

Honours Year Project Report

Ruby On Flash: Compiling Ruby to SWF
http://sourceforge.net/projects/rubyonflash

By

Lem Hongjian

Department of Computer Science

School of Computing

National University of Singapore

2007/2008

Honours Year Project Report

Ruby On Flash: Compiling Ruby to Swf

http://sourceforge.net/projects/rubyonflash

By
Lem Hongjian

Department of Computer Science
School of Computing

National University of Singapore

2007/2008

Project No: H041180
Advisor: Assoc Prof Martin Henz

Deliverables:
 Report: 1 Volume
 API Reference: 1 Volume
 Software: 1 CD

 i

Abstract
Ruby On Flash is a compiler written in Java that compiles Ruby source code into Swf

files (Flash movies).

Currently, Macromedia (Adobe) Flash is the predominant tool of choice for development

of Flash applications. However, seasoned programmers often found Macromedia Flash’s

development environment counter-intuitive, as programmers are used to visualizing

source code as lines of code structured into modules (functions, classes, namespaces, etc),

whereas Macromedia Flash’s development environment is organized in frames.

Ruby On Flash thus aims to provide a programmer-friendly approach to Flash application

development, in particular, casual game development, as this group is the most likely to

find such an approach appealing.

Subject Descriptors

 D.3.3 Language Constructs and Features

 D.3.4 Processors

Keywords

 RubyOnFlash, Ruby On Flash, Ruby To Flash compiler, Ruby To Swf compiler

Implementation Software

 Java 5, Java CUP 11a, JSwiff 8.0 beta 2, Ant

 ii

Acknowledgements

First, I would like to thank Dr. Martin Henz for his guidance throughout the project.

Also, this project would be impossibly hard without Java CUP

(http://www2.cs.tum.edu/projects/cup/) and JSwiff (http://www.jswiff.com/). As such, I

would like thank the developers of these projects for their contributions to these projects.

 iii

Table of Contents

Abstract..i
Acknowledgements ...ii
Table of Contents ...iii
1 Introduction...1

1.1 Motivation ...1
1.2 Flash Overview..3
1.3 Ruby overview...4
1.4 JSwiff Overview..4

2 Conceptual Overview ..5
3 Conceptual Highlights ... 14

3.1 Object Model ... 15
3.2 Variable Scope... 20
3.3 Closure Definition ... 25
3.4 Method Call... 28
3.5 Method Definition ... 30
3.6 Class Definition ... 32
3.7 Component Framework Design.. 37
3.8 Stage Properties & Embedding Resources.. 46
3.9 Extending Ruby On Flash .. 49

4 Implementation ... 50
5 Conclusions... 52

Future Developments .. 52
6 Case Study: Pacman .. 53
References ...i
Appendix ..ii

A.1 Swf File Format Specification...iii
A.2 Installation Guide for Ruby On Flash (ver. 0.1a)... iv
A.3 User’s Guide for Ruby On Flash (ver. 0.1a) ...v
A.4 Tutorials ...viii

A.4.1 Tutorial 1: ...viii
A.4.2 Tutorial 2 .. ix
A.4.3 Tutorial 3 ...x

 1

1 Introduction
Ruby On Flash is a compiler written in Java that compiles Ruby source code into Swf

files (Flash movies).

(Fig. 1.1 T-diagram)

1.1 Motivation
Currently, Macromedia (Adobe) Flash is the predominant tool of choice for development

of Flash applications. However, seasoned programmers often found Macromedia Flash’s

development environment counter-intuitive for the following reason:

Macromedia Flash is designed with animators in mind, evident from the

terminologies used (“onion skin”, “key frame”, etc). As such, the development

environment is organized in frames, while programmers are used to visualizing

source code as lines of code structured into modules (functions, classes,

namespaces, etc). Furthermore, this framed-based development environment

induces developers into its framed-based reality tunnel. Consequently, developers

often found themselves thinking in “frames” and attempting to control the flow of

execution using methods such as “gotoAndPlay(frame)” and

“gotoAndStop(frame)”. Such methods are analogous to “goto” statements in C,

which are exactly what programmers are trained to avoid!

(Fig 1.2 The timeline dialog, Macromedia Flash MX)

For this reason, Ruby On Flash aims to provide a programmer-friendly approach to Flash

application development. Programmers will be able to develop their Flash applications

Ruby

JVM

Swf

 2

using an approach that they are more comfortable with, i.e. writing the source code, and

then compiling it.

However, not all Flash applications would benefit from this programmer-friendly

approach, e.g. Flash animations. As such, Ruby On Flash is written with casual game

developers in mind, since this group of developers is the most likely to welcome a

programmatic approach to Flash app development.

Ruby On Flash is released as open source (http://sourceforge.net/projects/rubyonflash).

Mission Statement

A programmer-friendly approach to casual Flash game development, by

programmers for programmers!

Why Ruby?

Actionscript (the native language of Flash) is a dynamic language which allows

for the dynamic definition of classes, functions and methods. Thus, using static

languages such as Java and C++ would lead to a loss of such capability. As such,

the selection criteria are as follows:

1. Dynamism

2. Popularity (i.e. not some obscure language!)

3. “Clean”, Object-Oriented language

Based on these criteria, Ruby seems to be the best candidate. In addition, Ruby

enjoys strong community support, and this will help expedite the adoption of

Ruby On Flash.

Why Java?

Java is chosen as the implementation language due to its platform independence.

This automatically gives Ruby On Flash a wider reach.

 3

1.2 Flash Overview

Macromedia (Adobe) Flash is an authoring tool for the development of Flash applications.

It began life as FutureSplash Animator in April 1996. It quickly caught the attention of

Macromedia, who bought over FutureSplash and re-released it as Macromedia Flash 1.0

in November 1996. In December 2005, Adobe completed acquisition of Macromedia.

(http://www.adobe.com/aboutadobe/pressroom/pressreleases/200512/120505AdobeAcqui

resMacromedia.html).

The output of Macromedia Flash is a .swf file, which runs in a Flash player. This Flash

player can be thought of as a virtual machine. In addition, a flash application can be

programmed using Actionscript, a scripting language based on ECMAScript.

Due to the ubiquity of the Flash player, Flash is a popular tool for the development of

Rich Internet Applications (RIA) as well as casual games. According to a Millward

Brown survey conducted in September 2007, Adobe Flash player penetrated 99.1% of

internet-enabled desktops in mature markets

(http://www.adobe.com/products/player_census/flashplayer/).

Adobe disclosed the Swf file format specification under a license which allows

developers to create software which creates Swf files. However, developers are not

granted the right to create software which supports Swf file playback.

Lastly, note that the term “Flash” is ambiguous. It is commonly used to refer to the

authoring tool, Adobe/Macromedia Flash, the Flash player as well as the Flash

application/movie itself. In this report, we shall avoid this ambiguity by referring to the

authoring tool as “Macromedia (Adobe) Flash” or simply “Flash”. The Flash player will

be referred to as the “Swf virtual machine” and the flash application itself will be referred

to as “swf file”.

Technical Stuff

A swf file of made up of tags, of which, a group known as action tags is what Ruby On

Flash mostly deals with. These action tags are analogous to assembly language

mnemonics ops and can be visualized as such.

 4

1.3 Ruby overview

The language was created by Yukihiro "Matz" Matsumoto, who released it to the public

in 1995. Ruby is immensely popular and enjoys a strong community support.

Additional information: http://www.ruby-lang.org/en/about/

Language Features

As a pure Object Oriented Programming(OOP) language, everything in Ruby is an object.

Even elementary data types such as integers and floats are represented as objects. In

addition, all functions must be a method of an object. Functions defined in the global

scope are implicitly turned into instance methods of the class Object. Not surprisingly,

operators (+, -, *, /, ==, !=, etc) are also instance methods of a class.

Consistent with Ruby’s object model, even classes are objects, i.e. Object is a class, and a

class is an object!

Ruby is also a dynamic programming language, thus methods and classes can be defined

at runtime.

One of the more interesting language features is the ability to call methods with a block

of code to be executed within the method. This block of code can be parameterized, and

in most cases behaved like a function whose code executes in the environment formed at

definition time (closure).

Lastly, Ruby is built on the principle of least surprise. As such, a chief design

consideration in Ruby On Flash’s implementation is NOT to violate this principle!

1.4 JSwiff Overview

JSwiff is an open source Java library which represents each Swf tag as a class. Using

JSwiff, Ruby On Flash did not have to deal with low level file output details, such as

endianness. Instead, during code generation, Ruby On Flash represents a Swf document

as JSwiff objects, which then write to a file. Refer to the following chapter for a

graphical view.

 5

2 Conceptual Overview

(Fig 2.1 Ruby On Flash Conceptual Diagram)

Ruby On Flash is an ambitious project. It is not merely a proof-of-concept; instead it

aims to provide a full fledged development environment for the development of Flash

games. As such, it is not sufficient to simply compile Ruby source to a Swf file. A

component framework is necessary before anything useful can be created through Ruby

On Flash. In addition, a game developer (actually, any developer) would expect an

adequate standard library to assist in his/her programming. Also, developers already

familiar to Macromedia Flash, would expect to be able to embed resources (graphics,

sounds) into the swf file (output file) as well as adjust stage properties such as stage size

and frame rate. Lastly, developers would find it very useful if existing Actionscript code

libraries can be incorporated into Ruby On Flash.

This chapter aims to give a broad overview of the main conceptual challenges and design

considerations involved, and also give a brief description of each solution. The next

Component
 Framework

Standard Library

Built-in library

Parser

A

ST
C

ode G
eneration

JSw

iff
Resource
Processor

Linker

 Flash Player

.Swf file

Native
Actionscript

Library

Ruby src

Resource File

Graphics,
Sounds

References…

Compiled
Swf libraries

Ruby On Flash

 6

chapter (Conceptual Highlights) would provide a more detailed description of each

conceptual milestone.

For discussion purposes, the design of Ruby On Flash can be thought of as having three

components:

1. Compilation of Programming Language Elements

2. Component Framework

3. Flash specific issues (resources, frame rate, linker, etc)

However, it should be emphasized that each component is not isolated from each other

and the implementations of each can have profound implications for the others. It is

therefore important to maintain a holistic view of the entire system in each solution.

(Fig 2.2 Network of problems)

Programming Language Elements

Compiling for the Swf virtual machine is unlike compiling for an actual machine (or even

the Java Virtual Machine). Swf virtual machine was never meant to be a full featured

virtual machine. It is therefore severely restricted in its capabilities, which in turn is

dependent upon the scope of native built-in Actionscript library. Essentially, to do

anything useful, you’ll have to utilize the native library. This is analogous to making

system calls in an operating system environment. It is thus EXTREMELY CRUCIAL to

be able to integrate with the native library! As such, a major challenge would be to

bridge Ruby semantics to that of Actionscript. Unfortunately, other than both being

dynamic languages, Ruby and Actionscript have little else in common. In particular, the

object model of Ruby is vastly different from that of Actionscript. For instance,

Actionscript implements inheritance via prototype chaining (see Object Model, pg 15),

while Ruby employs a much richer structure. One major challenge would be how the

Programming Language Elements

Component Framework Flash Specific Issues

 7

properties and methods of objects can be accessed in a way that is compatible with native

Actionscript objects. This consideration is especially important, as will be mentioned

later in the Component Framework section, the components in Actionscript is primarily

event driven. This would imply that Ruby On Flash’s object model cannot deviate from

Actionscript’s, as the Swf virtual machine would not be able to call the event handlers

otherwise. Consequently, Ruby On Flash cannot blindly implement a replica of Ruby’s

object model. Instead, only Ruby semantics are mapped onto Actionscript’s object model

(see Object Model, pg 15). Also, in Ruby, there are three classes at the highest level,

namely Object, Module and Class. These three classes are interrelated and form the basis

of all other classes. As such, Ruby On Flash has to implement these classes and also

relate them to the native Actionscript classes for consistency. In addition, variable scope

rules are also different for both languages, implying that the existing environment

(execution context) system cannot be used and that a new environment system must be

implemented (see Variable Scope, pg 20). An obvious constraint is that the new

environment system must not cause conflict with the existing one.

Complicating the variable scope issue is the existence of closures (continuations) in Ruby.

Closures allow the developer to execute a block of code at any time in the context in

which it is defined. The new execution context must therefore be able to save its state,

and restore it (correctly!!!) when required. Additionally, the variable scoping rules for

closure is significantly different from the rest of Ruby, further complicating the process

(see Closure Definition, pg 25).

The discussion of closures naturally leads us to the discussion of method calls and

method definitions. To pass parameters to a method/function call in the Swf virtual

machine, one simply pushes the arguments onto the runtime stack in reverse order1. This

mechanism works fine for Ruby On Flash in most cases. However, things become more

interesting when closures are involved. In Ruby, closures are usually created in

conjunction with method calls and are often visualized as the last argument to a method.

Also, within a method definition, the corresponding closure would be executed with a

call to “yield”. The method definition must therefore know where to find this closure.

1 Note: This implies that the evaluation order is from right to left, in contrast to Ruby’s left to right.
Fortunately, this is easily solvable (See Method Call)

 8

However, since the closure is a runtime binding, it must be stored in a well known

position. A naïve implementation would therefore represent a closure as the last

argument, using null as a placeholder if no closure is used. A call to “yield” would thus

always point to the last argument. Unfortunately, this solution conflicts with the native

library, as some native methods use the number of arguments as a means of overloading.

Appending an extra argument to each method call would thus corrupt these methods’

behaviors. Implementing a new stack frame system is also infeasible as it leads to

incompatibility issues with the native library as well. Ruby On Flash’s solution lies

somewhere between the two (see Method Call, pg 28).

Method definitions can be deceptively simple. However, since functions must be

methods of some class/object, a central issue arises when an instance method is defined

within a static method. To which class/object does the inner method belong to?

Intuitively, one might assume that it would belong to the class of the outer static method.

Surprisingly, this is not the case (see Method Definitions, pg 31).

The last programming language issue involves that of class definitions and object

creation. In Ruby, “new” is an instance method of the class Class (e.g. obj =

Object.new()). As a method, it is naturally subjected to the same method calling issues

that we’ve discussed earlier. Compounding this problem is the recurring issue of

integration with native Actionscript classes. Ruby On Flash must provide a way for the

developer to create instances of native classes by means of Ruby semantics. This

problem is also closely tied to the above-mentioned Object Model challenge. As such,

these three problems (method call mechanism, object model, object creation) cannot be

resolved independently of each other. Finally, semantics for class definitions is very

different for Actionscript and Ruby. Classes in Ruby are full fledged language constructs

where code within their definition executes in the context of the class. In contrast,

Actionscript classes are afterthoughts and merely implemented as functions whose code

body behaves as constructors.
Actionscript

function AClass()

 //constructor

…

Ruby

class AClass

def initialize()

 #constructor

 9

}

AClass.prototype.aMethod = function(){

…

}

anInstance = new AClass();

end

def aMethod()

 …

end

self.x = y; #self refers to the class itself

…

end

anInstance = AClass.new();

(Fig 2.3 Comparison of class definition code snippets)

It thus becomes necessary to craft a class definition system in Actionscript from scratch

(see Class Definition, pg 32). Further complicating this challenge, Ruby allows an

already defined class to be “opened” and updated (add or remove methods, or execute

code within the class context). Clearly, this cannot be accomplished by Actionscript.

Also, Ruby class constructors come in the form of an “initialize” method. This would

imply that, unlike Actionscript, Ruby classes can inherit their superclass’s constructors!

Finally, while crafting the class definition system, we must not forget the native

Actionscript classes. Adventurous Ruby On Flash developers would expect Ruby

semantics to apply to native classes as well. They would be surprised and disappointed if

they are unable to “open” a native class for editing.

Component Framework

In order to do anything useful, Ruby On Flash must provide a component framework.

However, not just any component framework will suffice. An awkward component

framework will only drive developers away. Thus, the success of Ruby On Flash hinges

on the design of its component framework.

Some research on existing component frameworks such as Java Swing, Java 2 Micro

Edition and Ruby On Rails is done in order to find the industry best practices. Ruby On

Flash’s design goal for its component framework is thus formed:

 10

“Event driven component framework with an emphasis on convention over

configuration2, based on the principle of least surprise. “

However, the design of the component framework is made tremendously difficult by the

constraints imposed by the Swf virtual machine. Anything that the component

framework provides must be built on top of the existing native Actionscript components.

It is thus not possible to design a component model from scratch. On a positive note,

Actionscript’s component framework is already primarily event driven.

Also, as mentioned earlier (Introduction), programmers are confused by the Frame-based

approach of Macromedia Flash. Our component framework therefore also seeks to

abolish this system, or at least conceal this from the developers.

One component of primary concern to casual game developers is a game sprite. We

define a game sprite as the collective term for any standalone visible component (image)

with its own behavior. Macromedia Flash/Actionscript calls this a movieclip. In order to

create these movieclips dynamically, it is necessary to call native Actionscript methods

such as MovieClip.createEmptyMovieClip(…). However, such approach would return

instances of MovieClip. Custom behaviors (methods) are added manually to each

instance. This is clearly unacceptable to Ruby On Flash developers who would expect to

be able to define custom classes for their sprites.
Actionscript

pacman = MovieClip.createEmptyMovieClip(…);

pacman.move = function(){

…

}

Ruby On Flash

class Pacman

def move()

 …

end

end

(Fig 2.4 On the left, how Actionscript developer add methods to a sprite. On the right,

what a Ruby On Flash developer would expect.)

2 Inspired by Ruby on Rails (http://www.rubyonrails.org/). For a detailed description of how this principle
applies in Ruby On Flash, please refer to Component Framework Design, pg 37

 11

It is thus insufficient to do a direct mapping from Ruby On Flash’s Sprite to

Actionscript’s MovieClip. The solution is to manipulate the prototype chains and this is

also closely related to the Object Model issue (see Object Model, pg 15) discussed earlier

(refer to Component Framework Design, pg 37). While we are able to associate a

movieclip instance with a class through prototype chain manipulation, another problem

remains: movieclips can only be created via native methods. A natural solution would

be to encapsulate these native method calls in the new() method. However, there are

different native method calls (createEmptyMovieClip, attachMovie, etc) for movieclip

instantiation under different situations, and thus it is not possible to determine which

method to call during runtime. Another unpalatable solution would be to wrap these

native methods into Ruby ones, and require the developer to choose whichever is

appropriate. On the surface, such a solution is clearly inadequate; however, the genius

lies in camouflaging such limitations as design patterns (namely, Factory design pattern)!

Refer to Component Framework Design, pg 37 for details.

Consider:
Ruby On Flash

class Pacman < Sprite #Sprite is a built in Ruby On Flash class, refer to Component Framework, pg 37

 …

end

pacman = Pacman.createInstance(…); #createInstance is a class method (factory method) defined by Sprite

#ImageSprite is also a built in Ruby On Flash class

imageSprite = ImageSprite.createInstanceFromResource(…);

(Fig 2.5 Example Ruby On Flash code snippet)

As a final note, the integration with native Actionscript component objects/classes would

also entail the boxing and unboxing of primitive values (integers, floats, etc).

The design considerations of Ruby On Flash’s component framework can thus be

summarized as follows:

1. Integrate seamlessly with existing components

2. Intuitive design, via emphasis on convention over configuration

 12

3. Abolish frame based system

Flash Specific Issues

Ruby On Flash would not be complete without implementations of Flash specific features

such as setting stage properties, embedding resources, etc. The main design

consideration for Flash specific features is not to be disruptive to the expected

development process. Also, if these features were to be accessible from the Ruby On

Flash source code, they should be coherent and consistent with the rest of the source code.

First, let us consider the design considerations for setting of stage properties. One

solution would be to invent new directives for each property. However, it was felt that

the setting of stage properties do not conceptually belong to the source code, and thus

would be too disruptive to the developer. In addition, having these directives would

mislead the developers into thinking that these properties can be adjusted at runtime. The

solution is to set these properties via compiler flags in the command prompt.
Command prompt

>java rubyToSwf.RubyToSwfW –s pacman.rb –f 12 –b 0 –w 560 –h 650 –r pacmanResource.txt

Compiles source pacman.rb, setting frame rate to 12fps, background colour to black (0x000000), width to

560 pixels, height as 650 pixels, using resource file pacmanResource.txt
(Fig 2.6 Compilation in the command prompt)

Actionscript allows the dynamic loading only for images in jpeg format. This implies

that there is no way to dynamically load images with transparent backgrounds (gif

format). The only way to get around this limitation is by embedding the gif files inside

the compiled swf file (note that jpeg files can be embedded as well). However,

embedding images alone is not enough. Methods for accessing embedded images should

be consistent with methods for accessing dynamically loaded images. The design of

Ruby On Flash’s component framework thus took this into account (see Component

Framework Design, pg 37 and Stage Properties & Embedding Resources, pg 46).

Macromedia Flash has been around for some time. As such, there are many existing

Actionscript libraries freely available. It would be a pity if Ruby On Flash is unable to

incorporate these libraries. Also, such a feature would appeal to Macromedia Flash

 13

converts who wouldn’t want to see their previous work go to waste. Ruby On Flash

visualizes these as external libraries and thus provides a linker to link them as such (see

Extending Ruby On Flash, pg 49). In addition, Ruby On Flash can be extended when

Adobe introduces new native Actionscript libraries in new releases of Flash player. In

order to take advantage of that, Ruby On Flash’s object model and method calling

semantics must be fully compatible with Actionscript.

Summary

To summarize, Ruby On Flash is not a mere compiler. Instead, it is a full fledged

development environment for casual Flash games. Ruby On Flash can be roughly

divided into three components, namely Programming Language Elements, Component

Framework and Flash Specific issues. Together, they present the implementation process

with a network of issues, neither of which can be solved in isolation from each other.

The following chapter (Conceptual Highlights) will discuss the challenges in greater

detail.

 14

3 Conceptual Highlights

This chapter attempts to describe each conceptual highlight in detail.

Programming language elements

1. Object Model Layout – pg 15

2. Variable Scope – pg 20

3. Closure Definition – pg 25

4. Method Call – pg 28

5. Method Definition – pg 31

6. Class Definition – pg 32

Component Framework

7. Component Framework Design – pg 37

Flash Specific Issues

8. Stage Properties & Embedding Resources – pg 46

9. Extending Ruby On Flash – pg 49

 15

3.1 Object Model
To understand the design decisions behind Ruby On Flash’s Object Model, we’ll first

look at that of both Ruby and Actionscript.

Ruby Object Model

(Fig 3.1 Ruby Object Model, http://www.ruby-doc.org/core/classes/Class.html)

Object is the parent class of all classes in Ruby.

All classes are instances of the class “Class”. When a class is defined, an object of type

Class is created, along with its corresponding meta-class. In general, the created class

object contains references to instance methods and class variables, while the meta-class

holds the class methods (details in the Class section later in this chapter).

(Fig 3.2 Ruby example diagram)

Object (Object)

Module (Module)

Class (Class)

OtherClass (OtherClass)

Note:
Vertical arrows indicates the relation
“inherits from”
The parentheses represent meta-
classes

obj OtherClass (OtherClass)

Object (Object)

klass klass

klass

super super

E.g.

 16

When an instance method is called on obj (e.g. obj.aMethod()), the “klass” link is

followed, and OtherClass is searched for the method. If the method is not found, it

would continue the search via the “super” link to Object. Similarly, when OtherClass’s

class method is called (e.g. OtherClass.aClassMethod()), the “klass” link of OtherClass

is followed and subsequently the “super” link is followed (and yes, this would imply that

class methods can be inherited!).

Actionscript Object Model

(Fig 3.3 Actionscript Object Model)

In Actionscript, all objects inherit from the Class Object. Inheritance is achieved via

prototype chaining. Prototype chaining is used in ECMAScript (Actionscript and

Javascript are variants of ECMAScript) to implement object-based behaviour.

Each class is associated with its corresponding prototype object. This prototype object

would be an instance of its superclass and holds the instance methods of this class, while

the class object itself would hold the class methods. Whenever this class is instantiated,

the instance’s “__proto__” property is set to the class’s prototype.

Whenever a property or method of an object is accessed, the Swf virtual machine would

search that object first, then subsequently follow the “__proto__” links if not found.

Each object would point to its constructor function (its class) via the “constructor” link.

Ruby On Flash Object Model

Object Object

OtherClass OtherClass

obj
__proto__

__proto__

prototype

prototype

constructor

constructor

 17

It may seem natural to replicate Ruby’s Object model, however it would not be feasible

to do so. The chief design consideration is to preserve Ruby semantics while allowing

for tight integration with native Actionscript classes/objects. For example, Actionscript’s

component model is event driven. Upon invocation of an event, the Swf virtual machine

would call the appropriate method of the listener object. E.g. to capture a mouseUp event,

the listener object has to implement an “onMouseUp” method (more on this in the

Component Model section). It is therefore important that Ruby On Flash objects share

semantics with the Actionscript model, in particular, prototype chaining.

On the surface, these object models seem very different and it might seem impossible to

reconcile these two without compromising on some semantics. However, the trick is to

recognize that we only need to preserve Ruby’s semantics but not its Object Model layout!

In other words, the problem is not “How to map Ruby’s Object Model Layout to that of

Actionscript” as originally thought. Rather, the problem should be rephrased as “How to

represent Ruby’s semantics using Actionscript’s Object Model Layout”.

Fortunately, an elegant solution can be visualized as follows:

(Fig 3.4 Ruby On Flash Object Model)

Similar to the Actionscript model, the class methods are stored in the class objects, while

the instance methods are stored in the prototype objects. Additionally, a “__proto__”

link is added to the class object in order to point to its superclass object. This would

preserve Ruby’s semantics for inheritance of class methods.

AClass

Object Object

AClass
prototype

__proto__

 anObj

prototype

__proto__

__proto__

constructor

 18

(Note that the “constructor” link is mainly used for internal type checking purposes, and

will not be discussed further in this report.)

Having solved the object model layout, it becomes trivial to implement the Ruby base

classes, “Object”, “Class” and “Module”.

However, another problem arises after the implementation of the above three Ruby

classes. For consistency, native Actionscript classes should also be linked to these

classes! In particular, the native classes should have a “__proto__” link to Object, and all

native classes’ prototype should “__proto__ link” to Object.prototype. This is especially

important in the context of object instantiation, as “new” in Ruby is an instance method

of Class. As such, in order to do the following in Ruby On Flash, all native classes must

somehow “__proto__ link” to Class.prototype (ANativeClass -> Object ->

Class.prototype):
Ruby On Flash

objA = ANativeClass.new(…);

(Fig 3.5 How native classes should be instantiated in Ruby On Flash)

Fortunately, since all classes in Actionscript are instances of the native class “Function”,

it follows that all class objects would have their “__proto__” link pointed to

Function.prototype. As such, we’ll simply point Function.prototype.__proto__ to Object.

In addition, as Actionscript already have an Object class, we’ll simply augment this

existing class and its prototype with Ruby methods. This way, the native classes would

automatically have access to their Ruby instance methods:

 19

(Fig 3.6 Ruby On Flash combined Object Model)

Summary

Implementation of Ruby On Flash became considerably easier when we recognized that

we do not need to map Ruby’s Object Model to that of Actionscript. Instead, we only

need to represent Ruby’s semantics using Actionscript’s Object Model. From this line of

thought, we derived a remarkably elegant and simple solution.

Object

Module

Class

Object

Module

Class

Function Function

NativeClass NativeClass

prototype

__proto__

prototype

prototype

__proto__

__proto__ __proto__

__proto__

prototype

__proto__

prototype

__proto__

Notice the
__proto__ chain
leads to Object

 20

3.2 Variable Scope

This section primarily deals with local variables. Access of class variables and instance

variables are pretty standard and will not be further dealt with. In addition, constants and

global variables are also pretty straightforward and thus only worthy of a brief mention

later.

Variable scope mechanism is implicit in Swf virtual machine. It automatically sets up the

execution context (environment) whenever a variable is declared.

Consider the following Actionscript code snippets and their Swf action tags equivalent:

(Fig 3.7 Visualization of Swf tags)

Notice that the execution context is never explicitly accessed.

This implicit execution context is tightly coupled with the variable scope semantics of

Actionscript. Unfortunately, Ruby has vastly different variable scope semantics. As

such, Ruby On Flash is unable to leverage upon this implicit execution context, and

would have to implement a new environment system from scratch instead.

Actionscript variable scope

Local variables cannot be seen outside the scope in which they are declared. On the other

hand, inner blocks can see local variables declared in its outer blocks. This would also

imply that an inner function declared within another function can see the local variables

declared in the outer function.

Ruby variable scope

In Ruby, each method definition would introduce a new scope. This would imply that an

inner method defined within another method would neither be able to see the outer

“x”

10

DefineLocal

…….

x = 10; “x”

GetVariable

…….

Retrieving x:

 21

method nor the global scope variables3. In addition, a class definition would introduce its

own scope, and similarly a class defined within another class would not be able to access

variable declared in the outer class (refer to Class Definition, pg 32).

Things become more interesting when closures are involved. Code within a closure

executes in the environment context in which it is declared. Therefore, code within a

closure can access local variables declared in its enclosing scope (a method definition,

class definition, global scope, another closure).

Ruby On Flash

Roughly, the environment is nothing more than a hash table. Since all objects in

Actionscript are already hash tables with the property names as the keys, we can simply

use an object as the hash table.

(Fig 3.8 Visualization of an environment object)

Within each method definition, a new environment object is created, and variables

declared in this scope are added to this environment. In addition, method parameters are

added similarly to this environment (see Method Definition, pg 31).

Consider the following Ruby On Flash code snippet and its Actionscript equivalent:

(For clarity purposes, extraneous Actionscript code is left out. Note also that in the actual

implementation, the variable name env is named “current Env” with a space in between,

to avoid corrupting the namespace.)

3 Note: Global scope variables refer to local variables declared in the outermost scope, not to be confused
with global variables, which are true globally accessible variables.

var1 10

var2 20

var3 30

…… ……

 22

Ruby On Flash

def outerMethod(arg1)

 myLocalVar = 10;

def innerMethod(arg2)

 myLocalVar = 20;

 ……

end

……

end

Actionscript

function outerMethod(arg1)

var env = new Object();

env[“arg1”] = arg1;

env[“myLocalVar”] = 10;

function innerMethod(arg2)

 //new env shadows the outer scope one

 var env = new Object();

 env[“arg2”] = arg2;

 env[“myLocalVar”] = 20;

 ……

end

……

end

(Fig 3.9 Compare and contrast the scoping semantics of Ruby On Flash vs Actionscript)

Though similar in semantics, variable scope implementation for class definition is

slightly more complicated. In particular, a “prev Env” link to the enclosing scope is

required in order to simulate an activation stack. This is because method definitions can

be implemented directly on top of Actionscript function definitions which have their

implicit local scope and activation stack. In contrast, the class definition system in Ruby

On Flash has to be implemented from scratch (see Class Definition, pg 32).

Visually (for more details, please refer to Class Definition):

 23

(Fig 3.10 Visualization of Ruby class definition scope)

Closures are interesting. Unlike method and class definitions, a closure has access to its

enclosing scope. However, the enclosing scope would not be able to access the variables

declared within the closure. This implies that the closure would define a new

environment which is linked to that of the enclosing scope. We thus set the “__proto__”

link of the closure environment object to reference that of the enclosing scope. Doing so

would automatically give the inner environment object access to the outer environment

object.

Unfortunately, a caveat remains. Variables declared in the enclosing scope, but after the

closure definition cannot be accessed by the closure. Thus simply “__proto__” linking

will not do, as this would allow the closure access to the variables declared after its

definition.

The solution is simple: just fork a new environment object in the enclosing scope after

the closure definition, and add new variables there.

Graphically:

x = 0;
class OuterClass

x = 10;
y = 100;
class InnerClass
 x = 20;
 y; #undefined
end
……

end
……

x 20

…… ……

x 10

…… ……

x 0

…… ……

prev Env

prev Env

y 10

 24

(Fig 3.11 Ruby On Flash closure scope implementation)

Constants and global variables

Constants in Ruby are merely variables whose names begin with an uppercase character.

Constants are stored within the current class context, and are thus stored as class

properties (yes, this would mean that access to constants is inherited).

In Ruby, global variables are variables whose names are pre-pended with “$”. In the Swf

virtual machine, there is a global object “_global” which stores global variables. We thus

made use of this “_global” object to store our global variables as well.

Summary

 As the Swf virtual machine’s execution context is based on Actionscript scoping rules,

we are unable to leverage on it. Instead, we implemented a new environment system.

x = 0;
methodA() do
 #this is the closure body
 y = 20;

#set the outer x with 10
x = 10;
#try accessing z
z; #undefined

end
z = 100;

x 0/10

…… ……

z 100

…… ……

y 20

…… ……

__proto__ __proto__

 25

3.3 Closure Definition

Closures are not available in Actionscript and thus closure definitions have to be

implemented from scratch.

To begin, we’ll first look at how closures are defined and used in Ruby.

Ruby

(The official Ruby documentation uses the term “block” instead of “closure”. However,

for this report, we’ll stick to using “closure” as this is less ambiguous. “Block” is

commonly used in other languages to refer to a new scope, and might thus lead to some

confusion.)

In Ruby, closures are defined along with a method call, and can often be visualized as the

last argument to a method call.

There are two ways to declare closures:
aMethod(x,y){|arg1, arg2| #closure body} aMethod(x,y) do |arg1, arg2|

#closure body

end

(Fig 3.12 Two ways of definition closures in Ruby)

These two methods are semantically identical.

In addition, notice that parameters can be passed to the closures. As such, closures are

often visualized as functions whose code body executes in the environment of the

enclosing scope (as noted in Variable Scope, pg 20, variables declared after the closure

definition cannot be accessed).

The most common way of executing closures is via a call to “yield” within the method

for which the closure is created. Additionally, the closure can be accessed parametrically,

by pre-pending the last parameter with “&”. Closures are instances of the class Proc,

thus in the parametric approach, the closure is executed via an instance method call “call”.

For example, the following two code snippets are identical:

 26

def aMethod(arg1, arg2)

yield(arg1,arg2);

end

aMethod(1,2){|x, y| #closure body};

def aMethod(arg1, arg2, &arg3)

arg3.call(arg1, arg2);

end

aMethod(1,2){|x, y| #closure body};

(Fig 3.13 On the left, calling yield. On the right, reference the closure explicitly, and

execute its call method.)

Ruby On Flash

The chief difficulty arises from the fact that closures are not available in Actionscript. As

such, there are no existing Actionscript language features that we can take a cue from and

thus we’ll have to implement everything from scratch.

Fortunately, here are some hints:

1. Closures can be visualized as functions whose code body executes in the

environment of the enclosing scope.

2. Closures in Ruby are instances of Proc class.

From the above hints, we can infer that the closure body must be a function, specifically,

the instance method “call” of the class Proc. In addition, each instance must have a

reference to the enclosing scope environment.

The diagram below summarizes the entire process:

(Fig 3.14 Visualization of Ruby On Flash’s solution.)

……
aMethod() do
 #this is the closure body
end
……

original environment

…… ……

closure environment

…… ……

new environment

…… ……

__proto__

__proto__

Proc instance

call

binding

A proc instance is
created to represent
the closure object

binding links to the original
environment before the fork

every time “call” is called, a new
environment is created and the
code body executes in the context
of this new environment

 27

The call to “yield” simply redirects to the “call” method. However, as stated in the

Conceptual Overview, the closure cannot be passed in as the last argument to a method

call due to conflicts with native Actionscript functions. How the closure is passed to a

method call will be discussed in the following section, Method Call.

Summary

Despite having no precedent in Actionscript, we are able to infer some hints for closure

implementation from Ruby itself. From these hints, the solution for Ruby On Flash thus

becomes straightforward. Having solved closure definition, another problem remains.

How do we pass a closure to a method call? This will be discussed in the following

section, Method Call.

 28

3.4 Method Call

To understand the constraints imposed upon Ruby On Flash’s method calling process, it

is essential to look at the underlying Swf action tags.

Actionscript

Consider the following Actionscript snippet and its Swf action tag equivalent:

(Fig 3.15 How the Swf file represents a method call.)

Take particular note of the Swf action tag “CallMethod”. The existence of this tag would

imply that the method calling conventions and semantics are fixed. As such, in order to

make method calls, Ruby On Flash would have to follow these conventions. It is thus not

possible to redesign the method calling process (e.g. a new stack frame system).

Ruby On Flash

The Swf virtual machine passes the parameters in reverse order. It thus follows that the

arguments are evaluated from right to left instead of from left to right. On the other hand,

Ruby evaluates arguments from left to right.

Consider the following Actionscript and Ruby code snippets:
Actionscript

i = 0;

#equivalent to aMethod(6, 5, 3);

aMethod(i += 1, i += 2, i += 3);

Ruby

i = 0;

#equivalent to aMethod(1, 3, 6);

aMethod(i += 1, i += 2, i += 3);

(Fig 3.16 Actionscript and Ruby evaluate method calls arguments differently.)

Actionscript

anObj.aMethod(10,20);

20

10

2

“anObj”

GetVariable

“aMethod”

CallMethod

Parameters passed in
reverse order

Argument count

Retrieve the object

Makes the method
call

 29

Differences in evaluation order can lead to surprising results if any argument produces

side effects! The solution is straightforward. Simply evaluate the arguments from left to

right and store them inside an array. Then, unroll the array in reverse order when making

the method call.

A potential optimization would be to directly evaluate arguments in reverse order if none

of the arguments have side effects. Unfortunately in Ruby, expressions which do not

produce any side effects are few and far in between. For example, it might seem that

arithmetic expressions would not lead to any side effects. However, since everything in

Ruby is an object and operators can be overloaded, there is no way to ensure that

arithmetic expressions would not lead to side effects. Therefore, such an optimization

scheme would not lead to any substantial savings.

Having solved the reverse order problem, another problem persists. How should we pass

a closure to a method call?

The call to “yield” is a runtime binding, thus it is not possible to pre determine the

location of the corresponding closure. As such, the closures must be placed in a well

known location within a stack frame. A natural choice would be to pass closures as the

last argument to every method call, passing in a null value as a placeholder if no closure

is created. However, this scheme though workable in theory, would conflict with the

native Actionscript functions which use the number of arguments as a way of overloading.

In a more traditional compiler setting, we could have redesigned the stack frame.

Unfortunately, such an option is unavailable to Ruby On Flash.

The solution is remarkably simple and lies somewhere between the two.

For each method call, pass the arguments exactly as before, but push the closure onto a

separate stack! A null value would be used as a placeholder if no closure is defined.

Upon return from the called method, the closure is popped from the closure stack.

Summary

The chief difficulty lies in the restrictions imposed by the Swf virtual machine. The main

challenges encountered are, the reverse evaluation order and also the passing in of

closures to method calls. The second challenge was particularly trickier. The solution is

to have an additional stack just for the closures.

 30

3.5 Method Definition

In general, method definitions in Ruby On Flash are pretty straightforward. Ruby On

Flash maps a method definition directly to an Actionscript function. However, within a

method definition, Ruby On Flash implicitly adds code to set up the environment. In

particular, a new environment is created and bindings for parameters are added. In

addition, the Ruby keyword “self” is mapped to its Actionscript equivalent “this”. The

keyword “yield” references the top of the closure stack for simplicity.

(Fig 3.17 A Ruby On Flash method definition creates a new environment object.)

The real challenge for Ruby On Flash arises when methods are defined within another

method. Intuitively, we would expect that the class to which the inner method is added

can be derived from the “self” keyword. However, this is not the case. Instead, where

the outer method is declared would determine to which class would the inner method

belong.

Consider:
class A

end

class B

 #defines a class method for class A

 def A.classMethodB()

#defines an instance method in this class method

guess to which class would this method belong

 def methodAInB()

 puts "methodAInB";

 end

 end

end #cont’d next page

def methodA(arg1, arg2)

#method body
end

“arg1” …

“arg2” …

“self” this

“yield” closure

creates

 31

#executes the class method in order to define the inner method

A.classMethodB();

A.new().methodAInB(); #undefined!

B.new().methodAInB(); #defined!
(Fig 3.18 Defining a method in another method.)

Surprising, the instance method “methodAInB” becomes an instance method of class B,

even though it is declared in class A’s class method. This is because the class method is

defined in the context of class B.

Consequently, all method definitions must have a reference to the class context in which

it is defined. Additionally, methods defined within another method would inherit the

class context of its outer method. In the outermost scope, the class context would refer to

the class Object.

Summary

Method definitions in Ruby On Flash are pretty straightforward. Ruby On Flash adds

code to method definitions in order to set up the environment. However, the definition of

instance methods in other methods warrants extra attention due to their counter intuitive

semantics.

 32

3.6 Class Definition

Classes in Actionscript are merely functions whose code body behaves as the class

constructor. On the other hand, classes in Ruby are full fledged language constructs, and

code can be executed within a class definition. It is thus not possible to simply map Ruby

classes to Actionscript classes. Instead, additional effort is required to redesign a class

definition system from scratch. Additionally, this system should be compatible with and

also to provide Ruby class definition related functionalities to the native Actionscript

classes.

Finally, object instantiation is also a matter of concern for Ruby On Flash. Ruby objects

are instantiated through the instance method “new” of the class Class, whereas objects in

Actionscript are instantiated with the “new” operator. Also, Ruby objects are initialized

using the instance method “initialize”, while in Actionscript, the class definition is also

the constructor.

Ruby
x = 10;

class AClass

 x; #undefined

self; # self refers to the class object itself

y = 1 + 2;

def aMethod()

 ……

end

end

#open AClass

class AClass

#add a new method

def aNewMethod()

 ……

end

end

(Fig 3.19 Code can be executed within a Ruby class definition. Also, a class can be

“opened” for editing.)

 33

Code can be executed within the class definition itself. In addition, a class definition also

introduces a new environment. The keyword “self” would refer to the class object itself.

The more interesting feature of Ruby class definition is that a class definition can be

opened for editing.

Ruby On Flash

We’ll have to write the class definition language construct from scratch. Yet again, the

main difficulty is in having to integrate with native Actionscript classes.

As the task is enormous, we’ll break the problems into smaller sub problems:

1. Allowing code with a class definition execute within the class context.

2. Making classes in Ruby On Flash compatible with native Actionscript classes.

3. Opening a class definition for editing

4. Instantiating and initializing objects

Executing code within the class context is not unlike executing code within a function.

Upon entering the class definition, a new context (environment) is created and pushed

onto the stack, upon leaving the class definition, the new context is popped out, and

subsequent code executes in the original context.

Visually:

(Fig 3.20 How Ruby On Flash emulates an environment stack in class definitions.)

……
class AClass
……
end
……

original environment

new environment

original environment

original environment

original environment

new environment

prev Env

The environment stack is
simulated using “prev
Env” links

 34

The next problem to be solved is that of making Ruby On Flash classes compatible with

Actionscript classes. Theoretically, we could represent a Ruby On Flash class with a

generic object assigned with class specific properties. Upon instantiation, we could then

derive an instance of the class by creating a generic object and assign instance specific

properties such as “__proto__”. However, this would lead to conflicts with the native

Actionscript classes. For example, during object instantiation, Ruby On Flash would

need to differentiate between a Ruby On Flash class and an Actionscript one.

In pseudocode:
pseudocode

method new(className)

BEGIN

 IF Ruby On Flash class THEN

 instance = new Object();

 set the properties of the instance.

 return instance;

 ELSE

 return new className();

ENDIF

END

(Fig 3.21 How the “new” method might have been implemented.)

Unfortunately, it is difficult to differentiate between native Actionscript and Ruby On

Flash classes. Such code is also unwieldy and fragile. As such the proper way would be

to represent Ruby On Flash classes as functions, just as native Actionscript classes.

Clearly, the implementation of a class definition would be based on the underlying object

model layout. As such, this problem is also tightly coupled with the Object Model

problem discussed in the earlier section (see Object Model, pg 15). Fortunately, since we

managed to represent Ruby semantics using Actionscript object model layout, the

problem becomes trivial.

When a class is opened for editing, a new environment is created as per class definition,

and the environment bindings are set accordingly. Such a simple solution is possible as

 35

both Ruby On Flash and Actionscript classes and represented identically and have

identical object model layout. Therefore, there is no need for complicated solutions

catering for each type of classes.

The final problem is that of object instantiation and initialization. As mentioned earlier

“new” is an instance method of the class Class in Ruby, but an operator in Actionscript.

Thankfully, since we managed to represent Ruby classes and objects identically to those

of Actionscript, this problem can be easily solved. We’ll only need to encapsulate the

“new” operator within the instance method “new”. Once the instance is created, we’ll

need to initialize the instance. Yet again, a question arises. As stated earlier, native

Actionscript objects are initialized in the class definition itself, while in Ruby, objects are

initialized by the “initialize” method. How should we resolve this difference? How do

we provide a uniform way of initializing objects?

The solution is refreshingly simple. Do both.

Below gives a rough idea of how the Class instance method “new” is implemented in the

equivalent Actionscript code:
Actionscript

//defines the class Class’s instance method “new”

Class.prototype.new = function(){

//”this” refers to the class object itself, which in turn, is an instance of the class Class

//all functions in Actionscript can access their arguments via the implicit argument “arguments”

instance = new this(arguments);

//call the initialize method

instance.initialize(arguments);

return instance;

}

(Fig 3.22 How Ruby On Flash’s “new” method is implemented.)

Take particular note that “instance” would have been initialized twice. Given that

initialization is usually not an idempotent operation, initializing twice would have been a

cause for alarm. However, in this case, we only have an either-or situation. Specifically,

in Actionscript classes, initialization code is found only in the class definition, but not in

 36

the initialize (initialize has no code) method. On the other hand, Ruby On Flash classes

are represented by empty functions! As such, in either case, initialization code runs only

once.

The astute reader would have noticed that we could have made the call to initialize within

the class/function definition itself for Ruby On Flash classes. Doing so would allow Ruby

On Flash classes follow Actionscript classes’ initialization conventions (i.e. initialize

within the class/function definition). However, doing so would also lead to a more

insidious problem. An adventurous Ruby On Flash developer might want to add an

“initialize” method to a native Actionscript class. Thus, having the call to “initialize”

inside class/function definition, but not outside, would imply that this “initialize” method

would never be called, leaving the developer extremely surprised!

Summary

The implementation of class definitions in Ruby On Flash is an enormous task as

everything has to be designed from scratch. Moreover, it is clear that its solution is also

dependent upon the underlying object model layout (see Object Model, pg 15). The main

consideration is to be compatible with the native Actionscript classes. Differences in

object instantiation and initialization have got to be resolved as well. In addition, we

would like to provide Ruby functionalities to these native classes too. Despite the

constraints, we were able to design a solution that is fully in line with our design goals.

 37

3.7 Component Framework Design

In order to do anything useful, Ruby On Flash must provide a good component

framework. This component framework must obviously be intuitive and easy to use.

Also, this component framework must be consistent with Ruby’s philosophy, i.e. the

developers would expect an object oriented approach and would expect to be able to

define sub classes for these components. In addition, this component framework must be

in line with our target developers’ (casual game developers) needs. As always, the Swf

virtual machine imposes some constraints and throws us some challenges along the way.

In this section, we shall first look at Flash’s component framework and then discuss the

design considerations that ultimately led to Ruby On Flash’s component framework.

Flash

In Macromedia Flash, there are primarily four components, namely

1. Graphics

2. Buttons

3. Movie Clips

4. Text fields

Graphics are merely static images that cannot be manipulated at runtime, and is thus

usually used as background imagery. Buttons are similar to movie clips, but can only

capture mouse events. Movie clips can be thought of as mini Flash movies within a Flash

movie. Movie clips also provide the full functionalities of a Flash movie and can capture

all events available. As such, it is not surprising that movie clips form the bulk of the

components used in a typical Flash movie. Text fields need no introduction. A text field

is pretty flexible and its look and feel can be tweaked through its properties, e.g. single-

lined or multi-lined.

At the top-most level, the entire Flash program is represented as a MovieClip instance.

This top-most object can be accessed via the keyword “this” in the outermost scope.

Since this top-most object is an instance of MovieClip, it follows that all discussions

pertaining to movie clips are applicable to the top-most object.

 38

Everything in Flash is event-driven. To capture an event, we only have to implement an

event handler for the receiving component.

Finally, since Macromedia Flash’s user interface is graphical in nature, it is not surprising

that Flash also provides a drawing API. Flash’s drawing API comes in the form of

MovieClip’s instance methods, thus each movie clip instance is effectively a drawing

canvas.

Research

Research into components frameworks was conducted in order to find the industry best

practices. Ruby on Rail’s focus on convention over configuration was particularly

influential. “Convention over configuration” means that instead of making explicit

configurations, we can stick to sensible conventions instead. A good example would be

that of defining event handlers. In Java, to create an event handler, one would have to

first define a class which implements a certain Listener interface. Furthermore, the

developer would have to implement all methods defined in that Listener interface even

though only one event handler is required. Thereafter, the developer would have to call

the “addListener” method of the event source component. In contrast, to capture an event

in Javascript, the developer only needs to define a method of a predefined name. For

example, to capture the mouse click event, the developer only needs to define the method

“onMouseUp”.

Finally, it was felt that Ruby’s principle of least surprise would be an ideal goal for the

component framework as well. We’ll see examples of how this principle guided our

decisions.

We’ll hereby conclude our research with the following mission statement:

“Event driven component framework with an emphasis on convention over

configuration, based on the principle of least surprise. “

Ruby On Flash

Of the four Actionscript components discussed above (Graphics, Buttons, Movie Clips

and Text Fields), Ruby On Flash primarily deals with Movie Clips and Text Fields.

 39

Graphics and Buttons can be trivially represented by Movie Clip instances and will be

dealt with as such.

Below is an overview of the classes that make up the component framework:

(Fig 3.23 Overview of Ruby On Flash component framework classes.)

• Ruby On Flash components are classes that are new and implemented by Ruby

On Flash.

• Augmented Actionscript components refer to Actionscript classes that are

augmented with Ruby methods.

• In game development circles, “sprite” is a generic term for any independent,

visible component.

• Note that the components in Ruby On Flash are especially chosen for their

relevance to casual game development.

Movie clips have a special status in the Swf virtual machine. Internally, a Flash movie

maintains a hierarchy of movie clips:

MovieClip

Sprite

ImageSprite SwfSprite

Key Mouse Sound TextField

Ruby On Flash
components

Augmented Actionscript Components

Native Actionscript Components

 40

(Fig 3.24 Hierarchical organization of movie clips in the Swf Virtual machine.)

On each frame (frame as in x frames per second in a game loop), each MovieClip

instance is drawn onto the screen.

From this, we can infer that the only way of adding a visible component onto the screen

is via a movie clip. It thus follows that game sprites in Ruby On Flash must be

subclasses of MovieClip.

Also, since movie clips are “special”, we can infer that the only way we can create and

add a MovieClip instance to the render list is via a native Actionscript function. Indeed,

this is the case:
my_mc.attachMovie(idName:String, newName:String, depth:Number [, initObject:Object]) : MovieClip

my_mc.createEmptyMovieClip(instanceName:String, depth:Number) : MovieClip

my_mc.loadMovie(url:String [,variables:String]) : Void
(Fig 3.25 Native Actionscript methods for creation of movie clips.)

The above three are MovieClip instance methods for creating and attaching movie clips.

The exact semantics of these methods are not pertinent to our discussions and will not be

further elaborated.

Note that in all three cases “my_mc” would be the parent MovieClip instance to which

the new movie clip is attached. This implies that the parent movie clip is responsible for

the creation of child movie clips.

Unfortunately, the fact that we have to use these methods in order to create movie clips

poses some challenges:

Main MovieClip instance

MovieClip instance MovieClip instance

MovieClip instance MovieClip instance

…… ……

……

……

……

 41

1. These methods create a generic MovieClip instance. However, developers would

expect to be able to write their own classes for their components.

2. Having the parent movie clip responsible for the creation of child movie clips is

counter intuitive to most developers. Developers would have expected something

like this:
instance = MySpriteClass.new(…);

instance.attachTo(parentMovieClip);

 (Fig 3.26 How Ruby On Flash developers would expect to create movie clips.)

The trick to solving the first problem is to recognize that an object can be associated with

a class simply by manipulating the object’s “__proto__” link!

Thus, the solution would be:

1. Create a MovieClip instance via the MovieClip method.

2. Create an instance of the custom sprite class.

3. Set the MovieClip instance’s “__proto__” link to point to the instance of the

custom class.

Visually:

(Fig 3.27 Associating a MovieClip instance with a Ruby On Flash class.)

Note that CustomSprite must be a subclass of Sprite so that it can inherit the methods of

MovieClip.

Clearly, we would need to implement a constructor method that encapsulates the solution

for the first problem. A seemingly (we shall see why this is not a good idea) obvious

choice for the constructor method would be the class method Sprite.new().

Sprite.new would roughly be implemented as such:

MovieClip instance Sprite instance CustomSprite

CustomSprite

__proto__ __proto__

prototype new CustomSprite(…)

 42

Actionscript

Sprite.new = function(parentMovieClip){

movieClip = parentMovieClip.createEmptyMovieClip(……);

//this refers to the class object itself. In this case, the class Sprite or its subclass

instance = new this();

movieClip.__proto__ = instance;

//arg1, arg2, … argn refers to the rest of the arguments

//in the Swf virtual machine, it is possible to retrieve the other arguments even if they’re not declared in

//the function signature

movieClip.initialize(parentMovieClip, arg1, arg2,…,argn);

return movieClip;

}

(Fig 3.28 The Actionscript equivalent of how Sprite.new could have been implemented in

Ruby On Flash.)

The developer would thus write code as such:
Ruby On Flash

class MyHeroSprite < Sprite

def initialize(parentMovieClip, x, y)

 self.setX(x);

 self.setY(y);

end

……

end

//self refers to the main movie object itself.

myHero = MyHeroSprite.new(self, 0,0);

(Fig 3.29 How a Ruby On Flash developer could have defined and instantiated a Sprite.)

Take special note of the argument parentMovieClip in the initialize method. This

reference to the parent movie clip is required by the underlying native Actionscript

method. As such, we are faced with a dilemma. Should we pass this parentMovieClip

along to the initialize method?

 43

On one hand, if we pass this reference to the initialize method, then the developer would

be forced to declare this in the initialize method’s signature. Half the developers would

be pretty surprised by this requirement, a clear violation of the principle of least surprise.

On the other hand, if we do not pass parentMovieClip to initialize, the other half of

developers would be very surprised!

Furthermore, as mentioned earlier, there are three native Actionscript methods for

creating MovieClip instances. Each method has different semantics and is used for

different situations. This Sprite.new would have to, at runtime, figure out which method

to call. A truly daunting task!

Is there no resolution? Is there no workaround?

Fortunately, we have a solution that is ingeniously simple. We’ll camouflage this

limitation as a Factory design pattern4! Specifically, instead of having a Sprite.new, we

would rename it to Sprite.createInstance. Doing so would also imply that this factory

method would not pass parentMovieClip to initialize. In addition, we could introduce

additional, self-describing factory methods, such that each factory method’s

implementation knows which Actioscript method to call.

(Fig 3.30 Class diagram of the Sprite class and its subclasses.)

We shall not discuss the exact semantics of each factory method. However, we would

have a brief look at how ImageSprite.createInstance achieves “convention over

configuration”. In Flash, an image can be embedded (see Stage Properties & Embedding

4 http://en.wikipedia.org/wiki/Factory_design_pattern

Sprite

 + createInstance

ImageSprite

 + createInstance

 + createInstanceFromFile

 + createInstanceFromResource

SwfSprite

 + createInstance

 + createInstanceFromFile

 44

Resources, pg 46) and accessed via its definition ID. ImageSprite allows the developer to

automatically associate a subclass with a resource just by following a simple naming

convention. For example, if we have an embedded image with ID “Blinky”, we would

define a class “BlinkyImageSprite”:
Ruby On Flash

class BlinkyImageSprite < ImageSprite

def initialize(…)

 ……

end

……

end

blinky = BlinkyImageSprite.createInstance(…);

(Fig 3.31 Simple naming convention for ImageSprite subclasses.)

Note that the above behavior can be overridden by declaring a class variable

“@@ImageId”.

The other components, TextField, Sound, Key and Mouse are self explanatory and will

not be discussed further.

Since Ruby On Flash’s object model layout (Object Model, pg 15) and method calling

semantics (Method Call, pg 28) are fully compatible with that of Actionscript, there are

no problems implementing event handlers. Actionscript, like Javascript, captures events

by defining the appropriate event handlers.
Ruby On Flash

class Pacman < Sprite

def onKeyUp()

 ……

end

end

pacman = Pacman.createInstance(self,…);

(Fig 3.32 Defining an event handler in Ruby On Flash.)

 45

Summary

Ruby On Flash’s component framework design is ambitious as it attempts to do things

right. Research was conducted into the industry best practices and we conclude that

“Convention over Configuration” as well as “Principle of least surprise” would put us in

the right direction. The limitations imposed by the Swf virtual machine may seem

insurmountable. However, with some creativity, we were able to camouflage this

limitation as a design pattern.

 46

3.8 Stage Properties & Embedding Resources

Stage Properties

Macromedia Flash allows developers to set the stage properties such as the width, height,

frame rate and background colour. As such, it would be absolutely unacceptable if Ruby

On Flash does not do likewise.

One possibility would be to introduce new directives for setting of stage properties.

However, it was felt that this method would be too disruptive to the overall feel of the

Ruby source code. Also, setting stage properties within the source code itself may

mislead the developer into thinking that these stage properties can be changed at runtime.

In addition, the presence of “load” statements5 (loads external Ruby source files) further

complicates the process when we have directives in multiple files. Attempts to resolve

these multiple directives will only lead to nasty surprises.

We therefore opted to set the stage properties via command prompt compiler flags.
Command prompt

>java rubyToSwf.RubyToSwfW –s pacman.rb –f 12 –b 0 –w 560 –h 650 –r pacmanResource.txt

Compiles source pacman.rb, setting frame rate to 12fps, background colour to black (0x000000), width to

560 pixels, height as 650 pixels, using resource file pacmanResource.txt
(Fig 3.33 Compilation in the command prompt.)

Alternatively, a simple compiler GUI is provided for Ruby On Flash (fig. 3.34)

5 load statements in Ruby On Flash are actually directives. This is because there is no way Ruby On Flash
can dynamically load and compile Ruby files unless it loads the entire compiler into the Flash movie.

 47

(Fig. 3.34 A simple compiler GUI for Ruby On Flash)

Embedding Resources

In Macromedia Flash, resources such as images and sounds can be embedded within the

Flash movie. Ruby On Flash developers would therefore expect such capabilities as well.

Moreover, in the Swf virtual machine, only jpeg images can be dynamically. This would

imply that images with transparency information (e.g. gif and png) cannot be dynamically

loaded. Only by embedding images can transparency be preserved.

Ruby On Flash exposes these capabilities via a resource file. The resource file has an

extremely simple format that consists of a series of lines of the form

<ResourceID>:<ResourcePath>
Resource file

Pacman:Pacman.gif

Pinky:Pinky.gif

……

(Fig 3.35 Example resource file.)

 48

 This resource file is passed in as a compiler flag during compilation (above, Fig 3.33).

Initially, Ruby On Flash toyed with the idea of having the compiler automatically

recognize resource types in the source code via sensible conventions. This would have

been a major exemplification of convention over configuration. However, this idea was

dropped for practical reasons. Without type information (Ruby has no type checking), it

would have been extremely difficult to differentiate between a normal string and a

resource path/ID. Introduction of directives is also unwise for the abovementioned

reasons (Stage Properties). Furthermore, we anticipate that a significant fraction of our

developers have had experience with Macromedia Flash. Macromedia Flash source files

stores resources in an import library. As such, ex-Flash developers might be more

comfortable with storing resources in a separate library. Using a separate library also

provides the developer with additional flexibility. For example, a developer can work

with dummy images while graphics designer concurrently works on the actual production

images. Once the graphics are ready, the developer can easily switch to these new

images by creating and compiling with a new resource file.

Summary

The difficulty in implementing the above features (Stage properties and embedding

resources) lies not in the actual implementation, but rather in the design considerations.

Each decision can have far reaching implications, thus it is extremely important that we

ponder over each choice carefully.

 49

3.9 Extending Ruby On Flash

There are many existing Actionscript libraries freely available. It would be a pity if Ruby

On Flash is unable to incorporate these libraries. Also, such a feature would appeal to

Macromedia Flash converts who didn’t want to see their previous work go to waste.

Fortunately, since Ruby On Flash’s object model layout and method calling semantics are

full compatible with Actionscript, importing these libraries in would not pose much

challenge.

Ruby On Flash provides a linker to link these existing compiled Actionscript libraries

(.swf files), refer to Fig. 3.34 for the compiler GUI.
Command prompt

>java rubyToSwf.RubyToSwfW –s pacman.rb –f 12 –b 0 –w 560 –h 650 –r pacmanResource.txt –l

xLib.swf –l yLib.swf

The –l flag signals the library to link. Note that we can link with multiple swf files.
(Fig 3.36 Linking external libraries.)

We are again confronted with the question. Shouldn’t we provide a directive for imports

instead? The answer is again in the negative. There already exists a load statement in

Ruby/Ruby On Flash, introducing another statement/directive for imports would lead to

unnecessary confusion.

Also, it was felt that developers would be more comfortable with our compiler flag

approach as they could draw parallels with static linking in GCC.

Other than third party libraries, Ruby On Flash would also be extended when Adobe

introduces new Acionscript libraries in new releases of Flash player. Again, due to tight

integration with Actionscript semantics, Ruby On Flash would automatically be able to

take advantage of these new libraries. Finally, we anticipate that Adobe would push

aggressively for the adoption of the Adobe Integrated Runtime. Given Ruby On Flash’s

compatibility with Actionscript, we are optimistic that Ruby On Flash would be in an

excellent position to ride this wave6.

6 More research would be required, see Future Developments, pg 52

 50

4 Implementation

This section shall look at some of the low level implementation issues that are required in

order to complete the picture.

Core Language Scope

Ideally, Ruby On Flash should implement all Ruby language elements. However, for

practical reasons (time, limitations of the Swf virtual machine, etc), only a subset of Ruby

features that are pertinent to our objectives are implemented.

In particular, the following are not implemented:

- Symbols (e.g. :name)

- Regular expressions

- File I/O (I/O through textfields are available though, see Component Model)

- Runtime Evaluation (e.g. eval(“x + y”))

- Exception handling

- Visibility modifiers (public, protected, private)

- Freezing, taint

- Attributes

- Heredocs

- Expression substitution in strings (e.g. “#{x+y}”)

- Singleton classes

- Hooks

- BEGIN and END statement blocks

- for..in statements

Additionally, parenthesis for method calls and method definitions are mandatory in Ruby

On Flash, unlike in Ruby.

Standard Library

 51

Ruby On Flash’s standard library can be divided into three components, namely, Ruby

built-in library, augmented Actionscript library as well as the native Actionscript library.

Ruby built-in library, as suggested by the name, refers to Ruby On Flash’s

implementation of Ruby’s built-in library. Due to the strength of Ruby’s community,

Ruby’s standard library is continuously growing and as such, it is not possible to

implement them all. Also, due to the incomplete support of core language elements,

certain standard library elements are also not supported. A notable example would be

the lack of support for regular expressions. As a result, String methods which utilize

regular expressions cannot be implemented.

Given these restrictions, we’ve narrowed our implementation to a set of truly essential

classes. For details, please refer to the API documentation.

Augmented Actionscript classes would refer to native Actionscript classes augmented

with Ruby methods. Doing so would also elevate these Actionscript classes to “Ruby

status”. In other words, developers need not pre-pend these classes with the AS::

keyword (see below) in order to access them. These classes were regarded to be essential

to casual game developers and were thus chosen as the foundation of the component

framework.

Lastly, we have the native Actionscript library. To access the native library namespace,

the developer only need to pre-pend the expression with AS::.

 52

5 Conclusions

Ruby On Flash is an ambitious project which aims to provide a programmer-friendly, full

fledged development platform for casual Flash games development. Its development

lifecycle is fraught with difficulties, due to the limitations of the Flash player, different

language semantics, and also the requirement that native Actionscript library remains

compatible. Further compounding the complexities, each problem is interlinked and

cannot be solved independently. It is thus imperative to maintain a holistic view of the

entire system when designing each solution. Despite these difficulties, Ruby On Flash

has remarkably solved all the problems and achieved all its goals.

Future Developments

As an open source project (http://sourceforge.net/projects/rubyonflash), Ruby On Flash

will undergo continuous improvements and developments. Some directions that we will

be venturing into:

1. Optimization. This first iteration only focuses on getting things right, but not on

efficiency.

2. Ruby On Flash currently supports only a subset of the Ruby programming

language. We intend to flesh out the rest of the language features (where

possible), such as exception handling and regular expressions. .

3. Adobe is currently developing a new cross platform runtime, known as Adobe

Integrated Runtime (AIR) (http://labs.adobe.com/technologies/air/). AIR allows

developers to leverage on their existing web development skills such as Flash to

build applications on the desktop. As such, we’ll look into how we can

incorporate this technology into Ruby On Flash.

4. We believe that web developers would also look forward to having a more

programmatic approach to Flash RIA (Rich Internet Application) development.

In particular, we believe that the Ruby On Rails community would welcome Ruby

On Flash into their full-stack web application framework.

 53

6 Case Study: Pacman

As a case study, we’ll look at the implementation of Pacman. As of now, Pacman is a
work in progress. Additionally, refer to tutorials (Appendix A.4) for more examples.

(Fig 6.1 Pacman screenshot)

 54

Code snippets:

class Pacman:
class PacMan < Sprite
 def initialize(gameManager)
 ………………..
 @faces = Array.new(5);
 ##Drawing the faces, left right, up and down using the drawing API
 @faces[1][0].lineStyle(0, "0xFFFF00", 100);
 @faces[1][0].beginFill("0xFFFF00",100);
 @faces[1][0].drawSector2(0,0,-140,140,10,5,0);
 @faces[1][0].endFill();
 ##Draw other faces, facing, left, right, up and down
 …………….
 end

 def onKeyDown()
 ##Code for keys, up, down, left, right
 if(Key.getCode() == Key.RIGHT) then
 ……………….
 end
 end

 def onEnterFrame()
 #Code for moving
 ………………..
 end
end

class Ghost:
class Ghost < Sprite
 def initialize(gameManager, name,x,y)
 ……………………………
 #Drawing the faces by loading an embedded image
 @faces[0] = Array.new(2);
 @faces[0][0] = ImageSprite.createInstanceFromResource(name+"Up1",self);
 …………………………..
 end

 def onEnterFrame()
 ##Code for the ghost AI and movement
 ……………………………..
 end
end

Drawing the walls:
………………………..
#Drawing the walls (blue lines) using the drawing API
self.drawRect(445,45,515,95);
self.drawRect(45,125,115,155);
self.moveTo(145,125);
self.lineTo(175,125);
self.lineTo(175,185);
………………………..

 55

A helper class:
#A helper class. Visualize the floor as a 2 dimensional array. This class helps set the array element values
#in rectangular blocks.
class Rect
 def initialize(left,top,right,bottom)
 #Initializing, sets the @left, @top, @right, @bottom instance variables
 end

 def setFloor(floor)
 startX = (@left /20).floor();
 startY = (@top / 20).floor();
 length = ((@right - @left)/20).floor();
 height = ((@bottom - @top)/20).floor();
 i = 0;
 while(i < height)
 j = 0;
 while(j < length)
 floor[startY+i][startX+j] = 1;
 j += 1;
 end
 i += 1;
 end
 end
end

Instantiation:
#Instantiation of pacman and the ghosts
@pacman = PacMan.createInstance(self,@gameManager);

@blinky = Ghost.createInstance(self,@gameManager,"Blinky",270,230);
@pinky = Ghost.createInstance(self,@gameManager,"Pinky",250,290);
@inky = Ghost.createInstance(self,@gameManager,"Inky",270,290);
@clyde = Ghost.createInstance(self,@gameManager,"Clyde",290,290);

 i

References

Matsumoto (2002). Ruby In A Nutshell: A Desktop Quick Reference. First Edition,

O’Reilly & Associates, Inc, 2002.

Thomas, Fowler and Hunt (2004). Programming Ruby: The Pragmatic Programmers’

Guide. Second Edition, Pragmatic Bookshelf, 2002.

Moock (2002), Actionscript for Flash MX: The Definitive Guide. Second Edition,

O’Reilly Media, Inc, 2002.

Ruby Official Website

http://www.ruby-lang.org/

Ruby On Rails Website

http://www.rubyonrails.org/

ECMAScript Language Specification

http://www.ecma-international.org/publications/files/ecma-st/ECMA-262.pdf

The Swf File Format Specification

http://www.adobe.com/licensing/developer/)\

 ii

Appendix

 iii

A.1 Swf File Format Specification
(Adapted from Macromedia Flash (SWF) and Flash Video (FLV) File Format
Specification Version 8, http://www.adobe.com/licensing/developer/#fileformat)

A Swf file consists of a header and a series of tagged data blocks, terminated by an end
tag.

There are two categories of tags:

1) Definition Tags:
• Defines the contents of the swf file, shapes, text, bitmaps, sounds, etc.
• Each definition tag is uniquely identified by a character ID.
• During processing, these definition tags will be saved under the character

ID in a repository known as the dictionary. Each entry in the dictionary is
known as a character.

2) Control Tags:
• Creates and manipulates the rendered instances of characters in the

dictionary.
• The implementation of Ruby On Flash mainly deals with the DoAction

control tag. The DoAction tag consists of a sequence of actions, such as
Add, CallMethod, Push, Pop etc. These actions are similar to assembly
instruction mnemonics.
Note: The Swf virtual machine (Flash player) is a stack machine.

During processing, the Flash player would place each definition tag in the dictionary.
However, this does not render the contents of these characters. Rather, control tags such
as PlaceObject would place a selected character onto the display list. When the
ShowFrame control tag is encountered, the entries in the display list are rendered onto the
screen. Similarly, actions in DoAction control tags are not executed immediately, but are
placed in an actions list and then executed when a ShowFrame tag is encountered.

Header Tag Tag Tag Tag End …..

 iv

A.2 Installation Guide for Ruby On Flash (ver. 0.1a)
http://sourceforge.net/projects/rubyonflash

(Note: Please refer to README.txt in the CD. The installation is slightly different/easier
for this HYP special edition installation CD. The following is a generic installation guide
for downloads from Ruby On Flash’s SourceForge website.)

Software packages needed:
Java SDK: http://java.sun.com/javase/downloads/index.jsp
Apache Ant: http://ant.apache.org/
Java Cup: http://www2.cs.tum.edu/projects/cup/
JSwiff: http://www.jswiff.com/

Once you’ve got the above software packages installed, download Ruby On Flash’s
source and copy it to a directory. Note that this directory will also be Ruby On Flash’s
installation directory.

JSwiff modifications:
Copy the files, ActionBlock.java, If.java and Jump.java in the jswiff_mod directory, into
your JSwiff directory’s src/com/jswiff/swfrecords/actions directory.
Recompile JSwiff.

Configure build.xml:
In build.xml, you should see the following commented out tags near the top of the file:
<!--
Input the full path name for the JSwiff library here!
<property name="jswiff.path" value="D:/HYP/jswiff/jswiff-8.0-beta-2.jar" />
-->
<!--Input the full path name for the Java Cup library here!
<property name="jcup.path" value="D:/CUP/java-cup-11a.jar" />
-->
Uncomment the above and edit the fields accordingly.

Run ant in the installation directory.
After execution, you’ll see 3 additional files in the installation directory:

1) jcup.jar – A copy of your system’s java cup jar file, as indicated in the jcup.path
property in build.xml. .

2) jswiff.jar – A copy of your system’s jswiff jar file, as indicated in the jswiff.path
property in build.xml.

3) RubyToSwf.jar – an executable jar for Ruby On Flash.
In addition, a new folder, “Ruby” will be created.

Installation is completed!!!
Refer to User’s Guide to start developing using Ruby On Flash now!

 v

A.3 User’s Guide for Ruby On Flash (ver. 0.1a)
http://sourceforge.net/projects/rubyonflash

Running Ruby On Flash
Upon installation, the following directory structure will be observed (only files relevant
to our discussion will be shown):

installation directory
 |
--/build

--/Ruby
--rubyToSwf.jar

Of particular note is rubyToSwf.jar. This is the main program of Ruby On Flash.
rubyToSwf.jar can be executed from the command prompt:

java –jar rubyToSwf.jar [-flag flagArgument]*
where flag can be:
-s|--source the ruby source path
-o|--output the output file name
-r|--resource the resource file path
-w|--width the width in pixels, default is 400
-h|--height the height in pixels, default is 300
-f|--framerate the frame rate in frames per sec, default is 12
-b|background the background color in hexadecimal, default is 0 (black)
-l|--lib the external swf file to link
-h|--help help

None of the above flags are compulsory.
If –s|--source is omitted, the ruby source is assumed to be from the standard input.
However, if the source is supplied, but not the output filename (-o|--output flag), and the
source filename is of the form “source.rb”, then the output filename will be “source.swf”.
Also, resource files and external swf files are not required.
The width, height, background color and frame rate’s default values are as denoted above.

Note that with the exception of –h|--help, all the other flags are followed by one argument.

Example use:
java –jar rubyToSwf –s pacman.rb –w 560 –h 650 –f 20 –b ff0000 –r
pacmanResource.txt –l lib1.swf –l lib2.swf

The above example tries to compile a ruby source, pacman.rb to pacman.swf, with width
560px, height 650px, frame rate of 20fps and a red background (ff0000). This

 vi

compilation requires a resource file, pacmanResource.txt, and also links 2 external swf
files, lib1.swf and lib2.swf.

Alternatively, rubyToSwf.jar provides a simple GUI. To run the GUI, run
java –jar rubyToSwf.jar
without any command prompt flags/arguments.
Under Windows systems, you can simply double-click the jar file.
The use of the GUI is pretty obvious, and will not be further discussed.

Creating a Resource File
In Flash, resources such as images can be embedded into a Flash movie. As such, it’s not
surprising that Ruby On Flash offers this capability as well.
In order to embed images into Ruby On Flash, a resource file is required. A resource file
is a plain text file, where each line represents a single resource in the form of
resourceID:imagePath pair.

Example:
Food:D:\hyp\code\build\classes\dot.gif
SuperFood:D:\hyp\code\build\classes\superFood.gif
BlinkyUp1:D:\hyp\code\build\classes\blinkyUp1.gif
BlinkyUp2:D:\hyp\code\build\classes\blinkyUp2.gif
BlinkyDown1:D:\hyp\code\build\classes\blinkyDown1.gif
BlinkyDown2:D:\hyp\code\build\classes\blinkyDown2.gif
BlinkyLeft1:D:\hyp\code\build\classes\blinkyLeft1.gif
BlinkyLeft2:D:\hyp\code\build\classes\blinkyLeft2.gif

 vii

BlinkyRight1:D:\hyp\code\build\classes\blinkyRight1.gif
BlinkyRight2:D:\hyp\code\build\classes\blinkyRight2.gif

Note that the resource IDs should be unique within the file. Also, note that in the above
examples, the paths are absolute paths. While relative paths are possible, bear in mind
that these relative paths are relative to the rubyToSwf’s installation directory!

 viii

A.4 Tutorials
The tutorials can be found in the /tut directory.

A.4.1 Tutorial 1:
#Objective of tutorial 1:

#Create a textfield. On each frame, increment counter

#Access the native Object (Date)

@counter = 0;

#AS::Date refers to the native Date object

#Creating a new native Actionscript class object.

@now = AS::Date.new();

@dateString = String.new(@now.toString());

#textbox

@txtField = TextField.createInstance(self);

@txtField._x = 0;

@txtField._y = 0;

@txtField._width = 550;

@txtField._height = 400;

@txtField.border = true;

@txtField.type = "input";

def onEnterFrame()

 @txtField.text = (@dateString + "\nCounter:" + @counter.to_s()).toString();

 @counter += 1;

end

Screenshot:

 ix

A.4.2 Tutorial 2
load "DrawingApi.rb";

#Objective of Tut 2: Using the Drawing API, Use of Mouse

#Draw Rect

self.lineStyle(0, "0x0000FF", 100);

self.beginFill("0xFFFF00",100);

self.drawRect(0,0,100,100);

self.endFill();

#DrawSector

self.beginFill("0xFFFF00",100);

self.drawSector(200,50,0,360,50);

self.endFill();

#Draw Polygon

self.beginFill("0xFFFF00",100);

self.drawPolygon(400,0,450,0,480,30,450,60,400,60,370,30);

self.endFill();

#Draw Ellipse

self.beginFill("0xFFFF00",100);

 x

self.drawEllipse(200,200,300,250);

self.endFill();

#Draw lines

self.moveTo(0,0);

def onMouseUp()

 self.lineStyle(0, "0x0000FF", 100);

 self.lineTo(self.getXMouse(),self.getYMouse());

end

Screenshot:

A.4.3 Tutorial 3
load "DrawingApi.rb"

#Objective: Use of Sprites and ImageSprite, using Keys

#Note that this DummyImageSprite class knows that its underlying image is called Dummy, cos its name is

DummyImageSprite.

#Naming convention: [NameOfImageInResourceFile]ImageSprite. To override, set @@imageId attribute

class DummyImageSprite < ImageSprite

 xi

 def initialize()

 self.setX(70);

 self.setY(100);

 end

 def onKeyUp()

 if(Key.getCode() == Key.RIGHT) then

 self.setX(self.getX()+10);

 elsif (Key.getCode() == Key.UP) then

 self.setY(self.getY()-10);

 elsif (Key.getCode() == Key.LEFT) then

 self.setX(self.getX()-10);

 elsif (Key.getCode() == Key.DOWN) then

 self.setY(self.getY()+10);

 end

 end

end

class Dummy2ImageSprite < ImageSprite

 #example of how to override the naming convention

 @@imageId = "Dummy";

 def initialize()

 self.setX(350);

 self.setY(100);

 end

 def onKeyUp()

 if(Key.getCode() == 68) then

 self.setX(self.getX()+10);

 elsif (Key.getCode() == 87) then

 self.setY(self.getY()-10);

 elsif (Key.getCode() == 65) then

 self.setX(self.getX()-10);

 elsif (Key.getCode() == 83) then

 self.setY(self.getY()+10);

 end

 xii

 end

end

class CustomSprite < Sprite

 def initialize()

 self.setX(100);

 self.setY(100);

 end

 def onEnterFrame()

 self.clear();

 self.lineStyle(0, "0x0000FF", 100);

 self.beginFill("0xFFFF00",100);

 self.drawSector(0,0,0,360,50);

 self.endFill();

 end

end

dummySprite = DummyImageSprite.createInstance(self);

dummy2Sprite = Dummy2ImageSprite.createInstance(self);

#You can create an image sprite without defining a class! Just load a jpg file

frogSprite = ImageSprite.createInstanceFromFile('tut/frog.jpg',self);

frogSprite.setX(200);

frogSprite.setY(200);

#example of how you can define a method for a particular object, instead of to its class

def frogSprite.onKeyUp()

 if(Key.getCode() == Key.SPACE)

 self.setY(self.getY() - 10);

 end

end

@customSprite = CustomSprite.createInstance(self);

def onMouseMove()

 @customSprite.setX(self.getXMouse());

 xiii

 @customSprite.setY(self.getYMouse());

end

Resource file used in tutorial 3:
Dummy:tut/dummy.gif

Images used in tutorial 3:
dummy.gif

frog.jpg:

Screenshot:

 xiv

Ruby On Flash API
Reference

Ruby On Flash: Compiling Ruby to Swf

http://sourceforge.net/projects/rubyonflash

By
Lem Hongjian

 xv

Table of Contents
Table of Contents .. xv
Overview ...i
Ruby Built-In Library..ii

Object ..iii
Module < Object ..vi
Class < Module ...vii
FalseClass < Object ..viii
TrueClass < Object... ix
NilClass < Object ..x
Numeric < Object...xi
Fixnum < Numeric ..xii
Float < Numeric .. xv
String < Object ..xvii
Range < Object...xxiii
Array < Object ... xxiv
Hash < Object .. xxxi
Proc < Object .. xxxv
Module Math.. xxxvi

Augmented Actionscript Library ..xxxviii
Key < Object .. xxxix
Mouse < Object ...xli
Sound < Object...xlii
MovieClip < Object...xlvi
TextField < Object ...lvii
Sprite < MovieClip.. lxiv
ImageSprite < Sprite.. lxvi
SwfSprite < Sprite ...lxviii

 i

Overview

Ruby On Flash standard library can be logically divided into 2 sections, namely the Ruby
built-in library and the Augmented Actionscript library.

The Ruby built-in library is an implementation of the official Ruby built-in library.
However, for practical reasons, this is only a partial implementation, i.e. not all
modules/classes/methods are implemented.
In addition, even implemented classes might not offer the full interface (i.e. the instance
and class methods). This is mainly due to limitations of the Swf virtual machine as well
as the restrictions of the supported language elements. Most notably, String methods that
involve the use of regular expressions are not supported, since regular expressions as a
whole are not supported.

Augmented Actionscript library are native Actionscript classes that are augmented with
Ruby methods. These classes were chosen as they are directly or indirectly incorporated
into Ruby On Flash’s component framework. In general, these classes are augmented
with methods which serve as wrappers for the native methods and properties. This
shields the developers from having to explicitly box and unbox primitive values when
using native methods.
Additionally, classes newly introduced by Ruby On Flash, but extends native
Actionscript classes would fall under this category.

 ii

Ruby Built-In Library

Note that since the classes below are Ruby On Flash’s implementation of the official
Ruby library, the class and method descriptions are also directly adapted from the official
Ruby library documentation.
Refer to http://www.ruby-doc.org/core/

Classes implemented:
1. Object
2. Module
3. Class
4. FalseClass
5. TrueClass
6. NilClass
7. Numeric
8. Fixnum
9. Float
10. String
11. Range
12. Array
13. Hash
14. Proc

Modules implemented:
1. Math

 iii

Object

Class Methods:

Object.toObject(expr) => an Object

A utility function for boxing an Actionscript primitive to its Ruby equivalent.
This is mostly used by the Ruby built in libraries to interface with the native
Actionscript functions.

 True -> TrueClass
 False -> FalseClass
 Null -> NilClass
 Integer/Float -> Float

Note: Strings are not supported as it’s fairly straightforward to do a manual
boxing. Actionscript arrays are equivalent to the Ruby ones.

Object.primitiveEqual?(val1,val2) => true or false
 Does a primitive compare. I.e. does the Actionscript equivalent:

 if(val1==val2){
 return new TrueClass();
 }else{
 return new FalseClass();
 }

This is mostly used by the Ruby built in libraries to interface with the native
Actionscript functions.

Object.superclass() => nil
 Returns nil

Instance Methods:

anObj.==(other) => true or false

Default implementation of == simply does an Actionscript equivalent:
anObj.valueOf() == other.valueOf()

anObj.===(other) => true or false
 Returns anObj==other

anObj.eql?(other) => true or false
 Returns anObj==other

anObj.inspect() => true or false

 iv

 Returns anObj.to_s()

anObj.to_s() => String instance
 Default implementation calls:
 Return String.new(self.toString());

anObj.!=(other) => true or false

Default implementation of != simply does an Actionscript equivalent:
anObj.valueOf() != other.valueOf()

anObj.clone() => an Object

Creates a new object with all the properties of the original. Does the Actionscript
equivalent of:

 newObj = new Object();
for(key in this){

 newObj[key] = this[key];
 }
 return newObj;

anObj.equal?(other) => true or false
 Returns true if obj and other are the same object, false otherwise.

anObj.nil?() => false
 Return false

anObj.to_a() => an array

Returns an array representation of obj. For objects of class Object and others that
don‘t explicitly override the method, the return value is an array containing self.
However, this latter behavior will soon be obsolete.

anObj.instance_of?(aClass) => true or false
 Returns true if obj is an instance of the given class.

anObj.kind_of?(aClass) => true or false

Returns true if class is the class of obj, or if class is one of the superclasses of obj
or modules included in obj.

anObj.is_a?(aClass) => true or false

Returns true if class is the class of obj, or if class is one of the superclasses of obj
or modules included in obj.

anObj.class() => a Class

Returns the class of obj. This method must always be called with an explicit
receiver, as class is also a reserved word in Ruby.

anObj.rand(max=0) => a Float

 v

Converts max to an integer using max1 = max.to_i.abs. If the result is zero,
returns a pseudorandom floating point number greater than or equal to 0.0 and
less than 1.0. Otherwise, returns a pseudorandom integer greater than or equal to
zero and less than max.

 vi

Module < Object

Instance Methods:

mod.include(aMod) => mod

Includes a module.

 vii

Class < Module

Classes, modules, and objects are interrelated. In the diagram that follows, the vertical
arrows represent inheritance, and the parentheses meta-classes. All metaclasses are
instances of the class `Class’.

 +------------------+
 | |
 Object---->(Object) |
 ^ ^ ^ ^ |
 | | | | |
 | | +-----+ +---------+ |
 | | | | |
 | +-----------+ | |
 | | | | |
 +------+ | Module--->(Module) |
 | | ^ ^ |
 OtherClass-->(OtherClass) | | |
 | | |
 Class---->(Class) |
 ^ |
 | |
 +----------------+

(Taken from http://www.ruby-doc.org/core/classes/Class.html)

Instance Methods:

class.superclass() => its superclass or nil

Returns the superclass or nil.

class.new(args,…) => obj
 Creates a new instance of type class. Invokes initialize with args.

class.subclass_of?(aClass) => true or false
 Returns true is this class is a subclass of aClass.
 Note: This is not an official Ruby method.

 viii

FalseClass < Object

Instance Methods:

false.&(obj) => false

And—Returns false. obj is always evaluated as it is the argument to a method
call—there is no short-circuit evaluation in this case.

false.^(obj) =>true or false

Exclusive or. If obj is nil or false, returns false; otherwise, returns true.

false.to_s() =>”false”

Returns “false”

false.|(obj) =>true or false

Or—Returns false if obj is nil or false; true otherwise.

 ix

TrueClass < Object

Instance Methods:

true.&(obj) => true or false

And—Returns false if obj is nil or false, true otherwise.

true.^(obj) =>true or false

Exclusive Or—Returns true if obj is nil or false, false otherwise.

true.to_s() =>”true”

Returns “true”

true.|(obj) =>true or false

Or—Returns true. As anObject is an argument to a method call, it is always
evaluated; there is no short-circuit evaluation in this case.

 x

NilClass < Object

Instance Methods:

nil.&(obj) => false

And—Returns false. obj is always evaluated as it is the argument to a method
call—there is no short-circuit evaluation in this case.

nil.^(obj) =>true or false

Exclusive or. If obj is nil or false, returns false; otherwise, returns true.

nil.to_s() =>” nil”

Returns “nil”

nil.|(obj) =>true or false

Or—Returns false if obj is nil or false; true otherwise.

nil.nil?(obj) =>true

Returns true.

nil.to_s() =>””

Returns “”.

nil.to_i() =>0

Returns 0.

nil.to_a() =>[]

Returns an empty array

 xi

Numeric < Object

Its only subclasses are Fixnum(Integer) and Float. In situations where it’s more
convenient, “inherited” methods are implemented at the subclass level, instead of at the
“Numeric” level. E.g. the abs method can be more easily implemented at the subclass
level, as we do not have to determine the return type, i.e. a Fixnum would return a
Fixnum and a Float would return a Float. Semantically, there would be no difference.

Instance Methods:

num.nonzero?() => num or nil
 Returns num if num is not zero, nil otherwise.

num.zero?() => true or false
 Returns true if num has a zero value.

num.coerce(aNumeric) => array

If aNumeric is the same type as num, returns an array containing aNumeric and
num. Otherwise, returns an array with both aNumeric and num represented as
Float objects.

num.divmod(aNumeric) => array

Returns an array containing the quotient and modulus obtained by dividing num
by aNumeric.

num.modulo(aNumeric) => result
 Equivalent to num.divmod(aNumeric)[1].

num.div(aNumeric) => Fixnum

Uses / to perform division, then converts the result to an integer. Numeric does
not define the / operator; this is left to subclasses.

num.remainder(aNumeric) => Fixnum

If num and numeric have different signs, returns mod-numeric; otherwise, returns
mod. In both cases mod is the value num.modulo(numeric).

 xii

Fixnum < Numeric

Since there is no Bignum, Fixnum is synonymous with Integer. In addition, I believe that
most programmers would find Integer more intuitive.

Instance Methods:

+fix => fix
 Unary plus.

-fix => fixnum
 Unary minus.

fix + aNumeric => aNumeric
 Addition – Returns a fixnum if aNumeric is a fixnum, Float if aNumeric is a Float.

fix - aNumeric => aNumeric
 Minus – Returns a fixnum if aNumeric is a fixnum, Float if aNumeric is a Float.

fix * aNumeric => aNumeric
Multiplication – Returns a fixnum if aNumeric is a fixnum, Float if aNumeric is a Float.

fix / aNumeric => aNumeric
fix.div(aNumeric) => Numeric
Division – Returns a fixnum if aNumeric is a fixnum (value is the result of an integer
divide), Float if aNumeric is a Float.

fix % aNumeric => fixnum
 Modulo – Returns a fix.

fix ** aNumeric => aNumeric
 Power – Returns a fix if aNumeric is a fixnum, Float if aNumeric is a Float.

fix < aNumeric => true or false
 Returns true if fix < aNumeric.

fix <= aNumeric => true or false
 Returns true if fix <= aNumeric.

fix > aNumeric => true or false
 Returns true if fix > aNumeric.

fix >= aNumeric => true or false
 Returns true if fix >= aNumeric.

 xiii

fix == aNumeric => true or false
 Returns true if fix and aNumeric have the same value.

fix <=> aNumeric => fixnum
 Returns 0 if fix==aNumeric, 1 if fix > aNumeric, -1 otherwise.

fix & other => fixnum
 Bitwise And.

fix ^ other => fixnum
 Bitwise Exclusive Or.

fix |other => fixnum
 Bitwise Or.

fix << count => fixnum
 Shifts fix left count positions (right if count is negative).

fix >> count => fixnum
 Shifts fix right count positions (left if count is negative).

fix.abs() => fixnum
 Returns the absolute value.

fix.integer?() => true
 Returns true.

fix.to_i() => fix
fix.to_int() => fix
fix.ceil() => fix
fix.floor() => fix
fix.truncate() => fix
fix.round() => fix
 Always return self.

fix.to_f() => aFloat
 Returns a Float instance of the same value.

fix.denominator() => 1
 Always return 1.

fix.numerator() => fix
 Always return self.

fix.chr() => String

 xiv

Returns a string containing the ASCII character represented by the receiver‘s
value.

fix.downto(limit) {|i| block } => int
 Iterates block, passing decreasing values from fix down to and including limit.

fix.next => integer
fix.succ => integer
Returns the Integer equal to fix + 1.

fix.upto(limit) {|i| block } => fix
 Iterates block, passing in integer values from fix up to and including limit.

fix.times {|i| block } => fix
 Iterates block fix times, passing in values from zero to fix - 1.

fix.step(limit, step) {|i| block } => fix

Invokes block with the sequence of numbers starting at num, incremented by step
on each call. The loop finishes when the value to be passed to the block is greater
than limit (if step is positive) or less than limit (if step is negative).The loop starts
at num, uses either the < or > operator to compare the counter against limit, and
increments itself using the + operator.

fix[n] => 0, 1
Bit Reference—Returns the nth bit in the binary representation of fix, where fix[0] is the
least significant bit.

 xv

Float < Numeric

Instance Methods:

+float => float
 Unary plus.

- float => -aFloat
 Unary minus.

float + aNumeric => aFloat
 Addition – Returns a Float.

float - aNumeric => aFloat
 Minus – Returns a Float.

float * aNumeric => aFloat

Multiplication – Returns a Float.

float / aNumeric => aFloat
float.div(aNumeric) => aFloat

Division – Returns a Float.

float % aNumeric => aFloat
 Modulo – Returns a fix.

float ** aNumeric => aFloat
 Power – Returns a Float.

float < aNumeric => true or false
 Returns true if float < aNumeric.

float <= aNumeric => true or false
 Returns true if float <= aNumeric.

float > aNumeric => true or false
 Returns true if float > aNumeric.

float >= aNumeric => true or false
 Returns true if float >= aNumeric.

float == aNumeric => true or false
 Returns true if float and aNumeric have the same value.

float <=> aNumeric => fixnum

 xvi

 Returns 0 if float ==aNumeric, 1 if float > aNumeric, -1 otherwise.

float.abs() => float.
 Returns the absolute value.

float.integer?() => false.
 Returns false.

float.ceil() => fixnum
 Round up to the smallest integer >= float.

float.floor() => fixnum
float.truncate() => fixnum
float.to_i() => fixnum
float.to_int() => fixnum
 Round down to the greatest integer <= float.

float.round() => fixnum
 Round to the nearest integer.

float.finite?() => true or false

Returns true if flt is a valid IEEE floating point number (it is not infinite, and nan?
is false).

float.infinite?() => true or false
 Returns nil, -1, or +1 depending on whether flt is finite, -infinity, or +infinity.

float.nan?() => true or false
 Returns true if flt is an invalid IEEE floating point number.

float.to_f() => float
 Returns self.

 xvii

String < Object

Represents a string object. Since the current implementation of Ruby On Flash does not
include regular expressions, methods which use regex, such as the % operator, are not
supported.

Instance methods:

str * integer => new_str
 Copy—Returns a new String containing integer copies of the receiver.

str + other_str => new_str
 Concatenation—Returns a new String containing other_str concatenated to str.

str << fixnum => str
str.concat(fixnum) => str
str << obj => str
str.concat(obj) => str

Append—Concatenates the given object to str. If the object is a Fixnum between
0 and 255, it is converted to a character before concatenation.

str <=> other_str => -1, 0, +1

Comparison—Returns -1 if other_str is less than, 0 if other_str is equal to, and +1
if other_str is greater than str. If the strings are of different lengths, and the strings
are equal when compared up to the shortest length, then the longer string is
considered greater than the shorter one.

str == obj => true or false

Equality—If obj is not a String, returns false. Otherwise, returns true if str <=>
obj returns zero.

str[fixnum] => fixnum or nil
str[fixnum, fixnum] => new_str or nil
str[range] => new_str or nil
str[other_str] => new_str or nil
str.slice(fixnum) => fixnum or nil
str.slice(fixnum, fixnum) => new_str or nil
str.slice(range) => new_str or nil
str.slice(other_str) => new_str or nil

Element Reference—If passed a single Fixnum, returns the code of the character
at that position. If passed two Fixnum objects, returns a substring starting at the
offset given by the first, and a length given by the second. If given a range, a
substring containing characters at offsets given by the range is returned. In all
three cases, if an offset is negative, it is counted from the end of str. Returns nil if

 xviii

the initial offset falls outside the string, the length is negative, or the beginning of
the range is greater than the end.
NOTE: Regex is not supported.

str.capitalize() => new_str

Returns a copy of str with the first character converted to uppercase and the
remainder to lowercase.

str.capitalize!() => str or nil

Modifies str by converting the first character to uppercase and the remainder to
lowercase. Returns nil if no changes are made.

str.casecmp(other_str) => -1, 0, +1
 Case-insensitive version of String#<=>.

str.center(integer, padstr) => new_str

If integer is greater than the length of str, returns a new String of length integer
with str centered and padded with padstr; otherwise, returns str.

str.chomp(separator=$/) => new_str

Returns a new String with the given record separator removed from the end of str
(if present). If $/ has not been changed from the default Ruby record separator,
then chomp also removes carriage return characters (that is it will remove \n, \r,
and \r\n).

str.chomp!(separator=$/) => str or nil

Modifies str in place as described for String#chomp, returning str, or nil if no
modifications were made.

str.chop() => new_str

Returns a new String with the last character removed. If the string ends with \r\n,
both characters are removed.

str.chop!() => str or nil
 Processes str as for String#chop, returning str, or nil if str is the empty string.

str.count(other_str) => fixnum
 Counts the number of occurrences of other_str.

NOTE: differs from the official Ruby implementation, which takes in a set of
arguments, the intersection of which defines the characters to count in str.

str.delete(other_str) => new_str
 Finds all occurrences of other_str and deletes them.

NOTE: differs from the official Ruby implementation, which takes in a set of
arguments, the intersection of which defines the characters to delete in str.

 xix

str.downcase() => new_str

Returns a copy of str with all uppercase letters replaced with their lowercase
counterparts.

str.downcase!() => str or nil
 Downcases the contents of str, returning nil if no changes were made.

str.each(separator=$/) {|substr| block } => str
str.each_line(separator=$/) {|substr| block } => str

Splits str using the supplied parameter as the record separator ($/ by default),
passing each substring in turn to the supplied block. If a zero-length record
separator is supplied, the string is split on \n characters, except that multiple
successive newlines are appended together.

str.each_char() {|x| ...}
 Passes each char in str to the given block.

str.empty?() => true or false
 Returns true if str has a length of zero.

str.eql?(other) => true or false
 Two strings are equal if the have the same length and content.

str.include?(other_str) => true or false
str.include?(fixnum) => true or false
 Returns true if str contains the given string or character.

str.index(substring [, offset]) => fixnum or nil
str.index(fixnum [, offset]) => fixnum or nil

Returns the index of the first occurrence of the given substring or character
(fixnum), in str. Returns nil if not found. If the second parameter is present, it
specifies the position in the string to begin the search.
NOTE: does not support regex

str.replace(other_str) => str
 Replaces the contents of str with the corresponding values in other_str.

str.insert(index, other_str) => str

Inserts other_str before the character at the given index, modifying str. Negative
indices count from the end of the string, and insert after the given character. The
intent is insert aString so that it starts at the given index.

str.length() => integer
 Returns the length of str.

 xx

str.ljust(integer, padstr=' ') => new_str
If integer is greater than the length of str, returns a new String of length integer
with str left justified and padded with padstr; otherwise, returns str.

str.lstrip() => new_str
 Returns a copy of str with leading whitespace removed.

str.lstrip!() => self or nil
 Removes leading whitespace from str, returning nil if no change was made.

str.succ() => new_str
str.next() => new_str

Returns the successor to str. The successor is calculated by incrementing
characters starting from the rightmost alphanumeric (or the rightmost character if
there are no alphanumerics) in the string. Incrementing a digit always results in
another digit, and incrementing a letter results in another letter of the same case.
Incrementing nonalphanumerics uses the underlying character set‘s collating
sequence.
If the increment generates a ``carry,’’ the character to the left of it is incremented.
This process repeats until there is no carry, adding an additional character if
necessary.

 "abcd".succ #=> "abce"
 "THX1138".succ #=> "THX1139"
 "<<koala>>".succ #=> "<<koalb>>"
 "1999zzz".succ #=> "2000aaa"
 "ZZZ9999".succ #=> "AAAA0000"
 "***".succ #=> "**+"

str.succ!() => str
str.next!() => str
 Equivalent to String#succ, but modifies the receiver in place.

str.reverse() => new_str
 Returns a new string with the characters from str in reverse order.

str.reverse!() => str
 Reverses str in place.

str.rindex(substring [, fixnum]) => fixnum or nil
str.rindex(fixnum [, fixnum]) => fixnum or nil

Returns the index of the last occurrence of the given substring or character
(fixnum) in str. Returns nil if not found. If the second parameter is present, it
specifies the position in the string to end the search—characters beyond this point
will not be considered.
NOTE: regex is not supported.

 xxi

str.rjust(integer, padstr=' ') => new_str
If integer is greater than the length of str, returns a new String of length integer
with str right justified and padded with padstr; otherwise, returns str.

str.rstrip() => new_str
 Returns a copy of str with trailing whitespace removed.

str.rstrip!() => self or nil
 Removes trailing whitespace from str, returning nil if no change was made.

str.split(pattern=$;, [limit]) => anArray

Divides str into substrings based on a delimiter, returning an array of these
substrings.
If pattern is a String, then its contents are used as the delimiter when splitting str.
If pattern is a single space, str is split on whitespace, with leading whitespace and
runs of contiguous whitespace characters ignored.
If the limit parameter is omitted, trailing null fields are suppressed. If limit is a
positive number, at most that number of fields will be returned (if limit is 1, the
entire string is returned as the only entry in an array). If negative, there is no limit
to the number of fields returned, and trailing null fields are not suppressed.

NOTE: regex is not supported

str.squeeze() => new_str
 All runs of identical characters are replaced by a single character.

NOTE: differs from the official Ruby implementation, where a set of arguments is
accepted.

str.strip() => new_str
 Returns a copy of str with leading and trailing whitespace removed.

str.strip!() => str or nil

Removes leading and trailing whitespace from str. Returns nil if str was not
altered.

str.swapcase() => new_str

Returns a copy of str with uppercase alphabetic characters converted to lowercase
and lowercase characters converted to uppercase.

str.swapcase!() => str or nil

Equivalent to String#swapcase, but modifies the receiver in place, returning str, or
nil if no changes were made.

str.to_f() => float

 xxii

Returns the result of interpreting leading characters in str as a floating point
number. Extraneous characters past the end of a valid number are ignored. If there
is not a valid number at the start of str, 0.0 is returned.

str.to_i() => integer

Returns the result of interpreting leading characters in str as an integer.
Extraneous characters past the end of a valid number are ignored. If there is not a
valid number at the start of str, 0 is returned.
NOTE: differs from the official Ruby implementation where one can choose an
integer base (2, 8, 10, 16).

str.upcase() => new_str

Returns a copy of str with all lowercase letters replaced with their uppercase
counterparts.

str.upcase!() => str or nil
 Upcases the contents of str, returning nil if no changes were made.

str.upto(other_str) {|s| block } => str

Iterates through successive values, starting at str and ending at other_str inclusive,
passing each value in turn to the block. The String#succ method is used to
generate each value.

 xxiii

Range < Object

Class methods:

Range.new(start, end, exclusive=false) => range

Constructs a range using the given start and end. If the third parameter is omitted
or is false, the range will include the end object; otherwise, it will be excluded.

Instance methods:

rng == obj => true or false
Returns true only if obj is a Range, has equivalent beginning and end items (by
comparing them with ==), and has the same exclude_end? setting as rng.

rng === obj => true or false
rng.member?(val) => true or false
rng.include?(val) => true or false

Returns true if obj is an element of rng, false otherwise. Conveniently, === is the
comparison operator used by case statements.

rng.first() => obj
rng.begin() => obj
 Returns the first object in rng.

rng.each {| i | block } => rng

Iterates over the elements rng, passing each in turn to the block. You can only
iterate if the start object of the range supports the succ method (which means that
you can‘t iterate over ranges of Float objects).

rng.end() => obj
rng.last() => obj
 Returns the object that defines the end of rng.

rng.eql?(obj) => true or false

Returns true only if obj is a Range, has equivalent beginning and end items (by
comparing them with eql?), and has the same exclude_end? setting as rng.

rng.exclude_end?() => true or false
 Returns true if rng excludes its end value.

rng.step(n=1) {| obj | block } => rng

Iterates over rng, passing each nth element to the block. If the range contains
numbers or strings, natural ordering is used. Otherwise step invokes succ to iterate
through range elements. The following code uses class Xs, which is defined in the
class-level documentation.

 xxiv

 Array < Object

Represents an array object. Note that the native Actionscript Array and this Ruby Array
are the same object. As a result, the length() method is not available, as native
Actionscript Array objects use the length attribute to maintain its state. Use size() instead.

Class Methods:

Array[…] => array
 Returns a new array populated with the given objects.

Array.new(size=0, obj=nil)
Array.new(array)
Array.new(size) {|index| block }

Returns a new array. In the first form, the new array is empty. In the second it is
created with size copies of obj (that is, size references to the same obj). The third
form creates a copy of the array passed as a parameter (the array is generated by
calling to_ary on the parameter). In the last form, an array of the given size is
created. Each element in this array is calculated by passing the element‘s index to
the given block and storing the return value.

Instance methods:

array & other_array

Set Intersection—Returns a new array containing elements common to the two
arrays, with no duplicates.

array * int => an_array
array * str => a_string

Repetition—With a String argument, equivalent to self.join(str). Otherwise,
returns a new array built by concatenating the int copies of self.

array + other_array => an_array

Concatenation—Returns a new array built by concatenating the two arrays
together to produce a third array.

array - other_array => an_array

Array Difference—Returns a new array that is a copy of the original array,
removing any items that also appear in other_array. (If you need set-like behavior,
see the library class Set.)

array << obj => array

Append—Pushes the given object on to the end of this array. This expression
returns the array itself, so several appends may be chained together.

array <=> other_array => -1, 0, +1

 xxv

Comparison—Returns an integer (-1, 0, or +1) if this array is less than, equal to,
or greater than other_array. Each object in each array is compared (using <=>). If
any value isn‘t equal, then that inequality is the return value. If all the values
found are equal, then the return is based on a comparison of the array lengths.
Thus, two arrays are ``equal’’ according to Array#<=> if and only if they have the
same length and the value of each element is equal to the value of the
corresponding element in the other array.

array == other_array => bool

Equality—Two arrays are equal if they contain the same number of elements and
if each element is equal to (according to Object.==) the corresponding element in
the other array.

array[index] => obj or nil
array[start, length] => an_array or nil
array[range] => an_array or nil
array.slice(index) => obj or nil
array.slice(start, length) => an_array or nil
array.slice(range) => an_array or nil

Element Reference—Returns the element at index, or returns a subarray starting
at start and continuing for length elements, or returns a subarray specified by
range. Negative indices count backward from the end of the array (-1 is the last
element). Returns nil if the index (or starting index) are out of range.

array[index] = obj => obj
array[start, length] = obj or an_array or nil => obj or an_array or nil
array[range] = obj or an_array or nil => obj or an_array or nil

Element Assignment—Sets the element at index, or replaces a subarray starting at
start and continuing for length elements, or replaces a subarray specified by range.
If indices are greater than the current capacity of the array, the array grows
automatically. A negative indices will count backward from the end of the array.
Inserts elements if length is zero. If nil is used in the second and third form,
deletes elements from self. An IndexError is raised if a negative index points past
the beginning of the array.

array.assoc(obj) => an_array or nil

Searches through an array whose elements are also arrays comparing obj with the
first element of each contained array using obj.==. Returns the first contained
array that matches (that is, the first associated array), or nil if no match is found.

array.at(index) => obj or nil

Returns the element at index. A negative index counts from the end of self.
Returns nil if the index is out of range.

array.clear() => array
 Removes all elements from self.

 xxvi

array.collect() {|item| block } => an_array
array.map() {|item| block } => an_array

Invokes block once for each element of self. Creates a new array containing the
values returned by the block.

array.compact() => an_array
 Returns a copy of self with all nil elements removed.

array.compact!() => array or nil
 Removes nil elements from array. Returns nil if no changes were made.

array.concat(other_array) => array
 Appends the elements in other_array to self.

array.delete(obj) => obj or nil
array.delete(obj) { block } => obj or nil

Deletes items from self that are equal to obj. If the item is not found, returns nil. If
the optional code block is given, returns the result of block if the item is not found.

array.delete_at(index) => obj or nil

Deletes the element at the specified index, returning that element, or nil if the
index is out of range.

array.delete_if() {|item| block } => array
 Deletes every element of self for which block evaluates to true.

array.each() {|item| block } => array
 Calls block once for each element in self, passing that element as a parameter.

array.each_index() {|index| block } => array

Same as Array#each, but passes the index of the element instead of the element
itself.

array.empty?() => true or false
 Returns true if self array contains no elements.

array.fetch(index) => obj
array.fetch(index, default) => obj
array.fetch(index) {|index| block } => obj

Tries to return the element at position index. If the index lies outside the array, the
first form returns nil, the second form returns default, and the third form returns
the value of invoking the block, passing in the index. Negative values of index
count from the end of the array.
NOTE: differs from official Ruby implementation in that in the first form, this
returns nil instead of throwing an exception.

 xxvii

array.fill(obj) => array
array.fill(obj, start [, length]) => array
array.fill(obj, range) => array
array.fill {|index| block } => array
array.fill(start [, length]) {|index| block } => array
array.fill(range) {|index| block } => array

The first three forms set the selected elements of self (which may be the entire
array) to obj. A start of nil is equivalent to zero. A length of nil is equivalent to
self.length. The last three forms fill the array with the value of the block. The
block is passed the absolute index of each element to be filled.

array.first() => obj or nil
array.first(n) => an_array

Returns the first element, or the first n elements, of the array. If the array is empty,
the first form returns nil, and the second form returns an empty array.

array.flatten() => an_array

Returns a new array that is a one-dimensional flattening of this array (recursively).
That is, for every element that is an array, extract its elements into the new array.

array.flatten!() => array or nil

Flattens self in place. Returns nil if no modifications were made (i.e., array
contains no subarrays.)

array.include?(obj) => true or false

Returns true if the given object is present in self (that is, if any object ==
anObject), false otherwise.

array.index(obj) => int or nil

Returns the index of the first object in self such that is == to obj. Returns nil if no
match is found.

array.indexes(i1, i2, ... iN) => an_array
array.indices(i1, i2, ... iN) => an_array
 Returns an array of values at positions i1, i2, …

array.replace(other_array) => array

Replaces the contents of self with the contents of other_array, truncating or
expanding if necessary.

array.insert(index, obj...) => array

Inserts the given values before the element with the given index (which may be
negative).

array.join(sep=$,) => str

 xxviii

Returns a string created by converting each element of the array to a string,
separated by sep.

array.last() => obj or nil
array.last(n) => an_array
 Returns the last element(s) of self. If the array is empty, the first form returns nil.

array.nitems() => int
 Returns the number of non-nil elements in self. May be zero.

array.pop() => obj or undefined

Removes the last element from self and returns it, or undefined if the array is
empty.
NOTE: differs from official Ruby implementation in that this returns undefined
(Actonscript null) if the array is empty, instead of nil. This is because the native
Actionscript components, such as Key, relies on this method, thus we cannot
override this method.

array.push(obj, ...) => array

Append—Pushes the given object(s) on to the end of this array. This expression
returns the array itself, so several appends may be chained together.
NOTE: The native Actionscript components rely on this method, so override this
method at your own risk! Refer to the technical specifications for more details.

array.rassoc(key) => an_array or nil

Searches through the array whose elements are also arrays. Compares key with
the second element of each contained array using ==. Returns the first contained
array that matches.

array.reject() {|item| block } => an_array
 Returns a new array containing the items in self for which the block is not true.

array.reject!() {|item| block } => array or nil

Equivalent to Array#delete_if, deleting elements from self for which the block
evaluates to true, but returns nil if no changes were made.

array.reverse() => an_array
 Returns a new array containing self‘s elements in reverse order.

array.reverse!() => array
 Reverses self in place.

array.reverse_each() {|item| block }
 Same as Array#each, but traverses self in reverse order.

array.rindex(obj) => int or nil

 xxix

Returns the index of the last object in array == to obj. Returns nil if no match is
found.

array.select() {|item| block } => an_array

Invokes the block passing in successive elements from array, returning an array
containing those elements for which the block returns a true value

array.shift() => obj or undefined

Returns the first element of self and removes it (shifting all other elements down
by one). Returns undefined if the array is empty.
NOTE: differs from official Ruby implementation in that this returns undefined
(Actonscript null) if the array is empty, instead of nil. This is because the native
Actionscript components, such as Key, relies on this method, thus we cannot
override this method.

array.size() => int
 Returns the size of this array.

array.sort() => an_array
array.sort() {| a,b | block } => an_array

Returns a new array created by sorting self. Comparisons for the sort will be done
using the <=> operator or using an optional code block. The block implements a
comparison between a and b, returning -1, 0, or +1.

array.sort!() => array
array.sort!() {| a,b | block } => array

Sorts self. Comparisons for the sort will be done using the <=> operator or using
an optional code block. The block implements a comparison between a and b,
returning -1, 0, or +1.

array.to_a() => array

Returns self. If called on a subclass of Array, converts the receiver to an Array
object.

array.to_ary() => array
 Returns self.

array.to_s() => string
 Returns self.join.

array.uniq() => an_array
 Returns a new array by removing duplicate values in self.

array.uniq!() => array or nil

Removes duplicate elements from self. Returns nil if no changes are made (that is,
no duplicates are found).

 xxx

array.unshift(obj, ...) => array
 Prepends objects to the front of array. other elements up one.

array | other_array => an_array

Set Union—Returns a new array by joining this array with other_array, removing
duplicates.

 xxxi

Hash < Object

Class methods:

Hash[[key, value]*] => hash

Creates a new hash populated with the given objects. Equivalent to the literal
{ key, value, … }. Keys and values occur in pairs, so there must be an even
number of arguments.
NOTE: Does not support Hash[“a”=> 1, “b”=>2,…]

Hash.new() => hash
Hash.new(obj) => aHash
Hash.new() {|hash, key| block } => aHash

Returns a new, empty hash. If this hash is subsequently accessed by a key that
doesn‘t correspond to a hash entry, the value returned depends on the style of new
used to create the hash. In the first form, the access returns nil. If obj is specified,
this single object will be used for all default values. If a block is specified, it will
be called with the hash object and the key, and should return the default value. It
is the block‘s responsibility to store the value in the hash if required.

Instance methods:

hsh == other_hash => true or false

Equality—Two hashes are equal if they each contain the same number of keys
and if each key-value pair is equal to (according to Object#==) the corresponding
elements in the other hash.

hsh[key] => value

Element Reference—Retrieves the value object corresponding to the key object.
If not found, returns the a default value

hsh[key] = value => value
hsh.store(key, value) => value

Element Assignment—Associates the value given by value with the key given by
key.
NOTE: In the official Ruby implementation, a String passed as a key will be
duplicated and frozen.

hsh.clear => hsh
 Removes all key-value pairs from hsh.

hsh.get_default(key=nil) => obj

Returns the default value, the value that would be returned by hsh[key] if key did
not exist in hsh.

 xxxii

NOTE: This method does not exist in the official Ruby implementation. The
official Ruby implementation uses a read/write attribute instead.

hsh.set_default(obj) => hsh
 Sets the default value, the value returned for a key that does not exist in the hash.

NOTE: This method does not exist in the official Ruby implementation. The
official Ruby implementation uses a read/write attribute instead.

hsh.default_proc => anObject
 If Hash::new was invoked with a block, return that block, otherwise return nil.

hsh.delete(key) => value
hsh.delete(key) {| key | block } => value

Deletes and returns a key-value pair from hsh whose key is equal to key. If the
key is not found, returns the default value. If the optional code block is given and
the key is not found, pass in the key and return the result of block.

hsh.delete_if {| key, value | block } => hsh
 Deletes every key-value pair from hsh for which block evaluates to true.

hsh.each {| key, value | block } => hsh

Calls block once for each key in hsh, passing the key and value to the block as a
two-element array. Because of the assignment semantics of block parameters,
these elements will be split out if the block has two formal parameters. Also see
Hash.each_pair, which will be marginally more efficient for blocks with two
parameters.

hsh.each_key {| key | block } => hsh
 Calls block once for each key in hsh, passing the key as a parameter.

hsh.each_pair {| key_value_array | block } => hsh
 Calls block once for each key in hsh, passing the key and value as parameters.

hsh.each_value {| value | block } => hsh
 Calls block once for each key in hsh, passing the value as a parameter.

hsh.empty? => true or false
 Returns true if hsh contains no key-value pairs.

hsh.fetch(key [, default]) => obj
hsh.fetch(key) {| key | block } => obj

Returns a value from the hash for the given key. If the key can‘t be found, there
are several options: With no other arguments, it will return nil; if default is given,
then that will be returned; if the optional code block is specified, then that will be
run and its result returned.

 xxxiii

NOTE: differs from the official Ruby implementation, as an IndexError is not
thrown. Instead, nil is returned

hsh.has_key?(key) => true or false
hsh.include?(key) => true or false
hsh.key?(key) => true or false
hsh.member?(key) => true or false
 Returns true if the given key is present in hsh.

hsh.has_value?(value) => true or false
hsh.value?(value) => true or false
 Returns true if the given value is present for some key in hsh.

hsh.index(value) => key
 Returns the key for a given value. If not found, returns nil.

hsh.replace(other_hash) => hsh
 Replaces the contents of hsh with the contents of other_hash.

hsh.invert => aHash
 Returns a new hash created by using hsh‘s values as keys, and the keys as values.

hsh.length => fixnum
hsh.size => fixnum
 Returns the number of key-value pairs in the hash.

hsh.merge(other_hash) => a_hash

Returns a new hash containing the contents of other_hash and the contents of hsh,
overwriting entries in hsh with duplicate keys with those from other_hash.

hsh.merge!(other_hash) => hsh
hsh.update(other_hash) => hsh

Adds the contents of other_hash to hsh, overwriting entries with duplicate keys
with those from other_hash.

hsh.reject {| key, value | block } => a_hash
 Same as Hash#delete_if, but works on (and returns) a copy of the hsh.

hsh.reject! {| key, value | block } => hsh or nil
 Equivalent to Hash#delete_if, but returns nil if no changes were made.

hsh.select {|key, value| block} => array

Returns a new array consisting of [key,value] pairs for which the block returns
true.

hsh.shift => anArray or obj

 xxxiv

Removes a key-value pair from hsh and returns it as the two-item array [key,
value], or the hash‘s default value if the hash is empty.

hsh.sort => array
hsh.sort {| a, b | block } => array

Converts hsh to a nested array of [key, value] arrays and sorts it, using
Array#sort.

hsh.to_a => array
 Converts hsh to a nested array of [key, value] arrays.

hsh.to_hash => hsh
 Returns self.

hsh.to_s => string

Converts hsh to a string by converting the hash to an array of [key, value] pairs
and then converting that array to a string using Array#join with the default
separator.

hsh.values => array
 Returns a new array populated with the values from hsh.

hsh.values_at(key, ...) => array
 Return an array containing the values associated with the given keys.

 xxxv

Proc < Object

Class methods:

Proc.new() {|...| block } => a_proc
 Converts the block into a Proc object and return it.

Instance methods:

prc == other_proc => true or false
 Return true if prc is the same object as other_proc.

NOTE: according to the official Ruby documentation (http://www.ruby-
doc.org/core/), this method would return true if both have the same body.
However, there is no way these two can be compared during runtime in Ruby On
Flash.

prc.call(params,...) => obj
prc[params,...] => obj

Invokes the block, setting the block‘s parameters to the values in params using
something close to method calling semantics. Generates a warning if multiple
values are passed to a proc that expects just one (previously this silently converted
the parameters to an array).

prc.arity() => fixnum

Returns the number of arguments that would not be ignored. If the block is
declared to take no arguments, returns 0. If the block is known to take exactly n
arguments, returns n. If the block has optional arguments, return -n-1, where n is
the number of mandatory arguments. A proc with no argument declarations is the
same a block declaring || as its arguments.

prc.to_proc() => prc

Part of the protocol for converting objects to Proc objects. Instances of class Proc
simply return themselves.

prc.to_s() => “proc instance”
 Returns “proc instance”.
 NOTE: The official Ruby implementation returns the unique id.

 xxxvi

Module Math

Constants:

Math.PI
Math.E

Class methods:

Math.acos(x) => float
 Computes the arc cosine of x. Returns 0..PI.

Math.acosh(x) => float
 Computes the inverse hyperbolic cosine of x.

Math.asin(x) => float
 Computes the arc sine of x. Returns 0..PI.

Math.asinh(x) => float
 Computes the inverse hyperbolic sine of x.

Math.atan(x) => float
 Computes the arc tangent of x. Returns -{PI/2} .. {PI/2}.

Math.atan2(y, x) => float
 Computes the arc tangent given y and x. Returns -PI..PI.

Math.atanh(x) => float
 Computes the inverse hyperbolic tangent of x.

Math.cos(x) => float
 Computes the cosine of x (expressed in radians). Returns -1..1.

Math.cosh(x) => float
 Computes the hyperbolic cosine of x (expressed in radians).

Math.exp(x) => float
 Returns e**x.

Math.frexp(numeric) => [fraction, exponent]

Returns a two-element array containing the normalized fraction (a Float) and
exponent (a Fixnum) of numeric.

Math.hypot(x, y) => float

 xxxvii

Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with sides x
and y.

Math.ldexp(flt, int) => float
 Returns the value of flt*(2**int).

Math.log(numeric) => float
 Returns the natural logarithm of numeric.

Math.log10(numeric) => float
 Returns the base 10 logarithm of numeric.

Math.sin(x) => float

Computes the sine of x (expressed in radians). Returns -1..1.

Math.sinh(x) => float

Computes the hyperbolic sine of x (expressed in radians).

Math.sqrt(numeric) => float
 Returns the non-negative square root of numeric.

Math.tan(x) => float
 Returns the tangent of x (expressed in radians).

Math.tanh() => float
 Computes the hyperbolic tangent of x (expressed in radians).

 xxxviii

Augmented Actionscript Library

Note that since most methods are already native to the Actionscript classes or are
wrappers for existing methods, most of the method descriptions are directly adapted from
the official Actionscript documentation.
Refer to http://livedocs.adobe.com/flash/mx2004

Native Classes Augmented:
1. Key
2. Mouse
3. Sound
4. MovieClip
5. TextField

New Classes Introduced:
1. Sprite
2. ImageSprite
3. SwfSprite

 xxxix

Key < Object

Key is a native ActionScript class.
This class is augmented with wrappers for its original methods in order to box the
original methods’ primitive arguments and return values.

Constants:

Key.BACKSPACE = 27
 Key.CAPSLOCK = 20
 Key.CONTROL = 17
 Key.DELETEKEY = 46
 Key.DOWN = 40
 Key.END = 35
 Key.ENTER = 13
 Key.ESCAPE = 27
 Key.HOME = 36
 Key.INSERT = 45
 Key.LEFT = 37
 Key.PGDN = 34
 Key.PGUP = 33
 Key.RIGHT = 39
 Key.SHIFT = 16
 Key.SPACE = 32
 Key.TAB = 9
 Key.UP = 38

Class methods:

Key.addListener(listenerObj)
 listenerObj: An object with methods onKeyDown and onKeyUp.

Registers an object to receive onKeyDown and onKeyUp notification. When a
key is pressed or released, regardless of the input focus, all listening objects
registered with addListener() have either their onKeyDown method or onKeyUp
method invoked. Multiple objects can listen for keyboard notifications. If the
listener newListener is already registered, no change occurs

Key.getAscii() => fixnum

Returns the ASCII code of the last key pressed or released. The ASCII values
returned are English keyboard values. For example, if you press Shift+2,
Key.getAscii() returns @ on a Japanese keyboard, which is the same as it does on
an English keyboard.

Key.getCode() => fixnum
 Returns the key code value of the last key pressed.

 xl

Key.isDown(keycode) => true or false

keycode The key code value assigned to a specific key or a Key class property
associated with a specific key.
Returns true if the key specified in keycode is pressed; false otherwise. On the
Macintosh, the key code values for the Caps Lock and Num Lock keys are
identical.

Key.isToggled(keycode) => true or false
 keycode The key code for the Caps Lock key (20) or the Num Lock key (144).

Returns true if the Caps Lock or Num Lock key is activated (toggled to an active
state); false otherwise. Although the term toggled usually means that something is
switched between two options, the method Key.isToggled() will only return true
if the key is toggled to an active state. On the Macintosh, the key code values for
the Caps Lock and Num Lock keys are identical.

Key.removeListener(listener) => true or false
 Removes an object previously registered with Key.addListener().

If the listener was successfully removed, the method returns true. If the listener
was not successfully removed (for example, because the listener was not on the
Key object's listener list), the method returns false.

 xli

Mouse < Object

Mouse is a native Actionscript class.
This class is augmented with wrappers for its original methods in order to box the
original methods’ primitive arguments and return values.

Class methods:

Mouse.addListener(newListener)

Registers an object to receive notifications of the onMouseDown, onMouseMove,
onMouseUp, and onMouseWheel listeners. (The onMouseWheel listener is
supported only in Windows.)
The newListener parameter should contain an object that has a defined method for
at least one of the listeners.
When the mouse is pressed, moved, released, or used to scroll, regardless of the
input focus, all listening objects that are registered with this method have their
onMouseDown, onMouseMove, onMouseUp, or onMouseWheel method invoked.
Multiple objects can listen for mouse notifications. If the listener newListener is
already registered, no change occurs.

Mouse.hide() => true or false
 Hides the pointer in a SWF file. The pointer is visible by default.
 Returns true if the pointer is visible; false otherwise.

Mouse.removeListener(listener) => true or false
 Removes an object that was previously registered with addListener().

If the listener object is successfully removed, the method returns true; if the
listener is not successfully removed (for example, if the listener was not on the
Mouse object's listener list), the method returns false.

Mouse.show() => fixnum
 Displays the mouse pointer in a SWF file. The pointer is visible by default.

Returns an integer; either 0 or 1. If the mouse pointer was hidden before the call
to Mouse.show(), then the return value is 0. If the mouse pointer was visible
before the call to Mouse.show(), then the return value is 1.

 xlii

Sound < Object

Sound is a native Actionscript class.
This class is augmented with wrappers for its original methods in order to box the
original methods’ primitive arguments and return values.

Event handlers:

snd.onID3()

Invoked each time new ID3 data is available for an MP3 file that you load using
Sound.attachSound() or Sound.loadSound(). This handler provides access to ID3
data without polling. If both ID3 1.0 and ID3 2.0 tags are present in a file, this
handler is called twice.

snd.onLoad(success)

success A Boolean value of true if my_sound has been loaded successfully, false
otherwise.
Invoked automatically when a sound loads. You must create a function that
executes when the this handler is invoked.

 You should define this handler before you call mySound.loadSound().

snd.onSoundComplete()

Invoked automatically when a sound finishes playing. You can use this handler to
trigger events in a SWF file when a sound finishes playing.

Instance methods:

snd.attachSound(idName)
 idName The identifier of an exported sound in the library.

Attaches the sound specified in the idName parameter to the specified Sound
object.
NOTE: The current implementation of Ruby On Flash does not support
embedding of sound, thus effectively rendering this method useless. However,
we expect to support embedding of sound files soon!

snd.getDuration() => fixnum
 Returns the duration of a sound, in milliseconds.

snd.getBytesLoaded() => fixnum

Returns the number of bytes loaded (streamed) for the specified Sound object.
You can compare the value of getBytesLoaded() with the value of getBytesTotal()
to determine what percentage of a sound has loaded.

snd.getBytesTotal() => fixnum
 Returns the size, in bytes, of the specified Sound object.

 xliii

snd.getPan() => fixnum

Returns the pan level set in the last setPan() call as an integer from -100 (left) to
100 (right). (0 sets the left and right channels equally.) The pan setting controls
the left-right balance of the current and future sounds in a SWF file.

 This method is cumulative with setVolume() or setTransform().

snd.getTransform() => an object

Returns the object with properties that contain the channel percentage values for
the specified sound object set with the last Sound.setTransform() call.

snd.getVolume() => fixnum

Returns the sound volume level as an integer from 0 to 100, where 0 is off and
100 is full volume. The default setting is 100.

snd.getId3() => an object
 Returns an object that provides access to the metadata that is part of an MP3 file.

MP3 sound files can contain ID3 tags, which provide metadata about the file. If
an MP3 sound that you load using Sound.attachSound() or Sound.loadSound()
contains ID3 tags, you can query these properties. Only ID3 tags that use the
UTF-8 character set are supported.
NOTE: For more information on the tags supported, please visit Adobe’s website:
http://livedocs.adobe.com/flash/mx2004/main_7_2/wwhelp/wwhimpl/js/html/ww
help.htm?href=Part_ASLR.html

snd.loadSound(url, isStreaming)
 url The location on a server of an MP3 sound file.

isStreaming A Boolean value that indicates whether the sound is a streaming
sound (true) or an event sound (false).
Loads an MP3 file into a Sound object. You can use the isStreaming parameter to
indicate whether the sound is an event or a streaming sound.
Event sounds are completely loaded before they play. They are managed by the
ActionScript Sound class and respond to all methods and properties of this class.
Streaming sounds play while they are downloading. Playback begins when
sufficient data has been received to start the decompressor.
All MP3s (event or streaming) loaded with this method are saved in the browser's
file cache on the user's system.

snd.getPosition() => fixnum

The number of milliseconds a sound has been playing. If the sound is looped, the
position is reset to 0 at the beginning of each loop.

snd.setPan(pan) => fixnum

pan An integer specifying the left-right balance for a sound. The range of valid
values is -100 to 100, where -100 uses only the left channel, 100 uses only the
right channel, and 0 balances the sound evenly between the two channels.

 xliv

Determines how the sound is played in the left and right channels (speakers). For
mono sounds, pan determines which speaker (left or right) the sound plays
through.

Sound.setTransform(soundTransformObject)

soundTransformObject An object created with the constructor for the generic
Object class.
Sets the sound transform (or balance) information, for a Sound object.
The soundTransformObject parameter is an object that you create using the
constructor method of the generic Object class with parameters specifying how
the sound is distributed to the left and right channels (speakers).
Sounds use a considerable amount of disk space and memory. Because stereo
sounds use twice as much data as mono sounds, it is generally best to use 22-KHz
6-bit mono sounds. You can use setTransform() to play mono sounds as stereo,
play stereo sounds as mono, and to add interesting effects to sounds.
The properties for the soundTransformObject are as follows:
11: A percentage value specifying how much of the left input to play in the left
speaker (0-100).
1r: A percentage value specifying how much of the right input to play in the left
speaker (0-100).
rr: A percentage value specifying how much of the right input to play in the right
speaker (0-100).
rl: A percentage value specifying how much of the left input to play in the right
speaker (0-100).
Refer to
http://livedocs.adobe.com/flash/mx2004/main_7_2/00001686.html#wp4004984

snd.setVolume(volume)

volume A number from 0 to 100 representing a volume level. 100 is full volume
and 0 is no volume. The default setting is 100.
Sets the volume for the Sound object.

snd.start(secondOffset, loop)

secondOffset An optional parameter that lets you start playing the sound at a
specific point. For example, if you have a 30-second sound and want the sound to
start playing in the middle, specify 15 for the secondOffset parameter. The sound
is not delayed 15 seconds, but rather starts playing at the 15-second mark.
loop An optional parameter that lets you specify the number of times the sound
should play consecutively.
Starts playing the last attached sound from the beginning if no parameter is
specified, or starting at the point in the sound specified by the secondOffset
parameter.

snd.stop(idName)

idName An optional parameter specifying a specific sound to stop playing.

 xlv

stops all sounds currently playing if no parameter is specified, or just the sound
specified in the idName parameter.

 xlvi

MovieClip < Object

MovieClip is a native Actionscript class.
This class is augmented with wrappers for its original methods in order to box the
original methods’ primitive arguments and return values.

mc.getAlpha() => float
mc.setAlpha(alpha) => float

Gets or sets the alpha transparency value of the movie clip specified by mc. Valid
values are 0 (fully transparent) to 100 (fully opaque). The default value is 100.
Objects in a movie clip with _alpha set to 0 are active, even though they are
invisible. For example, you can still click a button in a movie clip whose _alpha
property is set to 0. To disable the button completely, you can set the movie clip's
_visible property to false.

mc.attachAudio(source)

source The object containing the audio to play. Valid values are a Microphone
object, a NetStream object that is playing an FLV file, and false (stops playing the
audio).
Specifies the audio source to be played. To stop playing the audio source, pass
false for source.

mc.isEnabled?() => true or false
mc.setEnabled?(enabled)
 Gets or sets the enabled property of mc.

NOTE: for more information, pleas refer to the Adobe website:
http://livedocs.adobe.com/flash/mx2004/main_7_2/wwhelp/wwhimpl/js/html/ww
help.htm?href=Part_ASLR.html

mc.isFocusEnabled?() => true or false
mc.setFocusEnabled?(enabled)

A boolean value which indicates whether mc can receive input focus.
If the enabled is false, a movie clip cannot receive input focus unless it is a button.
If the enabled is true, a movie clip can receive input focus even if it is not a button.

mc.isFocusRect?() => true or false
mc.setFocusRect?(enabled)

A Boolean value that specifies whether a movie clip has a yellow rectangle
around it when it has keyboard focus.
If the _focusrect of a movie clip instance is set to true or false, it overrides the
setting of the global _focusrect property for the single movie clip instance.

mc.getBounds(targetCoordinateSpace)=> Object

Returns properties that are the minimum and maximum x and y coordinate values
of the instance specified by my_mc for the targetCoordinateSpace parameter.

 xlvii

mc.getHeight() => a Float
mc.setHeight(height)
 Gets or sets the height of the movie clip to height pixels.

mc.getHitArea() => object
mc.setHitArea(obj)
 Retrieves or designates another movie clip to serve as the hit area for a movie clip.

mc.isLockRoot?() => true or false
mc.setLockRoot?(flag)
 Gets or sets what the _root property refers to.

http://livedocs.adobe.com/flash/mx2004/main_7_2/00001522.html#3999468

mc.getMenu() => object
mc.setMenu(menu)

Gets or associates the specified ContextMenu object with the movie clip mc. The
ContextMenu class lets you modify the context menu that appears when the user
right-clicks (Windows) or Control-clicks (Macintosh) in Flash Player.

mc.getName() => a String
mc.setName(name)
 Gets or sets the instance name of the movie clip specified by mc.

mc.getParent() => an Object
mc.setParent(parent)

Gets or sets the reference to the movie clip or object that contains the current
movie clip or object.

mc.getQuality() => a String
mc.setQuality(aString)

Gets or sets the rendering quality used for a SWF file. Refer to above for the
valid values.
Although you can specify this property for a Movie Clip object, it is actually a
global property.

 The quality property can be set to the following values:
•"LOW" Low rendering quality. Graphics are not anti-aliased, and bitmaps are not
smoothed.
•"MEDIUM" Medium rendering quality. Graphics are anti-aliased using a 2 x 2
pixel grid, but bitmaps are not smoothed. This is suitable for movies that do not
contain text.
•"HIGH" High rendering quality. Graphics are anti-aliased using a 4 x 4 pixel grid,
and bitmaps are smoothed if the movie is static. This is the default rendering
quality setting used by Flash.
•"BEST" Very high rendering quality. Graphics are anti-aliased using a 4 x 4
pixel grid and bitmaps are always smoothed.

 xlviii

mc.getRotation() => float
mc.setRotation(degrees)

Gets or sets the rotation of the movie clip, in degrees, from its original orientation.
Values from 0 to 180 represent clockwise rotation; values from 0 to -180
represent counterclockwise rotation. Values outside this range are added to or
subtracted from 360 to obtain a value within the range.

mc.getSoundBufTime() => an Integer
mc.setSoundBufTime(time)

Gets or sets an integer that specifies the number of seconds a sound prebuffers
before it starts to stream.
Although you can specify this property for a MovieClip object, it is actually a
global property

mc.isTabChildren?() => true or false
mc.setTabChildren?(tabChildren)

Indicates whether the children of this movie clip is included in the tab ordering.
If tabChildren is undefined or true, the children of a movie clip are included in
automatic tab ordering. If the value of tabChildren is false, the children of a movie
clip are not included in automatic tab ordering.

mc.isTabEnabled?() => nil, true or false
mc.setTabEnabled?(flag)

Indicates whether my_mc is included in automatic tab ordering.
If tabEnabled is nil, the object is included in automatic tab ordering only if it
defines at least one movie clip handler, such as MovieClip.onRelease. If
tabEnabled is true, the object is included in automatic tab ordering. If the tabIndex
property is also set to a value, the object is included in custom tab ordering as
well.
If tabEnabled is false, the object is not included in automatic or custom tab
ordering, even if the tabIndex property is set. However, if MovieClip.tabChildren
is true, the movie clip's children can still be included in automatic tab ordering,
even if tabEnabled is false.

mc.getTabIndex() => an Integer
mc.setTabIndex(index)
 Gets or sets the tab index of mc.

mc.getTarget() => a String

Returns the target path of the movie clip instance specified by mc in slash
notation.

mc.isTrackAsMenu?() => true or false
mc.setTrackAsMenu(flag)

 xlix

Indicates whether or not other buttons or movie clips can receive mouse release
events.
Sets whether or not other buttons or movie clips can receive mouse release events.

mc.getMcUrl() => a String

Retrieves the URL of the SWF or JPEG file from which the movie clip was
downloaded.

mc.isUseHandCursor?() => true or false
mc.setUseHandCursor?(flag)

Indicares or sets whether the hand cursor (pointing hand) appears when the mouse
rolls over a movie clip. The default value of useHandCursor is true. If
useHandCursor is set to true, the pointing hand used for buttons is displayed when
the mouse rolls over a button movie clip. If useHandCursor is false, the arrow
pointer is used instead.

mc.isVisible?() => true or false
mc.setVisible?(flag)

Indicates or sets whether the movie clip specified by my_mc is visible. Movie
clips that are not visible (_visible property set to false) are disabled.

mc.getWidth() => a Float
mc.setWidth(width)
 Gets or sets the width of the movie clip in pixels.

mc.getX() => Float
mc.setX()

Gets or sets the x coordinate of the movie clip relative to the parent movie clip, in
pixels.

mc.getXMouse() => a Float
 Gets the x coordinate of the mouse position.

mc.getXScale() => a Float
mc.setXScale(xscale)

Gets or sets the horizontal scale (percentage) of the movie clip as applied from the
registration point of the movie clip.

mc.getY() => Float
mc.setY()

Gets or sets the y coordinate of the movie clip relative to the parent movie clip, in
pixels.

mc.getYMouse() => a Float
 Gets the y coordinate of the mouse position.

 l

mc.getYScale() => a Float
mc.setYScale(xscale)

Gets or sets the vertical scale (percentage) of the movie clip as applied from the
registration point of the movie clip.

mc.setPosition(x,y)
 Combines both setX and setY method calls.

mc.attachMovie(idName, newName, depth [, initObject:Object]) => MovieClip

idName The linkage name of the movie clip symbol in the library to attach to a
movie clip on the Stage. This is the name entered in the Identifier field in the
Linkage Properties dialog box.
newname A unique instance name for the movie clip being attached to the movie
clip.
depth An integer specifying the depth level where the SWF file is placed.
initObject (Supported for Flash Player 6 and later) An object containing
properties with which to populate the newly attached movie clip. This parameter
allows dynamically created movie clips to receive clip parameters. If initObject is
not an object, it is ignored. All properties of initObject are copied into the new
instance. The properties specified with initObject are available to the constructor
function. This parameter is optional.
Takes a symbol from the library and attaches it to the SWF file on the Stage
specified by my_mc. Use MovieClip.removeMovieClip() or
MovieClip.unloadMovie() to remove a SWF file attached with attachMovie().

 Returns a reference to the newly created instance.

mc.createEmptyMovieClip(instanceName, depth) => MovieClip

instanceName A string that identifies the instance name of the new movie clip.
depth An integer that specifies the depth of the new movie clip.
Creates an empty movie clip as a child of an existing movie clip.
Returns a reference to the newly created movie clip.

mc.createTextField(instanceName, depth, x, y, width, height)

instanceName A string that identifies the instance name of the new text field.
depth A positive integer that specifies the depth of the new text field.
x An integer that specifies the x coordinate of the new text field.
y An integer that specifies the y coordinate of the new text field.
width A positive integer that specifies the width of the new text field.
height A positive integer that specifies the height of the new text field.

 Creates a new, empty text field as a child of the movie clip specified by my_mc.

mc.duplicateMovieClip(newName,depth,initObj) => MovieClip

newname A unique identifier for the duplicate movie clip.
depth A unique number specifying the depth at which the SWF file specified is to
be placed.

 li

initObject (Supported for Flash Player 6 and later.) An object containing
properties with which to populate the duplicated movie clip. This parameter
allows dynamically created movie clips to receive clip parameters. If initObject is
not an object, it is ignored. All properties of initObject are copied into the new
instance. The properties specified with initObject are available to the constructor
function. This parameter is optional.
Creates an instance of the specified movie clip while the SWF file is playing.
Duplicated movie clips always start playing at Frame 1, no matter what frame the
original movie clip is on when the duplicateMovieClip() method is called.
Variables in the parent movie clip are not copied into the duplicate movie clip.
Movie clips that have been created using duplicateMovieClip() are not duplicated
if you call duplicateMovieClip() on their parent. If the parent movie clip is deleted,
the duplicate movie clip is also deleted.
Returns a reference to the duplicated movie clip.

mc.getBounds(targetCoordinateSpace)

targetCoordinateSpace The target path of the Timeline whose coordinate system
you want to use as a reference point.

 Returns an object with the properties xMin, xMax, yMin, and yMax.

mc.getBytesLoaded() => an Integer
 Returns an integer indicating the number of bytes loaded.

mc.getDepth() => Number
 Returns the depth of a movie clip instance

mc.getInstanceAtDepth(depth) => MovieClip
 depth An integer that specifies the depth level to query.

Returns a reference to the MovieClip instance located at the specified depth, or nil
if there is no movie clip at that depth.

mc.getNextHighestDepth() => Number

An integer that reflects the next available depth index that would render above all
other objects on the same level and layer within mc.

mc.getSWFVersion() => Integer

An integer that specifies the Flash Player version that was targeted when the SWF
file loaded into mc was published.

mc.getURL(URL [,window, variables])
 URL String; the URL from which to obtain the document.

window String; an optional parameter specifying the name, frame, or expression
that specifies the window or HTML frame that the document is loaded into.
variables String (either "GET" or "POST"); an optional parameter specifying a
method for sending variables associated with the SWF file to load. If there are no
variables, omit this parameter; otherwise, specify whether to load variables using

 lii

a GET or POST method. GET appends the variables to the end of the URL and is
used for a small numbers of variables. POST sends the variables in a separate
HTTP header and is used for long strings of variables.
Loads a document from the specified URL into the specified window. The
getURL method can also be used to pass variables to another application defined
at the URL using a GET or POST method.

mc.globalToLocal(point)

point The name or identifier of an object created with the generic Object class.
The object specifies the x and y coordinates as properties.
Converts the point object from Stage (global) coordinates to the movie clip's
(local) coordinates.

mc.hitTest(x, y, shapeFlag) => true
mc.hitTest(target) => true
 x The x coordinate of the hit area on the Stage.

y The y coordinate of the hit area on the Stage.
The x and y coordinates are defined in the global coordinate space.
target The target path of the hit area that may intersect or overlap with the
instance specified by my_mc. The target parameter usually represents a button or
text-entry field.
shapeFlag A Boolean value specifying whether to evaluate the entire shape of the
specified instance (true), or just the bounding box (false). This parameter can be
specified only if the hit area is identified using x and y coordinate parameters.
Usage 1: Compares the x and y coordinates to the shape or bounding box of the
specified instance, according to the shapeFlag setting. If shapeFlag is set to true,
only the area actually occupied by the instance on the Stage is evaluated, and if x
and y overlap at any point, a value of true is returned.
Usage 2: Evaluates the bounding boxes of the target and specified instance, and
returns true if they overlap or intersect at any point.

mc.loadMovie(url [,variables])

url The absolute or relative URL of the SWF file or JPEG file to be loaded. A
relative path must be relative to the SWF file at level 0. Absolute URLs must
include the protocol reference, such as http:// or file:///.
variables An optional parameter specifying an HTTP method for sending or
loading variables. The parameter must be the string GET or POST. If there are no
variables to be sent, omit this parameter. The GET method appends the variables
to the end of the URL and is used for small numbers of variables. The POST
method sends the variables in a separate HTTP header and is used for long strings
of variables.
Loads SWF or JPEG files into a movie clip in Flash Player while the original
SWF file is playing.

mc.loadVariables(url [, variables])

 liii

url The absolute or relative URL for the external file that contains the variables to
be loaded. If the SWF file issuing this call is running in a web browser, url must
be in the same domain as the SWF file; for details, see "Description," below.
variables An optional parameter specifying an HTTP method for sending
variables. The parameter must be the string GET or POST. If there are no
variables to be sent, omit this parameter. The GET method appends the variables
to the end of the URL and is used for small numbers of variables. The POST
method sends the variables in a separate HTTP header and is used for long strings
of variables.
reads data from an external file and sets the values for variables in my_mc. The
external file can be a text file generated by ColdFusion, a CGI script, Active
Server Page (ASP), or PHP script and can contain any number of variables.
This method can also be used to update variables in the active movie clip with
new values.
This method requires that the text of the URL be in the standard MIME format:
application/x-www-form-urlencoded (CGI script format).
In SWF files running in a version earlier than Flash Player 7, url must be in the
same superdomain as the SWF file that is issuing this call. A superdomain is
derived by removing the left-most component of a file's URL. For example, a
SWF file at www.someDomain.com can load data from a source at
store.someDomain.com because both files are in the same superdomain of
someDomain.com.
In SWF files of any version running in Flash Player 7 or later, url must be in
exactly the same domain as the SWF file that is issuing this call (see "Flash Player
security features" in Using ActionScript in Flash). For example, a SWF file at
www.someDomain.com can load data only from sources that are also at
www.someDomain.com. If you want to load data from a different domain, you
can place a cross-domain policy file on the server hosting the data source that is
being accessed. For more information, see "About allowing cross-domain data
loading" in Using ActionScript in Flash.
If you want to load variables into a specific level, use loadVariablesNum() instead
of loadVariables().

mc.localToGlobal(point)

Converts the point object from the movie clip's (local) coordinates to the Stage
(global) coordinates.

mc.startDrag([lock, [left, top, right, bottom]])

lock A Boolean value specifying whether the draggable movie clip is locked to
the center of the mouse position (true), or locked to the point where the user first
clicked on the movie clip (false). This parameter is optional.
left, top, right, bottom Values relative to the coordinates of the movie clip's parent
that specify a constraint rectangle for the movie clip. These parameters are
optional.

 liv

Lets the user drag the specified movie clip. The movie clip remains draggable
until explicitly stopped through a call to MovieClip.stopDrag(), or until another
movie clip is made draggable. Only one movie clip is draggable at a time.

mc.stopDrag()
 Ends a MovieClip.startDrag() method.

mc.swapDepths(depth)
mc.swapDepths(target)

depth A number specifying the depth level where mc is to be placed.
target A string specifying the movie clip instance whose depth is swapped by the
instance specified by mc. Both instances must have the same parent movie clip.
Swaps the stacking, or z-order (depth level), of the specified instance (mc) with
the movie clip specified by the target parameter, or with the movie clip that
currently occupies the depth level specified in the depth parameter. Both movie
clips must have the same parent movie clip. Swapping the depth level of movie
clips has the effect of moving one movie clip in front of or behind the other. If a
movie clip is tweening when this method is called, the tweening is stopped.

mc.unloadMovie()

Removes the contents of a movie clip instance. The instance properties and clip
handlers remain.
To remove the instance, including its properties and clip handlers, use
MovieClip.removeMovieClip().

mc.removeMovieClip()

Removes a movie clip instance created with duplicateMovieClip(),
MovieClip.duplicateMovieClip(), or MovieClip.attachMovie().

mc.beginFill([rgb [, alpha]])

rgb A hex color value (for example, red is 0xFF0000, blue is 0x0000FF, and so
on). If this value is not provided or is undefined, a fill is not created.
alpha An integer between 0-100 that specifies the alpha value of the fill. If this
value is not provided, 100 (solid) is used. If the value is less than 0, Flash uses 0.
If the value is greater than 100, Flash uses 100.
Indicates the beginning of a new drawing path. If an open path exists (that is, if
the current drawing position does not equal the previous position specified in a
MovieClip.moveTo() method) and it has a fill associated with it, that path is
closed with a line and then filled.

mc.beginGradientFill(fillType,colors, alphas, ratios, matrix)
 fillType Either the string "linear" or the string "radial".

colors An array of RGB hex color values to be used in the gradient (for example,
red is 0xFF0000, blue is 0x0000FF, and so on).

 lv

alphas An array of alpha values for the corresponding colors in the colors array;
valid values are 0-100. If the value is less than 0, Flash uses 0. If the value is
greater than 100, Flash uses 100.
ratios An array of color distribution ratios; valid values are 0-255. This value
defines the percentage of the width where the color is sampled at 100 percent.
matrix A transformation matrix that is an object with either of the following two
sets of properties.
1) a, b, c, d, e, f, g, h, i
2) matrixType, x, y, w, h, r.
NOTE: for more information, please refer to the Adobe website:
http://livedocs.adobe.com/flash/mx2004/main_7_2/00001489.html#wp3998401

mc.clear()
Removes all the graphics created during runtime using the movie clip draw
methods, including line styles specified with MovieClip.lineStyle(). Shapes and
lines that are manually drawn during authoring time (with the Flash drawing tools)
are unaffected.

mc.curveTo(controlX, controlY, anchorX, anchorY)

controlX An integer that specifies the horizontal position of the control point
relative to the registration point of the parent movie clip.
controlY An integer that specifies the vertical position of the control point relative
to the registration point of the parent movie clip.
anchorX An integer that specifies the horizontal position of the next anchor point
relative to the registration. point of the parent movie clip.
anchorY An integer that specifies the vertical position of the next anchor point
relative to the registration point of the parent movie clip.
Draws a curve using the current line style from the current drawing position to
(anchorX, anchorY) using the control point specified by (controlX, controlY).
The current drawing position is then set to (anchorX, anchorY).

mc.endFill()

Applies a fill to the lines and curves added since the last call to beginFill() or
beginGradientFill(). Flash uses the fill that was specified in the previous call to
beginFill() or beginGradientFill(). If the current drawing position does not equal
the previous position specified in a moveTo() method and a fill is defined, the
path is closed with a line and then filled.

mc.lineStyle([thickness [, rgb [, alpha]]])

thickness An integer that indicates the thickness of the line in points; valid values
are 0 to 255. If a number is not specified, or if the parameter is undefined, a line is
not drawn. If a value of less than 0 is passed, Flash uses 0. The value 0 indicates
hairline thickness; the maximum thickness is 255. If a value greater than 255 is
passed, the Flash interpreter uses 255.
rgb A hex color value (for example, red is 0xFF0000, blue is 0x0000FF, and so on)
of the line. If a value isn't indicated, Flash uses 0x000000 (black).

 lvi

alpha An integer that indicates the alpha value of the line's color; valid values are
0-100. If a value isn't indicated, Flash uses 100 (solid). If the value is less than 0,
Flash uses 0; if the value is greater than 100, Flash uses 100.
Specifies a line style that Flash uses for subsequent calls to lineTo() and curveTo()
until you call lineStyle() with different parameters. You can call lineStyle() in the
middle of drawing a path to specify different styles for different line segments
within a path.

mc.lineTo(x, y)

x An integer indicating the horizontal position relative to the registration point of
the parent movie clip.
y An integer indicating the vertical position relative to the registration point of the
parent movie clip.
Draws a line using the current line style from the current drawing position to (x,
y); the current drawing position is then set to (x, y). If the movie clip that you are
drawing in contains content that was created with the Flash drawing tools, calls to
lineTo() are drawn underneath the content. If you call lineTo() before any calls to
the moveTo() method, the current drawing position defaults to (0, 0). If any of the
parameters are missing, this method fails and the current drawing position is not
changed.

mc.moveTo(x, y)

x An integer indicating the horizontal position relative to the registration point of
the parent movie clip.
y An integer indicating the vertical position relative to the registration point of the
parent movie clip.
Moves the current drawing position to (x, y). If any of the parameters are missing,
this method fails and the current drawing position is not changed.

 lvii

TextField < Object

TextField is a native Actionscript class.
This class is augmented with wrappers for its original methods in order to box the
original methods’ primitive arguments and return values.

Class methods

TextField.getFontList() => an Array of Strings

This method returns names of fonts on the player's host system as an array. (It
does not return names of all fonts in currently loaded SWF files.) The names are
of type String.

Instance methods

my_txt.getAlpha() => Float
my_txt.setAlpha(alpha)

Retrieves/sets the alpha transparency value of the text field specified by my_txt.
0 for fully transparent, 100 for full opacity.

my_txt.getAutoSize() => String or Boolean
my_txt.SetAutoSize(autoSize)

Controls automatic sizing and alignment of text fields. Acceptable values for
autoSize are "none" (the default), "left", "right", and "center". When you set the
autoSize property, true is a synonym for "left" and false is a synonym for "none".
Refer to:
http://livedocs.adobe.com/flash/mx2004/main_7_2/00001772.html#4007698

my_txt.hasBackground?() => true or false
my_txt.setBackground?(flag)

If true, the text field has a background fill. If false, the text field has no
background fill.

my_txt.getBackgroundColor() => an Integer
my_txt.setBackgroundColor(color)

Gets or sets the color of the text field background. Default is 0xFFFFFF (white).
The color is only visible if the text field has a border.

my_txt.hasBorder?() => true or false
my_txt.setBorder?(flag)

If true, the text field has a border. If false, the text field has no border.

my_txt.getBorderColor() => Integer
my_txt.setBorderColor(color)

Gets or sets the color of the text field border, the Default is 0x000000 (black).

 lviii

my_txt.getBottomScroll() => Integer

Retrieves an integer (one-based index) that indicates the bottommost line that is
currently visible in my_txt.

my_txt.isEmbedFonts?() => true or false
my_txt.setEmbedFonts?(flag)

If true, renders the text field using embedded font outlines. If false, it renders the
text field using device fonts.

my_txt.getHeight() => a Float
my_txt.setHeight(height)

Gets or sets the height of the text field, in pixels.

my_txt.getHScroll() => an Integer
my_txt.setHScroll(val)

Gets or sets the current horizontal scrolling position. If the hscroll property is 0,
the text is not horizontally scrolled.

my_txt.isHtml?() => true or false
my_txt.setHtml?(flag)

If true, the text field is an HTML text field. If false, the text field is a non-HTML
text field.

my_txt.getHtmlText() => a String
my_txt.setHtmlText(aString)

If the text field is an HTML text field, this property contains the HTML
representation of the text field's contents. If the text field is not an HTML text
field, it behaves identically to the text property.

my_txt.getLength() => an Integer

Returns the number of characters in a text field.

my_txt.getMaxChars() => an Integer
my_txt.setMaxChars(maxChars)

Gets or sets the maximum number of characters that the text field can contain. A
script may insert more text than maxChars allows; the maxChars property
indicates only how much text a user can enter. If the value of this property is null,
there is no limit on the amount of text a user can enter.

my_txt.getMaxHScroll() => an Integer

Gets the maximum horizontal scroll.

my_txt.getMaxScroll() => an Integer

Gets the maximum scroll.

 lix

my_txt.getMenu() => a ContextMenu object
my_txt.setMenu(contextMenu)

Gets or sets the ContextMenu object contextMenu with the text field my_txt. The
ContextMenu class lets you modify the context menu that appears when the user
right-clicks (Windows) or Control-clicks (Macintosh) in Flash Player.
This property works only with selectable (editable) text fields; it has no effect on
nonselectable text fields.

my_txt.isMouseWheelEnabled?() => true or false
my_txt.setMouseWheelEnabled?(flag)

Gets or sets a Boolean value that indicates whether Flash Player should
automatically scroll multiline text fields when the mouse pointer clicks a text field
and the user rolls the mouse wheel. By default, this value is true.

my_txt.isMultiline?() => true or false
my_txt.setMultiline?(flag)

If true, the text field is multiline; if false, the text field is a single-line text field.

my_txt.getName() => a String
my_txt.setName(name)

Gets or sets the instance name of the text field specified by my_txt.

my_txt.getParent() => a MovieClip object
my_txt.setParent(parent)

Gets or sets a reference to the movie clip or object that contains the current text
field or object.

my_txt.isPassword?() => true or false
my_txt.setPassword?(flag)

If true, the text field is a password text field and hides the input characters using
asterisks instead of the actual characters. If false, the text field is not a password
text field. When password mode is enabled, the Cut and Copy commands and
their corresponding keyboard accelerators will not function.

my_txt.getQuality() => a String
my_txt.setQuality(quality)

Gets or sets the rendering quality used for a SWF file. Device fonts are always
aliased and, therefore, are unaffected by the _quality property.
•"LOW" Low rendering quality. Graphics are not anti-aliased, and bitmaps are not
smoothed.
•"MEDIUM" Medium rendering quality. Graphics are anti-aliased using a 2 x 2
pixel grid, but bitmaps are not smoothed. Suitable for movies that do not contain
text.
•"HIGH" High rendering quality. Graphics are anti-aliased using a 4 x 4 pixel grid,
and bitmaps are smoothed if the movie is static. This is the default rendering
quality setting used by Flash.

 lx

•"BEST" Very high rendering quality. Graphics are anti-aliased using a 4 x 4
pixel grid and bitmaps are always smoothed.

my_txt.getRestrict() => nil or a String
my_txt.setRestrict(restrict)

Indicates the set of characters that a user may enter into the text field. If the value
of the restrict property is null, you can enter any character. If the value of the
restrict property is an empty string, you can't enter any character. If the value of
the restrict property is a string of characters, you can enter only characters in the
string into the text field. The string is scanned from left to right. A range may be
specified using the dash (-). This only restricts user interaction; a script may put
any text into the text field.
Refer to:
http://livedocs.adobe.com/flash/mx2004/main_7_2/00001807.html#4008356

my_txt.getRotation() => a Float
my_txt.setRotation(degree)

Gets or sets the rotation of the text field, in degrees, from its original orientation.

my_txt.getScroll() => an Integer
my_txt.setScroll(scroll)

Gets or sets the vertical position of text in a text field.

my_txt.isSelectable?() => true or false
my_txt.setSelectable?(flag)

Gets or sets a Boolean value that indicates whether the text field is selectable.

my_txt.isTabEnabled?() => true, false or undefined
my_txt.setTabEnabled?(tabEnabled)

Specifies whether my_txt is included in automatic tab ordering. It is undefined by
default.
If undefined or true, the object is included in automatic tab ordering. If the
tabIndex property is also set to a value, the object is included in custom tab
ordering as well. If false, the object is not included in automatic or custom tab
ordering, even if the tabIndex property is set.

my_txt.getTabIndex() => an Integer or undefined
my_txt.setTabIndex(tabIndex)

Customize the tab ordering of objects in a SWF file. You can set the tabIndex
property on a button, movie clip, or text field instance; it is undefined by default.
Refer to:
http://livedocs.adobe.com/flash/mx2004/main_7_2/00001815.html#4008832

my_txt.getTarget() => a String

Returns the target path of the text field instance specified by my_txt. The _self
target specifies the current frame in the current window, _blank specifies a new

 lxi

window, _parent specifies the parent of the current frame, and _top specifies the
top-level frame in the current window.

my_txt.getText() => a String
my_txt.setText(text)

Gets or sets the current text in the text field.

my_txt.getTextColor => an Integer
my_txt.setTextColor(color)

Gets or sets the color of the text in a text field.

my_txt.getTextHeight() => a Float
my_txt.setTextHeight(height)

Gets or sets the height of the text.

my_txt.getTextWidth() => a Float
my_txt.setTextWidth(width)

Gets or sets the text width.

my_txt.getType() => a String
my_txt.setType(type)

Specifies the type of text field. There are two values: "dynamic", which specifies
a dynamic text field that cannot be edited by the user, and "input", which specifies
an input text field.

my_txt.getUrl() => a String

Retrieves the URL of the SWF file that created the text field.

my_txt.getVariable() => a String
my_txt.setVariable(varName)

Gets or sets the name of the variable that the text field is associated with.

my_txt.isVisible?() => true or false
my_txt.setVisible?(flag)

Gets or sets a Boolean value that indicates whether the text field my_txt is visible.
Text fields that are not visible (_visible property set to false) are disabled.

my_txt.getWidth() => a Float
my_txt.setWidth(width)

Gets or sets the width of the text field, in pixels.

my_txt.hasWordWrap?() => true or false
my_txt.setWordWrap?(flag)

Gets or sets a Boolean value that indicates if the text field has word wrap.

my_txt.getX() => a Float

 lxii

my_txt.setX(x)
Gets or sets a float that sets the x coordinate of a text field relative to the local
coordinates of the parent movie clip.

my_txt.getXMouse() => an Integer

Returns the x coordinate of the mouse position relative to the text field.

my_txt.getXScale() => a Float
my_txt.setXScale(scale)

Gets or sets the horizontal scale of the text field as applied from the registration
point of the text field, expressed as a percentage. The default registration point is
(0,0).

my_txt.getY() => a Float
my_txt.setY(y)

Gets or sets the y coordinate of a text field relative to the local coordinates of the
parent movie clip. If a text field is in the main Timeline, then its coordinate
system refers to the upper left corner of the Stage as (0, 0). If the text field is
inside another movie clip that has transformations, the text field is in the local
coordinate system of the enclosing movie clip. Thus, for a movie clip rotated 90º
counterclockwise, the enclosed text field inherits a coordinate system that is
rotated 90º counterclockwise. The text field's coordinates refer to the registration
point position.

my_txt.getYMouse() => an Integer

Returns the y coordinate of the mouse position relative to the text field.

my_txt.getYScale() => a Float
my_txt.setYScale(scale)

Gets or sets the vertical scale of the text field as applied from the registration
point of the text field, expressed as a percentage. The default registration point is
(0,0).

my_txt.addListener(listener)

Registers an object to receive notification when the onChanged and onScroller
event handlers have been invoked. When a text field changes or is scrolled, the
TextField.onChanged and TextField.onScroller event handlers are invoked,
followed by the onChanged and onScroller event handlers of any objects
registered as listeners. Multiple objects can be registered as listeners.
Refer to:
http://livedocs.adobe.com/flash/mx2004/main_7_2/00001770.html#4007629

my_txt.getDepth() => an Integer

Returns the depth of a text field..

my_txt.removeListener(listener) => true or false

 lxiii

If listener was successfully removed, the method returns a true value. If listener
was not successfully removed (for example, if listener was not on the TextField
object's listener list), the method returns a value of false.

my_txt.removeTextField()

Removes the text field specified by my_txt.

my_txt.replaceSel(text)

Replaces the current selection with the contents of the text parameter. The text is
inserted at the position of the current selection, using the current default character
format and default paragraph format. The text is not treated as HTML, even if the
text field is an HTML text field.

 lxiv

Sprite < MovieClip

A sprite, in game development terminology, refers to a visual component, including its
properties and methods.
A sprite instance is a generic visual component in Ruby On Flash, and can be visualized
as a blank box on top of its parent sprite.

Example use:
emptySprite = Sprite.createInstance(self); #self refers to the main
program
emptySprite.setWidth(200);
emptySprite.setHeight(100);
emptySprite.setX(100);
emptySprite.setY(50);

emptySprite.beginFill();
#code to draw something
…
emptySprite.endFill();

Note that Sprite and its subclasses implements the Factory design pattern in object
instantiation. The “initialize” method will be called by the factory method. In addition,
the arguments to the “initialize” method are passed through the arguments of the
createInstance class method.

For example:
class CustomSprite < Sprite
 def initialize(width, height, x,y)
 self.setWidth(width);
 self.setHeight(height);
 self.setX(x);
 self.setY(y);

 self.beginFill();
 #code to draw something
 …
 self.endFill();
 end
end
#same as previous example
#note that arguments to the initialize method are passed through
arguments to the createInstance class #method
emptySprite = CustomSprite.createInstance(self,200,100,100,50);

Sprite is the super class of ImageSprite and SwfSprite.

Class methods

Sprite.createInstance(parent,…) => a Sprite instance

 lxv

Instantiates an instance of Sprite and attaches the newly created instance to the
parent sprite.
The arguments for initialize method in subclasses can be passed through the
arguments to this method, behind the parent parameter. For an example, refer to
the class description.

Instance methods:

my_sprite.remove()

Removes my_sprite from the program.

 lxvi

ImageSprite < Sprite

ImageSprite represents a sprite that is represented as a sprite.
An image in Ruby On Flash can be loaded dynamically during runtime or as an
embedded image (Refer to User’s Guide on how to embed images).

To load an image dynamically:
ImageSprite.createInstanceFromFile(filename, parent);
However, note that only jpeg images can be loaded dynamically. Also,
createInstanceFromFile returns an instance of class ImageSprite, thus dynamically loaded
image sprites cannot have a custom-defined class.

To load an embedded image:
ImageSprite.createInstanceFromResource(imageId, parent), where imageId refers to the
embedded image’s resource id.
Similar to ImageSprite.createInstanceFromFile, createInstanceFromResource returns an
instance of class ImageSprite, an thus embedded images loaded this way cannot have a
custom-defined class.
To associate an image sprite with a class, first define a subclass of ImageSprite.
Thereafter, we can associate this class with the embedded image via a simple naming
convention:
If the embedded image’s id is “Blinky”, then we simply call the subclass
BlinkyImageSprite.
Alternatively, we can explicity specify the image id in the “@@imageId” class variable.
Finally, we’ll instantiate an instance via a call to createInstance, similarly to
Sprite.createInstance.

For example:
class BlinkyImageSprite < ImageSprite
 def initialize(x,y)
 self.setX(x);
 self.setY(y);
 end
end

blinky = BlinkyImageSprite.createInstance(self,100,100);

The following is equivalent, except that the image id was explicitly specified.
class YetAnotherSprite < ImageSprite
 @@imageId = “Blinky”
 def initialize(x,y)
 self.setX(x);
 self.setY(y);
 end
end

blinky = YetAnotherSprite.createInstance(self,100,100);

 lxvii

Class methods

ImageSprite.createInstanceFromFile(filename, parent) => an ImageSprite instance

Dynamically loads a jpeg image and creates an ImageSprite instance, then
attaches this image sprite to parent.

ImageSprite.createInstanceFromResource(imageId, parent) => an ImageSprite
instance

Loads an embedded image and creates an ImageSprite instance, then attaches this
image sprite to parent.

ImageSprite.createInstance(parent, …) => an ImageSprite instance

Creates and instantiates a subclass associated with an embedded image, then
attaches this image to parent.
The arguments for initialize method in subclasses can be passed through the
arguments to this method, behind the parent parameter.

 lxviii

SwfSprite < Sprite

In flash, external flash movies can be loaded dynamically, as such, it is not surprising that
Ruby On Flash offers this capability as well. A dynamically loaded flash movie can be
visualized as a standalone sprite, thus Ruby On Flash refers to these as swf sprites and
represents them with the class SwfSprite.
One way of loading swf sprites in Ruby On Flash:
SwfSprite.createInstanceFromFile(filename, parent)
Similar to ImageSprite.createInstanceFromFile, SwfSprite.createInstanceFromFile only
returns an instance of class SwfSprite.
To associate a class with a swf sprite, we must first define a subclass of SwfSprite. This
subclass will be linked to a swf file via a simple naming convention similar to that of
ImageSprite. If the file is called “Inky.swf” (note that this means that this swf file must
be in the same directory as the main program), then name the subclass as
“InkySwfSprite”. Alternatively, we can explicitly specify the swf file in the
“@@swfFilename” class variable.

For example:
class InkySwfSprite < SwfSprite
 def initialize(x,y)
 self.setX(x);
 self.setY(y);
 end
end

inky =
InkySwfSprite.createInstance(self,100,100);

class SomeSwfSprite < SwfSprite
 @@swfFilename = “Inky.swf”;
 def initialize(x,y)
 self.setX(x);
 self.setY(y);
 end
end

inky =
SomeSwfSprite.createInstance(self,100,100);

The above two code snippets are equivalent except that the code on the right specifies the
swf file name.

Class methods:

SwfSprite.createInstanceFromFile(filename, parent) => a SwfSprite instance

Dynamically loads and creates a swf sprite, then attaches this sprite to parent.

SwfSprite.createInstance(parent,…) => a SwfSprite instance.

Creates and instantiates a subclass associated with a swf file, then attaches this
sprite to parent.
The arguments for initialize method in subclasses can be passed through the
arguments to this method, behind the parent parameter.

