 

calculated previously. Thus an incremental version of Walker’ s algorithm is needed. 

 

Before we develop such an algorithm, we must get insight Walker’ s algorithm and 

give some observations and findings. Walk did not explain the underline meanings of 

the preliminary x-coordinates, modifiers or first walk although he said this is to 

determine the preliminary position of the nodes. Here I will give some interpretations 

on these ideas. 
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Preliminary x-coordinates 

The preliminary x-coordinate of a node only ensures that the subtree rooted by the 

node and subtrees rooted by siblings are well separated (figure 4.6). It dose not care 

about nodes not belonging the subtrees. Since the preliminary x-coordinates are about 

relative positions and do not care about the entire tree structure, the nodes without left 

siblings always have 0-value preliminary x-coordinates for simplicity (reference line 

show in figure 4.7). Assuming a virtual parent of the siblings, then the parent and the 

subtrees will form a well positioned tree. 

 

It is easy to see that if the relative position regarding to its siblings dose not change, 

the preliminary x-coordinate will not change. Consequently, if a subtree’ s structure 

stays unchanged, the preliminary x-coordinates of all the nodes except the root node 

of the subtree also stays the same. If we want to shift a subtree d unit right, only the 

preliminary x-coordinates of the root node of the subtree changes (increased by d). 

 

Figure 4.7: preliminary x-coordinates separate the subtrees rooted by sibling 
nodes.  
 

Modifier 

The modifier field of a node represents how the subtrees rooted by its offspring are 

shifted regarding to it (figure 4.8). In another word, modifier is to how to shift the 

subtree rooted by the node so that the it goes to the right position regarding its parent. 

 

Similar to preliminary x-coordinates, it is easy to see that if the relative position 

regarding to its parent dose not change, the modifier will not change. Consequently, if 

a subtree’ s structure stays unchanged, the modifier of all the nodes except the root 

Preliminary 
x-coordinates 
values 0 P1 Pn 

Reference line 
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node of the subtree also stays the same. If we want to shift a subtree d unit right, only 

the modifier x-coordinates of the root node of the subtree changes (increased by d). 

 

 Figure 4.8: Modifier shifts the subtrees roots by the nodes offspring to right 

positions under it. 

 

Similar to preliminary x-coordinates, it is easy to see that if the relative position 

regarding to its parent dose not change, the modifier will not change. Consequently, if 

a subtree’ s structure stays unchanged, the modifier of all the nodes except the root 

node of the subtree also stays the same. If we want to shift a subtree d unit right, only 

the modifier x-coordinates of the root node of the subtree changes (increased by d). 

 

First walk 

Combine the analysis of preliminary x-coordinates and modifiers, we know 

� If a subtree is shifted (d unit right), only the root node of the subtree changes 

its preliminary x-coordinate and modifier value (both increase by d). 

� Since first walk compute these two values, so we need only first walk the 

nodes which may be shifted.  

Base on the analysis, we developed the incremental node-positioning algorithm for 

general trees. 

 

 

Modifier 

Reference line 
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4.3.2 Incremental node-positioning algorithm for general trees 

Since the only the root nodes of the shifted subtrees need first walk. We can add 

SHIFT variable to indicate where a node will shift or not. Thus the modified first walk 

procedure comes out as figure 4.9. 

 
Procedure Tree:: FIRSTWALK(level) 
Begin 
 If  not SHIFT then 
         Return; 

SET_NEIGHBORS 
If  (ISLEAF) then 

Begin  
If  HAS_LEFT_SIBLING then 

PRELIM ←  LEFT_SIBLING → PRELIM + 
 SIBLING_SEPARATION+  
 NODE_SIZE; 

Else 
       PRELIM ← 0; 

        End; 
Else 
        Begin 
 For each OFFSPEING from left to right do 
       OFFSPRING → FIRSTWALK(leve+1); 

              OFFSPRING → SHIFT ← true;  
        End; 
        MidPoint ←  (LEFT_OFFSPRING → PRELIM+RIGHT_OFFSPRING → PRELIM)/2; 
        If HAS_LEFT_SIBLING then 
 Begin 
        PRELIM ←  LEFT_SIBLING → PRELIM + 
   SIBLING_SEPARATION +  

NODE_SIZE; 
         MODIFIER ← PRELIM – MidPoint; 
        APPORTION (level); 
  End; 
         Else 
  PRELIM ← MidPoint; 

End; 
End; 

 

Figure 4.9.  procedure FIRSTWALK in incremental node-positioning algorithm. 

 

The tree structure is different with that used by Walker in the sense SHIFT field, left 

and right neighbor are new in the figure. The neighbors should be stored because we 

should not be recomputed the neighbors some times. In The tree node structure used 

is shown in figure 4.10.  
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We must set some nodes’  SHIF state to be tree is the tree is changed. Since trees’  

structure can be changed by adding or deleting nods to/from the tree. Some actions 

will change the structure of the tree 

 

Figure 4.10. Tree  node structure 

 

.Adding/deleting nodes 

The path of a node consists of the node itself and all its ancestors. We say a node A is 

adjacent to node B’ s path if the node is on or adjacent to the node B’ s path. When add 

a new node to a tree, only the node, its siblings, its ancestors and the subtrees rooted 

by the siblings its node’ s ancestors may shift. Thus only the nodes adjacent to the new 

node’ s path need to set SHIF to be true. Figure 4.11 shows the nodes that need first 

walk (in gray color) when a node is added as a child of node D. 

 

Thus the first walk procedure run in O(logr(N)) time instead of O(N) time, where r is 

the order of the tree and N is the size of the tree. Adding more than one nodes is just 

doing the same work. 

 

Deleting a node is similar to adding a node: just enable SHIFT state of the ancestors 

and their siblings. 

 

Shif 

Preliminary 

Modifier 

Xcoord 

Ycoord 

Right sibling 

Right neighbor 

Left sibling 

Left neighbor 

Parent 

Leftmost Child 

isTree 
Backup 
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Figure 4.11.  Mark nodes’ SHIFT state when adding a node. 

 

Hiding/unhiding subtrees 

Hiding a subtree is just a trick. We just backup the subtree (the internal structure is 

not destroyed) and add two dummy nodes as the children of the subtrees’ s root. Then 

indicate apex node is a tree. When we draw a node which represents a subtree, we just 

draw a rectangle and omit its two dummy children (Figure 4.12).  

 

Figure 4.12. Hiding a subtree 

 

A hidden subtree can be unhidden by restoring its original offspring previous backed 

up and indicate the node should be drawn as a node instead of a subtree. 

 

Finding the node using an x-y coordinate 

Finding a node by the position is useful when nodes are visualized and users want to 

access it by mouse clicking. When the tree are large, if we traversal the tree and check 
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the positions of each nodes, it will waste time which is undesirable since we need 

quick response when clicking. Our algorithms can find the desired node quickly in 

O(r*logrN) time where r is the order of the tree and N is the tree size. 

 

First we check the y-coordinate, if it is not near multiples of level separations, it is 

impossible to exist there. If the y-coordinate is reasonable, we check the x-coordinate 

as following: 

 

We search from the root and go down to the desired level. In order to visit fewer 

nodes, in every level, we go down from the node whose x-coordinate is closest to the 

given coordinate. From figure 4.13, we know the path (path 1) is much shorter than 

other path (path 2). And this greedy algorithm will reach the desired level at the 

position near the desired node. 

 

 

Figure 4.13: Finding node by position 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Path 1 
Path 2 

Long distance 
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Chapter 5: Implementation Issues 
 
 

5.1 Search Visualization 

In order to show how to visualize Figaro search trees, we should know what Figaro 

search trees are and what the resulting visualized trees look like. Figaro search trees 

are all binary search trees since Figaro always do binary search. There are 4 types of 

nodes in Figaro search tree: 

 

� Open nodes. The nodes that have not finish branching. We can search from this type of nodes. 

� Close nodes. The nodes that have finished branching. We can not search from this type of 

nodes. Both open nodes and close nodes are choice nodes. 

� Fail nodes. The nodes that represent fail CSP’ s. 

� Solution nodes. The nodes that represent the solution of the CSP. Both fail nodes and solution 

nodes are leaves of the search tree. 

 

As we have talked in chapter 3, People want to hide or delete subtrees. We call a 

subtree failed if it contains no solution nodes or consistent otherwise. 

 

   

 

Figure 5.1. Display nodes and subtrees 

 

When drawing the search trees, we use circles and triangles to represent nodes and 

subtrees respectively. The red color represents failure; green color represents 

solutions or consistency. Figure 5.1 shows how the nodes and subtrees are displayed 

in the search trees. Figure 5.2 is a sample search tree drawn by the visual tool. 

Solution nodes Fail nodes 

Close nodes Open nodes 

Hidden  
fail  
subtrees 

Hidden  
consistent 
subtrees 

Deleted  
fail 
subtrees 

Deleted 
consistent 
subtree 
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Figure 5.2. The Figaro search tree for magic square problem of size 4. 

  
Now how to draw such trees? This consists of two problems. 

• How to construct the search tree? 

• How to rendering the search tree on the screen? 

 

Tree construction 

Since one design criteria search strategy independency of search visualization, the 

nodes must give the information where to put themselves onto the search tree. During 

searching process, the visual tree search engine uses an explorer which specifies the 

search strategy. When a node is explored and return to the engine, the engine can find 

the node’ s position in the tree by find the path of the node from the root. Each Figaro 

node has a pointer to its parent and a position. The position is 0 or 1 which represent 

the nodes is the left or right child of its parent. With this structure, we can find the 

path of the node from root by tracking its parent recursively. Once the path is founded, 

we can add the node to the tree as figure 5.3. It is easily to see that the tree is 

constructed independent of its search strategy. 
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Figure 5.3. Add nodes by position paths. 

 

The tree to be visualized is being constructed when searching solutions. Notes that 

during search, some nodes will changes its state, for examples open nodes become 

close nodes. And to distinguish the different types of nodes and subtrees, we must add 

some attributes in the tree nodes. This attributes are: 

� ISFIAL. True if the subtree rooted by the node is contains no solutions. 

� ISLEAF. True if the node are leaves. 

� CHANGECOLOR: True if the state of the nodes are changed (open to close for example). 

� ISNODE: True if the node should be drawn as a node instead of a subtree. 

� ISOPEN: True if it is an open node. 

 

When construct the search tree, users may want to hide the fail or delete fail subtrees. 

initially we assume all the node are consistent, then after the engine visits an fail node, 

trace from the fail node up and set the ancestors’  state. For a node, if both of its 

children are in fail sate, then the node is in fail state. So we can compute the state 

bottom up. Each time we add a node, we must check whether its parent is open or 

close. If we want to delete the subtree, we do the same as above except that we need 

not do the backup. 

 

Tree rendering 

Once the search tree is constructed, we can render it on the screen. We use 

GTK/Gnome graphic library to do the rendering and handle the events (Havoc,1999). 

1 

1 
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1 

0 
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We use a gnome canvas for each search tree, and draw the nodes using gnome items. 

The canvas has the transformation function. When second walk the tree and the x-y 

coordinate of a node is obtained, we put a canvas item on the position. We can count 

the number of nodes or solutions have been visited since last tree drawing and thus 

refresh (redraw) the tree for a certain period. 

 

If we want to always see tree growing, we just scroll the scrolled window contains the 

tree and move position of the last node. We will not adjust scroll the scrolled window 

every time a node is displayed because it is two frequent and the tree will keep 

jumping. We scroll the scrolled window only when the last nodes go beyond the 

window. 

 

As the window handles events and we also do the search. We need to run the event 

loop in another thread so that both search and event handling work well.  

 

5.2 Tree View 

After the tree is rendered on the screen, users need to view and explore the tree. Some 

general actions are zooming in/out the tree, hiding/unhiding or deleting a subtree, 

locating some nodes of the tree. 

 

Since the canvas can zoom in/out its content, zooming in/out of a tree is simple. When 

gnome’ s event loop detects zooming actions, we set the zoom factor in the called 

response function. 

 

A subtree is hidden, unhidden and deleted using the incremental algorithm described 

in chapter 4. To save memory space, we clear the subtree when hide the subtree. 

When unhide the subtree, we relocate the Gnome resources to draw the subtree. When 

delete a subtree, we delete the tree permanently. We clear a subtree by destroying the 

Gnome resources used by the subtree (canvas items, lines for example) and the 

subtree’ s structure stays unchanged. We delete a subtree by destroy the Gnome 

resources and the tree object.   
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We give each engine a target node representing the node that currently selected by 

users, root node and last node representing last node the explorer visited. If the user 

want to select a node (root node, last node, parent, left child, right child), just set the 

target node to be the node want to selected and highlight the node. Then adjust the 

scrolled window to center the target node. 

 
5.3 Search Engine Control 
 

5.2.1 Pause, search and stop engine search 

The search done by a visual tree search engine can be paused, resumed and stopped. 

Each visual tree search engine keep monitoring its state variable during search. The 

state variable has three possible values: SEARCH, PAUSE or STOP.  

 

The visual tree search engine takes different actions according the state. If the state is 

SEARCH, it continues searching as usual. If the state is PAUSE, it will wait on a 

condition variable associated with some mutex. Then the search thread will wait until 

the conditional variable will signaled. If the state is STOP, then the search is stopped 

and an action loop will start to run. The visual thread set the state according to users’  

input. The user pauses the search engine by changing SEARCH state to PAUSE, 

resumes the search engine by changing SEARCH state to SEARCH together with 

signaling the conditional variable the search is waiting on and stops the search engine 

by changing the state to STOP. In summary, we say the visual thread passes the users’  

events to the search thread through the state variable (table 5.1). 

 

 Pause Resume Stop 

Visual thread 
Get user command 
Set state value 

State = PAUSE State = SEARCH 
Signal conditional 
variable 

State = STOP 
 

Search thread 
Read state value 

Waiting on condition 
variable 

 Stop search and start 
action loop 

Table 5.1. Actions of the two threads in search control 

 
5.2.2 One step, next solution, all solutions and reset 
When the search engine stopped, if the user wants to search one more step, we can tell 

the explorer used by the engine go one step and add the nodes to the tree. If the user 
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wants to find next solution, we just let the visual engine find next solution. If the user 

wants to find all the solutions, we keep letting the engine find next solutions until 

finish the search. If the user wants to reset the search engine, we delete the search tree 

and init the engine using the root Figaro node stored. 

 

5.4 Store Recomputation 

In order to avoid storing unnecessary information, we do not keep the stores of each 

node in the tree. We only keep the root Figaro node for each engine and compute all 

the nodes’  stores when needed. Every tree node has a path from the root, which 

correspond the path of the Figaro node it represents. A Figaro node can generate its 

left child Figaro node and right child Figaro node using MAKE_CHILD method. 

With the root Figaro node and the path of the selected tree node we can computer its 

Figaro node. 

 

5.5 Manual search 

 
 

Figure 5.4. Manual search 
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What the search talked above is done by engine where the search strategy is 

determined by the explorer the engine uses and can not be changed after program 

starts running. What we control is the visual tree search engine. Besides using search 

engine, users can also search manually. Manual search give users the search flexibility 

and it is independent of the search engine. In figure 5.4, the nodes follows red lines 

are the nodes searched by users while the engine use depth first search strategy. 

 

When a node is selected, if it is not a leaf, the Figaro node is computed as we describe 

in section 5.3. Then we make child from the Figaro node obtained and added a new 

node representing the Figaro node to the tree. We also denote that the node is 

generated manually instead of by engine so that its branch line is colored in red. 

 

5.6 Deal with Time-consuming Events 

The Gnome has event handling system (figure 5.5). The Gnome keep running event 

loop to receive and handling the events such as clicking keys, pressing mouse button, 

resizing windows. The event loop consists of infinite iterations. The actions (such as 

rendering) regarding to the event are performed in a single Gnome iteration. The 

iteration ends and another iteration starts when the action is finished. The Gnome also 

has an event queue, which buffers events. If an actions that handle an event need long 

time to finish, then no more response to other events. This situation is like the Gnome 

is dead and cannot response to any events. This causes a big problem. For examples, 

finding next solution usually takes a long time (more than several second), and the 

search cannot be visualized since the Gnome iteration is doing its job (finding next 

solution). In the time finding next solution, the visual toll is dead an dwe do not what 

is going on by observation. Besides searching next solution, searching all solutions 

and unhiding trees are also such time-consuming events. 

 

To deal with this problem, some events cannot be simply handled by Gnome 

iterations because a long time is needed. We should handle these events in a new way. 

Figure 5.6 illustrate out new event handling system used for some events. From the 

diagram, we know the actions Gnome event loop perform is only telling the action 

loop what event occurs and occurs to which object and let the action loop handle the 

event. This task is easy and can be done quickly. 
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Figure 5.5. Event handling system in Gnome 

 

 

Figure 5.6. Handle big event in action loop 

 

The action loop is just a loop that waiting for events and response to the events. 

Figure 5.7 describes how action loop acts. Two global variables are EVENT and 

ENGINE, MUTEX and CONDITION. When the event occurs, the Gnome loop only 

set the active tree search engine and the event type, and signal the conditional variable 

to let the action loop start performing the time-consuming actions. 

 

Procedure ACTIONLOOP 
Begin 
     while (true) do 
      thread_wait_on(CONDITION); 

Event 

Gnome Event Loop (run in visual thread) 

Gnome Iteration 

Action Iteration 

Engine 

Action Loop (run in main thread) 

Gnome Iteration 

Gnome Event Loop 

Event Queue 
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      swich(EVENT) 
      case UNHIDE: 
  unhide the subtree; 
      case NEXT_SOLUTION: 
  find next solution; 
      case ALL_SOLUTION: 
  find all solutions; 
      default: 

End   
     End 
End 

Figure 5.7. Procedure ACTIONLOOP 

 

5.7 Thread synchronization 

The visual thread runs a Gnome event loop, which consists of Gnome iterations. All 

the Gnome objects and settings must be ready before being rendered on the screen in 

an iteration. This means we cannot create or modifier the objects in another thread 

when an iteration is running. We say the iteration action in visual thread and objects 

creating actions in main thread are critical sections, which cannot run at the same time. 

So we must protect the iterations by using a mutex to lock iterations (figure 5.8). And 

any creating or modification of Gnome objects must require to the mutex. 

 

Figure 5.10.  Protect Gnome iteration using a mutex 

 
5.8 Solve Interactive, Stepping engine 

Solve interactive is an alternative of solve in Figaro when using visual tree search 

engines. If use solve interactive, we can still interact with the search tree when the 

program finish searching. We just continue the program by starting an action loop 

instead of exit the program. The stepping engine will stop the search engine once the 

Gnome Iteration 

Gnome Event Loop 

Lock mutex Unock mutex 
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engine finishes initialization. If more the search engine is composed engine, then stop 

search when both the engine finish their initialization. 

 
5.9 Search Tree Hierarchy 

In Figaro, two search tree engines can be composed to search for solutions. Suppose 

they are engine A and B. Usually each step A searches, if the step is correct, then it 

initializes engine B in the step. Then engine B searches for solutions of the new CSP it 

represents. If engine B is also has solutions, then the whole CSP find a solution. To 

visualize such a search tree hierarchy, both the search engines need to be visual tree 

search engines. Two windows will be displayed to visualize these two search trees. 

And window A visualizes one search trees and window B will keep refreshing to 

visualize different search trees.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 36 

Chapter 6: Testing and Performance 
 

6.1 System requirements 

Figaro and the visual tool are implemented using C++. The operation system the 

visual tool used is Linux as Figaro. The visual tool also needs Gtkmm (C++ binding 

to GTK) of version 1.2 and above, Gnomemm (C++ binding to Gnome) of version 1.2 

and above to be installed.  

 

6.2 Performance 

The total overhead includes three parts: visual tool initialization, tree visualization and 

tree rendering. Initialization consists of creating and popping up windows, which 

costs constant time. Visualization consists of constructing and positioning search trees. 

It takes different amount of time according to the sizes of the search trees. Tree 

rendering time also related with the size of search trees. We use a formula 

representing this (where T represents total time. S represents the basic search time, I 

represents the initialization overhead, V represents visualization overhead and R 

represents tree rendering overhead): 

)( RVIST +++=  

 

We only focus on the overhead percentage. Since overhead for certain number of 

nodes is about the same, the overhead percentages are various due to the propagation 

complexity. The overhead percentages are lower for simpler problems that propagate 

faster. Here we use two examples to testing the performance. One is larry, which is a 

simpler problem and the other is robin which is a more complex problem. For the 

larry problem, For the robin problem with 22 teams and 2 seasons, we search for its 

first solution. One Figure 6.1 is the testing results. All the time data is average value 

after testing more than 5 times and all the nodes of the tree are displayed. 

 
Example Nodes S(s) I(s) V(s) R(s) T(s) 
Larry 731 13.0 1.3 11 3.5 29.0 

Robin 2059 570 1.3 168 36 775 

 

Table 6.1 Performance testing results 
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When analyze the data (figure 6.2), the initialization overhead (I) is omitted. For larry 

example, visualization adds 85% overhead and tree rendering adds another 27% 

overhead. The total overhead is 112%. For robin examples, visualization adds 29% 

overhead and tree rendering adds another 6% overhead. The total overhead is 35%. 
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Figure 6.1 visual tool overhead 

 

Base on the performance testing we know the overhead of the tool is reasonable. And 

the more complexly the CSP propagates, the lower percentage the overhead takes. 

Search tree construction makes up the majority of the overhead since the since we add 

a node to the tree by its path, which takes )(lg NO  time where N is the tree size. This 

means when search tree is large, it takes more time to add a node while the Figaro 

nodes generating speed dose not increase. 
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Chapter 7: Conclusion 
 

7.1 Summary 

With the visual tool, users can get insight of the search visually, and can investigate 

on the search tree and do their own search. It is designed as component of the Figaro 

and independent of search strategies. The visual tool can be involved simply use 

visual tree search engines.  

 

7.2 Limitations 

� Induced by the design  

o No environment available set for the visual tool. We pass the search 

options as parameters of visual tree search engines instead of configure 

it in the system environment.   

� Induced by GTK/GNOME 

o The tool cannot save or print the search trees displayed. The reason is 

the Gnome canvas dose not have print or save methods so far. 

� Induced by Figaro system 

o We cannot manually init the second engine and start search in engine 

hierarchies. The reason is that we do not know the whole engine 

structure.  
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