

RECONFIGURABLE HARDWARE
SAT SOLVING

WANG ZHANQING
(B.Eng. Beijing University of Aeronautics and Astronautics)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2003

i

To My Parents

ii

Acknowledgements

First and foremost, I would like to thank my supervisors, Assoc. Prof. Roland Yap and

Dr. Martin Henz, for their inspiration and continuous support of my Master of Science

research, a great combination who are always willing to listen, encourage, and give

insightful comments and valuable criticism. They read all the drafts of my thesis and

taught me to be thorough in analyzing problems and rigorous in presenting ideas. This

thesis would not have been possible without their support and guidance. I also thank

my previous supervisor Prof. Joxan Jaffar who got me started in research.

 My gratitude is also conveyed to all my previous and current colleagues in

Programming Languages and Systems lab of NUS, for their cooperation and support

during the time I studies here.

 I am deeply grateful to my parents for their everlasting patience and love. I wish to

thank my younger sister, my brother-in-law, my nephew, for just being there and

providing me love and support. I also thank my husband for his encouragement and

support. I wish to express my deepest appreciation to my lovely daughter for the

happiness her smiling face and sweet words bring me.

 Finally, to my new friend who kept me company and gave me support which have

been my source of strength and the reason why I have come this far, I all of thank you!

iii

Contents

List of Figures……………………………………………………………………… vi

List of Tables……………………………………………………………..……...… viii

Summary………………………………..………………………………..………… ix

1 Introduction……….…………………………………………………………… 1

2 Stochastic Local Search……….…….………………………………………… 4
 2.1 Propositional Satisfiability (SAT)………………………………………… 4
 2.2 Stochastic Local Search (SLS)……………………………………………. 5
 2.2.1 The GSAT Architecture .…. .…………………………………….. 8
 2.2.2 The WalkSAT Architecture………………………………………. 9
 2.2.3 WalkSAT Variants………………………..………………………. 11
 2.2.3.1 WalkSAT/TABU………………..………………………. 11
 2.2.3.2 History Mechanism.……………..…………….………… 11
 2.2.3.3 Self-Tuning Implementation of WalkSAT….………..…. 12
 2.2.3.4 Davis-Putnam Procedure + WalkSAT……….………..… 13

3 Reconfigurable Computing Paradigm……………………………………….. 15
 3.1 General-Purpose Computer vs. Special-Purpose Computer……………… 15
 3.2 Field Programmable Gate Array (FPGA)………………………………… 17
 3.2.1 Principle of FPGA………………………………………………… 20
 3.2.2 Structure of FPGA………………………………………………… 22

4 Current SLS SAT Hardware Implementations………………………... 25
 4.1 One Flip per Clock Cycle for GSAT……………………………………… 26
 4.2 One Flip per Clock Cycle for WalkSAT………………………………….. 29
 4.3 GSAT Variant by Yung et al. ……………………………………………. 32
 4.4 WalkSAT based on ROM Array………………………………………….. 34

5 Clause Evaluator without Re-Synthesis……………………………….. 36
 5.1 Compilation Time on Current Platform…………………………………… 37
 5.2 A General Clause Evaluator………………………………………………. 41
 5.2.1 Decompose one Clause into Small Boolean Function Blocks….…. 41
 5.2.1.1 Function of RAM16X1D………………….……………... 42
 5.2.1.2 Map Boolean Functions to RAM16x1Ds………………… 44
 5.2.2 Hierarchical Structure of our Clause Evaluator…………………… 45

iv

5.2.3 Control Logic inside our Clause Evaluator…………………………

51

6 Implementation Platform……………………………………………….. 53
 6.1 Handel-C vs. VHDL……….……………………………………………… 53
 6.1.1 The Handel-C Programming Language……………….………….. 53
 6.1.2 VHDL Language Issues……………………….………………….. 54
 6.1.3 Discussion………………………………………………………… 56
 6.1.4 Combination of Handel-C and VHDL……………………………. 57
 6.2 RC1000-PP Prototyping Board………….………………………………… 60

7 Two Implementations of WalkSAT ……………………………………….. 62
 7.1 Pipelined Random-strategy-based FPGA Implementation…………….….. 63
 7.1.1 Five-stage Pipelined Random Implementation…………………… 64
 7.1.2 A Pseudo Random Number Generator…………………………… 66
 7.2 FPGA Implementation of Greedy Selection……………………………… 69

8 Experimental Results……………..……………………………………………. 70
 8.1 Benchmark Selection..……….……………………….…………………… 70
 8.2 Performance Comparison Scheme…………..……….…………………… 72
 8.3 Flip Rate Performance Comparison: Software vs. Hardware…………….. 73
 8.4 Timing Performance……………………………………………………… 78
 8.5 Time/Space Cost Comparison of FPGA-based Implementation…………. 82

9 Conclusions……………………………………………………………………… 84

Appendix: Entity Declarations in VHDL…………….…………………………… 86

Bibliography………………………..………………………………………………. 88

v

List of Figures

 2.1 Stochastic Local Search Algorithm………………………………………... 6

 2.2 CHOOSE_FLIP Algorithm for GSAT………………….…………………. 8

 2.3 Algorithm for WalkSAT-B Variant in WalkSAT Family……..………….. 10

 3.1 A Four- Input AND Gate Example…………….………………………….. 21

 3.2 Basic Structure of Xilinx SRAM-based FPGAs…………………………... 22

 3.3 Structure of Xilinx Virtex IOB……………………………………………. 23

 3.4 Simplified Structure of Xilinx Virtex CLB………………………………... 24

 4.1 Basic CHOOSE_FLIP Design with Parallelized Variable Scoring……….. 27

 4.2 Parallel CHOOSE_FLIP with Relative Scoring…………………………... 28

 4.3 A Four Stage Pipeline for GSAT………………………………………….. 29

 4.4 Instance Specific Implementation of the WalkSAT Algorithm…………… 31

 5.1 Space Cost & Compilation Time for GSAT Instance-Specific Designs….. 40

 5.2 Space Cost & Compilation Time for WalkSAT Instance-Specific Designs 41

 5.3 External Pins………………………………………………………………. 42

 5.4 Function Block Diagram of RAM16x1D……………………..…………… 43

 5.5 Hierarchy of a General Clause Evaluator………………………………….. 48

 5.6 Structure of Clause i………………………………….……………………

 5.7 Structure of our General Clause Evaluator………………………………...

49

50

 5.8 External Connections of Read/Write Controller…………………………... 51

 5.9 Waveform of Write Cycle…………………………………………………. 51

 6.1 Design Flow of Handel-C and VHDL Combinatorial Method……………. 59

vi

 6.2 RC1000-PP Block Diagram……………………………………………….. 60

 7.1 Random-strategy-based Implementation of the WalkSAT-B Variant…….. 65

 7.2 Pipelined Random-Strategy WalkSAT……………………………………. 66

 7.3 A true 1-bit Random Number Generator………………………………….. 67

 7.4 8-bit LFSR PRNG Block Diagram………………………………………... 68

 7.5 Sequential Greedy-Strategy WalkSAT……………………………………. 69

 8.1 Pure Software Flip Rate Performance Chart………………………………. 77

vii

List of Tables

 2.1 Example of a SAT Problem in cnf…………………………………………. 5

 3.1 Implementing a Four-Input AND Gate with the LUT in FPGA…………... 21

 5.1 Time Spent on Re-synthesis for GSAT in Section 4.1…………………….. 38

 5.2 Time Spent on Re-synthesis for WalkSAT in Section 4.2………………… 39

 5.3 Mode Selection of RAM16x1D……………………………………………. 42

 5.4 Decompose a Clause into Small Boolean Function Blocks..………………. 44

 8.1 The Benchmark Set………………………………………………………... 71

 8.2 Flip Rate Performance Comparison: Software versus FPGA-based.……… 74

 8.3 Timing Performance Comparison based on Random Strategy…………….. 80

 8.4 Timing Performance Comparison based on Greedy Strategy……………... 81

 8.5 Running Time Comparison between Random-Strategy Implementations… 82

 8.6 Time/Space Cost Comparison of FPGA-based Implementation…………... 83

viii

Summary

Boolean satisfiability (SAT) problems are NP-complete problems that are well-known

in areas of operations research, artificial intelligence and computer-aided design.

Algorithms for solving NP-complete problems may have long running times. To

improve the performance of SAT solvers, hardware processing elements are used to

accelerate execution. There has been considerable recent interest in the application of

Field Programmable Gate Arrays (FPGAs) devices as accelerators for solving SAT

problems.

 There are two main types of SAT solvers, complete solvers, e.g. Davis-Putnam

(DP), and incomplete Stochastic Local Search (SLS) methdos. The DP procedure is a

complete branch and bound algorithm that is able to prove both satisfiability and

unsatisfiability; whereas the SLS procedure is an incomplete algorithm and may not

find a solution even if one exists. SLS algorithms have been successful for solving

SAT problems. The WalkSAT family of algorithms contains some of the best

performing SLS algorithms and has a very simple structure, thus can be improved by

extracting more parallelism. There are a number of such hardware designs and

implementations using reconfigurable FPGAs in the existing literature.

 The use of hardware SAT solver only makes sense if there is significant

performance advantage compared to software. Software can make use of state of the

art processors built with the latest processor technology. A hardware SAT solver, on

the other hand, is less likely to have the same level of process technology, and hence

ix

longer cycle times. Earlier hardware implementations did not outperform optimized

software. One new instance-specific approach was to maximize performance by

making full use of parallelism and enabled a performance of one flip per clock cycle,

more than two orders of magnitude faster than software. However, an important

limitation of all these previous work is that they generated a high level description of a

circuit customized for a particular SAT problem. Since the time needed to re-synthesis,

map, place and route the new design is likely to significantly exceed the runtime

improvement from faster software SAT solver, the approach of custom design specific

to a particular SAT problem instance is not practical.

 This thesis explores FPGA-based hardware designs for WalkSAT, which are not

instance-specific and thus not require re-synthesis. In addition to this requirement, a

hardware implementation faces interesting design tradeoffs due to the inherently

limited logic resources on the chip. We propose two versions of WalkSAT, which

allow real-time reconfiguration. The differences of the two WalkSAT versions lead to

different design choices for maximal performance. The first design emphasizes fast

cycle times (one flip per clock cycle), employing random variable selection to allow

for a pipelined design. The second uses a greedy variable selection heuristic, which

precludes pipelining, exemplifying a tradeoff between flip rate and effectiveness of

variable selection. Both design have improved performance over other published non-

re-synthesis SLS FPGA implementations.

x

 1

Chapter 1

Introduction

Recent improvements of Field Programmable Gate Array (FPGA) technology have

made FPGA’s a viable platform for development of hardware accelerators, while still

allowing design flexibility and promise of design migration to future technologies.

Many members of the computing community are eyeing FPGA-based platforms as a

way to provide rapidly deployable, flexible, and portable hardware solutions.

Using FPGA components in the content of propositional satisfiability problem

(SAT) solving introduces challenges in system architecture and logic design.

Stochastic local search (SLS) algorithms have been a successful approach for solving

SAT problems. The WalkSAT family of algorithms [SKC94, MSK97] contains some

of the best performing SLS algorithms. SLS algorithms like WalkSAT have a very

simple structure and are composed of essentially three steps which are iterated until a

satisfiable solution is found: (i) evaluate clauses; (ii) choose a variable; and (iii) flip

the variable’s Boolean value.

Since each of the steps is simple, moreover SAT clauses can be directly

represented in hardware, it is tempting to build a hardware SLS solver. There are a

number of such hardware designs and implementations [HM97, YSLL99, LSW01,

 2

HTY01] using reconfigurable FPGA hardware. Hardware approaches to systematic

search procedures for SAT problems are beyond the scope of this thesis; see [AS00]

for an overview.

The use of hardware SAT solvers only makes sense if there is significant

performance advantage compared to software. Software can make use of state of the

art processors built with the latest processor technology. A hardware SAT solver, on

the other hand, is less likely to have the same level of process technology, and hence

longer cycle times. Earlier hardware implementations like [HM97, YSLL99] did not

outperform optimized software. For example, a reimplementation of the design in

[HM97] which was done in [HTY01] had flip rates between 98 – 962 Kflips/s. In

some problems, this was a bit faster than software and in other cases slower. In

[HTY01], it was shown that GSAT SLS solvers running at one flip per clock cycle

was achievable with performance gains of about two orders of magnitude over

software. That implementation makes use of the reconfigurable nature of FPGAs to

build a custom design specific to a particular SAT problem instance. While [HTY01]

shows that very large speedups are feasible, this approach is not practical as a general

SAT problem solver, because the time to re-synthesize, place and route the new design

for an FPGA is likely to significantly exceed the runtime improvement from the faster

solver.

In the brief survey above of relevant work, we have observed that while some of

these efforts have focused on the design of instance-specific solving system, there has

been less work in the area of implementing a practical design in a real time

environment. Typically an instance-specific hardware accelerator is not practical,

because the re-synthesis requirements are often time consuming, it is necessary to find

a solution.

 3

To help address this challenge we have created the design without re-synthesis. In

this thesis, we explores hardware designs for WalkSAT, which are not instance-

specific and thus do not require re-synthesis. In addition to this requirement, a

hardware implementation faces interesting design tradeoffs due to the inherently

limited logic resources on the chip. We propose two versions of WalkSAT, which

allow real-time reconfiguration. The differences of the WalkSAT versions lead to

different design choices for maximal performance. The first design emphasizes fast

cycle times (one flip per clock cycle), employing random variable selection to allow

for a pipelined design. The second uses a greedy variable selection heuristic, which

precludes pipelining, exemplifying a tradeoff between flip rate and effectiveness of

variable selection. Both designs have improved performance over published SLS

FPGA implementations without re-synthesis.

The remainder of this thesis is structured as follows: Chapter 2 introduces the

background related to stochastic local search. Chapter 3 gives an overview on FPGA

technology and its usage in reconfigurable computing and design prototyping. Chapter

4 discusses some of the current reconfigurable implementations of SAT solvers. From

their design limitations, we presented a clause evaluator without re-synthesis in

Chapter 5. Chapter 6 addresses our implementation platform. Chapter 7 describes our

two WalkSAT implementations based on two strategies. Chapter 8 reports the

experimental results. Finally, Chapter 9 concludes and offers suggestions for future

work.

 4

Chapter 2

Stochastic Local Search

Local search algorithms are among the standard methods for solving propositional

satisfiability problems from various areas of computer science. After its introduction

by Selman, Levesque, and Mitchell [SLM92] and Gu [Gu92], a large number of such

algorithms were proposed and investigated. In this thesis, we focus on WalkSAT

family of stochastic local search. WalkSAT algorithms are in general sound. In this

thesis we will discuss variants of WalkSAT family.

2.1 Propositional Satisfiability (SAT)

In 1971, propositional satisfiability (SAT) was introduced as the first computational

task to be NP-complete [Coo71]. As SAT is the conceptually simplest NP-complete

problem, a wide range of other problems can be encoded into SAT; which make SAT a

useful problem.

 SAT problems can be presented as a set of propositional clauses in conjunctive

normal form (cnf). In this form, the problem is basically a conjunction of clauses,

wherein each clause is a disjunction of literals. A literal is then a propositional variable

or its negation. An example of a cnf problem is shown in Table 2.1. A solution to a

 5

SAT problem is a variable assignment that satisfies all the clauses according to a rule

of interpretation. For the example cnf problem below, one possible solution has an

assignment of v1 = 1, v2 = 0, v3 = 1, v4 = 0. The cnf is a popular standard format for

encoding SAT problems.

variables v1, v2, v3, v4
literals v1, ¬v1, v2, ¬v2, v3, ¬v3, v4, ¬v4

cnf clause1 ∧ clause2 ∧ clause3 ∧ … ∧ clause8
clause1 v1 ∨ v2 ∨ v3 clause5 v1 ∨ v3 ∨ v4
clause2 v1 ∨ v2 ∨ v4 clause6 ¬v2 ∨ v3 ∨ ¬v4
clause3 ¬v1 ∨ ¬v2 ∨ ¬v3 clause7 v1 ∨ ¬v3 ∨ ¬v4
clause4 ¬v1 ∨ ¬v2 ∨ v3 clause8 v2 ∨ v3 ∨ v4

Table 2.1: Example of a SAT Problem in cnf

2.2 Stochastic Local Search (SLS)

Stochastic local search is best viewed as a model-finding procedure wherein finding a

solution to a problem determines its satisfiability. This is different from other theorem-

proving procedures that look for a sound and formal proof of the satisfiability. In order

to understand this model-finding procedure, we define variable space to be the set of

all the possible combinations on truth value assignments for each variable in a given

SAT problem. A procedure like Davis-Putnam [DP60] or ASAT [DABC93] performs

deterministic search over the whole problem. These are called as complete procedures

which can determine either the satisfiability or unsatisfiability of the SAT problem.

SLS algorithms on the other hand are incomplete procedures with the advantage of

having a more efficient search traversal that could solve the problem with less time.

An incomplete procedure might be capable of prove satisfiability by finding a solution

but will never establish unsatisfiability. Their main idea is to perform an

indeterministic non-backtracking local search over the variable space to find a

 6

solution that satisfies the cnf. This local search strategy has shown to be robust and

could outperform other systematic SAT solvers as presented in [SLM92], [Gu92], and

[HS99].

The local search starts with an initial variable assignment or initial state. If the

current state does not satisfy the cnf, the search strategy is to move to an adjacent state

that has a difference of one or more variables depending on its preset Hamming

distance. For a Hamming distance of one, the neighboring states would be the states

that only have one different variable assignment. The search strategy will do repeated

moves until a satisfiable assignment is found or the time-out limit on moves is

reached. The limit imposed for this type of algorithms should be high enough that

satisfiable problems are detected with high accuracy. For the WalkSAT and GSAT

algorithms investigated in this thesis, the Hamming Distance is set to one.

 procedure SLSSAT(cnf, maxtries, maxflips)
 output: satisfying variable assignment for cnf
 for i := 1 to maxtries do /* outer loop */
 INIT_ASSIGN(V);
 for j := 1 to maxflips do /* inner loop */
 if V satisfies cnf then
 return V
 else
 CHOOSE_FLIP(f, V, cnf);
 V := V with variable f flipped;
 end
 end
 end
 end

Figure 2.1: Stochastic Local Search Algorithm

A general outline for the Stochastic Local Search algorithm SLSSAT is given in

Figure 2.1. SLSSAT algorithms are different in two aspects, namely: the generation of

the initial assignment (INIT_ASSIGN) and the selection for the next state

 7

(CHOOSE_FLIP). All the investigated SLSSAT algorithms have a common

INIT_ASSIGN procedure that randomly chooses the initial assignment from the

variable space according to a uniform distribution. Hence, we concentrate on the

CHOOSE_FLIP procedure that differentiate the investigated SLSSAT algorithms. As

shown in Figure 2.1, there are two limits imposed in the algorithms. As the algorithm

repeatedly performs flips to the current state, we limit the number of repetitions to

maxflips. When it reaches maxflips with no solution found, the algorithm would exit

the inner loop and restart with a new initial assignment. This stage is essential for the

algorithm to escape from the local minima in the variable space. It means that for

SLSSAT algorithms there exists a state in the variable space from which a solution

will not be reached without reinitializing the search. The second time-out stage ends

the execution of the algorithm when a certain number of tries (maxtries) has been

reached. In that case, the algorithm fails to prove satisfiability.

 For the CHOOSE_FLIP procedure, the score, which is the number of clauses

satisfied by variable assignment V, plays a crucial role in the selection for the next

variable to flip. We declare some score and additional functions that will be used in

the following sections.

1. The function score(cnf, V) returns the number of clauses satisfied as a

results of using a variable assignment V in cnf.

2. The function scoref(i, cnf, V) returns the number of clauses in cnf that are

satisfied by using the modification of the assignment V where the truth

value of the i-th variable is inverted.

3. The function scoreb(i, cnf, V) returns the number of clauses in cnf that

would be broken (unsatisfied) when the truth value for the i-th variable in

V is flipped.

 8

4. The function CHOOSE_ONE returns an element from a sequence using

uniform distribution.

5. The function UNSATISFIED returns a sequence of unsatisfied clauses

from cnf for the variable assignment of V.

2.2.1 The GSAT Architecture

The greedy local search procedure called GSAT was first introduced by Selman,

Levesque, and Mitchell [SLM92] and Gu [Gu92] in 1992. Since then, a number of

GSAT variants have been derived such as GSAT with Tabu Search (GSAT/TABU)

[MSK97, MSG97, SSS97] and GSAT with History (HSAT) [GW93]. Figure 2.2

shows the CHOOSE_FLIP procedure used by GSAT. The procedure

CHOOSE_FLIP gathers the variables that produce the highest scoref in the sequence

named scores and performs a random selection in function CHOOSE_MAX to

determine the next variable f to flip. This algorithm is referred to as ‘greedy’ since it

assumes that a neighboring state with the highest scoref would have the highest

probability leading to a solution.

 procedure CHOOSE_FLIP(f, V, cnf)
 output: variable f that produces the maximum score
 for i := 1 to n do /* for all variables */
 scores[i] := scoref(i, cnf, V);
 end
 return CHOOSE_MAX(scores);
 end

Figure 2.2: CHOOSE_FLIP Algorithm for GSAT

A straightforward implementation of GSAT in Figure 2.2 from [SLM92] is rather

inefficient, since for each call to CHOOSE_FLIP the scores for all the variables are

recalculated. An implementation of GSAT by Selman and Kautz version 41 (GSAT41)

 9

is an optimized software implementation that usually serves as a reference benchmark

implementation. Their method to efficiently implement GSAT is to evaluate the

affected scores of some variable after each variable flip. A detailed description of

GSAT41 together with a complexity analysis is given in [Hoo96].

2.2.2 The WalkSAT Architecture

The WalkSAT architecture is based on ideas first published by Selman, Kautz, and

Cohen in 1994 [SKC94] and it was later formally defined as an algorithmic framework

by McAllester, Selman, and Kautz in 1997 [MSK97]. WalkSAT is a family of

stochastic algorithms that assigns all the variables a random truth assignment and then

attempts to heuristically refine the assignment until all the clauses evaluate to true.

WalkSAT is based on a 2-stage variable selection process focused on the variables

occurring in currently unsatisfied clauses. For each local search step, in a first stage a

currently unsatisfied clause c’ is randomly selected. In a second step, one of the

variables appearing in c’ is then flipped to obtain the new assignment. Thus, while the

GSAT architecture is characterized by a static neighborhood relation between

assignments with Hamming distance one, WalkSAT algorithms are effectively based

on a dynamically determined subset of the GSAT neighborhood relation.

 WalkSAT family is in general a kind of robust stochastic local search algorithm. In

WalkSAT family, the specific method of varying the truth assignment defines the

variant of WalkSAT. All variants share the common behavior of occasionally ignoring

their heuristic and making a random refinement according to some fixed probability.

In our FPGA-based WalkSAT implementations described in Chapter 7, the

algorithm we adapted is based on a variant called WalkSAT-B [MSK97]. Figure 2.3

briefly describes this algorithm.

 10

In Figure 2.3, given a SAT problem instance in format cnf, a random truth

assignment V, and a noise setting p, the procedure will return a variable f which will be

the next to be flipped. The function UNSATISFIED returns a list of clauses that are

unsatisfied by the assignment of V. Then randomly choose an unsatisfied clause c in

this list. Following, with probability p choose f in c randomly; with probability 1-p

choose f with the smallest scoreb.

 procedure CHOOSE_FLIP(f, V, p, cnf)
output: variable f
c := CHOOSE_ONE(UNSATISFIED(cnf, V));
min := m; /* number of clauses */
flip := 0; /* 0-list whose length is n (number of variables) */
with probability p choose f in c randomly;
with probability 1-p choose f in c with following heuristic:

 for i := 1 to k do /* for each variable found in c */
 vi := i-th variable in c;
 ci := scoreb(vi, cnf, V);
 if ci < min then
 flip[vi] := 1;
 min := ci;
 else if ci = min then
 flip[vi] := 1;
 end
 end

 f := CHOOSE_ONE(flip);
 return f
 end

Figure 2.3: Algorithm for WalkSAT-B Variant in WalkSAT Family

As discussed in [MSK97], it is well known that the performance of a stochastic local

search procedure depends upon the setting of its noise parameter, and that the optimal

setting varies with the problem distribution. It is therefore desirable to develop general

principles for tuning the procedures. In [MSK97], they presented two statistical

 11

measures of the local search process that allow one to quickly find the optimal noise

settings. These properties are independent of the fine details of the local search

strategies, and appear to be relatively independent of the structure of the problem

domains.

 In Chapter 7, we investigate two extreme implementations based on the above

WalkSAT variants by setting p to 1 (Random-Strategy) and 0 (Greedy-Strategy)

respectively.

2.2.3 WalkSAT Variants

2.2.3.1 WalkSAT/TABU

A well-known search mechanism in WalkSAT family is called WalkSAT/TABU

which uses Tabu Search [MSK97]. It uses the same two-stage selection mechanism

and the same scoring function scoreb as WalkSAT and additionally enforces a tabu

tenure. A local search can be stuck at a local minima when it actually performs

variable flips over a certain variable pattern. In order to avoid the repeating patterns,

all recently flipped variables are restricted from getting flipped again for a certain

duration. This duration is usually based on the number of variable flips, which is often

referred to as tabu tenure. With the addition of the tabu mechanism the local search

will hopefully be forced to flip a different variable that breaks the pattern and escapes

the local minima. This however is not a guaranteed performance and is only a

heuristic. As for the length of the tabu tenure, there is still no formal function for it to

attain the Probabilistic Approximate Completeness (PAC) property.

2.2.3.2 History Mechanism

 12

The history mechanism, as the name implies, makes use of history information in

guiding the local search of SLSSAT. Typically, in the situation where several

variables with the same score arise, a random selection over uniform distribution is

done. In this procedure, it would be possible to have variables that are never chosen

even though they have been eligible many times. The history information eliminates

this scenario by adding an additional step in the variable selection process whenever

tie-breaking between variables is needed. This step would select the variables that are

the least recently flipped. Although this may appear to be an unimportant addition to

the algorithm, results from [GW93] show that SLSSAT combined with history

provides superior performance.

2.2.3.3 Self-Tuning Implementation of WalkSAT

The ability of stochastic satisfiability solvers to successfully find a problem’s solution

depends on how the trade-off between random decisions and heuristic decisions is

managed during the solution search. This trade-off is controlled by a parameter setting,

typically called the noise, which ranges from 0% to 100%. The optimal noise setting

can vary greatly depending on the specifics of the algorithm used and the problem

being solved. For a particularly hard problem, whose solution is unknown, it would be

very useful to know the optimal noise setting.

In [PK01], Donald J. Patterson and Henry Kautz presented an algorithm that uses a

variant of WalkSAT [SCK94] to probe the parameter space of noise settings for the

value which will maximize the probability of finding a solution. In [PK01], they

introduce Auto-WalkSAT which is a general algorithm that automatically tunes any

variant of the WalkSat family of stochastic satisfiability solvers.

 13

In [PK01], their algorithm Auto-WalkSAT is able to successfully minimize the

invariant ratio using a bracketed search supplemented with parabolic interpolation.

The additional overhead of minimizing this ratio is very small, adding approximately

one minute to the running time of the algorithm. Using a heuristic of adding ten

percent noise to this value, Auto-WalkSat then efficiently solves many problems which

critically depend on a proper noise setting.

2.2.3.4 Davis-Putnam Procedure + WalkSAT

WalkSAT is an incomplete method and is claimed to be more efficient than Davis-

Putnam Procedure [DLL62] which is a complete method. However, WalkSAT may

come into difficulties on big SAT instances with many variables. In [ZHZ02], Wenhui

Zhang et al. improved the efficiency by combining the Davis-Putnam procedure and

the WalkSAT algorithm.

 In 1960, Davis Putnam introduced a resolution algorithm for solving propositional

satisfiabilty, which is called as the Davis-Putnam algorithm [DP60]. After two years,

Davis, Logemann and Loveland improved on the algorithm and developed the Davis-

Putnam procedure [DLL62]. The former algorithm uses an elimination rule, while the

latter which became more famous uses backtracking. Further references to both works

became ambiguous, but are likely to refer to the Davis-Putnam Procedure. The detailed

algorithm for Davis-Putnam procedure can be found in [DLL62] which is the

backtracking search algorithm.

 Davis-Putnam procedure is one of the most efficient complete search algorithm for

SAT. Many systems based on this procedure have been implemented and many

interesting problems have been solved by these tools. A major problem with DP is that

it may have to go through a very large search space.

 14

 In [ZHZ02], a hybrid approach was adopted. Firstly, use the DP procedure

partially, and produce some subproblems. Then the subproblems are given to

WalkSAT. In [ZHZ02], there are two parameters for controlling the number of

subproblems. One is the maximum depth to be searched by DP, the other is the

maximum number of subproblems.

 If a subproblem is proven to be satisfiable within the given depth, the satisfiability

checking is also finished. Otherwise, the subproblems which have not yet been proven

to be unsatisfiable are recorded in files. In each subproblem, the propositional

variables are renumbered consecutively from 1 to the number of remaining variables.

These subproblems are given to WalkSAT in a loop until a solution is found or the

maximum number of repetitions is reached.

 The advantage of partitioning a problem into subproblems compared to using

WalkSAT alone is that each subproblem is much smaller than the original problem.

The implication of this is that the time needed for each trial of such a subproblem with

WalkSAT is much shorter; and a solution of such a subproblem is expected to be

found with much less time, if this subproblem indeed has a solution. For hard SAT

instances, the speed up with their approaches is significant.

 15

Chapter 3

Reconfigurable Computing Paradigm

Reconfigurable computing is a new and emerging computing paradigm that uses

reconfigurable hardware, like Field Programmable Gate Arrays (FPGAs), to

implement computationally intensive tasks. An FPGA provides the benefits of a

customized CMOS-VLSI chip, and at the same time, avoids the fabrication cost and

inherent risk of using conventional masked gate array. Similar to current application-

specific hardware accelerators, reconfigurable hardware benefits from the

customization of data widths, instructions, memory access, etc. as compared to

general-purpose computer. The resulting hardware can be optimally designed for the

target application and exploits fine-grain parallelism.

3.1 General-Purpose Computer vs. Special-

 Purpose Computer

When we use the word “computer”, we are normally referring to a general-purpose

computer. By definition, general-purpose computers are computing machines that can

 16

be used for a wide range of applications. On the other hand, there are also special

purpose computers used for a single application or a class of similar applications.

 The design of a general-purpose computer takes into account a wide range of

considerations and constraints. Through several generations, a family of general-

purpose computers often maintains a relatively stable instruction set. There are many

applications available for these computers. In addition, programming for such

computers is very easy because there are many software tools available. General-

purpose computers offer good performance on wide range of applications at a very

reasonable price.

 For a particular application, however, a general-purpose computer does not always

provide the highest performance. When the performance requirement of certain

applications exceeds the performance of the available general-purpose computer, there

are different approaches to create higher performance computing machines to provide

the necessary computing power. One way is through parallel computing. A number of

general-purpose processors can be combined to form a parallel computer. Very high

performance can be achieved by partitioning the problem into small pieces and letting

many computers work in parallel to solve the problem. However, the application

should be suitable for such parallel computing. Another approach is to build

specialized computers according to the application to provide higher performance

specially for this application. The application-specific approach may provide very high

performance for the targeted application, often with less hardware usage than the

parallel computing approach.

 There is one major obstacle in building application-specific computing machines.

That is the cost for designing and building such a computer. The initial cost for

designing and manufacturing integrated circuit (ICs) is very high and the subsequent

 17

cost for fabricating the IC is relatively small. When an integrated circuit is fabricated

in large quantities, the initial cost can be amortized and each chip produced is only

responsible for a small portion of the initial cost. This is the major reason that popular

general-purpose computers can be sold at relatively low prices. On the other hand,

special-purpose computers require special-purpose integrated circuits. The initial cost

is so high that it may dominate the total cost of building such system. It lacks the

economy of scale.

 Another difficulty with the special-purpose approach is the development time. It

often takes a very long time to develop such a system, because a large amount of work

is involved. Because the performance of general-purpose computer improves very

quickly, special-purpose hardware may become obsolete very soon.

Taking into the cost and short life, special-purpose computers are not an attractive

approach unless the need for such hardware is very strong. However, if the cost and

development time can be significantly reduced, this can be a viable approach for many

problems.

3.2 Field Programmable Gate Array (FPGA)

Reconfigurable computing is a novel approach that combines the strengths of general

purpose computing and the special-purpose approach. The research for reconfigurable

computing is motivated by pursuit of higher computing performance with modest

hardware cost. The advances in integrated circuits has brought about the class of

programmable logic devices that can achieve high computing performance and yet

provide the flexibility of gate-level programming. The typical hardware device used

for reconfigurable computing is Field Programmable Gate Array (FPGA) [BFRV92,

Sha99]. The basic idea of reconfigurable computing is to build a hardware system

 18

based on FPGAs or other programmable devices. This system is configured, or

programmed, according to a particular application to achieve high performance. On

the other hand, the hardware should be general enough that many different

applications can be mapped to the same hardware and run quickly.

 The advent of reconfigurable computing bridges the gap between general-purpose

processors and special-purpose computers or accelerators. It blurs the distinction

between hardware and software. The study of reconfigurable computing also brings

together knowledge on computer architecture, parallel computing, compilers, software

development, hardware and IC design, and VLSI CAD.

 A general-purpose computer has a fixed instruction set. Different applications are

implemented using different software programs. User programming is performed at

the instruction level. Reconfigurable computing takes a different approach. There is no

fixed instruction set. Instead of a general-purpose processor, reconfigurable computing

uses FPGAs as the computing elements. The FPGAs are essentially integrated circuits

that can be configured into specific logic functions. Different applications are realized

by different configurations for hardware. The user programming can be performed at

the logic gate level. Reconfigurable computing achieves high performance by creating

specific functional units and better exploiting the parallelism.

 A reconfigurable hardware system normally cannot operate as a stand-alone

machine. It should work in tandem with a general-purpose processor, called a host

machine. The host machine should handle the operating system and many basic

functions such as program loading, file I/O and control functions. There can be

different coupling mechanisms between the reconfigurable computer and the host.

There have been proposals and recent design work on very closely coupled

architectures, in which the processor and the FPGA are located on the same chip

 19

[RS94, RLG98]. There are less closely coupled systems, in which the FPGA

communicates with the processor through some I/O bus [GHK91, VBR96]. This has

an impact on the communication bandwidth and latency, hence how the application is

implemented. It will affect the programming model and performance model of the

implementation.

 Secondly, there are differences in total logic capacity of reconfigurable systems.

The number of FPGA chips ranges from one to a few dozens or even thousands. The

logic capacity determines the maximum complexity of application that can be mapped

to hardware. It places an upper limit of parallelism that can be exploited.

 There are also differences in the programming model of reconfigurable hardware.

In some systems, all instructions are compiled into an FPGA hardware configuration.

In other systems the reconfigurable hardware supports a limited instruction set. In this

case, the programming model bares some similarity with general-purpose processor

with the added flexibility in the instruction set. An application can be either fully

implemented on reconfigurable hardware or partitioned between reconfigurable

hardware and a general-purpose computer.

 An FPGA is a type of programmable device, wherein a general-purpose chip can

be configured to perform a wide variety of applications. The first programmable

device that has achieved widespread use was the PROM (Programmable Read-Only

Memory). PROMs, a one-time programmable device come in two basic versions: the

Mask-Programmable Chip programmed only by manufacturer, and the Field-

Programmable Chip programmed by the end-user. The Field Programmable PROM

developed into two types, the Erasable Programmable Read-Only Memory (EPROM)

and the Electrically Erasable Programmable Read-Only Memory (E2PROM). The

E2PROM has the advantage of being erasable and re-programmable many times.

 20

 Another step took place in this field which lead to the development of the

Programmable Logic Device (PLD). These devices were constructed to implement

logic circuits. The PLD include an array of AND-gates connected to an array of OR-

gates. The PAL (Programmable Array Logic) is a commonly used PLD consisting of a

programmable AND-plane followed by a fixed OR-plane. PALs come in both mask

and field versions. The PAL was designed for small logic circuits.

 The Mask-Programmable Gate Array (MPGA) was developed to handle larger

logic circuits. A common MPGA consists of rows of transistors that can be

interconnected to implement desired logic circuits. User specified connects are

available both within the rows and between the rows. This enables implementation of

basic logic gates and the ability to interconnect the gates. As the metal layers are

defined at the manufacturer, significant time and cost are incurred in producing the

run. In 1985, Xilinx Inc. introduced the FPGA (Field Programmable gate Array). An

FPGA is a universal logic device structures as an array of user programmable logic

and I/O cells interconnected by a programmable routing network.

 There are four FPGA technologies in use: static Ram cells, anti-fuse, EPROM

transistors, and E2PROM transistors. For this discussion, we focus on the static RAM

technology on symmetrical array configuration developed by Xilinx. In the static

RAM FPGA, programmable connections are made using pass-transistors, transmission

gates, or multiplexers that are controlled by SRAM cells. Only SRAM cells allow fast

in-circuit reconfiguration for any number of times. The major disadvantage, on the

other hand, is the size requirement of the RAM technology.

3.2.1 Principle of FPGA

 21

FPGAs are based on the structure of Look-Up-Table (LUT), and LUT is essentially a

RAM. Currently, most FPGAs adopt 4-input LUT, thus each LUT can be viewed as a

16-deep and 1-bit RAM with a 4-input address line. From a schematic or VHDL code,

the synthesis tool computes all possible results and writes these results into the RAM.

address line

 out out put

The look-up-table implementation

(a) (b)

16x1 RAM

(LUT)
d

The practical logic circuit

a

d

b

c

a

b

c

Figure 3.1: A Four- Input AND Gate Example

Figure 3.1 shows a 4-input AND gate example. Sub-figure (a) describes the schematic

of the practical logic circuit of a 4-input AND gate; sub-figure (b) is the Look-Up-

Table implementation respondent to sub-figure (a).

 4-input AND Gate 16-deep and 1-bit RAM
input of “abcd” logic output address line “abcd” data in 16x1RAM

0000 0 0000 0
0001 0 0001 0
0010 0 0010 0
0011 0 0011 0
0100 0 0100 0

 0101 0 0101 0
0110 0 0110 0
0111 0 0111 0
1000 0 1000 0
1001 0 1001 0
1010 0 1010 0
1011 0 1011 0
1100 0 1100 0
1101 0 1101 0
1110 0 1110 0
1111 1 1111 1

Table 3.1: Implementing a Four-Input AND Gate with the LUT in FPGA

 22

In Table 3.1, column 1 shows the input signals “abcd” of the four-input AND gate,

column 2 shows the expected output of the four-input AND gate when input signals

are as in column 1. Column 3 shows signals on the 4-bit address line of the 16x1

RAM, column 4 shows the data stored in this 16x1 RAM and addressed by “abcd”

shown in column 3. Thus, a four-input AND gate can be implemented with the Look-

Up-Table structure in FPGA.

3.2.2 Structure of FPGA

An FPGA is an integrated circuit (IC) that can be programmed after manufacture.

Since it is re-programmable on the field, it is a kind of reconfigurable hardware.

Typical architecture of an FPGA comprises a regular array of Configurable Logic

Blocks (CLBs) with routing resources for interconnection and surrounded by

programmable Input/Output Blocks (IOBs). CLBs provide the functional elements for

constructing logic while IOBs provide the interface between the pins of the package

and the CLBs. FPGAs are widely used as a prototype before fabricating a VLSI

design, or can be used directly in a product. Figure 3.2 shows the basic structure of

Xilinx SRAM-based FPGAs.

 CLB

Interconnect Resources

 IOB

Figure 3.2: Basic Structure of Xilinx SRAM-based FPGAs

 23

The structure of Xilinx Virtex IOB is shown in Figure 3.3. The three D-type flip-flops

are synchronized on the same clock. Two of them are for input and output, and the

other one is for the control to the output tri-state buffer. The input signal can be routed

to the internal logic either directly or through an input flip-flop. A programmable delay

element at the D-input of the input flip-flop is to eliminate the pad-to-pad hold time.

Moreover, by configuring the threshold voltage Vref at the input buffer, the device

can support designs with different voltage level. Similarly, the output from the internal

logic can be routed to the pad either directly or through the optional output flip-flop.

All I/O pins involved in configuration are set to high impedance state so that the

internal logic is isolated.

T D Q
TCE CE

O D Q
OCE CE

IQ Q D Programmable Delay

CE
 Vref

SR
CLK
ICE

SR

SR

OBUFT

 PAD

I

SR

IBUF

Figure 3.3: Structure of Xilinx Virtex IOB

 24

The basic building block of the Xilinx Virtex FPGA is the Logic Cell (LC). A LC

includes a 4-input function generator, carry logic and a storage element. Each Virtex

CLB contains four LCs, organized in two slices (Figure 3.4). The 4-input function

generator are implemented as 4-input look-up tables (LUTs). Each of them can

provide the functions of one 4-input LUT or a 16x1-bit synchronous RAM(called

“distributed RAM”). Furthermore, two LUTs in a slice can be combined to create a

16x2-bit or 32x1bit synchronous RAM, or a 16x1-bit dual-port synchronous RAM

[Xil00].

 COUT COUT

YB YB
Y Y

G4 G4
G3 D Q G3 D Q

YQ YQ
G2 G2
G1 G1

BY XB BY XB

X X

P4 P4
P3 D Q P3 D Q

XQ XQ
P2 P2
P1 P1

BX BX

 CIN CIN

 Slice 0 Slice 1

LUT Carry &
Control

LUT Carry &
Control

LUT Carry &
Control

LUT Carry &
Control

Figure 3.4: Simplified Structure of Xilinx Virtex CLB

 25

Chapter 4

Current SLS SAT Hardware

Implementations

There has been considerable recent interest in the application of FPGAs as accelerators

for solving SAT problems. Most previous research on using FPGAs as accelerators for

solving SAT problems has concentrated on complete algorithms. Complete algorithms

are guaranteed to find a solution if one exists, whereas incomplete algorithms like

stochastic local search may not find a solution even if one exist as we have discussed

in Chapter 2.

 For the complete algorithms, Zhong et al. developed a design for SAT problems

utilizing the Davis-Putnam algorithm [ZMAM98a] as well as an unimplemented

design which used nonchronological backtracking [ZAMM98].

Yokoo et al [YSS96] developed a machine based on FPGAs which implemented a

tree search with forward checking for SAT problems. Implementations from

Abramovici and Saab [AS97] can also be used to solve for SAT problems. A path-

oriented decision making (PODEM) algorithm [Goe81] was used to solve for an

encoded SAT problem. This algorithm was developed primarily for Automatic Test-

Pattern Generation (ATPG) problems and does not perform quite well with SAT

problems. In addition, Suyama et al [SYS98] developed a machine with a dynamic

 26

variable ordering heuristic. These approaches are less efficient than the Davis-Putnam

procedure as stated in their paper. All of these implementations didn’t outperform state

of the art DP based algorithms.

Due to the inherent algorithm complexity of the DP SAT algorithm, it is not

feasible to extract more parallelism than the implementation in [ZMAM98a]. Our

research will focus on the FPGA implementations of WalkSAT algorithms which is a

robust family in stochastic local search. In this chapter, we first review two recent

implementations of GSAT [HTY01] and WalkSAT [Tan02]. These two

implementations can achieve “one flip per clock cycle” performance. After that,

another two implementations for GSAT [YSLL99] and WalkSAT from [LSW01] are

discussed.

4.1 One Flip per Clock Cycle for GSAT

This section reviews the implementation of GSAT given by Henz, Tan, and Yap

[HTY01]. In their work, they showed how GSAT can be implemented to be as fast as

possible in hardware. Their implementation using FPGA achieves one flip per clock

cycle by exploiting maximal parallelism and at the same time avoiding excessive

hardware cost in terms of gates.

 The speed of the GSAT implementations given in Hamadi and Merceron [HM97]

and Yung et al. [YSLL99] is limited, because only clause evaluation is parallelized but

variable scoring is not, hence the minimal depth of CHOOSE_FLIP after applying

pipelining will still have a factor of n (n is the number of variables).

In the algorithm shown in Figure 2.2, Henz et al. found that there is no

dependency between the score computation of different variables. Thus, this is

 27

obviously another parallelism opportunity. Figure 4.1 shows this naive maximum

parallelism strategy.

 procedure CHOOSE_FLIP(f, V, cnf)
 output: variable f that produces the maximum score
 par (for i := 1 to n) do /* for all variables */
 scores[i] := scoref (i, cnf, V);
 end
 return CHOOSE_MAX(scores);
 end

Figure 4.1: Basic CHOOSE_FLIP Design with Parallelized Variable Scoring

In Figure 4.1, with key word par, the algorithm compute scoref [1] to scoref [n] in

parallel. The depth of the this algorithm is O(log m) (m : the number of clauses), since

the scoref computation is bounded by O(log m + log n), the CHOOSE_MAX

computation is bounded by O(log n), and we assume n < m. While this is closer to

achieving their goal, the drawback is that the cost in gate increases by a factor of n to

O(mn2). With the exception of small problems, this design will not be practical.

In [HTY01], they turned to an alternative hardware design. The ideas are related to

the software optimizations for GSAT but the rationale is to decrease the circuit size

while keeping parallel score evaluation. The key observations are:

1. The selection of the flip variable can be done on the basis of relative

contribution to the score of that variable when flipped.

2. The number of clauses which will be affected by a change to one variable is

small and typically bounded.

In [HTY01], Henz et al. developed a new procedure as shown in Figure 4.2. As only

the affected clauses should be referred, function scorec(i, cnfc(i), V) and function

scorec(i, cnfc(i), V’[¬V(i)/i]) are used. Function scorec(i, cnfc(i), V) returns the

 28

number of clauses satisfied as a result of using a variable assignment V in cnfc(i),

while function scorec(i, cnfc(i), V’[¬V(i)/i]) returns the number of clauses satisfied as

a result of using a new variable assignment V’[¬V(i)/i]. The new variable assignment

V’[¬V(i)/i] is generated from the old variable assignment V when V is changed with

the i-the variable is flipped. The notation cnfc(i) represents the set of clauses which

contain variable i. For a particular SAT problem, cnfc(i) is constant. Thus, for each

variable i, a fixed Boolean function can be extracted from cnfc(i) in order to get

OldS[i] and NewS[i].

The bound on the maximum number of clauses per variable can be denoted by

MaxClauses. In practice, most SAT problems have also a bound on the number of

variables per clause, which can be denoted by MaxVar. For example, for 3-SAT,

MaxVars is 3. Thus, the number of gates for procedure in Figure 4.2 is O(MaxVars

MaxClauses n). The depth for it is O(log MaxClauses + log MaxVars), which for

practical SAT problems is much smaller than O(log m). One more advantage of their

design is that the circuit for scorec is also smaller because the actual size of the

numbers to be considered requires less bit.

 procedure CHOOSE_FLIP(f, V, cnf)
 output: variable f that produces the maximum score
 s1: par (for i := 1 to n) do /* for all variables */
 NewS[i] := scorec(i, cnfc(i), V’[¬V(i)/i]);
 end
 s1: par (for i := 1 to n) do /* for all variables */
 OldS[i] := scorec(i, cnfc(i), V);
 end
 s2: par (for i := 1 to n) do /* for all variables */
 Diff[i] := NewS[i] – OldS[i];
 end
 s3: f := CHOOSE_MAX(Diff);
 end

Figure 4.2: Parallel CHOOSE_FLIP with Relative Scoring

 29

With the above procedure the innermost loop of GSAT is over flips. Unfortunately, it

is not possible to pipeline the different flip iterations of CHOOSE_FLIP, since each

iteration is dependent on the flip of the previous iteration. Instead, pipelining the outer

loop of the procedure show in Figure 2.1 is available, which is called multi-try

pipelining in [HTY01]. Since there is no dependency between different tries in GSAT,

essentially one can parallelize each try independently. Each pipeline stage deals in

parallel with the work for a different try. For simplicity, maxtries should be a multiple

of the number of stages in the pipeline.

In practice, in the actual implementation it is feasible in one clock cycle to

accommodate the scorec for all variables. Therefore, to achieve one flip per clock

cycle for GSAT is only need to allocate each design block in the procedure in Figure

4.2 to a pipeline stage s, leading to a pipeline with four stages. The first three stages,

s1 to s3 are labeled in the procedure in Figure 4.2. The last stage, s4, which is not in

the CHOOSE_FLIP procedure, is the circuit to make actual flip. This is illustrated in

Figure 4.3, where procedure in Figure 4.2 is implemented as a four-stage pipeline

which gives one flip per clock cycle.

Tries time1 time2 time3 time4 time5 time6 time7 time8 …
Try1 s1 s2 s3 s4 s1 S2 s3 s4 …
Try2 s1 s2 s3 s4 S1 s2 s3 …
Try3 s1 s2 s3 S4 s1 s2 …
Try4 s1 s2 S3 s4 s1 …

Figure 4.3: A Four Stage Pipeline for GSAT

4.2 One Flip per Clock Cycle for WalkSAT

In this section, we review another FPGA-based implementation which is of WalkSAT

algorithm and also achieved one flip per clock cycle in [Tan02].

 30

The WalkSAT algorithm is technically an offspring of a GSAT variant, GSAT

with random walk [SKC94]. For this reason, Tan et al. [Tan02] adapted many

implementation details from GSAT in [HTY01] which is reviewed in the previous

section. The algorithm they used is as the procedure shown in Figure 2.3, and they set

the noise parameter N to 0%.

WalkSAT uses a function scoreb that counts for the number of clause that will be

unsatisfied when a variable is flipped. It is found that the clause evaluation as the

procedure in Figure 4.1 is ideal for a fast WalkSAT solver design. For GSAT, the

procedure in Figure 4.1 is truly impractical due to the large size increase to a factor of

n. But for a WalkSAT implementation of a 3-SAT problem, the increase of the

hardware size is only a factor of 3.

 Figure 4.4 shows the complete instance-specific WalkSAT hardware design in

[Tan02]. The main computation is divided into six data dependent stages, labeled s1 to

s6. In stage s1, the function CHOOSE_ONE selects one unsatisfied clause c from Cp

using uniform distribution; Cp contains the sequence of unsatisfied clauses from the

last iteration. This stage also determines whether the last iteration has produced a

satisfying solution; all the clauses are satisfied when SUM(Cp) is equal to zero. For

the next stage s2, the VARIABLE_LIST(Vp, j, i) returns the variable sequence V’p

with the i-th variable in clause j inverted. It is assumed that there are three variables

per clause, therefore, there are V[1], V[2], V[3] to store the variable assignments with

different variable flipped. The next stage s3 evaluates the variable assignments to the

cnf and then forms a list of unsatisfied clauses for each of the variable assignments.

Stage s4 computes for the scoreb for each of the three variable assignments (Function

scoreb is discussed in Section 2.2). The next stage s5 determines the variable

assignment that produced the least scoreb. In the next stage s6, the new variable

 31

assignment will be updated, as well as the list of unsatisfied clauses. This loop would

repeat until a satisfying solution is found or the maxflips number of iterations is

reached.

 MAIN():
 Vp := RECEIVE_INITIAL_ASSIGNMENT();
 Cp := {1: j ∈ [1…m]};
 for i := 1 to maxflips do
 s1: par{
 if SUM(Cp) = 0 then BREAK;
 c := CHOOSE_ONE(Cp);
 };
 s2: par{
 V[1] := VARIABLE_LIST(Vp, c, 1);
 V[2] := VARIABLE_LIST(Vp, c, 2);
 V[3] := VARIABLE_LIST(Vp, c, 3);
 };
 s3: par{
 C[1] := {¬EVALj(V[1]) : j ∈ [1…m]};
 C[2] := {¬EVALj(V[2]) : j ∈ [1…m]};
 C[3] := {¬EVALj(V[3]) : j ∈ [1…m]};
 }
 s4: par{
 S[1] := SUM(¬Cp∧C[1]);
 S[2] := SUM(¬Cp∧C[2]);
 S[3] := SUM(¬Cp∧C[3]);
 }
 s5: i := OBTAIN_MIN_INDEX(S);
 s6: par{
 Vp := V[i];
 Cp := C[i];
 }
 end;
 SEND_ASSIGNMENT(Vp)

Figure 4.4: Instance Specific Implementation of the WalkSAT Algorithm

 32

As we can see from the procedure in Figure 4.4, the innermost loop of WalkSAT is

also over flips. Just like the implementation of GSAT, it is impossible to pipeline the

different flip iterations of CHOOSE_FLIP since the data dependency between the

consecutive flips. Instead, pipelining the outer loop of the procedure show in Figure

2.1 is also available for WalkSAT, which is called multi-try pipelining in [HTY01].

Since there is no dependency between different tries in WalkSAT, essentially one can

parallelize each try independently, in this way, one flip per clock cycle for WalkSAT

is achieved.

4.3 GSAT Variant by Yung et al.

In this section, we will review another FPGA-based GSAT implementation which was

given by Yung et al. [YSLL99].

Although the implementations discussed in section 4.1 and 4.2 can run at one flip

per clock cycle and can get performance gains of about two orders of magnitude over

software, their approach are not practical as a general SAT problem solver, because

the time to re-synthesize, place and route the new design for a new SAT problem is

likely to significantly exceed the runtime improvement from the faster solvers. In

section 4.3 and 4.4, we will review two implementations which address this problem.

From 1999, bitstream reconfigurable systems have been employed to address the

re-synthesis problem occurring in instance-specific implementations for solving SAT

problems. In [YSL99], Yung et al. provide a method of modifying the bitstream in a

problem specific fashion without requiring re-synthesis. Like [ASS99], the runtime

configurable systems in [YSL99] also used Xilinx XC6200 series devices [Xil6200]

which document the manner in which the bitstream relates to the hardware of the

device. However, XC6200 devices have been discontinued by Xilinx and also have

 33

very small logic capability (The largest reported bitstream reconfigurable system only

supports 13 variables and 29 clauses [ASS99].).

The difference in the work by Yung et al. [YSLL99] is the use of partial re-

synthesis of the design that bypasses the synthesis. Their design technique is only

possible with two assumptions. First, the device vendor like in their case Xilinx Inc.

has provided enough information to reconstruct their configuration file for the Xilinx

XC6216 FPGA. Secondly, the changes to their design should be simple and should do

not affect the timing constraints

 Yung et al. was able to provide partial reconfiguration to the FPGA given the

advantage of knowing how to construct the configuration file. Their approach allows

reconfiguration that skips the synthesis tool and allows directly changing the

configuration of the FPGA. Current FPGA chips do not provide an open architecture

thus rendering this technique useless. Xilinx has currently announced that they would

release future FPGA chips that would allow partial reconfiguration. Partial

reconfiguration will allow CLB rows to be configured separately and could reduce

synthesis time by a factor. This technology has yet to come out and it would improve

the performance of instance-specific design implementation.

Since the algorithm used in [YSLL99] was patterned after the algorithm provided

by Sleman, Levesque and Mitchell in [SLM92] rather than the optimized version as in

GSAT41 [Hoo96], the respondent FPGA-based implementation in [YSLL99], like that

in [HM97], was not fully parallelized. Thus the implementation in [YSLL99] didn’t

provide enough performance increase compared with the GSAT implementation we

discussed in the previous section which significantly improved over GSAT41 running

on fast CPUs.

 34

4.4 WalkSAT based on ROM Array

In 2001, Leong et al. [LSW01] achieved a bitstream reconfigurable FPGA

implementation for WalkSAT. The algorithm they adopted is as the procedure shown

in Figure 2.3. In their implementations, the noise N is set to 100%. Their

implementation stores clauses for a SAT problem in the 16x1-bit ROM available in the

Logic Cells (LCs) of the Xilinx FPGA. A different SAT instance requires various

ROM definitions to be modified. Normally this would require re-synthesis of the

FPGA to generate a new bitstream configuration for downloading. Leong et al. were

able to achieve an implementation without requiring re-synthesis by designing a

transformer for the ROM configuration.

 In their scheme, the circuit is designed in the normal fashion and the ROMs can be

placed at arbitrary locations. After synthesis, technology mapping, placing and

routing, a circuit description file (for the Xilinx tools, this file has an extension .ncd

which means Native Circuit Description.) is generated. This file can be opened with

Xilinx tool FPGA Editor. FPGA Editor is a graphical application for displaying and

configuring FPGAs. The FPGA Editor can read from and write to NCD files, macro

files (NMC), and Physical Constraints Files (PCF). Under the environment of FPGA

Editor, the names and physical locations of those LCs, by which the ROM arrays of

the clause checker are implemented, can be found.

At the same time, with another kind of Xilinx tool named ncd2xdl, the binary-

format bitstream file .ncd, which stores the contents of the circuit, can be converted

into a human readable format, and then, with the information regarding the names and

the physical locations of the LCs of the ROM array acquired under FPGA Editor, data

stored in these LCs can be extracted and modified.

 35

In [LSW01], a program was written which takes as input the normal .ncd file and

the specification of a specific SAT problem in the standard DIMACS benchmark

format [DIMACS]. For each SAT problem, this transformer designed modifies the

bitstream .ncd file according to the SAT problem specification by customizing the

ROM values and recomputed the Cyclic Redundant Check (CRC) of the .ncd file.

After that, the resulting bitstream file .bit generated by Xilinx tool bitgen can be

downloaded to a Virtex FPGA to find a solution for this SAT problem instance.

 In their scheme, they elect to recalculate the CRC checksum inside their software

transformer. In this way, they can avoid running the Design Rules Checker (DRC)

when recreating the configuration .bit file. CRC bits are checksum bits that the FPGA

uses to verify that the bitstream transmitted correctly.

 This approach requires analysis of the bitstream .ncd file to figure out how to

rebuild the configuration without re-synthesis. Like [YSLL99], the implementation in

[LSW01] simulates re-synthesis in a very efficient fashion. However, it is also

dependent on the ability to modify the FPGA configuration.

 36

Chapter 5

Clause Evaluator without Re-Synthesis

Instance specific implementations for SAT problems have provided an outstanding

performance from their compact sizes. This is achieved by using a customized design

that is specific for each problem. The disadvantage of these implementations is that a

high level description of a circuit customized for a particular SAT problem is needed.

In order to execute the design, an entire iteration of the synthesis, map, place and route

(P&R) cycle was required for each problem. These steps are time consuming (it can

take several hours to synthesize, map, place and route a large design.) and preclude

their use in real time systems. Our goal is to develop a general system which avoids

these steps. We develop a general clause evaluator for WalkSAT solvers, which fits

well within an FPGA architecture and can be reconfigured according to different SAT

problems quickly in a portable fashion. In this Chapter, Section 5.1 discusses the

compilation (synthesis) time on current platform in order to demonstrate the

shortcoming of the instance-specific implementations. Section 5.2 describes our

general clause evaluator.

 37

5.1 Compilation Time on Current Platform

For instance-specific designs, since the circuit is generated according to the specific

SAT problem to be solved, the problem solving time should take into account

compilation time. In this section, we investigate the actual compilation time for

instance-specific designs by reviewing the implementations which achieved one flip

per clock cycle in [Tan02]. These implementations are based on GSAT and WalkSAT

strategies respectively.

As shown in Table 5.1 and Table 5.2, for instance-specific implementations using

FPGAs, the following steps contribute to the total compilation time.

 1. Handel-C Synthesis (Syn): This is a process called logic synthesis

which compiles a Handel-C project into a Electronic Design Interface Format

(EDIF) netlist file. EDIF netlist is a standard netlist format which describes a

circuit including the basic elements and their connections. This process takes

the Handel-C project as input and then generates the circuit structure

implementing the functions described in the Handel-C.

 2. Xilinx mapping (Map): The EDIF netlist uses generic constructs to

describe the circuit while the FPGAs have their own logic functional units.

For example, a netlist can express combinational circuits in terms of AND,

OR and inverter gates. The target FPGA uses the CLBs to realize logic

functions. Fitting the logic gates into the LUTs in the CLBs is called

technology mapping. After mapping, the circuit is represented by the

functions of the CLBs and the routing newtwork between these CLBs.

 3. Xilinx placement and routing (Par): This is the placement and routing

of physical design. The task of placement is to determine the location of the

 38

logic functions on the target FPGA. The placement of the logic functions

should facilitate later routing. A good placement should minimize the routing

congestion and routing delay. Typically, placement is optimized through

iterative improvement after an initial constructive placement. With the logic

elements in place, routing takes care of creating the connections between

these elements. Since the routing resources are limited, there is no guarantee

that a circuit can be routed. It may take several tries to get an acceptable

routing.

 4. Xilinx bitstream generation (Bitg): After the logic functions and routing

are all determined, Xilinx’s bitstream generation program, BitGen, takes a

fully routed circuit description file as its input and produces a configuration

bitstream – a binary file. This bitstream file contains all of the configuration

information.

 5. Download configuration: This process download the bitstream file into

the FPGA’s memory cell. On our current AMD Athlon 1.2GHz CPU it takes

about 0.14 seconds or so.

SAT Problems Var Cla Slices Syn
(min)

Map
(min)

Par
(min)

Bitg
(min)

Total
(min)

uf20-01 20 91 17% 10 1 2 2 15
aim-50-1_6-yes1-1 50 80 18% 10 1 1 2 14
aim-50-2_0-yes1-1 50 100 20% 13 1 2 2 18
aim-50-3_4-yes1-1 50 170 31% 40 3 3 2 48
aim-50-6_0-yes1-1 50 300 54% 171 6 6 2 185
aim-100-1_6-yes1-1 100 160 34% 43 3 4 2 52
aim-100-2_0-yes1-1 100 200 40% 63 5 4 2 74
aim-100-3_4-yes1-1 100 340 64% 199 11 14 2 226
flat30-01 90 300 57% 198 7 8 2 217
BMS_k3_n100_m429_0 100 286 56% 199 7 8 2 216
RTI_k3_n100_429_0 100 429 79% 293 19 12 2 326
uf50-01 50 218 39% 55 5 3 2 65
uf100-01 100 430 89% 294 19 12 2 327

Table 5.1: Time Spent on Re-synthesis for GSAT in Section 4.1

 39

Table 5.1 shows the time spent on these steps for different problems for instance-

specific one flip per clock cycle implementation for GSAT achieved in [HTY01].

Table 5.2 shows the time spent on the re-synthesis steps for different problems for the

instance-specific one flip per clock implementation for WalkSAT achieved in [Tan02].

 The compilation tools used in both Table 5.1 and Table 5.2 are Celoxica’s Handel-

C 3.0 and Xilinx Foundation Series ISE 3.1i; and the PC on which these tools ran is of

an AMD Athlon 1.2GHz CPU.

 Table 5.1 and Table 5.2 demonstrate compile-time statistics for two subsets of the

SAT suite. The total compilation time to generate hardware solution for a specific big

SAT problem can be of several hours for big problems.

SAT Problem Var Cla Slices Syn
(min)

Map
(min)

Par
(min)

Bitg
(min)

Total
(min)

aim-100-1_6-yes1-1 100 160 28% 13 2 2 2 19
aim-100-2_0-yes1-1 100 200 25% 13 2 2 2 19
aim-100-3_4-yes1-1 100 340 38% 18 11 2 2 34
aim-100-6_0-yes1-1 100 600 51% 33 6 4 2 45
aim-200-1_6-yes1-1 200 320 52% 74 7 5 2 88
aim-200-2_0-yes1-1 200 400 53% 79 5 5 2 91
aim-200-3_4-yes1-1 200 680 74% 113 21 8 2 144
aim-200-6_0-yes1-1 200 1200 99% 170 94 52 2 318
aim-50-1_6-yes1-1 50 80 14% 3 1 1 2 7
aim-50-2_0-yes1-1 50 100 15% 4 1 1 2 8
aim-50-3_4-yes1-1 50 170 20% 5 2 1 2 10
aim-50-6_0-yes1-1 50 300 27% 8 3 2 2 15
BMS_k3_n100_m429_0 100 286 37% 25 3 3 2 33
Flat30-1 90 300 29% 13 3 2 2 20
RTI_k3_n100_m429_0 100 429 48% 33 4 4 2 43
uf100-01 100 430 47% 23 4 4 2 33
uf200-01 200 860 96% 120 31 14 2 167
uf20-01 20 91 12% 2 1 1 2 6
uf50-01 50 218 24% 6 2 1 2 11

Table 5.2: Time Spent on Re-synthesis for WalkSAT in Section 4.2

 40

Since the compilation time is on the order of hours, the implementations in [Tan02]

will not provide practical speedups for problems that can be solved in minutes or less

by software approach. As we can see from Table 5.1 and Table 5.2, for instance-

specific implementations, basically the hardware space cost is proportional to the size

of the SAT problem; and the more the space cost, the longer the compilation time.

Figure 5.1 and Figure 5.2 demonstrate a relation between the space cost of a design

and the compilation time of this design.

 As we can see, hardware compilation problems such as optimal partitioning and

placement are quite complicated, and hardware compilation time can be on order of

hours, research for means to reduce synthesis time is being done. Our method is to

develop a general clause evaluator in WalkSAT rather than instance-specific, which

fits well within an FPGA architecture and can be reconfigured quickly in a portable

fashion.

30 40

300 min

90 100

100 min

200 min

50 60 70 8010 20

Figure 5.1: Space Cost & Compilation Time for GSAT Instance-Specific Designs

 41

20 30 40

300 min

90 100

100 min

200 min

50 60 70 8010

Figure 5.2: Space Cost & Compilation Time for WalkSAT Instance-Specific Designs

5.2 A General Clause Evaluator

As we have discussed in the previous section, the compilation overhead limits the

usage of instance-specific implementations. Our method is to develop a general clause

evaluator in a SAT solver, which avoids those re-synthesis steps described in Section

5.1, and at the same time this clause evaluator should fit well in an FPGA architecture

and can be reconfigured quickly in a portable fashion.

5.2.1 Decompose one Clause into Small Boolean

 Function Blocks

In our design, we will focus on the Xilinx Virtex FPGA chips. As we mentioned in

Chapter 3, two LUTs in a slice can be combined to create a 16x1-bit dual port RAM.

 42

Our clause evaluator represents the clauses in a SAT instance in a 16x1-bit dual port

RAM array, which can be generated from the Xilinx RAM16x1D primitive.

5.2.1.1 Function of RAM16X1D

RAM16x1D is a 16-word by 1-bit static dual port random access memory with

synchronous write capability. The device has two separate address ports: the read

address port (DPRA3 – DPRA0) and the write/read address port (A3 – A0). These two

address ports are completely asynchronous. The read address controls the location of

the data driven out of the output pin (DPO), and the write/read address controls the

destination of a valid write transaction and also the data driven out of the output pin

(SPO). This means SPO output reflects the data in the memory cell addressed by A3–

A0. DPO output reflects the data in the memory cell addressed by DPRA3–DPRA0.

The write process on the write/read port won’t be affected by the address on the read

address port. Figure 5.3 shows the external pins of RAM16x1D. Figure 5.4 gives the

function block diagram of RAM16x1D.

 Inputs Outputs

WE (mode) WCLK D SPO DPO

0 (read) X X data_a data_d

1 (read) 0 X data_a data_d

1 (read) 1 X data_a data_d

1 (write) D D data_d

1 (read) X data_a data_d

data_a = word addressed by bits A3-A0
data_d = word addressed by bits DPRA3-DPRA0

WE RAM16X1D SPO
D

WCLK DPO
A0
A1
A2
A3

DPRA0
DPRA1
DPRA2
DPRA3

 Figure 5.3: External Pins Table 5.3: Mode Selection of RAM16x1D

 43

 4

..

16x1

4 4 RAM

..

 WE WRITE READ
 D CONTROL OUT

..

16x1
RAM 4

..

 WRITE READ
CONTROL OUT

DPO

DPRA[3:0]
WRITE
ROW

SLELECT

WRITE
ROW

SLELECT

READ
ROW

SLELECT

READ
ROW

SLELECT

SPO

I
N
P
U
T

R
E
G
I
S
T
E
R

 WCLK

 A[3:0]

Figure 5.4: Function Block Diagram of RAM16x1D

When the write enable (WE) is Low, transitions on the write clock (WCLK) are

ignored and data stored in the RAM is not affected. If we assume an active-High

WCLK, when WE is high, any positive transition on WCLK loads the data on the data

input (D) into the word selected by the 4-bit write address. For predictable

performance, write address and data inputs must be stable before a Low-to-High

transition. Table 5.3 shows the mode selection for RAM16X1D. WCLK can be active-

High or active-Low.

 44

5.2.1.2 Map Boolean Functions to RAM16x1Ds

After describing the function of RAM16x1D, we describe how to map a clause in a

SAT problem to RAM16x1Ds by an example. Consider a SAT clause, c3, of the form,

x1 ∨ x2 ∨ ¬x15, and let us assume that c3 is a clause of a SAT problem over 20

variables. The clause can be written as f3,0(x0, x1, x2, x3) ∨ f3,1(x4, x5, x6, x7) ∨

f3,2(x8, x9, x10, x11) ∨ f3,3(x12, x13, x14, x15) ∨ f3,4(x16, x17, x18, x19), where

f3,0(x0, x1, x2, x3) = x1 ∨ x2, f3,1(x4, x5, x6, x7) = FALSE, f3,2(x8, x9, x10, x11) =

FALSE, f3,3(x12, x13, x14, x15) = ¬x15, f3,4(x16, x17, x18, x19) = FALSE; thus,

clause c3 can be decomposed into a disjunction of 5 small Boolean functions, each of

these functions is over four consecutive Boolean variables. In this way, all the clauses

of a SAT problem can be decomposed into a set of small Boolean functions.

a row of 5 RAM16x1Ds respondent to clause : x1 ∨ x2 ∨ ¬x15 signals
on address
A3A2A1A0

RAM_0 RAM_1 RAM_2 RAM_3 RAM_4

x0x1x2x3 x4x5x6x7 x8x9x10x11 x12x13x14x15 x16x17x18x19Input signal
of each small
function block

x1 ∨ x2 FALSE FALSE ¬x15 FALSE

0000 0 0 0 1 0
0001 0 0 0 0 0
0010 1 0 0 1 0
0011 1 0 0 0 0
0100 1 0 0 1 0
0101 1 0 0 0 0
0110 1 0 0 1 0
0111 1 0 0 0 0
1000 0 0 0 1 0
1001 0 0 0 0 0
1010 1 0 0 1 0
1011 1 0 0 0 0
1100 1 0 0 1 0
1101 1 0 0 0 0
1110 1 0 0 1 0
1111 1 0 0 0 0

Table 5.4: Decompose a Clause into Small Boolean Function Blocks

 45

We map each Boolean function fi,j arising from the j-th part of clause i to a

RAM16x1D primitive, treating the four variables as the address to the read port

(DPRA3 – DPRA0). The function fi,j is configured by using the write port (A3 – A0)

to define its truth table. Note that one advantage of this representation is that negated

variables are handled automatically inside the fi,j function block.

 Table 5.4 shows the truth tables of the 5 Boolean functions whose disjunction

represents the clause c3 we mentioned above.

5.2.2 Hierarchical Structure of our Clause Evaluator

In the previous section, we described the principle of our general clause evaluator.

With this principle, we can construct a clause whose variables vary over all the

variables occurring in a SAT problem. In this section, we develop our general clause

evaluator without requiring re-synthesis.

 First of all, since more detailed descriptions in the register-transfer level (RTL)

can be available in VHSIC (an acronym for Very High Speed Integrared Circuits)

Hardware Description Language (VHDL), we designed our general clause evaluator in

VHDL language. VHDL is a hardware description language that can be used to model

a digital system. The digital system can be as simple as a logic gate or as complex as a

complete electronic system. A hardware abstraction of this digital system is called

entity. An entity X, when used in another entity Y, becomes a component for entity Y.

Therefore, a component is also an entity, depending on the level at which you are

trying to model. VHDL supports three basic different description styles: structural,

dataflow, and behavioral.

 46

 Our clause evaluator is of hierarchical design and expressed in combination of

these three descriptive styles. To understand our structural style of modeling, we

should first understand the concept of entity in VHDL.

 In structural design, an entity is modeled as a set of components connected by

signals, that is, as a netlist. The behavior of the entity is not explicitly apparent from its

structural model. The component instantiation statement is the primary mechanism

used for describing structural model of an entity.

 Our clause evaluator is hierarchically a three-level design. In this design, we

developed three kinds of entities (components), plus a Xilinx RAM16x1D entity. The

entity declaration specifies the name of the entity being modeled and lists the set of

interface port. Ports are signals through which the entity communicates with the other

models in its external environment. Our final clause evaluator is for up to 100

variables and 220 clauses. (See the Appendix for the declarations of the entities in our

final clause evaluator.)

 Figure 5.5 shows the relationship of the four entities inside our clause evaluator.

Entity clause_checker has its architecture body clause_checker_A. In our design,

architecture body clause_checker_A is a purely structural model with a hierarchy of

three levels, and clause_checker_A itself is of the top-level. It contains 221

components, one is called ctrl, while the other 220 components are named clause_0,

clause_1, … , clause_219.

The dashed lines represent the bindings of components used in the architecture

body with other entities. Component ctrl in architecture body clause_checker_A is

bound to entity cc_ctrl; component clause_0, clause_1, … , clause_219 are all bound

to entity cc_clause. Architectures of both entity cc_trl and entity cc_clause are of

second-level.

 47

The architecture body of entity cc_ctrl is cc_trl_A. It is of a mixed style of

behavioral modeling and dataflow modeling, its function will be discussed in Section

5.2.3.

The architecture body of entity cc_clause is cc_clause_A. It is of a mixed style of

structural modeling and behavioral modeling. Inside cc_clause_A, component ram_0,

ram_1, … , ram_24 are all bound to entity ram16x1d.

Hierarchically, the architecture body of entity ram16x1d, ram16x1d_A, is of third

level. We have discussed the function of ram16x1d in Section 5.2.1.

 Figure 5.6 shows the structure of the i_th clause in our clause evaluator. Since our

clause evaluator is for SAT problems of up to 100-variable/220-clause, each clause is

over 100 variables, thus it takes 100/4 = 25 RAM16x1Ds to store the Boolean function

truth tables for each clause.

 In Figure 5.6, 4-bit address line ADDR[11..8] are connected to the write address

line A3-A0 of all the 25 RAM16x1Ds. Data line row_wdata[0], row_wdata[1], …,

row_wdata[24] are connected to the data input Ds of the 25 RAM16X1Ds in the

clause row consecutively. V0, V1, …, V99 are connected to the 4-bit read address line

DPRA3-DPRA0s of the 25 RAM16X1d in each clasue row 4 by 4 consecutively. 25

DPOs in this clause row are “Or”ed together, the output of the 25-input OR gate is

connected to row_out[i], i means the i-th clause. ROW_WEN[i] is the write enable

signal comes from the read/write controller (see Section 5.2.3).

 Figure 5.7 shows the entire structure of our general clause evaluator for SAT

problems up to 100 variables and 220 clauses. Our clause evaluator evaluates

all_clauses[0] to all_clauses[219] in parallel in one clock cycle.

 48

Clause_0: ……

Clause_1: ……

Clause_219: ……

ram_0:…..

ram_1:….. Second-
 Level

ram_24:….

cc_clause_A cc_ctrl_A

 Third-
 Level

 ram16x1d_A

Entity RAM16X1D

…
…

..

second-
Level

ctrl:…

…
…

..
clause_checker_A

Entity clause_checker

Entity cc_clause

Top-
Level

Entity cc_ctrl

Figure 5.5: Hierarchy of a General Clause Evaluator

 49

ADDR [11] A3 DPO
ADDR [10] A2
ADDR [9] A1 SPO
ADDR [8] A0

row _wdata [0] D RAM16x1D
V0 DPRA3
V1 DPRA2
V2 DPRA1
V3 DPRA0 WE CLK

A3 DPO
A2
A1 SPO
A0

row _wdata [1]
D RAM16x1D

V4 DPRA3
V5 DPRA2
V6 DPRA1
V7 DPRA0 WE CLK

A3 DPO
A2
A1 SPO
A0

row _wdata [2]
D RAM16x1D

V8 DPRA3
V9 DPRA2
V10 DPRA1
V11 DPRA0 WE CLK 25 input OR

 row_out [i]
…

A3 DPO
A2
A1 SPO
A0

row _wdata [2]
D RAM16x1D

V12 DPRA3
V13 DPRA2
V14 DPRA1
V15 DPRA0 WE CLK

A3 DPO
A2
A1 SPO
A0

row _wdata [24]
D RAM16x1D

V96 DPRA3
V97 DPRA2
V98 DPRA1
V99 DPRA0 WE CLK

 CLOCK
 row_wen [i]

.
.

.
.

.

Figure 5.6: Structure of Clause i

 50

ADDR[11]
ADDR[10] row_out all_clauses[0]
ADDR[9]
ADDR[8]

row_wdata[24..0]

v[99..0] row_wen clock

 row_wen[0]

row_out all_clauses[1]

 row_wen clock

 row_wen[1]

row_out all_clauses[2]

 row_wen clock

 row_wen[2]

row_out all_clauses[3]

 row_wen clock

 row_wen[3]

row_out all_clauses[219]

 row_wen clock
CLOCK

 row_wen[219]

CLAUSE_219

. .
 .

.

CLAUSE_0

CLAUSE_1

CLAUSE_2

CLAUSE_3

Figure 5.7: Structure of our General Clause Evaluator

 51

5.2.3 Control Logic inside our Clause Evaluator

addr [11..0] row_wen [219..0]
rwn row_waddr [99..0]

wdata [24..0] rdata [24..0]
clock
reset

cc_sel row_rdata [219..0] [24..0]

cc_rdy

Read/Write
Controller

Figure 5.8: External Connections of Read/Write Controller

Figure 5.8 shows the external connections of the read/write controller around the

220x25 RAM16x1D arrays of our clause evaluator.

-- write cycle

row_wen[219..i+1]
row_wen[i-1..0]

-- clk

-- cc.sel

rwn

wdata

addr [11..0]

row_wen[i]

Figure 5.9: Waveform of Write Cycle

 52

Figure 5.9 demonstrates the waveform of the write process. Signal cc_sel is the

clause_checker ram array select signal, the clause_cheker ram array is selected when

this signal is high. If we want to write data into the ram array of the clause checker,

we should first set cc_sel to high level. After setting this signal we should flip

read/write control signal rwn from high level to low level (we define this signal is a

high active read signal that means: if it is high, data will be read out from the clause

checker; if it is low, data will be write into the clause checker.). The controller has

addr[11..0] as its address input. Among the 12 signals, addr[7..0] select which clause

among the 220 clauses will be written, while addr[11..8] select one unit from the 16

units of each RAM16X1D. During each write clock cycle, 25-bit data on the writing

date line wdata[24..0] will be written into the 25 RAM16X1Ds in parallel. Each bit

represents the content of the unit addressed by addr[11..8] of the respondent

RAM16x1D. Since we connect addr[11..8] to the 4-bit write port A3 – A0 of all 25

RAM16X1Ds in each clause and connect wdata[24..0] to the input D pin of all the 25

RAM16X1D in this same clause, when we flip write clock from low to high, the 25-bit

data wdata[24..0] will be written into each unit of the 25 RAM16X1d in the selected

clause respectively.

Besides the write logic inside the controller, we also designed read logic whose

function is to read the data addressed by the write address port A3 – A0. Although in

our SAT implementations we needn’t to read data from this port, but during the

process of system development, we can use this read function to read the data we have

already written into the RAM16X1D in order to check if our write function works

correctly.

 53

Chapter 6

Implementation Platform

For this chapter, we discuss the implementation platform in order to give enough

background information to issues that influenced the development of the designs. In

both of our implementations that we will discuss in this chapter, we divide the system

into a software programming part and a hardware design part. The software program,

which includes the FPGA software driver, were written in the “C++” language and

compiled using the “Microsoft Visual C++” version 6.0. On the other hand, the

hardware part is designed using a combination of a new high-level hardware

programming language Handel-C and VHDL. In section 6.1, we firstly introduce

Handel-C and VHDL, then we discuss the combination of these two languages.

Section 6.2 gives the configuration of the RC1000-PP prototype board developed by

Celoxica which is used as target FPGA platform of our implementations.

6.1 Handel-C vs. VHDL

6.1.1 The Handel-C Programming Language

 54

Handel-C is a programming language for rapid prototyping of synchronous hardware

designs that uses a similar syntax with conventional “C” with the addition of inherent

parallelism. The output from Handel-C is a file that is used to create the configuration

data for FPGAs.

 The C-like syntax makes the tool appealing to software engineers with little or no

experience of hardware. They can quickly translate a software algorithm into

hardware, without having to learn about VHDL or FPGAs in detail. Fundamentally, as

a functional language, Handel-C allows you to code complex algorithms without

having to consider lower-level designs. Using Handel-C constructs, the development

cycle for the creation and testing of FPGA designs can be accelerated. In addition, the

package includes a library of basic functions and a memory controller to access the

external memory on the FPGA board.

 The timing model used by Handel-C is relatively simple and adheres to an idea

that all instructions execute in one clock cycle. Handel-C allows arbitrary length for

sequences and includes a parallel construction which can easily implement the parallel

evaluation for these sequences. As individual statements execute in one clock cycle,

the sequencing for instructions and loops fits accordingly. Variables are declared with

fixed bit sizes, which is consistent with O(1) assumptions for operations on integers.

Handle-C is convenient for rapid prototyping as we observed a shorter development

cycle than with traditional hardware design languages such as VHDL or Verilog.

While VHDL and Verilog give finer control and possibly better performance, the

GSAT implementations in [HTY01] demonstrated the efficiency of Handel-C designs.

6.1.2 VHDL Language Issues

 55

VHDL is a hardware description language that can be used to model a digital system at

many levels of abstraction, ranging from the algorithmic level to the gate level. The

complexity of the digital system being modeled could vary from that of a simple gate

to a complete digital electronic system, or anything in between. The digital system can

also be described hierarchically. Timing can also be explicitly modeled in the same

description.

VHDL is a language, strongly influenced by Ada and Modula-2, originally

intended for hardware documentation and modeling, whereupon due to growing

popularity it was standardized in 1987.

 VHDL is widely adopted as hardware modeling and design language in current

electronic industry. VHDL features in hierarchical structures and both behavior and

Register Transfer level (RTL) modeling and simulation.

 However, VHDL does not completely succeed in abstracting from hardware and

indeed requires knowledge of circuitry. VHDL talks of components, sensitivity to

signals, and ports. There is also a timing model which specifies the time allocated to

statements when simulating code.

 Normally, more detailed descriptions in the register-transfer level (RTL) of VHDL

are instantiated as components at the structural level. One approach to VHDL’s rich

expressiveness is to write only in structured VHDL whereby components from a pre-

written library are selected from within the code. In particular, at RTL a restricted set

of VHDL constructs can be employed to suit a particular synthesizer toolkit. Thus, in

practice, VHDL introduces a multi-stepped programming environment.

 While VHDL development follows the code, compile, execute cycle common with

software development, the runtime environment is a hardware simulator instead of a

host microprocessor. VHDL code once checked for syntax and type integrity will be

 56

compiled into a repository of hardware entities. Simulation consists of executing the

top-level hardware entity (the test bench) and saving the time ordered sequence of

events and outputs generated by test bench stimuli. Subsequent analysis and

verification is facilitated by a variety of waveform viewers and output capture tools.

However, it is essential to check correct working by means of runtime capture and

verification routines coded into test bench modules, as visual checking of waveform

display is insufficient.

 Once stimulation has verified the functional correctness of VHDL source, the next

phase is Logic Synthesis. Historically, synthesis was the step of translating the top-

level design into a schematic diagram of gates and flip-flops. Software synthesis tools

now automate this process by compiling source code into a netlist of gates and gate

interconnections. The final stage involves passing the netlist into a layout tools, which

is responsible for mapping logic onto device resources.

6.1.3 Discussion

Handel-C is best suited to rapid prototyping and proof of concept engineering rather

than high-performance, optimal solutions. Handel-C allows hardware to be

implemented without a digital background, although awareness of the underlying

synchronous finite machine model and digital design tradeoffs is beneficial. The par

statement in Handel-C provides a flexible and code-efficient mechanism for specifying

parallelism of arbitrary granularity.

 Specification at behavioral-level in Handel-C minimizes the amount of code

compared to VHDL and insulates the software engineer from low-level hardware

detail. The trade-off is that the Handel-C compiler controls implementation detail so

there is no opportunity to perform the gate-level optimization that is available to

 57

VHDL-trained engineers. Consequently, gate counts may be higher than a VHDL

solution, and the inability to dictate logic to the FPGA technology mapping can result

in lower clock speeds.

 Handel-C is a product which has only just made the transition from a research

phase to commercial exploitation. There has probably simply not been time to develop

extensive support for modularity and debugging facilities, as is present in VHDL

toolkits. As larger-scale projects are tackled, these two issues will become significant.

Equally, long place-and-route times will make debugging aids imperative as programs

become larger.

6.1.4 Combination of Handel-C and VHDL

Although there does a convergence of opinion now favor high-level languages as a

means of creating high-level behavioral models for hardware and system-on-a-chip

designers prefer C/C++ because partitioning between hardware and software can

remain uncommitted for a longer time, we still choose a combination of Handel-C and

VHDL as our hardware implementation platform.

 There are two major advantages of this combination. Firstly, a number of

macro procedures written in Handel-C are provided with the RC1000-PP

prototype board which we used as our FPGA platform. These macros include:

memory access macros which can be used to request ownership of one or more

memory banks, to access the external memory banks on an RC1000-PP card, to

release ownership of one or more memory banks; macro procedure to read a

byte from the control port; macro procedure to write a byte to the status port;

and et al. With these macro procedures we can design a wrapper in a succinct

 58

Handel-C style, and achieve on board memory access functions and read/write

control/status functions, in this way we can save a lot of time to design the

interface between the FPGA and HOST in VHDL language. Secondly, on the

other hand, by designing components in VHDL inside the wrapper, we can take

advantage of capabilities of VHDL language and design the hierarchical

structure of our general clause evaluator that we have described in Chapter 5. In

this combinatorial way, we can bridge the gap between the high-level abstract

version of a design and its actual implementation in a Xilinx FPGA, thus we can

achieve high-performance SAT solving systems in Xilinx FPGAs. Figure 6.1

illustrates the design flow of our system.

 59

Figure 6.1: Design Flow of Handel-C and VHDL Combinatorial Method

Visual C++ Synopsis Handel-C
Complication Synthesis Compilation

 Design Configuration

 FPGA HOST

 Xilinx Syhthesis
 Process

 Synthesis to
 netlist

 Synthesis to
 netlist

 Card Wrapper

 VHDL Code
 Simulation

 Handel-C
 Debug

 VHDL Compone

System Analysis and Partitioning

Software Task Hardware Task

 Handel-C

 60

6.2 RC1000-PP Prototyping Board

Currently, there are a lot of different FPGA prototyping board that can be found in the

market, with each having different architecture and FPGA chips installed. For our

implementations, we used the RC1000-PP development board specially made by

Celoxica for use with the DK1 development suite that includes a Handel-C compiler.

The practical advantage, when using this board, is the packaged communication

library that is written in Handel-C. The communication library provides pre-built

hardware design to gain access to the PCI bus and the on-board memories of the

RC1000-PP. The block diagram for the RC1000-PP board is shown in Figure 6.2.

50 Pin TASK FPGA
Aux I/O Xilinx
Headers Vertex Family

Devices BG560
Up to 1,000,000
system gates

Clock

Host
PCI PMC-32
Bus Bridge

 I/O

PCI-local Bus PMC-32
Bridge

 Local PCI Bus

PCI-PCI

 Local FPGA Bus

SRAM
4 off 2MB

Data/Address
Muxes

Figure 6.2: RC1000-PP Block Diagram

RC1000-PP board includes a PCI bridge, a clock generator, 8Mbytes SDRAM and an

XCV1000 FPGA chip. The board is designed to allow single byte transfers to and

from the FPGA chip through a dedicated address port in the PCI bus. Multi-byte

transfers are possible only by redirecting the data using direct memory access (DMA)

 61

transfer to the external memory, before being read by the FPGA chip. Theoretically,

the XCV1000 itself is capable of running at clock speeds of up to 200MHz, but the

memory controller restricts the clock speed down to a maximum of 33 MHz when

using the on-board RAM. A single XCV1000 chip contains 1 Mbyte of internal

distributed RAM and 6144 CLBs (configurable logic blocks) that roughly amounts to

1.5 million system gates. Each CLB in the Virtex series are divided into 2

programmable slices that is roughly around 127 system gates each. Therefore, we can

program 12,288 individual slices in the XCV1000 chip.

 62

Chapter 7

Two Implementations of WalkSAT

In Chapter 5, we present the structure of our general non-re-synthesis clause evaluator.

Based on this kind of clause evaluator, and the techniques discussed in Section 4.1 and

4.2 for improving the parallelism of SAT solving systems, we hope to achieve a high

performance SAT solver without requiring re-synthesis. As we have described in

Chapter 5, the non-re-synthesis reconfigurable clause evaluator requires O(mn) CLBs

for an implementation with m clauses and n variables. This component consumes a

significant fraction of the available CLBs (as much as 80%). As we would like to be

able to handle as large a problem as feasible within the constraints of the FPGA, it is

impractical to consider implementations that require multiple clause evaluators. This

would consume too much of the chip real estate, even though there is considerable

parallelism gain.

Within the constraints of our hardware platform, only one non-re-synthesis clause

evaluator is available. For GSAT, we find that the procedure shown in Figure 4.1 is

truly impractical due to the large size increase to a factor of n. As for the general

GSAT procedure shown in Figure 2.2, although we can design a general hardware

system which containing only one non-re-synthesis clause evaluator, the performance

 63

of such a system isn’t expected to be good since the scoring procedure is to be

implemented sequentially.

In contrast, when considering WalkSAT implementations for 3-SAT problems, it

is of a different nature. As we have mentioned in Section 2.2.2, based on the algorithm

given in Figure 2.3, by setting noise parameter p to 100% (Random-strategy) and 0%

(Greedy-strategy) respectively, we can get two WalkSAT variants, the so-called

Random-strategy and Greedy-strategy implementations. Since the computing

complexities are different for the two variants, we adopted different hardware

techniques when designing systems with our current FPGA.

For this chapter, Section 7.1 describes Random-strategy-based WalkSAT

implementation; Section 7.2 describes Greedy-strategy-based WalkSAT

implementation. The two implementations represent different tradeoffs in using a

single reconfigurable clause evaluator.

7.1 Pipelined Random-strategy-based FPGA

 Implementation

Implementing algorithmic parallelism or pipelining is a frequently used technique in

hardware design that reduces the number of clock cycles needed to perform complex

operations.

 Given that we are constrained to a single clause evaluator, we are left with

pipelining as the only option for increasing the flip rate. For maximal reuse of the

clause evaluator, it is important that the pipeline be well balanced with simple pipeline

stages. Given that we already have a fully parallel clause evaluator, the most expensive

step in WalkSAT is variable selection. A particularly simple WalkSAT variant is to set

 64

p to 100% in algorithm shown in Figure 2.3, thus this variant it to choose the variable

randomly in a selected unsatisfied clause. This strategy is also used in the WalkSAT

implementation of Leong et al. [LSW01].

7.1.1 Five-stage Pipelined Random Implementation

The program shown in Figure 7.1 gives the complete WalkSAT hardware design of

Random-strategy. The main computation is divided into five stages, labeled s1 to s5.

In stage s1, function Clause_Selector selects one unsatisfied clause from Cp using

uniform distribution; Cp is a sequence of 1s and 0s, 1 means the respondent clause is

satisfied and 0 means the respondent clause is unsatisfied. The index number of the

selected clause is stored in Clause_Number. Since the system is designed for SAT

problems of up to 220 clauses, Clause_Number is designed as 8-bit wide. For the next

stage s2, three parallel Variable_Indexes_Generators generate three index numbers for

the three variables occurring in the selected unsatisfied clause. It is assumed that there

are three variables per clause, therefore, we have Variable_0, Variable_1, and

Variable_2 to store the indices of the three variables respectively. Since the system can

solve SAT problems of up to 100 variables, Variable_0, Variable_1, and Variable_2

are designed as 7-bit wide. In the next stage s3, Pseudo_Random_Number_Generator

generates a pseudo random number among 0, 1 and 2. With the generated random

number PRN, function SelectFlip flips one variable upon variable assignment Vp, thus

generates a new variable assignment Vars. In stage s4 , Clause_Checker evaluates if

all the clauses are satisfied with variable assignment Vars. The final stage s5 transfers

Vars to Vp. This stage also determines whether this iteration has produced a satisfying

solution; all the clauses are satisfied when Sum(Cp) is equal to m. (m is the total

number of clauses.)

 65

 main():
 Vp:= Receive_Initial_Assignment() ;
 Cp:= Clause_Checker(Vp);
 if Sum(Cp) = m then break;
 for i :=1 to maxflips do
 s1: Clause_Number := Clause_Selector(Cp);

 s2: par {
 Variable_0:=Variable_Indexes_Generator(Clause_Number,0);
 Variable_1:=Variable_Indexes_Generator(Clause_Number,1);
 Variable_2:=Variable_Indexes_Generator(Clause_Number,2);
 }

s3: PRN := Pseudo_Random_Number_Generator(0, 1, 2);
 Vars := SelectFlip(Vp, Variable_0, Variable_1, Variable_2, PRN);

s4: Cp := Clause_Checker(Vars);

s5: if Sum(Cp) = m then break;
 Vp := Vars;
 end
 Send_Assignment(Vp)

Figure 7.1: Random-strategy-based Implementation of the WalkSAT-B Variant

Figure 7.2 depicts the five-stage Random-strategy-based pipelined implementation.

Stage 1 finds a random unsatisfied clause (this checks all clauses in parallel). Stage 2

generates three variable indices for the selected clause. Stage 3 implements the

random selection heuristic and flips the selected variable in the selected unsatisfied

clause. Stage 5 checks for satisfiability. There are a number of on-board storage

buffers used. Buffer 1 stores the clause table which gives the mapping of clause to

variables used within that clause as represented by variable indices. The SAT problem

is initially loaded into buffer 2 which is then used to initialize the fi,j blocks in the

clause evaluator (See Section 5.2.1). The result of this implementation is a one flip per

clock cycle implementation.

 66

 4 Clause Equations
 3 Initial Variable Assignments
 2
1 Return Result

on-board
SRAM

 FPGA

S1 S2 S3 S4 S5

Vars
[99..0]

Clauses
[219..0]

 Old (0,1,2)
 Variable

 Assignment

Variable_2 [6..0]

 Pseudo Random
 Number Generator

Clause
Evaluator

Check
SAT

Clause
Selector

Select &
Flip

Clause Number
[7..0]

Variable_0 [6..0]

Variable_1 [6..0]

HOST

Variable
Indexes

Generator

Figure 7.2: Pipelined Random-Strategy WalkSAT

7.1.2 A Pseudo Random Number Generator

As we can see from the previous section, there is a Pseudo Random Number Generator

(PRNG) in the stage 3 of our pipelined Random-strategy-based WalkSAT

implementation. In the past, the random number generation was mostly done by

software. However, as digital systems become faster and denser, it is feasible, and

frequently necessary, to implement the generator directly in hardware. Although the

software-based method are well understood [James90, Knuth81, LE88, Mar85], they

frequently require complex arithmetic operations and thus are not feasible to be

constructed in hardware.

 Ideally, the generated random numbers should be uncorrelated and satisfy any

statistical test for randomness. A generator can be either “truly random” or “pseudo

 67

random”. The former exhibit true randomness and the value of next number is

unpredictable. The later only appears to be random. The sequence is actually based on

specific mathematical algorithms and thus the pattern is repetitive and predictable.

However, if the cycle period is very large, the sequence appears to be non-repetitive

and random.

 True randomness can be derived from certain physical phenomena, such as the

time between tics from a Geiger counter exposed to radioactive materials. In electronic

circuit, thermal noise is frequently used as the source of randomness because of its

well-qualified spectral and statistical properties. A representative implementation

[Quan98] is shown in Figure 7.3. In this circuit, the source of the noise is the thermal

noise of a precision resistor, which is represented as Vnoise. It is amplified by a low-

noise amplifier and then passed to a high-speed comparator. The threshold of the

comparator (Vref) correspond to the mean voltage of the input noise signal. The output

of the comparator is sampled and latched to a register. The latched signal is a one-bit

binary signal that exhibits true randomness.

low
noise
amp sampling

& latching 1-bit output

 V noise V ref

 comparator

Figure 7.3: A True 1-bit Random Number Generator

The true random number generator is fairly involved since it needs to preserve and

amplify the thermal noise, and at the same time shield all the external disturbances. It

consists of mainly analog components and cannot be implemented by pure digital

 68

circuitry. The mixed-signal implementation significantly increases the system

complexity. This implementation is also relatively slow and cannot match the high-

speed digital circuit.

 There are many methods to generate pseudo random numbers. As our SAT

accelerating hardware are FPGA based, it is more desirable to have FPGA PRNG

(Pseudo Random Number Generator). Nova Engineering Inc. developed a so-called

Linear Feedback Shift Register (LFSR) Megafunction [Nova96], this function is

designed for application in digital signal processing (DSP) and wireless

telecommunication systems). P. Chu et al [CJ99] described techniques suitable for

hardware implementations. In our implementation, we designed our LFSR PRNG by

adopting the LFSR Megafunction from Nova Engineering, Inc. [Nova96] and

combining the techniques described in [CJ99]. Figure 7.4 shows the block diagram of

our 8-bit LFSR PRNG. Here, the pattern of the random number sequence repeats itself

after 256 numbers. This period is sufficient for our implementation.

length[7..0]

load

shift_in D Q D Q D Q D Q shift_out

clock

reset

Configuration Logic

Feedback
Logic

Feedback
Logic

Feedback
Logic

Feedback
Logic

Figure 7.4: 8-bit LFSR PRNG Block Diagram

 69

7.2 FPGA Implementation of Greedy Selection

A more typical WalkSAT variable selection heuristic is to select the variable, which

best improves the score. In terms of the constraints of the hardware, this corresponds

to a design with more complex operations. We have chosen to use a pure greedy

heuristic without noise, a so-called Greedy-strategy-based implementation (but a noise

component can be easily added).

 Figure 7.5 shows the block diagram of our sequential Greedy-strategy-based

implementation. Since we are dealing with 3-SAT, it is only necessary to determine at

most which of the three variables in the selected unsatisfied clause to flip. However,

any kind of parallel implementation (duplication or pipelining) of this step would

require evaluating the score of each of the three possibilities. This would require three

clause evaluator units in order to keep the resource independency, which we deem too

much space consuming for the targeted SAT problem size.

 Thus, we are restricted to a sequential implementation for the variable selection

(Stages 4-6), which reduces the flip rate. Our current implementation performs one

flip in nine cycles, as opposed to one cycle achieved by the design for random

selection heuristic described in the previous section.

Figure 7.5: Sequential Greedy-Strategy WalkSAT

S1 S2 S3 S4,5,6 S7 S8 S9

Clause
Selector

Clause
Evaluator

Compute
Score Update

Determine
the Index

of the
Variable to

Flip

New Variable
Assignments
Generator

Variable
Indexes

Generator

 70

hapter 8

xperimental Results

he preceding chapters have described our general clause evaluator without requiring

.1 Benchmark Selection

C

E

T

re-synthesis and developed two WalkSAT implementations which adopted different

strategies based on this same clause evaluator. This chapter, we investigate on the

experimental results gathered by running a set of benchmarks on the two

implementations. Our prototype implementations investigate the two designs on two

SAT problem sizes; a 50-variable/170-clause format and a 100-variable/220-clause

format, the latter chosen to such that its reconfigurable clause evaluator fits on the

FPGA which we used. Section 8.1 introduces the benchmarks. Section 8.2 describes

the comparison schemes. Section 8.3 compares the flip rate performance between

software implementation and hardware implementation. Section 8.4 compares the

timing performance between software implementation and hardware implementation.

Section 8.5 discusses the time/space cost about designs of different sizes.

8

 71

Our benchmark set is just a sub-set of a more comprehensive set compiled by Hoos

and Stützle in [HS00], which includes the AIM problems and the uniform random 3-

SAT problems.

 AIM problems were produced from a Random-3-SAT generator, which was

created by Asahio, Iwama, and Miyano [AIM]. These instances are particularly

special due to its wide range of satisfiable and unsatisfiable instances. These instances

ranges from m = 1.6 n to 6.0 n for both satisfiable and unsatisfiable problems. For our

benchmark set (see Table 8.1) we include satisfiable problems (‘aim-{n}-{ratio}-

yes1-1’) with n = 50 and 100; m/n ratio = 1.6, 2.0, and 3.4.

Problem Set Representative Variables Clauses
Uniform Random-3-SAT uf20-09 20 91
 uf20-031 20 91
 uf20-037 20 91
 uf50-01 50 218
 uf50-010 50 218
 uf50-0100 50 218
 uf50-01000 50 218
AIM Random-3-SAT aim-50-1_6-yes1-1 50 80
 aim-50-1_6-yes1-2 50 80
 aim-50-1_6-yes1-3 50 80
 aim-50-1-6-yes1-4 50 80
 aim-50-2_0-yes1-1 50 100
 aim-50-2_0-yes1-2 50 100
 aim-50-2_0-yes1-3 50 100
 aim-50-2_0-yes1-4 50 100
 aim-50-3_4-yes1-1 50 170
 aim-50-3_4-yes1-2 50 170
 aim-50-3_4-yes1-3 50 170
 aim-50-3_4-yes1-4 50 170
 aim-100-1_6-yes1-1 100 160
 aim-100-1_6-yes1-2 100 160
 aim-100-1_6-yes1-3 100 160
 aim-100-1-6-yes1-4 100 160
 aim-100-2_0-yes1-1 100 200
 aim-100-2_0-yes1-2 100 200
 aim-100-2_0-yes1-3 100 200
 aim-100-2_0-yes1-4 100 200

Table 8.1: The Benchmark Set

 72

 The Uniform Random-3-SAT distributions are instances wherein the point of

satisfiability is found at the phase transition region (i.e., 4.26 clauses per variable)

[KS94, MSL92]. At this region, the average instance hardness for both systematic and

stochastic local search algorithms is maximal [Yok97, CKT91, DLL62]. In Table 8.1,

we included the problems (‘uf{n}-01’) with n = 20 and 50 to our benchmark set.

The benchmarks shown in Table 8.1 are simply those, which fit within the

required problem sizes. As the main purpose of the benchmarks is to measure flip rate

performance, the difficulty of the benchmark is not relevant.

8.2 Performance Comparison Scheme

To properly compare the performance of different WalkSAT implementations, we

must first consider their underlying nature. In the current scenario, there are two types

of implementation of WalkSAT algorithms, namely: pure-software and hardware

accelerated implementation. The hardware accelerated implementations for the

WalkSAT variants are generally patterned after the pure software implementation

except for some trivial compiler functions. In this sense, algorithm specific factors like

downward and sideway moves would generally be the same for both implementations.

Performance factors used in empirical studies for WalkSAT that deals with probability

of solubility are also not important. Our intension for adding the hardware accelerator

is basically to improve the performance by doing computationally intensive task in

hardware and reduce run-time. The major performance factor would be the “flip rate”

performance that is measured by dividing the total number of flips by the total time.

The resulting performance value would have the unit of flips-per-second or fps.

 73

On the other hand, we also compare the timing performance between the hardware

accelerated implementations and the pure software implementations. This is to verify

the “flip rate” performance further.

8.3 Flip Rate Performance Comparison:

 Software vs. Hardware

In this section, we establish the basis of comparison by gathering performance results

from the software implementation of WalkSAT algorithm and the FPGA-based

implementations.

 We utilized WalkSAT35 (WalkSAT version 35) by Bart Selman as the software

implementation. The Linux workstation that we used to run the programs has an Intel

Pentium 4 1500MHz processor and 899644 Kbytes of SDRAM.

As for the FPGA-based SAT implementation, they are from our pipelined

Random-strategy-based WalkSAT implementation and our sequential Greedy-

strategy-based WalkSAT. Our FPGA chip is Virtex 1000 and the work frequency of

FPGA is 20Mhz.

In Table 8.2, there are two sets of flip rate performance comparison. One for the

Greedy-strategy-based WalkSAT, the other is for the Random-strategy-based

WalkSAT. For the Greedy-strategy-based implementation, the second column shows

the flip rate performance of the pure software implementation, the third column shows

the flip rate performance of the FPGA-based hardware implementation, the fourth

column shows the speedup of column three versus column two. As for the Random-

strategy-based implementation, the fifth column shows the flip rate performance of the

pure software implementation, the sixth column shows the flip rate performance of the

 74

FPGA-based hardware implementation, the seventh column shows the speedup of

column six versus column five.

The resulting flip rate, fps, shows the program execution speed by dividing the

number of flips performed with the execution time in seconds. The flip rate in Table

8.2 are shown in Kfps which is in thousands flip per second.

Greedy-Strategy Random-Strategy
SAT Problem Software

Kfps
Hardware

Kfps
Speed

Up
Software

Kfps
Hardware

Kfps
Speed

Up
uf20-09 265.8 2227 8.38 407.6 20345 49.91
uf20-031 251.8 2225 8.84 390.9 20350 52.06
uf20-037 303.2 2225 7.34 405.8 20335 50.11
uf50-01 409.4 2230 5.45 536.2 20347 37.95
uf50-010 459.6 2224 4.84 466.2 20371 43.70
uf50-0100 474.3 2237 4.72 598.3 20468 34.21
uf50-01000 476.9 2238 4.69 570.7 20367 35.69
aim-50-1_6-yes1-1 832.6 2208 2.65 947.9 20444 21.57
aim-50-1_6-yes1-2 814.1 2224 2.73 994.8 20521 20.63
aim-50-1_6-yes1-3 793.7 2227 2.81 960.1 20483 21.33
aim-50-1_6-yes1-4 868.1 2226 2.56 956.7 20461 21.39
aim-50-2_0-yes1-1 775.4 2227 2.87 865.4 20332 23.49
aim-50-2_0-yes1-2 775.3 2238 2.89 859.8 20407 23.73
aim-50-2_0-yes1-3 805.1 2224 2.76 877.7 20355 23.19
aim-50-2_0-yes1-4 783.2 2237 2.86 870.4 20433 23.48
aim-50-3_4-yes1-1 609.2 2227 3.66 618.6 20635 33.36
aim-50-3_4-yes1-2 596 2228 3.74 612.6 20557 33.56
aim-50-3_4-yes1-3 572.4 2228 3.89 613.1 20570 33.55
aim-50-3_4-yes1-4 561.2 2227 3.97 609.3 20613 33.83
aim-100-1_6-yes1-1 814.2 2228 2.74 962.5 20569 21.37
aim-100-1_6-yes1-2 787.4 2253 2.86 968.4 20427 21.09
aim-100-1_6-yes1-3 805.4 2222 2.76 972.9 20480 21.05
aim-100-1_6-yes1-4 872.2 2225 2.55 1014.4 20579 20.29
aim-100-2_0-yes1-1 744.9 2233 3.00 838.5 20184 24.07
aim-100-2_0-yes1-2 747.7 2245 3.00 814.3 20289 24.92
aim-100-2_0-yes1-3 731.4 2236 3.06 812.6 20262 24.93
aim-100-2_0-yes1-4 744.6 2233 3.00 834.4 20237 24.25

Table 8.2. Flip Rate Performance Comparison: Software versus FPGA-based

 75

Analysis of the results from the UF and AIM problems suggest that the

performance of the pure software WalkSAT algorithm is directly proportional to the

variable/clause ratio of the SAT problem. The resulting graph in Figure 8.1 clearly

shows the dominance in raw flip rate of the Random-strategy-based WalkSAT variant

over Greedy-strategy-based WalkSAT variant. This is an obvious case since the

Random-strategy does less computation, which results in shorter execution time.

Since our FPGA chip is clocked at 20 MHz, thus the flip rate for the random and

greedy variable selection heuristics is constant throughout the problems – 20M for

random, and 2.2M for greedy heuristics, due to its 9-stage implementation for each

iteration inside the inner loop. In Table 8.2, the measured actual flip rate is shown in

column 3 and column 6 respectively for Random-strategy and Greedy-strategy

implementations.

Compared to the WalkSAT reconfigurable FPGA implementation from Leong et

al. [LSW01], which also uses a random strategy, our Random-strategy-based

implementation is much better than theirs. Their implementation uses a smaller FPGA

and can only solve problems of up to 50-variable/170-clause and hence could be

clocked at a faster speed of 33 Mhz. A major difference between their implementation

and our pipelined implementation is that we use a constant flip rate. Their

implementation, on the other hand, has a variable flip rate, because the use of

sequential clause selection, and is bounded by maximum flip rate of 364Kfps.

 With the random variable selection heuristic, the preliminary results show that our

reconfigurable FPGA implementation is faster than software and previous hardware

implementations. This implementation achieves one flip per clock cycle at 20Mhz.

The greedy variable selection implementation has more modest speedups. The

speedup is likely comparable to software or slightly faster, if the fastest state of art

 76

microprocessors are used, since performance scales at a lower rate with clock speed

for microprocessors. However, the reduced flip rate may be offset by the increased

effectiveness of the variable selection strategy. The greedy heuristic typically gives a

better success rate than a random heuristic for WalkSAT. A detailed analysis of the

effect of different variable selection heuristics is given in [HS00].

 77

G
re

ed
y-

St
ra

te
gy

(S
of

tw
ar

e)
R

an
do

m
-S

tra
te

gy
(S

of
tw

ar
e)

11
00

95
0

90
0

85
0

10
00

10
50

80
0

75
0

70
0

65
0

60
0

45
0

40
0

55
0

50
0

35
0

30
0

25
0

20
0

15
0

10
0

50

uf 20 4.
55 03
7

uf 20 4.
55 03
1

uf 20 4.
55 09

uf 50 4.
36

01
00

0

uf 50 4.
36

01
00

uf 50 4.
36 01
0

uf 50 4.
36 01

ai
m 50 3.
4 4

ai
m 50 3.
4 3

ai
m 50 3.
4 2

ai
m 50 3.
4 1

ai
m

10
0

2.
0 4

ai
m

10
0

2.
0 3

ai
m

10
0

2.
0 2

ai
m

10
0

2.
0 1

ai
m 50 2.
0 4

ai
m 50 2.
0 3

ai
m 50 2.
0 2

ai
m 50 2.
0 1

ai
m

10
0

1.
6 4

ai
m

10
0

1.
6 3

ai
m

10
0

1.
6 2

ai
m

10
0

1.
6 1

ai
m 50 1.
6 4

ai
m 50 1.
6 3

ai
m 50 1.
6 2

ai
m 50 1.
6 1

Figure 8.1: Pure Software Flip Rate Performance Chart

 78

8.4 Timing Performance

In the previous section, we compared FPGA-based hardware implementations versus

software for various 3-SAT benchmarks. In this section, we will compare the run-time

timing performance.

 WalkSAT algorithm, like all SLS algorithms, strongly involves random decisions

such as the choice of the initial assignment, random tie-breaking, or biased random

moves. Due to this inherent randomness, given a specific soluble problem instance, the

time needed by a WalkSAT algorithm to find a solution varies from run to run.

Consequently, the most detailed characterization of such an algorithm’s behavior is

given by its run-time distribution (RTD), which for a given instance maps the run-time

t to the probability of finding a solution within time t [HS00].

To measure RTDs, one has to take into account that most SLS algorithms have

some cutoff parameter bounding their run-time, like the maxtries and maxflips

parameters in the generic algorithm schema of the procedure shown in Figure 2.1.

 As argued in [HS98], this RTD will generally suggest the existence of an optimal

setting of the maxSteps (Maxtries) parameter. Using this setting will indeed maximize

the algorithm’s performance – but only in the sense that within a given time period,

the number of problem instances randomly drawn from the instance set (or

distribution) which are solved within this time period will be maximal. However, as an

RTD-based analysis shows, in this case the “optimal parameter setting” will not affect

the performance on any individual instance from the set – it will only make sure that

not too much is wasted trying to solve hard instances. Thus, using the optimal setting

will effectively introduce a bias for solving easier problems – an effect which, except

for very special application situations, will most likely be undesirable and can

potentially give rise to erroneous interpretations of the observed behavior. This

 79

problem becomes very relevant when the inter-instance difficulty within the test-set

has a high variance, as is the case for Random-3-SAT.

 In our work, our objective is not to find an optimal setting for each SAT problem,

instead, we map the software algorithm into hardware and see the speedup by using

hardware. What is important is the consistency between the software implementation

and the hardware implementation. In order to provide a consistency comparison

between the hardware and the software, we compare the timing performance in this

section.

 Table 8.3 Compares the run-time timing performance between our FPGA-based

pipelined random-strategy-based WalkSAT implementation and the software random-

strategy-based WalkSAT implementation. Table 8.4 gives the timing performance

comparison between the software implementation and FPGA-based hardware

implementation based on greedy strategy.

 Both our two kinds of FPGA-based hardware implementations are clocked at

20Mhz, and the overhead work time is the same. As host we use a PC with an AMD

Athlon 1.2GHz CPU. Our prototype generates the clause configuration for a new SAT

instance in software in about 7ms (This is unoptimized and is probably dominated by

file I/O and hence could possibly be faster). Transferring the clause configuration from

the host PC to the on-board SRAM takes 0.6ms. The FPGA takes 220 x 16 clock

cycles to read the SRAM. With an FPGA clock frequency of 20MHz, this corresponds

to 0.176ms. Thus the configuration overhead for solving a new SAT instance is

7.776ms. In contrast, the time to download a new bitstream to the FPGA is around

0.14s.

 As for the pure software WalkSAT implementations, for all problems, the software

execution time was measured on an Intel Pentium 4 1500MHz CPU.

 80

 Additionally, both of the software and the hardware implementations set maxtries

to 256000 and set maxflips to 4000. Table 8.3 and Table 8.4 show the average

software and hardware execution times computed over 100 trials respectively for

random and greedy implementations.

Hardware Software
SAT Problems Time (s) Avg-

Tries
Suc
%

Time (s) Avg-
Ttries

Suc
%

Speed
Up

uf20-09 0.0004 1 100 0.0039 1 100 9.75
uf20-031 0.0004 1 100 0.0042 1 100 10.5
uf20-037 0.0005 1 100 0.0071 1 100 14.2
uf50-01 0.0028 14 100 0.07834 10.5 100 27.98
uf50-010 0.0012 5 100 0.04818 5.6 100 40.15
uf50-0100 0.0188 91 100 0.51749 77 100 27.53
uf50-01000 0.0049 25 100 0.13001 19 100 26.53
aim-50-1_6-yes1-1 1.6880 7763 100 39.6707 9401 100 23.50
aim-50-1_6-yes1-2 4.1922 19262 100 81.4133 20247 100 19.42
aim-50-1_6-yes1-3 0.6535 3009 100 21.6208 5190 100 33.08
aim-50-1_6-yes1-4 1.3824 6355 100 26.2875 6287 100 19.02
aim-50-2_0-yes1-1 0.0196 97 100 1.8083 391 100 92.26
aim-50-2_0-yes1-2 0.0580 272 100 1.3615 293 100 23.47
aim-50-2_0-yes1-3 0.0386 185 100 1.6067 353 100 41.62
aim-50-2_0-yes1-4 0.0771 359 100 3.0008 653 100 38.92
aim-50-3_4-yes1-1 0.0205 107 100 0.9381 145 100 45.76
aim-50-3_4-yes1-2 0.0264 127 100 0.7892 121 100 29.89
aim-50-3_4-yes1-3 0.0308 146 100 0.7958 122 100 25.84
aim-50-3_4-yes1-4 0.0128 65 100 0.4849 74 100 37.88
aim-100-1_6-yes1-1 56.8889 256000 timeout 1064.34 256000 timeout 18.71
aim-100-1_6-yes1-2 57.5281 256000 timeout 1057.00 256000 timeout 18.37
aim-100-1_6-yes1-3 57.7540 256000 timeout 1058.52 256000 timeout 18.33
aim-100-1_6-yes1-4 57.7984 256000 timeout 1029.99 256000 timeout 17.82
aim-100-2_0-yes1-1 56.7512 256000 timeout 1238.59 256000 timeout 21.82
aim-100-2_0-yes1-2 35.2324 174364 3 1270.55 256000 timeout -
aim-100-2_0-yes1-3 31.1952 154384 3 1269.93 256000 timeout -
aim-100-2_0-yes1-4 56.8618 256000 timeout 1240.75 256000 timeout 21.82

Table 8.3: Timing Performance Comparison based on Random Strategy

As we can see from Table 8.3 and Table 8.4, the Average Tries (Avg-Tries) and the

Success Rate (Suc) of the hardware and software implementations are quite similar,

indicating that the statistics of our clause selection algorithm is similar to that of the

 81

software implementation of the WalkSAT algorithm. As can be seen from the “Speed

Up” column, the hardware performance for all problems is approximately two to seven

times faster than the software for the greedy-strategy-based implementation; and it is

almost ten to ninety times faster for the random-strategy-based implementations.

Hardware Software
SAT Problems Time (s) Avg-

Tries
Suc
%

Time (s) Avg-
Tries

Suc
%

Speed
Up

uf20-09 0.0048 2.6 100 0.0317 2.1 100 6.67
uf20-031 0.0080 4.4 100 0.0567 3.6 100 7.07
uf20-037 0.0029 1.6 100 0.0202 1.5 100 6.83
uf50-01 0.0255 13 100 0.0634 6.5 100 2.48
uf50-010 0.0067 3.4 100 0.0225 2.6 100 3.34
uf50-0100 0.0763 39 100 0.1017 12 100 1.33
uf50-01000 0.0319 15 100 0.0859 10 100 2.69
aim-50-1_6-yes1-1 0.3775 194 100 0.8034 167 100 2.13
aim-50-1_6-yes1-2 1.1509 594 100 2.5934 528 100 2.25
aim-50-1_6-yes1-3 0.2966 153 100 0.4959 98 100 1.67
aim-50-1_6-yes1-4 0.2549 131 100 0.4417 96 100 1.73
aim-50-2_0-yes1-1 0.5868 326 100 2.3624 458 100 4.03
aim-50-2_0-yes1-2 0.4220 217 100 0.8384 162 100 1.99
aim-50-2_0-yes1-3 0.2525 130 100 0.4975 100 100 1.97
aim-50-2_0-yes1-4 0.7510 374 100 1.3009 255 100 1.73
aim-50-3_4-yes1-1 0.0310 15 100 0.0369 5.6 100 1.19
aim-50-3_4-yes1-2 0.0080 4.4 100 0.0513 7.6 100 6.42
aim-50-3_4-yes1-3 0.0230 11 100 0.0646 9.2 100 2.81
aim-50-3_4-yes1-4 0.0122 6.1 100 0.0251 3.5 100 2.05
aim-100-1_6-yes1-1 252.508 131425 43 587.648 119616 45 2.34
aim-100-1_6-yes1-2 182.280 91130 47 554.998 109251 50 3.04
aim-100-1_6-yes1-3 172.350 86166 63 596.606 120127 15 3.46
aim-100-1_6-yes1-4 490.354 256000 timeout 1174.09 256000 timeout 2.39
aim-100-2_0-yes1-1 42.64653 21321 100 131.487 24486 100 3.08
aim-100-2_0-yes1-2 31.04498 15520 100 89.6451 16757 100 2.89
aim-100-2_0-yes1-3 23.93 11928 100 75.8917 13877 100 3.17
aim-100-2_0-yes1-4 72.8159 36404 100 175.518 32673 100 2.41

Table 8.4: Timing Performance Comparison based on Greedy Strategy

 82

SAT Problems Leong et al.
[LSW01]

Ours,
Pipelined

Speedup

uf20-9 0.012 0.0004 30
uf20-31 0.009 0.0004 23
uf20-37 0.009 0.0005 23

aim-50-2_0-yes1-1 3.93 0.0196 201
aim-50-2_0-yes1-2 3.44 0.058 59
aim-50-3_4-yes1-1 2.29 0.0205 112
aim-50-3_4-yes1-2 0.98 0.0264 37
aim-50-3_4-yes1-3 2.12 0.0308 69
aim-50-3_4-yes1-4 3.93 0.0128 307

Table 8.5: Running Time Comparison between Random-Strategy Implementations

As can be seen in Table 8.5, when comparing the run-time timing performance

between our pipelined random-strategy-based implementation and that from Leong et

al. [LSW01], which also uses the random strategy, our random-strategy-based

implementation is much better than theirs. Although the FPGA is clocked at 33MHz in

their implementation, but as we have discussed in Section 8.3, the flip rate in their

implementation is much lower than ours, and thus their timing performance is

consequently much worse than ours.

8.5 Time/Space Cost Comparison of FPGA-

 based Implementation

In comparing hardware implementations for WalkSAT, an additional important factor

is the size of resulting design. For ASIC implementations the design size is estimated

in terms of system gates and for FPGA implementations the design size is based on the

 83

number of slice used. A single slice roughly amounts to 127 system gates or 2.25 logic

cells.

 Our prototype implementations investigate each of the random-strategy-based

system and the greedy-strategy-based system on two SAT problem sizes; thus we get

four circuits, two circuits are for a 50 variable/170 clause format and the other two are

for a 100 variable/220 clause format, the latter format is chosen so that its

reconfigurable clause evaluator fits on the FPGA which we used.

 Table 8.6 gives the hardware costs in terms of slices for these four

implementations. The minimum gate delay is as reported by the Xilinx place and

route tools. These delays shown in column two and column five are just the worst

delay inside the FPGA. In each system, there is board delay, for examples, along the

signal from FPGA to SRAM, set up time of other devices and et al. The total delay is

definitely larger than the FPGA delay alone. Experiments show that our systems can

work stably when FPGA is clocked at 20 MHz. As we can see in Table 8.6, there is

only a small difference in gate delay between the two implementations of the same

size while their hardware cost are quite similar. The larger influence is the increased

delay due to larger problem sizes. This because the circuits is synthesized to more

levels of logic and the routing congestion becomes denser as the system becomes

bigger. For a simplest example, there are 25 input signals at the OR gate inside each

clause for the bigger system, whereas only 13 inputs for the smaller one.

 Random-Strategy WSAT Greedy-Strategy WSAT
System Size Delay (ns) Cost of Slices Delay (ns) Cost of Slices
50-var/170-c 24.097 4946 (40%) 24.842 6408 (52%)
100-var/220-c 31.005 10396 (85%) 31.639 11834 (96%)

Table 8.6: Time/Space Cost Comparison of FPGA-based Implementation

 84

Chapter 9

Conclusions

This thesis has studied the effects of solving SAT problems using stochastic local

search algorithms on an FPGA platform. The goal is to accelerate SAT solving using

hardware in a practical way. This chapter summarizes the new techniques developed in

the preceding chapters and then discusses the future work of this research.

 We demonstrate two prototype hardware solvers implemented on the Xilinx Virtex

XCV1000 FPGA with significantly better performance than software and previous

hardware WalkSAT solvers. Furthermore, the solvers are reconfigurable in real-time,

with a reconfiguration time of a few milliseconds for problems with 100 variables. Our

two implementations illustrate the tradeoff between time, space, and effectiveness of

the SLS algorithm. The random solver achieves an optimal flip rate at the cost of a

simple variable selection strategy, while the greedy solver uses the more expensive

and effective strategy but is not amenable to pipelining and is hence slower.

 Both implementations are limited by the size of the Xilinx Virtex XCV1000 chip

used, which can accommodate a reconfigurable clause checker only for problems with

100 variables and 220 clauses. This chip, dating from 1999, is fabricated using a 5-

layer metal 0.22um CMOS process. In comparison, the current Virtex-II generation

 85

uses an 8-layer 0.15um CMOS process, this leading-edge process and the Virtex-II

architecture are optimized for high speed with low power consumption. Combining a

wide variety of flexible features and a large range of densities up to 10 million system

gates, the Virtex-II family enhances programmable logic design capabilities and is a

powerful alternative to mask-programmed gates arrays. The XC2V10000 has about 10

times more system gates than the XCV1000 and has significantly faster clock speeds.

For example, a 100 variable/600 clause evaluator requires about 30K slices and fits in

a XC2V6000 which has 6M system gates.

 An FPGA implementation will have more limitations on problem sizes even when

larger FPGAs are used. A fast hardware based solver can however still be useful for

general SAT solving. One approach is with hybrid search and stochastic solvers. For

example, Zhang et al. [ZHZ02] combine Davis Putnam with stochastic solvers. Their

approach uses Davis Putnam to generate smaller sub-problems which are then solved

with WalkSAT.

 Another route to deal with larger problems is to use ASICs rather than FPGAs. Our

implementation is not restricted to FPGAs since the reconfiguration for different SAT

instances is not dependent on the reconfiguable logic of FPGAs. The prototype uses

FPGAs simply because they are more cost effective for development. Given the real-

time reconfiguration capability, this may be a promising candidate for direct ASIC

implementation, which means higher clock speeds and much more resources for

dealing with larger problems.

 86

Appendix

Entity Declarations in VHDL

 ENTITY clause_checker IS
 PORT (
 clk : IN STD_LOGIC;
 rst : IN STD_LOGIC;
 cc_sel : IN STD_LOGIC;
 addr : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 rwn : IN STD_LOGIC;
 wdata : IN STD_LOGIC_VECTOR(24 DOWNTO 0);
 rdata : OUT STD_LOGIC_VECTOR(24 DOWNTO 0);
 cc_rdy : OUT STD_LOGIC;
 v : IN STD_LOGIC_VECTOR(99 downto 0);
 all_clauses : OUT STD_LOGIC_VECTOR(219 DOWNTO 0));
 END;

 ENTITY cc_ctrl IS
 PORT (
 clk : IN STD_LOGIC;
 reset : IN STD_LOGIC;
 cc_sel : IN STD_LOGIC;
 addr : IN STD_LOGIC_VECTOR(11 DOWNTO 0);
 rwn : IN STD_LOGIC;
 wdata : IN STD_LOGIC_VECTOR(24 DOWNTO 0);
 rdata : OUT STD_LOGIC_VECTOR(24 DOWNTO 0);
 cc_rdy : OUT STD_LOGIC;
 row_wen : OUT STD_LOGIC_VECTOR(219 DOWNTO 0);
 row_waddr : OUT STD_LOGIC_VECTOR(99 DOWNTO 0);
 row_wdata : OUT STD_LOGIC_VECTOR(24 DOWNTO 0);
 row_rdata : IN allrowrdata_type)
);
 END;

 ENTITY cc_clause IS
 PORT (
 row_wen : IN STD_LOGIC;
 row_wdata : IN STD_LOGIC_VECTOR(24 DOWNTO 0);
 row_srdata : OUT STD_LOGIC_VECTOR(24 DOWNTO 0);
 row_wclk : IN STD_LOGIC;

 87

 row_waddr : IN STD_LOGIC_VECTOR(99 DOWNTO 0);
 v : IN STD_LOGIC_VECTOR(99 DOWNTO 0);
 row_out : OUT STD_LOGIC
);
 END;

 ENTITY ram16x1d IS
 PORT (
 dpo : OUT STD_LOGIC;
 spo : OUT STD_LOGIC;
 a0 : IN STD_LOGIC;
 a1 : IN STD_LOGIC;
 a2 : IN STD_LOGIC;
 a3 : IN STD_LOGIC;
 d : IN STD_LOGIC;
 dpra0 : IN STD_LOGIC;
 dpra1 : IN STD_LOGIC;
 dpra2 : IN STD_LOGIC;
 dpra3 : IN STD_LOGIC;
 wclk : IN STD_LOGIC;
 we : IN STD_LOGIC
);
 END;

 88

Bibliography

 [AIM] Y. Asahiro, K. Iwama, and E. Miyano, “Random Generation of Test

Instances with Controlled Attributes”.

[ASS99] M. Abramovici, J. T. Sousa and D. Saab, “A Massively-Parallel Easily-

Scalable Satisfiability Solver Using Reconfigurable Hardware,” in

Proceedings ACM/IEEE Design Automation Conference, pages 684-690,

1999.

[AS97] M. Abramovici and D. Saab, “Satisfiablilty on Reconfigurable Hardware,”

International Workshop on Field Programmable Logic and Applications,

1997.

[AS00] M. Abramovici and D. Saab, “A Sat Solver Using Reconfigurable

Hardware and Virtual Logic,” 2000.

[BFRV92] S. D. Brown, R. Francis, J. Rose, and Z. Vranesic, “Field Programmable

Gate Arrays,” Kluwer Academic Publishers, Netherland, 1992.

[CJ99] P. Chu and R. Jones, “Design Techniques of FPGA-Based Random

Number Generator,” Military and Aerospace Application of

Programmable Devices and Technologies Conference, 1999.

[CKT91] Peter Cheeseman, Bob Kanefsky, and William M. Taylor, “Where the

Really Hard Problems Are,” in Proceedings of the Twelfth International

Joint Conference on Artificial Intelligence, IJCAI-91, Sidney, Australia,

pages 331-337, 1991.

 89

[Coo71] Stephen A. Cook, “The Complexity of Theorem-Proving Procedures,”

3rd Annual ACM Symposium on Theory of Computing, pages 151-158,

1971.

[DABC93] O. Dubois, P. Andre, Y. Boufkhad and J. Carlier, “Sat versus Unsat,” in

2nd DIMACS Implementation Challenge, 1993.

[DIMACS] Dimacs Challenge Benchmarks. Online available:

ftp://dimacs.Rutgers.edu/pub/challenge

[DLL62] M. Davis, G. Logemann and D. Loveland, “A Machine Program for

Theorem Proving,” Communications of the ACM, 5(7):394-397, July

1962.

[DP60] M. Davis, H. Putnam, “A Computing Procedure for Quantification

Theory,” Journal of the ACM, 7(3), July 1960.

[GHK91] M. Gokhale, W. Holmes, A. Kopser, et al, “Building and Using a Highly

Parallel Programmable Logic Array,” IEEE Computer, 24(1):81-89, Jan.

1991.

[Goe81] Prabhakar Goel, “An Implicit Enumeration Algorithm to Generate Tests

for Combinational Logic Circuits,” IEEE Transactions on Computers,

30(3):215-222, 1981.

[Gu92] J. Gu, “Efficient Local Search for Very Large-Scale Satisifiability

Problems,” SIGART Bulletin, 3:8-12, 1992.

[GW93] Ian P. Gent and Toby Walsh, “Towards an Understanding of Hill-

Climbing Procedures for SAT,” in Proceedings of AAAI-93, pages 28-

33, 1993.

[HM97] Youssef Hamadi and David Merceron, “Reconfigurable Architectures: A

New Vision for Optimization Problems,” in Gert Smolka, editor,

ftp://dimacs.rutgers.edu/pub/challenge

 90

Principles and Practice of Constraint Programming - CP97, Proceedings

of the 3rd International Conference, Lecture Notes in Computer Science

1330, pages 209-221, Linz, Austria, 1997. Springer-Verlag, Berlin.

[Hoo96] Holger Hoos, “Aussagenlogische SAT-Verfahren und ihre Anwendung

bei der Lösung des HC-Problems in Gerichteten Graphen,” Diplomarbeit.

Fachbereich Informatik, Technische Hochschule Darmstadt, Germany,

March 1996.

[HS98] H. H. Hoos and T. Stützle, “Evaluating Las Vegas Algorithms – Pitfalls

and Remedies,” in Proceedings of UAI-98, pages 238-245, 1998.

[HS99] Holger H. Hoos and Thomas Stützle, “Systematic vs. Local Search for

SAT,” in Proceedings of the 23rd National German Conference of

Artificial Intelligence (KI-99), 1999.

[HS00] Holger H. Hoos and Thomas Stützle, “Local Search Algorithms for SAT:

An Empirical Evaluation,” Journal of Automated Reasoning", 24(4):421-

481, 2000.

[HTY01] Martin Henz, Edgar Tan and Roland Yap, “One Flip per Clock Cycle,” in

Proceedings of the Seventh International Conference on Principles and

Practice of Constraint Programming, CP2001, Cyprus, Nov/Dec 2001.

[James90] F. James, “A Review of Pseudo-random Number Generators,” Computer

Physics Communications 60, 1990.

[Knuth81] D.E. Knuth, The Art of Computer Programming Vol. 2: Seminumerical

Methods, (2nd edition), Addison-Wesley, reading, Mass., 1981.

[KS94] S. Kirkpatrick and B. Selman, “Critical Behavior in the Satisfiability of

Random Boolean Expressions,” Science, 264(5163):1297-1301, 27 1994.

[LSW01] P. H. W. Leong, C. W. Sham, W. C. Wong, H. Y. Wong, W. S. Yuen, and

 91

M. P. Leong, “A Bitstream Reconfigurable FPGA Implementation of

WSAT Algorithm,” IEEE Transactions on Very Large Scale

Integration(VLSI) Systems, 9(1), Feb. 2001.

[Mar85] G.A. Marsaglia, “A Current View of Random Number Generators,”

Computational Science and Statistics: The Interface, ed. L. Balliard,

Elsevier, Amsterdam, 1985.

[MSG97] Bertrand Mazure, Lakhdar Sais and Eric Gregoire. “Tabu Search for

SAT,” in AAAI/IAAI, pages 281-285, 1997.

[MSK97] David McAllester, Bart Selman, and Henry Kautz, “Evidence for

Invariants in Local Search,” in Proceedings Fourteenth National

Conference on Artificial Intelligence (AAAI-97), 1997.

[MSL92] David G. Mitchell, Bart Selman and Hector J. Levesque, “Hard and Easy

Distributions for SAT Problems,” in Paul Rosenbloom and Peter

Szolovits, editors, Proceedings of the Tenth National Conference on

Artificial Intelligence, pages 459-465, Menlo Park, California, 1992.

AAAI Press.

[Nova96] Nova Engineering Inc, “Linear Feedback Shift Register Megafunction,”

http://www.nova-eng.com, 1996.

[PK01] Donald J. Patterson and Henry Kautz, “Auto-Walksat: A Self-Tuning

Implementation of Walksat,” in Proceedings of SAT2001: Workshop on

Theory and Application of Satisfiability Testing, 2001.

[Quan98] Quantum World Corporation, “QNG Model J20KP True Random Number

Generator Users Manual,” 1998.

[RLG98] C. R. Rupp, M. Landguth, T. Garverick, E. Gomerall, H. Holt, J. M.

Arnold and M. Gokhale, “The NAPA Adaptive Processing Architecture,”

http://www.nova-eng.com/

 92

in Proceedings IEEE Symposium on FPGAs for Custom Computing

Machines, pages 28-37, Apr. 1998.

[RS94] R. Razdan and M. D. Smith, “A High-Performance Microarchitecture

with Hardware-Programmable Functional Units,” in Proceedings of the

27th Annual IEEE/ACM International Symposium on Micro Architecture,

pages 172-180, 1994, Nov, 1994.

[Sha99] A.K. Sharma, “Programmable Logic Handbook,” MacGraw Hill, New

York, 1999.

[SKC94] B. Selman, H. Kautz and B. Cohen, “Noise Strategies for Improving Local

Search,” in Proceedings of AAAI-94, pages 337-343, 1994.

[SLM92] B. Selman, Hector Levesque, and David Mitchell, “A New Method for

Solving Hard Satisfiability Problems,” in Proceedings of AAAI-92, pages

440-446, 1992.

[SSS97] O. Steinmann, A. Strohmaier and T. Stützle, “Tabu Search vs Random

Walk,” in Advances in Artificial Intelligence (KI97), volume 1303 of

LNAI, pages 337-348. Springer Verlag, 1997.

[SYS98] T. Sayama, M. Yokoo and H. Sawada, “Solving Satisfiability Problems

Using Logic Synthesis and Reconfigurable Hardware,” in proceedings

31st Hawaii International Conference of System Sciences, pages 179-186,

1998

[Tan02] Edgar Tan, “Local Search Algorithms for SAT on Field Programmable

Gate Arrays,” MSc thesis, National University of Singapore, 2002.

[VBR96] J. E. Vuillemin, P. Bertin, D. Roncin, et al, “Programmable Active

Memories: Reconfigurable Systems Come of Age,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 4(1):56-69, Mar. 1996.

 93

[Xil00] Xilinx, Virtex 2.5V Field Programmable Gate Arrays (Data Sheet), 2000.

[Xil6200] Xilinx, XC6200 Programmable Gate Arrays (Data Sheet), 1997.

[Yok97] Makoto Yokoo, “Why Adding More Constraints Makes a Problem Easier

for Hill-climbing Algorithms: Analyzing Landscapes of CSPs,” in

Principles and Practice of Constraint Programming, pages 356-370, 1997.

[YSLL99] Wong Hiu Yung, Yuen Wing Seung, Kin Hong Lee and Philip Heng Wai

Leong, “A Runtime Reconfigurable Implementation of the GSAT

algorithm,” in Patrick Lysaght, James Irvine and Reiner W. Hartenstein,

editors, Field-Programmable Logic and Applications, pages 526-531.

Springer-Verlag, Berlin, 1999.

[YSS96] M. Yohoo, T. Sayama, and H. Sawada, “Solving Satisfiability Problems

Using Field Programmable Gate Arrays: First Results,” in Proceedings,

2nd International Conference of Principles Practice Constraint

Programming, pages 497-509, 1996.

[ZAMM98] Peixin Zhong, Pranav Ashar, Sharad Malik and Margaret Martonosi,

“Using Reconfigurable Computing Techniques to Accelerate Problems in

the CAD Domain: A Case Study with Boolean Satisfiability,” in Design

Automation Conference, pages 194-199, 1998.

[ZHZ02] Wenhui Zhang, Zhou Huang and Jian Zhang, “Parallel Execution of

Stochastic Search Procedures on Reduced SAT Instances,” PRICAI 2002,

the 7th Pacific Rim International Conference on Artificial Intelligence,

Tokyo, Japan, Aug, 18-22, 2002, Lecture Notes in Computer Science

2417:108-117, Springer-Verlag. 2002.

[ZMAM98a] Peixin Zhong, Margaret Martonosi, Pranav Ashar, Sharad Malik,

“Accelerating Boolean Satisfiability with Configurable Hardware,” in

 94

Kenneth L. Pocek and Jeffrey Arnold, editors, IEEE Symposium on

FPGAs for Custom Computing Machines, pages 186-195, Los Alamitos,

CA, 1998, IEEE Computer Society Press.

	stella-thesis.pdf
	end
	
	
	
	Inputs

