
Honours Year Project Report

Component-based Visualization
Of Tree Search

By

Gao Chaowei

Department of Computer Science

School of Computing

National University of Singapore

2002/2003

 i

Honours Year Project Report

Component-based Visualization
Of Tree Search

By

Gao Chaowei

Department of Computer Science

School of Computing

National University of Singapore

2002/2003

Project No: H41040
Advisor: Dr Martin Henz

Deliverables:

Report: 1 Volume

 ii

Abstract

Information-rich search tree visualization is very useful in constraint programming.

The entire process of solving a constraint problem is captured by the search tree. We

will develop a component based visual tool to visualize the search trees in Figaro (a

finite domain constraints solver) independent of search strategies. Users can interact

with the visual tool to achieve various objectives. The report will describe how to

draw trees that suit aesthetic rules, the design criteria and the implementation details

of the visual tool.

Subject Descriptors:

 D.2.2 User interfaces

G.2.2 Graph Theory
I .2.8 Problem Solving, Control Methods, and Search
F.4.1 Logic and constraint programming

Keywords:
 Constraint programming, search tree, tree drawing, visualization

Implementation Software and Hardware:

Software: RedHat7.2 GNU/Linux (kernel 2.4.9-34), gcc (GCC) 3.0.4,
 Figaro-1.1.0, X-win32 5.4

 Hardware: Intel Pentium 4 CPU 1500 MHz, 899644K main memory

 iii

Acknowledgement

When doing a project, I often encounter problems or difficulties like other people.

Fortunately, I achieved the objectives with the help from many people. Due to the

limitation of words, I do not mention all of them. Anyway, thanks them!

I am deeply indebted to my wonderful supervisor, Dr. Martin Henz for his guidance

throughout my honours year study and the enlightments he gave me in the

discussions. He also provided valuable advices and ensured that I was on the right

track. I am pride of him for his kindness and responsibility.

I want to thank Mr. Yi Junkai, the maintainer of the Figaro system. He helped me a lot

in understanding Figaro system.

 iv

List of Figures

1.1 Complete search tree for SIMPLE ENEQUALITY

2.1 Overall structure of Figaro system
2.2 Combine Figaro engines
2.3 Program solving n queen CSP using Figaro

3.1 Visual tool design structure

4.1 A well drawn general tree
4.2 Procedure POSITION
4.3 Procedure FIRSTWALK
4.4 Procedure SECONDWALK
4.5 Left-to-right gluing
4.6 Left-to-right gluing eliminated using APPORTION procedure
4.7 Preliminary x-coordinates separate the subtrees rooted by sibling nodes
4.8 Modifier shifts the subtrees roots by the node’s offspring to proper
 positions under it.
4.9 Procedure FIRSTWALK in incremental node-positioning algorithm
4.10 Tree node structure
4.11 Mark nodes’ SHIFT state when adding a node
4.12 Hiding a subtree
4.13 Finding node by position

5.1 Display nodes and subtrees
5.2 The Figaro search tree for magic square problem of size 4
5.3 Add nodes by position paths
5.4 Manual search
5.5 Event handling system in Gnome
5.6 Handle big event in action loop
5.7 Procedure ACTIONLOOP
5.8 Protect Gnome iteration using a mutex

6.1 Visual tool overhead

4

6
7
9

13

14
16
17
17
18
18
20

21
22
23
23
24
25

26
27
28
31
33
33
34
34

37

 v

List of Tables

4.1 Preliminary x-coordinate and modifier value for each node after first
 walk.
4.2 Final x-coordinates of the nodes computed after second walk

5.1 Actions of the two threads in search control
6.1 Performance testing results

19
19

30
36

 vi

 Table of Contents

Title
Abstract
Acknowledgement
List of Figures
List of Tables

Chapter 1 Introduction

1.1 Constraint programming
1.1.1 Constraints
1.1.2 Constraint Satisfaction Problem
1.1.3 Constraint Propagation
1.1.4 Search and Search Trees

1.2 Figaro
1.3 Search tree visualization
1.4 Report overview

Chapter 2 Figaro

2.1 Figaro Description
 2.1.1 Models
 2.1.2 Engines
 2.1.3 Branching
 2.2 Use Figaro to solve problems

Chapter 3 Tree Search Visualization in Figaro
 3.1 Concepts
 3.2 Features
 3.3 Design ideas
 3.4 Overall design

Chapter 4 Node-positioning Algorithm for General Trees
 4.1 Drawing Trees

4.2 Node-positioning algorithm for fixed general trees
 4.2.1 Walker’ s Algorithm
 4.2.2 An example

 4.3 Incremental node-positioning algorithm for general trees
 4.3.1 Analysis on Walker’ s Algorithm
 4.3.2 Incremental node-positioning algorithm for general trees

Chapter 5. Implementation Issues
 5.1 Search Visualization
 5.2 Tree View
 5.3 Search Engine Control
 5.3.1 Pause, Resume and Stop
 5.3.2 One Step, Next Solution, All Solutions and Reset
 5.4 Store Recomputation
 5.5 Manual search

i
ii
iii
iv
v

1
1
1
1
2
3
4
5
5

6
6
6
6
8
8

10
10
10
12
12

14
14
15
15
18
19
19
21

26
26
29
30
30
30
31
31

 vii

 5.6 Deal with Time-consuming Events
 5.7 Thread Synchronization
 5.8 Solve Interactive and Stepping Engine
 5.9 Search Tree Hierarchy

Chapter 6. Testing and Performance
 6.1 System Requirements
 6.2 Performance

Chapter 7. Conclusion
 7.1 Summary
 7.2 limitations

References

32
34
34
35

36
36
36

38
38
38

39

 1

Chapter 1: Introduction

1.1 Constraint Programming
In the last two decades, constraint programming, especially finite domain constraint

programming, has become popular in many application areas. A problem can be

solved using constraint programming as long as it can be modeled as a constraint

satisfaction problem. Now let us know about constraint programming by introducing

important terms.

1.1.1 Constraints

The central notion in constraint programming is that of a constraint. Informally, a

constraint on a sequence of variables is a relation on their domains (Krzysztof 2002).

It can be viewed as a requirement imposed on the variables as it explains which

combinations of values from the variable domains are admitted.

For example,]3...1[,, ∈< BABA is a constraint. It stipulates a relation that must hold

between any values chosen to replace the variables A and B, namely the chosen value

of A must be smaller than the chosen value of B. A substitution of variables by values

from their domains is a solution of the constraint if the substitution yields truth. For

example, the substitution }2/,1/{ BA is a solution to the constraint since 21 < yields

truth while the substitution }1/,2/{ BA is not a solution to the constraint since 12 <

yields failure.

1.1.2 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) consists of a finite set of constraints.

Modeling a problem as a CSP is very the first step to solve the problem using

constraint programming. A substitution of all the variables by values in their domains

is called a solution of the CSP if the substitution offers the solutions to all constraints.

Two CSP’ s are equivalent regarding to a set of variables if they have the same

solutions for these variables.

 2

Example: SEND MORE MONEY. In the problem under consideration we are asked

to replace each letter by a different digit so that the sum

SEND
 + MORE
 MONEY

is correct.

CSP representation:

 Variables and Domains:]90[,,,,,],91[, �� ∈∈ YRODNEMS .

Constraints: An equality constraint

YENOM

EROM

DNES

+×+×+×+×=
+×+×+×+

+×+×+×

10100100010000

101001000

101001000

and 28 disequality constraints x ≠ y for x, y∈{S,E,N,D,M,O,R,Y} with x

preceding y in the presented order.

The unique solution of the CSP is 9567 + 1085 = 10652. It corresponds to the

substitution }2/,8/,0/,1/,7/,6/,5/,9/{ YROMDNES .

Example: SIMPLE ENEQUALITY.

 Variables and Domains:]31[,, �∈ZYX .

 Constraints: ZYYX << , .

We express a CSP in form of domainsandVariablessConstra ;int . Thus the

examples SIMPLE EQUALITY can be represent as

]41[],41[],41[;, ��� ∈∈∈<< ZYXZYYX

Once we formalized a problem as a CSP, we can solve it using either domain specific

methods or general method. The domain specific methods are usually provided in

form of specific purpose algorithms. In turn, the general methods are concerned with

the ways of reducing the searching space (constraint propagation) and with specific

search methods. And this is how a CSP is solved using constraint programming.

1.1.3 Constraint Propagation

 3

Constraint propagation replaces a given CSP by a “simpler” one, yet equivalent

(Krzysztof 2002). The idea is that such a replace, if efficient, is profitable, since the

search space becomes smaller. Typically, “simpler” means that the domains and/or

constraints become smaller. The constraint propagation is performed by repeatedly

reducing domains and/or reducing constraints using some rules while maintaining

equivalence.

Now consider the CSP SIMPLE ENEQUALITY. Suppose we have the constraint

propagation rule LINEAR INTEGER INEQUALITY 1:

])1,[max()],1,min([;

][],[;

yxyyxx

yyxx

hllyhhlxyx

hlyhlxyx

��

��

+∈−∈<

∈∈<

Repeatedly applying this rule, we can finally transform the CSP SIMPLE

ENEQUALITY as follows:

]41[],41[],41[;, ��� ∈∈∈<< ZYXZYYX

]}41[],42[],31[;, ��� ∈∈∈<<⇒
<

ZYXZYYX
yx

]}43[],32[],31[;, ��� ∈∈∈<<⇒
<

ZYXZYYX
zy

]}43[],32[],21[;, ��� ∈∈∈<<⇒
<

ZYXZYYX
yx

.

So we reduced all three variable domains.

1.1.4 Search and Search Trees

Search and search trees are the central notions of the project so we must know them in

the beginning. In general, constraint propagation gives us a simpler CSP but the

resulting CSP is not solved yet. SIMPLE ENEQUALITY is such an example. In such

a situation, a progress can be achieved only by splitting the current CSP P into two or

more CSP’ s the union of which is equivalent to P. So the general pattern consists of

an alternating use of constraint propagation and splitting. This leads to what we call

search trees. Conceptually, it is helpful to have in mind the following slogan:

Search Algorithm = Search Trees + Traversal Algorithm.

 4

We explain this part using the example SIMPLE ENEQUALITY. Figure 1.1 shows

the complete search tree for SIMPLE ENEQUALITY. Usually we combine

enumeration and constraint propagation as one step so that the tree becomes smaller.

Figure 1.1: Complete search tree for SIMPLE ENEQUALITY

1.2 Figaro

Figaro is developed to provide researchers and software practitioners with a library

for solving discrete constraint satisfaction and optimization problems using tree

search and local search in a unified software architecture (Martin, Tobias and Ka

Boon, 1999).

The implementation of problem solving algorithms is a challenging task. Sources of

complexity are the problem models to be used, the need for heuristics and the need for

experimentation and performance tuning. Another major source of complexity is the

emerging need to interleave and combine different problem solving algorithms, such

 5

as tree search and local search, at runtime. Figaro project is a software architecture

designed for mastering this complexity. This architecture will serve as the base for the

Figaro library for problem solving. The Figaro library is public domain software that

supports finite domain constraint programming and local search and is open to

extension to other techniques for problem solving.

1.3 Tree search Visualization

The development of constraint programming solutions requires extensive

experimentation which is ideally supported with a tool for visualization of tree search.

A successful example of such a tool is the Oz Explorer (Christian, 1997). This tool is

limited to depth-first search, but allows us to visualize any single-pass tree search.

The aim of this project is to use Figaro's component-based architecture to provide a

search tree visualization that is independent of the search engines (such as depth-first-

search) and that can be used easily in complex solutions where search engines are

combined hierarchically. This task will likely require a redesign of parts of the current

Figaro library and will lead to a significant contribution to the constraint

programming community.

1.4 Report Overview

The report will talk about the visualization of search tree in Figaro. In chapter 2, the

Figaro system will be explained in more details. After that, in chapter 3, general

topics about tree search visualization in Figaro will be talked about. Then we talk

about the algorithms and implementations in the following 2 chapters, namely chapter

4, and 5. More specifically, chapter 4 talks about the tree position algorithm used in

drawing search trees; chapter 5 talks about main implementation issues. Near the end,

chapter 6 gives some information about testing and performance. We will conclude

the report in chapter 7.

 6

Chapter 2: Figaro

2.1 Figaro Description

Figaro contains many components (Choi Chiu, Martin and Ka Boon, 2001). And the

components can be combined to solve a CSP. Figaro system has some basic solutions

to finite domains, constraints and constraint propagation algorithms. The variables

and domains of a CSP are represented as stores. And each node object represents a

CSP together with branching methods. Besides these basic components, Figaro

system has various engines and problem models. The overall structure of Figaro

system is shown in figure 2.1.

Figure 2.1: Overall structure of Figaro system

I will talk more about some important components, namely models, engines and

branching, separately.

2.1.1 Models

To use Figaro system, users must describe their CSP’ s in a desired way. Figaro

provides problem models to let the users describe their problems. All the problems

must be specified following the model. Users must define the store within the model,

post constraints into the model. The model must be able to output its store and

generating branching.

2.1.2 Engines

Figaro has many types of engines. Once an engine is created and initialized, it can

find its next solution. There are some types of engines each of which perform

different task. Here are the engines provided in Figaro with short comments.

Engines

Explorer Models

Nodes

Stores Constraints Branching

 7

• First Engine: find the first solution of the CSP.

• Last Engine: find the last solution of the CSP.

• Compose Engine: compose two engines and form a new engine.

• Solution Engine: help to output solutions and related information.

• Tree Search Engine: use search methods to find solutions.

• Model Engine: modify the store and constrains while finding the CSP’ s solutions.

Since the report is about the tree search visualization and the tree search engine

performs the search, it is necessary to know more about tree search engine. Tree

search engines are the most import or basic type of engine in solving CSP’ s. Each tree

search engine uses an explorer, which specifies the search strategy. There are

currently three types of explorers available so far: depth-first explorer, breadth-first

explorer and branch-and-bound explorer.

Figaro Engines can be combined in many ways base on the users’ requirements (Choi

Chiu et al, 2001). Figure 2.2 is a sample engine combination. This combination is to

find the first solution of the CSP represented by the model engine using depth-first

search.

Figure 2.2 Combine Figaro engines

Compose Engine

First Engine

Compose Engine

Model Engine Tree Search Engine

Node

Solution Engine

Depth-first Explorer Model

 8

2.1.3 Branching

Figaro provides three branching strategies used in search. They are naïve, first-fail

and split. Users can select whichever they want. Branching algorithms define the size

and the shape of the search trees (Martin and Tobias, 2000).

2.2 Use Figaro to Solve Problems

We can use Figaro to solve our problem. First we construct the problem model. In the

model we specify the variables and their domains, constrains, branching method,

output methods. After define the model, we create an engine combination that can

solve the problem. Then we just solve the engine combination to solve the problem.

Figure 2.3 is a sample program solving n queen problem using Figaro.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

#include "figaro.h"
using namespace figaro;

class NQueen : public Model {
private:
 int n;
 vector<varId> Row;
public:
 NQueen(int x) : n(x) { }
 ~NQueen() { }
 StoreState impose(store* s) {
 int i;
 for (i=0; i<n; i++)
 Row.push_back(s->newvar(1,n));
 vector<int> L1N(n);
 vector<int> LM1N(n);
 for (i=1; i<=n; i++) {
 L1N[i-1] = i;
 LM1N[i-1] = -i;
 }
 RETONFAIL(s->addcon(new Distinct(Row)));
 RETONFAIL(s->addcon(new DistinctOffset(Row,LM1N)));
 RETONFAIL(s->addcon(new DistinctOffset(Row,L1N)));
 return SLEEP;
 }
 branching* generateBranching() {
 return (new firstfail(Row.begin(),Row.end()));
 }
 void output(store* s) {
 vector<varId>::const_iterator idx = Row.begin();
 for (; idx != Row.end(); ++idx) {
 cout << (*(*idx))+1 << "=>" << s->getMin(*idx) << endl;
 }
 }
};

int main (int argc, char** argv) {

 int n = (argc > 1) ? atoi(argv[1]) : 100;

 NQueen* nqueen = new NQueen(n);
 solve(
 EngineCompose(
 Last(

 9

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

 EngineCompose(
 new ModelEngine(nqueen),
 new VisualTreeSearchEngine(
 new DepthFirstExplore(),
 new CopyNode(),
 nqueen
)
)
),
 new SolutionEngine(nqueen)
)
);
 delete(nqueen);
 return 0;
}

Figure 2.3. Program solving n queen CSP using Figaro

In the example, the n queen problem is specified use a Figaro Model. In the n queen

model class, lines 12-14 specify the variables and their domains, lines 15-23 post the

constrains, lines 26-28 state the branching method and lines 29-34 give the output

method for the store. After the model is created, an engine combination is created

(lines 43-55) and solved (lines 42). Figure 2.2 shows the structure of the engine

combination.

 10

Chapter 3: Tree Search Visualization in Figaro

3.1 Concepts

The visualization of tree search in Figaro has several concepts. They are visual tree

search engine, solve interactive, stepping engine.

� Visual tree search engine. The visual tree search engine is an alternative of

existing tree search engine from which it is derived. Users can use visual tree

search engine if they want to see the tree search visually. This means users just

need to replace tree search engines by visual tree search engines in the

structure of the engine combination.

� Solve interactive. Solve interactive is an alternative of solve. It is used with

visual tree search engine. It will keep the window which visualizes the tree

search when the search job finishes so that users can do more interaction with

the tree search. If solve instead of solve interactive is used, the program will

quit when visual tree search engine finishes its job.

� Stepping engine. Sometimes, users want to control from the search starts.

Stepping engine will stop the engine once the engine is initialized and let the

user interact with the visual tree.

3.2 Features

The features are the functionalities that the visual window can provide to users. After

this section, the readers will have the idea what the visual tool works. Now I will

describe the features by dividing them into groups.

The first group concern about the search engine. The search engine uses explorer

which specifies the search strategies. When visualizing the search, users can modify

the search tree in three ways.

� Show all nodes. All the nodes in the search tree will be displayed. The user

can interact with any part of the search tree.

� Delete fail subtrees. All the failed subtrees are deleted and the user can not

view them any more. Deleting failed subtrees can save memory space since

the trees constructed are smaller. Rendering a smaller tree is faster and the tree

will takes less space in screen. If users are only interested in the solutions and

 11

solution paths or want to find the solutions faster, deleting fail subtrees will be

a good choice.

� Hide fail subtrees. It is similar with deleting fail subtrees except the failed

subtrees are kept in memory and user can expand them. It has the advantages

of deleting fail subtrees but it save less memory space comparing deleting fail

subtrees since the tree structure must be kept.

During search, the tree will be refreshed frequently to show search process. Since the

positions of all the nodes will be affected when new nodes are added to the tree, the

whole tree will be considered to be redrawn once a single node is added. If we refresh

the tree once a new node is added, or each search step, much time will be spent on the

redrawing. So the user can specify how frequently the search tree is refreshed. There

are two choices:

� Refresh every n nodes. Refresh every n nodes. This is often used with

showing all ndoes.

� Refresh every n solutions. Refresh every n solutions are found. This is often

used with deleting or hiding failed subtrees.

Users can also always see the last node searched by selecting

� Trace last node

Users can also control the search engine using the visual tool:

� Reset/pause/resume/stop search. Reset the tree search engine so that users

can search from beginning. Stopping the engine search will also keep the

window for interactions.

Once the search engine is stopped, user can do the following search:

� One step. Let the engine search one more step.

� Find next solution. Let the engine search for next solution.

� Find all solutions. Let the engine search for all solutions.

The second group concerns about viewing and traversing the search tree. When users

view the search tree, user can

� Hide/Unhide/Delete a subtree.

 12

The visual tool also provides following functionalities to facilitate users in finding

node and traverse the tree.

� Find top node/last node/up node/left child/right child.

� Zoom in/out the tree.

The third group is concern about the search that is driven by users instead of the

search engine. Only one such feature is provided.

� Make child. The user can search one step from any node that node finish

searching. And users can search in the way they like instead of use the strategy

of the explorer.

The final group is the general features.

� Close/Exit/Help/About. Close is different from exit. Close is just close the

window and exit is exit the program.

3.3. Design Ideas

The design of the visual tool focuses mainly on two criteria: compatibility and search

strategy independence.

Compatibility

The visual tool is just a component or a layer built on Figaro library. The existing

Figaro system should not be affected by the visualization. In another word, the

underline Figaro library should not care about the visualization.

Search strategy independence

The tree search visualization should not care about the search strategies. Existing Oz

explore is a successful tool to visualize tree search in constraint programming, but it

can only visualize depth-first tree search. Our visual tool can visualize any kinds of

tree search such as depth-first, breadth-first, branch-and-bound search. The visual tool

need not know the search strategies used when visualize the search.

 13

3.4 Overall Design

The overall design structure of the visual tool is can be viewed as figure 3.1. There are

mainly 4 parts in the structure: visual tree search engine, tree, window and explorer.

Since the explorer has already exist in Figaro library. So it need not do this part of job

any more.

Figure 3.1: Visual tool design structure

Before visualize the search tree, the tree must be constructed first. The tree is

constructed by visual tree search engine. More precisely, every visual tree search

engine corresponds to a search tree. The visual tree search engine obtains nodes from

the explorer it uses and adds nodes to its search tree. The tree object has the position

algorithms to determine how to draw itself. Then the visual tree search engine draws

the tree on the corresponding window using Gtk/Gnome graphic library. During

search, the window will handle the user’ s actions. After the engine is stopped, an

action loop will be run in the main thread to response the user’ s interactions that are

permitted to run in this phase. Some response needs to use the explorer and tree draw

methods as well. The program runs as visualization by using two threads.

Explorer

VisualTreeSearchEngine

Node

Tree
(position algorithm)

Window

visualize

Main thread

Visual thread

Stop

Action loop

Gnome/Gtk

USER INTERACTION

 14

Chapter 4: Node-Positioning Algorithm of General
Trees

4.1 Drawing Trees

Drawing a tree consists of two stages: determine the position of each node, and

actually rendering the individuals nodes and interconnecting branches. Figure 4.1

shows a well-drawn general tree.

Figure 4.1. A well drawn general tree

Wetherell and Shannon first describe a set of aesthetic rules against which a good

positioning algorithm must be judged (Wetherell and Shannon, 1979).

Tidy drawings of trees occupy as little space as possible while satisfying certain

aesthetics:

1. Nodes at the same level of the tree should lie among a straight line, and the

straight line defining the levels should be parallel.

2. A parent should be centered over its offspring.

3. A tree and its mirror image should be drawn the same way regardless of

one another; moreover, a subtree should be drawn the same way regardless

of where it occurs in the tree. In some application, one wishes to examine

A

B C

D

E F

G

H I J K L

M

N

O

 15

large trees to find repeated patterns; the search for patterns is facilitated by

having isomorphic subtree drawn isomorphically.

This implies that small subtrees should not appear arbitrarily among

larger subtrees.

(a) Small, interior subtrees should be spaced out evenly among

larger subtrees (where the larger subtrees are adjacent at one or

more levels) (node F in figure 4.1).

(b) Small subtrees at the far left or far right should be adjacent to

larger subtrees.

4.2 Node-Positioning Algorithm of Fixed General Trees

4.2.1 Walker’s algorithm

John Q. Walker II has already given a node-positioning algorithm for fixed general

trees that satisfies all the aesthetic rules (John, 1990). In general tree, there is no limit

on the number of offspring per node. I will explain the algorithm and give some

comments.

Walker’ s algorithms can calculate the position of the nodes of any general trees in

O(n) time, where n is the number of nodes or the size of the tree (John, 1990). This

algorithm initially assumes the common practice among computer scientists of

drawing trees with the root at the top of the drawing. Node-positioning algorithms are

concerned only with determining the x-coordinates of the nodes; the y-coordinate of a

node can easily be determined from its level in the tree, owing to the aesthetics rule 1

and the natural convention of a uniform vertical separation between consecutive

levels.

The algorithm uses two concepts. First is the concept of building subtrees as rigid

units. When a node is moved, all of its descendants are also moved – the entire

subtree being thus treated as a rigid unit. A general tree is positioned by building it up

recursively from its leaves towards its root.

 16

Second is the concept of using two fields for the positioning of each node. These two

fields are

i. a preliminary x-coordinate, and

ii. a modifier field.

Two tree traversals are used to produce the final x-coordinate of a node. The first

traversal assigns the preliminary x-coordinate and modifier fields for each node; the

second traversal computes the final x-coordinate with the modify fields of all its

ancestors.

In the following, walker’ s algorithm will be given with small modification. The

algorithm is involved by calling the procedure POSITION. The tree position need

traverse the tree twice (figure 4.2).

Procedure Tree::POSITION (Node)

Begin
/* Do the preliminary positioning with a postorder walk */
FIRSTWALK (0);

/* Do the final positioning with a preorder walk */
SECONDWALK (0, 0)

End;
End;

Figure 4.2 Procedure POSITION.

The first tree traversal (figure 4.3) is a post order traversal, positioning the smallest

subtrees (the leaves) first and recursively proceeding from left to right to build up the

position of the large subtrees. Sibling nodes are always separated from one another by

at least a predefined SUBTREE_SEPARATION. Subtrees of a node are formed

independently and placed as close together as these separation values allow.

Procedure Tree:: FIRSTWALK(level)
Begin

SET_NEIGHBORS
If (ISLEAF) then

Begin
If HAS_LEFT_SIBLING then

PRELIM ← LEFT_SIBLING → PRELIM +
 SIBLING_SEPARATION+
 NODE_SIZE;

Else
 PRELIM ← 0;

 17

 End;
Else
 Begin
 For each OFFSPEING from left to right do
 OFFSPRING → FIRSTWALK(leve+1);
 End;
 MidPoint ← (LEFT_OFFSPRING → PRELIM+RIGHT_OFFSPRING → PRELIM)/2;
 If HAS_LEFT_SIBLING then
 Begin
 PRELIM ← LEFT_SIBLING → PRELIM +
 SIBLING_SEPARATION +

NODE_SIZE;
 MODIFIER ← PRELIM – MidPoint;
 APPORTION (level);
 End;
 Else
 PRELIM ← MidPoint;

End;
End;

Figure 4.3. Procedure FIRSTWALK.

As the tree walk moves from the leaves to the apex, it combines smaller subtrees and

their root to form a large subtree. For a given node, its subtrees are positioned one by

one, moving from left to right following a second traversal (Figure 4.4). Imagine that

its newest subtree has been drawn and cut out of paper along its contour. Superimpose

the new subtree atop its neighbor to the left, and move them apart until no two points

are touching. Initially their root their roots are separated by the sibling separation

value; then at next low level, they are pushed apart until the subtree separation value

is established between the adjacent subtrees at the low level. This process continues at

success at successively lower levels

Procedure Tree::SECONDWALK (level, ModSum)
Begin

XCOORD = PRELIM + ModSum;
YCOORD = level * LEVEL_SEPARATION;
For each OFFSPRING from left to right do
 OFFSPRING → SECONDWALK(level+1, ModSum+MODIFIER);
End

End

Figure 4.4. Procedure SECONDWALK.

The second walk us a preorder walk (Figure 4.4). During the walk, each node is given

a final x-coordinate by summing its preliminary x-coordinate and the modifiers of all

the node’ s ancestors. The y-coordinate depends on the height of the tree. If the actual

position of an interior node is right of its preliminary place, the subtree must be

moved right to center the sons around the father. Rather than immediately readjust all

 18

the nodes in the subtree, each node remembers the distance to the provisional place in

a modifier field. In this second pass down the tree, modifiers are accumulated and

applied to every node.

When pushing a new, large subtree further and further to the right, a gap may open

between the large subtree and the smaller subtree that had been previously positioned

correctly, but now appears to be bunched on the left with an empty area to their right

(figure 4.5). This produces an undesirable appearance; this characteristic of left-to-

right gluing will be removed by APPORTION procedure. APPORTION will shift the

smaller subtrees to uniformly distributed between the larger subtrees (Figaro 4.6). For

more information of the procedure, please refer to Walker’ s paper (John, 1990).

Figure 4.5: left-to-right gluing

Figaro 4.6. left-to-right gluing eliminated using APPORTION procedure.

4.1.2 An example

The tree shown in figure 4.1 is a tree positioned using Walk’ s algorithm. Let’ s see

how Walker’ s algorithm computes the position of each node using two walks.

Gap

 19

Suppose the node-size is 4, both sibling-separation and subtree-separation is 4. After

the first walk, the preliminary x-coordinate and modifier value of each node are

computed (table 4.1). Then the final x-coordinate value is computed in second walk

(table 4.2).

Nodes A B C D E F G H I J K L M N O

Prelim 0 0 6 6 3 13.5 0 0 6 12 18 24 6 24 13.5

Modifier 0 0 0 3 0 4.5 0 0 0 0 0 0 -6 21 0

Table 4.1. Preliminary x-coordinate and modifier value for each node after first walk.

Node A B C D E F G H I J K L M N O

Xcoord 0 3 9 6 3 13.5 21 15 21 27 33 39 27 24 13.5

Table 4.2. Final x-coordinates of the nodes computed after second walk.

4.3 Incremental Node-Positioning Algorithm for General

Trees

4.3.1 Analysis on Walker’s Algorithm

Walker’ s algorithm positions general trees well. But when the tree are changed, if we

applies walker’ s algorithms again, the calculation will starts from very beginning.

This causes a lot of extra work since the preliminary x-coordinate, modifier or x-

coordinates of some nodes will not change and it is better to just use the values has

calculated previously. Thus an incremental version of Walker’ s algorithm is needed.

Before we develop such an algorithm, we must get insight Walker’ s algorithm and

give some observations and findings. Walk did not explain the underline meanings of

the preliminary x-coordinates, modifiers or first walk although he said this is to

determine the preliminary position of the nodes. Here I will give some interpretations

on these ideas.

 20

Preliminary x-coordinates

The preliminary x-coordinate of a node only ensures that the subtree rooted by the

node and subtrees rooted by siblings are well separated (figure 4.6). It dose not care

about nodes not belonging the subtrees. Since the preliminary x-coordinates are about

relative positions and do not care about the entire tree structure, the nodes without left

siblings always have 0-value preliminary x-coordinates for simplicity (reference line

show in figure 4.7). Assuming a virtual parent of the siblings, then the parent and the

subtrees will form a well positioned tree.

It is easy to see that if the relative position regarding to its siblings dose not change,

the preliminary x-coordinate will not change. Consequently, if a subtree’ s structure

stays unchanged, the preliminary x-coordinates of all the nodes except the root node

of the subtree also stays the same. If we want to shift a subtree d unit right, only the

preliminary x-coordinates of the root node of the subtree changes (increased by d).

Figure 4.7: preliminary x-coordinates separate the subtrees rooted by sibling
nodes.

Modifier

The modifier field of a node represents how the subtrees rooted by its offspring are

shifted regarding to it (figure 4.8). In another word, modifier is to how to shift the

subtree rooted by the node so that the it goes to the right position regarding its parent.

Similar to preliminary x-coordinates, it is easy to see that if the relative position

regarding to its parent dose not change, the modifier will not change. Consequently, if

a subtree’ s structure stays unchanged, the modifier of all the nodes except the root

Preliminary
x-coordinates
values 0 P1 Pn

Reference line

 21

node of the subtree also stays the same. If we want to shift a subtree d unit right, only

the modifier x-coordinates of the root node of the subtree changes (increased by d).

 Figure 4.8: Modifier shifts the subtrees roots by the nodes offspring to right

positions under it.

Similar to preliminary x-coordinates, it is easy to see that if the relative position

regarding to its parent dose not change, the modifier will not change. Consequently, if

a subtree’ s structure stays unchanged, the modifier of all the nodes except the root

node of the subtree also stays the same. If we want to shift a subtree d unit right, only

the modifier x-coordinates of the root node of the subtree changes (increased by d).

First walk

Combine the analysis of preliminary x-coordinates and modifiers, we know

� If a subtree is shifted (d unit right), only the root node of the subtree changes

its preliminary x-coordinate and modifier value (both increase by d).

� Since first walk compute these two values, so we need only first walk the

nodes which may be shifted.

Base on the analysis, we developed the incremental node-positioning algorithm for

general trees.

Modifier

Reference line

 22

4.3.2 Incremental node-positioning algorithm for general trees

Since the only the root nodes of the shifted subtrees need first walk. We can add

SHIFT variable to indicate where a node will shift or not. Thus the modified first walk

procedure comes out as figure 4.9.

Procedure Tree:: FIRSTWALK(level)
Begin
 If not SHIFT then
 Return;

SET_NEIGHBORS
If (ISLEAF) then

Begin
If HAS_LEFT_SIBLING then

PRELIM ← LEFT_SIBLING → PRELIM +
 SIBLING_SEPARATION+
 NODE_SIZE;

Else
 PRELIM ← 0;

 End;
Else
 Begin
 For each OFFSPEING from left to right do
 OFFSPRING → FIRSTWALK(leve+1);

 OFFSPRING → SHIFT ← true;
 End;
 MidPoint ← (LEFT_OFFSPRING → PRELIM+RIGHT_OFFSPRING → PRELIM)/2;
 If HAS_LEFT_SIBLING then
 Begin
 PRELIM ← LEFT_SIBLING → PRELIM +
 SIBLING_SEPARATION +

NODE_SIZE;
 MODIFIER ← PRELIM – MidPoint;
 APPORTION (level);
 End;
 Else
 PRELIM ← MidPoint;

End;
End;

Figure 4.9. procedure FIRSTWALK in incremental node-positioning algorithm.

The tree structure is different with that used by Walker in the sense SHIFT field, left

and right neighbor are new in the figure. The neighbors should be stored because we

should not be recomputed the neighbors some times. In The tree node structure used

is shown in figure 4.10.

 23

We must set some nodes’ SHIF state to be tree is the tree is changed. Since trees’

structure can be changed by adding or deleting nods to/from the tree. Some actions

will change the structure of the tree

Figure 4.10. Tree node structure

.Adding/deleting nodes

The path of a node consists of the node itself and all its ancestors. We say a node A is

adjacent to node B’ s path if the node is on or adjacent to the node B’ s path. When add

a new node to a tree, only the node, its siblings, its ancestors and the subtrees rooted

by the siblings its node’ s ancestors may shift. Thus only the nodes adjacent to the new

node’ s path need to set SHIF to be true. Figure 4.11 shows the nodes that need first

walk (in gray color) when a node is added as a child of node D.

Thus the first walk procedure run in O(logr(N)) time instead of O(N) time, where r is

the order of the tree and N is the size of the tree. Adding more than one nodes is just

doing the same work.

Deleting a node is similar to adding a node: just enable SHIFT state of the ancestors

and their siblings.

Shif

Preliminary

Modifier

Xcoord

Ycoord

Right sibling

Right neighbor

Left sibling

Left neighbor

Parent

Leftmost Child

isTree
Backup

 24

Figure 4.11. Mark nodes’ SHIFT state when adding a node.

Hiding/unhiding subtrees

Hiding a subtree is just a trick. We just backup the subtree (the internal structure is

not destroyed) and add two dummy nodes as the children of the subtrees’ s root. Then

indicate apex node is a tree. When we draw a node which represents a subtree, we just

draw a rectangle and omit its two dummy children (Figure 4.12).

Figure 4.12. Hiding a subtree

A hidden subtree can be unhidden by restoring its original offspring previous backed

up and indicate the node should be drawn as a node instead of a subtree.

Finding the node using an x-y coordinate

Finding a node by the position is useful when nodes are visualized and users want to

access it by mouse clicking. When the tree are large, if we traversal the tree and check

A

B C

D

E F

G

H I J K L

M

N

O

 25

the positions of each nodes, it will waste time which is undesirable since we need

quick response when clicking. Our algorithms can find the desired node quickly in

O(r*logrN) time where r is the order of the tree and N is the tree size.

First we check the y-coordinate, if it is not near multiples of level separations, it is

impossible to exist there. If the y-coordinate is reasonable, we check the x-coordinate

as following:

We search from the root and go down to the desired level. In order to visit fewer

nodes, in every level, we go down from the node whose x-coordinate is closest to the

given coordinate. From figure 4.13, we know the path (path 1) is much shorter than

other path (path 2). And this greedy algorithm will reach the desired level at the

position near the desired node.

Figure 4.13: Finding node by position

Path 1
Path 2

Long distance

 26

Chapter 5: Implementation Issues

5.1 Search Visualization

In order to show how to visualize Figaro search trees, we should know what Figaro

search trees are and what the resulting visualized trees look like. Figaro search trees

are all binary search trees since Figaro always do binary search. There are 4 types of

nodes in Figaro search tree:

� Open nodes. The nodes that have not finish branching. We can search from this type of nodes.

� Close nodes. The nodes that have finished branching. We can not search from this type of

nodes. Both open nodes and close nodes are choice nodes.

� Fail nodes. The nodes that represent fail CSP’ s.

� Solution nodes. The nodes that represent the solution of the CSP. Both fail nodes and solution

nodes are leaves of the search tree.

As we have talked in chapter 3, People want to hide or delete subtrees. We call a

subtree failed if it contains no solution nodes or consistent otherwise.

Figure 5.1. Display nodes and subtrees

When drawing the search trees, we use circles and triangles to represent nodes and

subtrees respectively. The red color represents failure; green color represents

solutions or consistency. Figure 5.1 shows how the nodes and subtrees are displayed

in the search trees. Figure 5.2 is a sample search tree drawn by the visual tool.

Solution nodes Fail nodes

Close nodes Open nodes

Hidden
fail
subtrees

Hidden
consistent
subtrees

Deleted
fail
subtrees

Deleted
consistent
subtree

 27

Figure 5.2. The Figaro search tree for magic square problem of size 4.

Now how to draw such trees? This consists of two problems.

• How to construct the search tree?

• How to rendering the search tree on the screen?

Tree construction

Since one design criteria search strategy independency of search visualization, the

nodes must give the information where to put themselves onto the search tree. During

searching process, the visual tree search engine uses an explorer which specifies the

search strategy. When a node is explored and return to the engine, the engine can find

the node’ s position in the tree by find the path of the node from the root. Each Figaro

node has a pointer to its parent and a position. The position is 0 or 1 which represent

the nodes is the left or right child of its parent. With this structure, we can find the

path of the node from root by tracking its parent recursively. Once the path is founded,

we can add the node to the tree as figure 5.3. It is easily to see that the tree is

constructed independent of its search strategy.

 28

Figure 5.3. Add nodes by position paths.

The tree to be visualized is being constructed when searching solutions. Notes that

during search, some nodes will changes its state, for examples open nodes become

close nodes. And to distinguish the different types of nodes and subtrees, we must add

some attributes in the tree nodes. This attributes are:

� ISFIAL. True if the subtree rooted by the node is contains no solutions.

� ISLEAF. True if the node are leaves.

� CHANGECOLOR: True if the state of the nodes are changed (open to close for example).

� ISNODE: True if the node should be drawn as a node instead of a subtree.

� ISOPEN: True if it is an open node.

When construct the search tree, users may want to hide the fail or delete fail subtrees.

initially we assume all the node are consistent, then after the engine visits an fail node,

trace from the fail node up and set the ancestors’ state. For a node, if both of its

children are in fail sate, then the node is in fail state. So we can compute the state

bottom up. Each time we add a node, we must check whether its parent is open or

close. If we want to delete the subtree, we do the same as above except that we need

not do the backup.

Tree rendering

Once the search tree is constructed, we can render it on the screen. We use

GTK/Gnome graphic library to do the rendering and handle the events (Havoc,1999).

1

1

1

1

0

Path: 1110…1

 29

We use a gnome canvas for each search tree, and draw the nodes using gnome items.

The canvas has the transformation function. When second walk the tree and the x-y

coordinate of a node is obtained, we put a canvas item on the position. We can count

the number of nodes or solutions have been visited since last tree drawing and thus

refresh (redraw) the tree for a certain period.

If we want to always see tree growing, we just scroll the scrolled window contains the

tree and move position of the last node. We will not adjust scroll the scrolled window

every time a node is displayed because it is two frequent and the tree will keep

jumping. We scroll the scrolled window only when the last nodes go beyond the

window.

As the window handles events and we also do the search. We need to run the event

loop in another thread so that both search and event handling work well.

5.2 Tree View

After the tree is rendered on the screen, users need to view and explore the tree. Some

general actions are zooming in/out the tree, hiding/unhiding or deleting a subtree,

locating some nodes of the tree.

Since the canvas can zoom in/out its content, zooming in/out of a tree is simple. When

gnome’ s event loop detects zooming actions, we set the zoom factor in the called

response function.

A subtree is hidden, unhidden and deleted using the incremental algorithm described

in chapter 4. To save memory space, we clear the subtree when hide the subtree.

When unhide the subtree, we relocate the Gnome resources to draw the subtree. When

delete a subtree, we delete the tree permanently. We clear a subtree by destroying the

Gnome resources used by the subtree (canvas items, lines for example) and the

subtree’ s structure stays unchanged. We delete a subtree by destroy the Gnome

resources and the tree object.

 30

We give each engine a target node representing the node that currently selected by

users, root node and last node representing last node the explorer visited. If the user

want to select a node (root node, last node, parent, left child, right child), just set the

target node to be the node want to selected and highlight the node. Then adjust the

scrolled window to center the target node.

5.3 Search Engine Control

5.2.1 Pause, search and stop engine search

The search done by a visual tree search engine can be paused, resumed and stopped.

Each visual tree search engine keep monitoring its state variable during search. The

state variable has three possible values: SEARCH, PAUSE or STOP.

The visual tree search engine takes different actions according the state. If the state is

SEARCH, it continues searching as usual. If the state is PAUSE, it will wait on a

condition variable associated with some mutex. Then the search thread will wait until

the conditional variable will signaled. If the state is STOP, then the search is stopped

and an action loop will start to run. The visual thread set the state according to users’

input. The user pauses the search engine by changing SEARCH state to PAUSE,

resumes the search engine by changing SEARCH state to SEARCH together with

signaling the conditional variable the search is waiting on and stops the search engine

by changing the state to STOP. In summary, we say the visual thread passes the users’

events to the search thread through the state variable (table 5.1).

 Pause Resume Stop

Visual thread
Get user command
Set state value

State = PAUSE State = SEARCH
Signal conditional
variable

State = STOP

Search thread
Read state value

Waiting on condition
variable

 Stop search and start
action loop

Table 5.1. Actions of the two threads in search control

5.2.2 One step, next solution, all solutions and reset
When the search engine stopped, if the user wants to search one more step, we can tell

the explorer used by the engine go one step and add the nodes to the tree. If the user

 31

wants to find next solution, we just let the visual engine find next solution. If the user

wants to find all the solutions, we keep letting the engine find next solutions until

finish the search. If the user wants to reset the search engine, we delete the search tree

and init the engine using the root Figaro node stored.

5.4 Store Recomputation

In order to avoid storing unnecessary information, we do not keep the stores of each

node in the tree. We only keep the root Figaro node for each engine and compute all

the nodes’ stores when needed. Every tree node has a path from the root, which

correspond the path of the Figaro node it represents. A Figaro node can generate its

left child Figaro node and right child Figaro node using MAKE_CHILD method.

With the root Figaro node and the path of the selected tree node we can computer its

Figaro node.

5.5 Manual search

Figure 5.4. Manual search

 32

What the search talked above is done by engine where the search strategy is

determined by the explorer the engine uses and can not be changed after program

starts running. What we control is the visual tree search engine. Besides using search

engine, users can also search manually. Manual search give users the search flexibility

and it is independent of the search engine. In figure 5.4, the nodes follows red lines

are the nodes searched by users while the engine use depth first search strategy.

When a node is selected, if it is not a leaf, the Figaro node is computed as we describe

in section 5.3. Then we make child from the Figaro node obtained and added a new

node representing the Figaro node to the tree. We also denote that the node is

generated manually instead of by engine so that its branch line is colored in red.

5.6 Deal with Time-consuming Events

The Gnome has event handling system (figure 5.5). The Gnome keep running event

loop to receive and handling the events such as clicking keys, pressing mouse button,

resizing windows. The event loop consists of infinite iterations. The actions (such as

rendering) regarding to the event are performed in a single Gnome iteration. The

iteration ends and another iteration starts when the action is finished. The Gnome also

has an event queue, which buffers events. If an actions that handle an event need long

time to finish, then no more response to other events. This situation is like the Gnome

is dead and cannot response to any events. This causes a big problem. For examples,

finding next solution usually takes a long time (more than several second), and the

search cannot be visualized since the Gnome iteration is doing its job (finding next

solution). In the time finding next solution, the visual toll is dead an dwe do not what

is going on by observation. Besides searching next solution, searching all solutions

and unhiding trees are also such time-consuming events.

To deal with this problem, some events cannot be simply handled by Gnome

iterations because a long time is needed. We should handle these events in a new way.

Figure 5.6 illustrate out new event handling system used for some events. From the

diagram, we know the actions Gnome event loop perform is only telling the action

loop what event occurs and occurs to which object and let the action loop handle the

event. This task is easy and can be done quickly.

 33

Figure 5.5. Event handling system in Gnome

Figure 5.6. Handle big event in action loop

The action loop is just a loop that waiting for events and response to the events.

Figure 5.7 describes how action loop acts. Two global variables are EVENT and

ENGINE, MUTEX and CONDITION. When the event occurs, the Gnome loop only

set the active tree search engine and the event type, and signal the conditional variable

to let the action loop start performing the time-consuming actions.

Procedure ACTIONLOOP
Begin
 while (true) do
 thread_wait_on(CONDITION);

Event

Gnome Event Loop (run in visual thread)

Gnome Iteration

Action Iteration

Engine

Action Loop (run in main thread)

Gnome Iteration

Gnome Event Loop

Event Queue

 34

 swich(EVENT)
 case UNHIDE:
 unhide the subtree;
 case NEXT_SOLUTION:
 find next solution;
 case ALL_SOLUTION:
 find all solutions;
 default:

End
 End
End

Figure 5.7. Procedure ACTIONLOOP

5.7 Thread synchronization

The visual thread runs a Gnome event loop, which consists of Gnome iterations. All

the Gnome objects and settings must be ready before being rendered on the screen in

an iteration. This means we cannot create or modifier the objects in another thread

when an iteration is running. We say the iteration action in visual thread and objects

creating actions in main thread are critical sections, which cannot run at the same time.

So we must protect the iterations by using a mutex to lock iterations (figure 5.8). And

any creating or modification of Gnome objects must require to the mutex.

Figure 5.10. Protect Gnome iteration using a mutex

5.8 Solve Interactive, Stepping engine

Solve interactive is an alternative of solve in Figaro when using visual tree search

engines. If use solve interactive, we can still interact with the search tree when the

program finish searching. We just continue the program by starting an action loop

instead of exit the program. The stepping engine will stop the search engine once the

Gnome Iteration

Gnome Event Loop

Lock mutex Unock mutex

 35

engine finishes initialization. If more the search engine is composed engine, then stop

search when both the engine finish their initialization.

5.9 Search Tree Hierarchy

In Figaro, two search tree engines can be composed to search for solutions. Suppose

they are engine A and B. Usually each step A searches, if the step is correct, then it

initializes engine B in the step. Then engine B searches for solutions of the new CSP it

represents. If engine B is also has solutions, then the whole CSP find a solution. To

visualize such a search tree hierarchy, both the search engines need to be visual tree

search engines. Two windows will be displayed to visualize these two search trees.

And window A visualizes one search trees and window B will keep refreshing to

visualize different search trees.

 36

Chapter 6: Testing and Performance

6.1 System requirements

Figaro and the visual tool are implemented using C++. The operation system the

visual tool used is Linux as Figaro. The visual tool also needs Gtkmm (C++ binding

to GTK) of version 1.2 and above, Gnomemm (C++ binding to Gnome) of version 1.2

and above to be installed.

6.2 Performance

The total overhead includes three parts: visual tool initialization, tree visualization and

tree rendering. Initialization consists of creating and popping up windows, which

costs constant time. Visualization consists of constructing and positioning search trees.

It takes different amount of time according to the sizes of the search trees. Tree

rendering time also related with the size of search trees. We use a formula

representing this (where T represents total time. S represents the basic search time, I

represents the initialization overhead, V represents visualization overhead and R

represents tree rendering overhead):

)(RVIST +++=

We only focus on the overhead percentage. Since overhead for certain number of

nodes is about the same, the overhead percentages are various due to the propagation

complexity. The overhead percentages are lower for simpler problems that propagate

faster. Here we use two examples to testing the performance. One is larry, which is a

simpler problem and the other is robin which is a more complex problem. For the

larry problem, For the robin problem with 22 teams and 2 seasons, we search for its

first solution. One Figure 6.1 is the testing results. All the time data is average value

after testing more than 5 times and all the nodes of the tree are displayed.

Example Nodes S(s) I(s) V(s) R(s) T(s)
Larry 731 13.0 1.3 11 3.5 29.0

Robin 2059 570 1.3 168 36 775

Table 6.1 Performance testing results

 37

When analyze the data (figure 6.2), the initialization overhead (I) is omitted. For larry

example, visualization adds 85% overhead and tree rendering adds another 27%

overhead. The total overhead is 112%. For robin examples, visualization adds 29%

overhead and tree rendering adds another 6% overhead. The total overhead is 35%.

overhead

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

larry robin

R

V

I

S

Figure 6.1 visual tool overhead

Base on the performance testing we know the overhead of the tool is reasonable. And

the more complexly the CSP propagates, the lower percentage the overhead takes.

Search tree construction makes up the majority of the overhead since the since we add

a node to the tree by its path, which takes)(lg NO time where N is the tree size. This

means when search tree is large, it takes more time to add a node while the Figaro

nodes generating speed dose not increase.

 38

Chapter 7: Conclusion

7.1 Summary

With the visual tool, users can get insight of the search visually, and can investigate

on the search tree and do their own search. It is designed as component of the Figaro

and independent of search strategies. The visual tool can be involved simply use

visual tree search engines.

7.2 Limitations

� Induced by the design

o No environment available set for the visual tool. We pass the search

options as parameters of visual tree search engines instead of configure

it in the system environment.

� Induced by GTK/GNOME

o The tool cannot save or print the search trees displayed. The reason is

the Gnome canvas dose not have print or save methods so far.

� Induced by Figaro system

o We cannot manually init the second engine and start search in engine

hierarchies. The reason is that we do not know the whole engine

structure.

 39

References

Andrew J. Kennedy. (2002). Functional Pearls: Drawing Trees. Journal of

Functional Programming, 6(3), Cambridge University Press, May 1996,
pp.527-534.

C. S. Wetherell and A. Shannon. (1979). Tidy drawing of Trees, IEEE trans. Software

Engineering, SE-5, (5), 1979, pp.514-520.

Choi Chiu Wo. (2002). Advanced Components for Finite Domain Constraint

Programming. M.Sc Thesis, National University of Singapore,
Singapore.;2002.

Choi Chiu Wo, Martin Henz and Ka Boon Ng. (2001). A Compositional Framework

for Search. In Proceedings of the Colloquium on Implementation of Constraint
and Logic Programming Systems, (Paphos, Cyprus, Dec 2001) CICLOPS
2001.

Choi Choiu Wo, Martin Henz, Ka Boon Ng.(2001). Components for State Restoration

in Tree Search. In Proceedings of the Seventh International Conference on
Principles and Practice of Constraint Programming,(Cyprus, Nov/Dec 2001)
CP2001.

Christian Schulte. (1997). Oz Explorer: A Visual Constraint Programming Tool. In

Proceedings of the Fourteenth International Conference on Logic
Programming, Leuven, Belgium, pp.286-300. The MIT express, July 1997.

Christoph Buchheim, Michael Jünger and Sebastian Leipert (2002). Improving

Walker's Algorithm to Run in Linear Time. 10th International Symposium,
GD 2002 Irv, California, August 26-28, 2002, 2002.

E. M Reigold and J. S Tilford. (1981). Tidy drawings of Trees, IEEE Trans. Software

Engineering, SE-7, (2), 1981, pp.223-228.

Havoc Pennington. (1999).GTK+/Gnome Application Development. New Riders

Publishing, Indianapolis, 1999.

John. Q. Walker II. (1990). A Node-positioning Algorithm for General Trees.

Software – Practice and Experience. Vol.20, No.7, July 1990, pp.685-705.

Ka Boon Ng. (2001). A General Software Framework for Finite Domain Constraint

Programming. M.Sc Thesis, National University of Singapore,
Singapore.;2001.

Krzysztof R. Apt. (2002) Principles of Constraint Programming. Notoes, National

University of Singapore, Singapore.;2002.

 40

Martin Henz and Tobias Müller. (2000). An Overview of Finite Domain Constraint
Programming. In Proceedings of the Fifth Conference of the Association of
Asia-Pacific Operational Research Societies, APORS 2000.

Martin Henz, Tobias Müller and Ka Boon Ng. (1999). Figaro: Yet Another Constraint
Programming Library. Workshop on Parallelism and Implementation
Technology for Constraint Logic Programming at ICLP 1999.

