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Summary 
 

Boolean satisfiability (SAT) problems are NP-complete problems that are well-known 

in areas of operations research, artificial intelligence and computer-aided design. 

Algorithms for solving NP-complete problems may have long running times. To 

improve the performance of SAT solvers, hardware processing elements are used to 

accelerate execution. There has been considerable recent interest in the application of 

Field Programmable Gate Arrays (FPGAs) devices as accelerators for solving SAT 

problems. 

      There are two main types of SAT solvers, complete solvers, e.g. Davis-Putnam 

(DP), and incomplete Stochastic Local Search (SLS) methdos. The DP procedure is a 

complete branch and bound algorithm that is able to prove both satisfiability and 

unsatisfiability; whereas the SLS procedure is an incomplete algorithm and may not 

find a solution even if one exists. SLS algorithms have been successful for solving 

SAT problems. The WalkSAT family of algorithms contains some of the best 

performing SLS algorithms and has a very simple structure, thus can be improved by 

extracting more parallelism. There are a number of such hardware designs and 

implementations using reconfigurable FPGAs in the existing literature. 

      The use of hardware SAT solver only makes sense if there is significant 

performance advantage compared to software. Software can make use of state of the 

art processors built with the latest processor technology. A hardware SAT solver, on 

the other hand, is less likely to have the same level of process technology, and hence 

ix 



                        

longer cycle times. Earlier hardware implementations did not outperform optimized 

software. One new instance-specific approach was to maximize performance by 

making full use of parallelism and enabled a performance of one flip per clock cycle, 

more than two orders of magnitude faster than software. However, an important 

limitation of all these previous work is that they generated a high level description of a 

circuit customized for a particular SAT problem. Since the time needed to re-synthesis, 

map, place and route the new design is likely to significantly exceed the runtime 

improvement from faster software SAT solver, the approach of custom design specific 

to a particular SAT problem instance is not practical.  

      This thesis explores FPGA-based hardware designs for WalkSAT, which are not 

instance-specific and thus not require re-synthesis. In addition to this requirement, a 

hardware implementation faces interesting design tradeoffs due to the inherently 

limited logic resources on the chip. We propose two versions of WalkSAT, which 

allow real-time reconfiguration. The differences of the two WalkSAT versions lead to 

different design choices for maximal performance. The first design emphasizes fast 

cycle times (one flip per clock cycle), employing random variable selection to allow 

for a pipelined design. The second uses a greedy variable selection heuristic, which 

precludes pipelining, exemplifying a tradeoff between flip rate and effectiveness of 

variable selection. Both design have improved performance over other published non-

re-synthesis SLS FPGA implementations. 

 

x 
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Chapter 1 

 

Introduction 
 

Recent improvements of Field Programmable Gate Array (FPGA) technology have 

made FPGA’s a viable platform for development of hardware accelerators, while still 

allowing design flexibility and promise of design migration to future technologies. 

Many members of the computing community are eyeing FPGA-based platforms as a 

way to provide rapidly deployable, flexible, and portable hardware solutions. 

Using FPGA components in the content of propositional satisfiability problem 

(SAT) solving introduces challenges in system architecture and logic design. 

Stochastic local search (SLS) algorithms have been a successful approach for solving 

SAT problems. The WalkSAT family of algorithms [SKC94, MSK97] contains some 

of the best performing SLS algorithms. SLS algorithms like WalkSAT have a very 

simple structure and are composed of essentially three steps which are iterated until a 

satisfiable solution is found: (i) evaluate clauses; (ii) choose a variable; and (iii) flip 

the variable’s Boolean value. 

Since each of the steps is simple, moreover SAT clauses can be directly 

represented in hardware, it is tempting to build a hardware SLS solver. There are a 

number of such hardware designs and implementations [HM97, YSLL99, LSW01, 
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HTY01] using reconfigurable FPGA hardware. Hardware approaches to systematic 

search procedures for SAT problems are beyond the scope of this thesis; see [AS00] 

for an overview. 

The use of hardware SAT solvers only makes sense if there is significant 

performance advantage compared to software. Software can make use of state of the 

art processors built with the latest processor technology. A hardware SAT solver, on 

the other hand, is less likely to have the same level of process technology, and hence 

longer cycle times. Earlier hardware implementations like [HM97, YSLL99] did not 

outperform optimized software. For example, a reimplementation of the design in 

[HM97] which was done in [HTY01] had flip rates between 98 – 962 Kflips/s. In 

some problems, this was a bit faster than software and in other cases slower. In 

[HTY01], it was shown that GSAT SLS solvers running at one flip per clock cycle 

was achievable with performance gains of about two orders of magnitude over 

software. That implementation makes use of the reconfigurable nature of FPGAs to 

build a custom design specific to a particular SAT problem instance. While [HTY01] 

shows that very large speedups are feasible, this approach is not practical as a general 

SAT problem solver, because the time to re-synthesize, place and route the new design 

for an FPGA is likely to significantly exceed the runtime improvement from the faster 

solver. 

In the brief survey above of relevant work, we have observed that while some of 

these efforts have focused on the design of instance-specific solving system, there has 

been less work in the area of implementing a practical design in a real time 

environment. Typically an instance-specific hardware accelerator is not practical, 

because the re-synthesis requirements are often time consuming, it is necessary to find 

a solution. 
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To help address this challenge we have created the design without re-synthesis. In 

this thesis, we explores hardware designs for WalkSAT, which are not instance-

specific and thus do not require re-synthesis. In addition to this requirement, a 

hardware implementation faces interesting design tradeoffs due to the inherently 

limited logic resources on the chip. We propose two versions of WalkSAT, which 

allow real-time reconfiguration. The differences of the WalkSAT versions lead to 

different design choices for maximal performance. The first design emphasizes fast 

cycle times (one flip per clock cycle), employing random variable selection to allow 

for a pipelined design. The second uses a greedy variable selection heuristic, which 

precludes pipelining, exemplifying a tradeoff between flip rate and effectiveness of 

variable selection. Both designs have improved performance over published SLS 

FPGA implementations without re-synthesis. 

The remainder of this thesis is structured as follows: Chapter 2 introduces the 

background related to stochastic local search. Chapter 3 gives an overview on FPGA 

technology and its usage in reconfigurable computing and design prototyping. Chapter 

4 discusses some of the current reconfigurable implementations of SAT solvers. From 

their design limitations, we presented a clause evaluator without re-synthesis in 

Chapter 5. Chapter 6 addresses our implementation platform. Chapter 7 describes our 

two WalkSAT implementations based on two strategies. Chapter 8 reports the 

experimental results. Finally, Chapter 9 concludes and offers suggestions for future 

work. 
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Chapter 2 

 

Stochastic Local Search 

 

Local search algorithms are among the standard methods for solving propositional 

satisfiability problems from various areas of computer science. After its introduction 

by Selman, Levesque, and Mitchell [SLM92] and Gu [Gu92], a large number of such 

algorithms were proposed and investigated. In this thesis, we focus on WalkSAT 

family of stochastic local search. WalkSAT algorithms are in general sound. In this 

thesis we will discuss variants of WalkSAT family. 

 

2.1   Propositional Satisfiability (SAT) 

In 1971, propositional satisfiability (SAT) was introduced as the first computational 

task to be NP-complete [Coo71]. As SAT is the conceptually simplest NP-complete 

problem, a wide range of other problems can be encoded into SAT; which make SAT a 

useful problem. 

      SAT problems can be presented as a set of propositional clauses in conjunctive 

normal form (cnf). In this form, the problem is basically a conjunction of clauses, 

wherein each clause is a disjunction of literals. A literal is then a propositional variable 

or its negation. An example of a cnf problem is shown in Table 2.1. A solution to a 
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SAT problem is a variable assignment that satisfies all the clauses according to a rule 

of interpretation. For the example cnf problem below, one possible solution has an 

assignment of v1 = 1, v2 = 0, v3 = 1, v4 = 0. The cnf is a popular standard format for 

encoding SAT problems.  

 

variables v1, v2, v3, v4 
literals v1, ¬v1, v2, ¬v2, v3, ¬v3, v4, ¬v4 

cnf clause1 ∧ clause2 ∧ clause3 ∧ … ∧ clause8 
clause1 v1 ∨  v2 ∨ v3 clause5 v1 ∨ v3 ∨ v4 
clause2 v1 ∨  v2 ∨ v4 clause6 ¬v2 ∨ v3 ∨ ¬v4 
clause3 ¬v1 ∨ ¬v2 ∨ ¬v3 clause7 v1 ∨ ¬v3 ∨  ¬v4 
clause4   ¬v1 ∨ ¬v2 ∨ v3 clause8 v2 ∨ v3 ∨ v4 

 

Table 2.1: Example of a SAT Problem in cnf 

 

2.2   Stochastic Local Search (SLS) 

Stochastic local search is best viewed as a model-finding procedure wherein finding a 

solution to a problem determines its satisfiability. This is different from other theorem-

proving procedures that look for a sound and formal proof of the satisfiability. In order 

to understand this model-finding procedure, we define variable space to be the set of 

all the possible combinations on truth value assignments for each variable in a given 

SAT problem. A procedure like Davis-Putnam [DP60] or ASAT [DABC93] performs 

deterministic search over the whole problem. These are called as complete procedures 

which can determine either the satisfiability or unsatisfiability of the SAT problem. 

SLS algorithms on the other hand are incomplete procedures with the advantage of 

having a more efficient search traversal that could solve the problem with less time. 

An incomplete procedure might be capable of prove satisfiability by finding a solution 

but will never establish unsatisfiability. Their main idea is to perform an 

indeterministic non-backtracking local search over the variable space to find a 
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solution that satisfies the cnf. This local search strategy has shown to be robust and 

could outperform other systematic SAT solvers as presented in [SLM92], [Gu92], and 

[HS99]. 

The local search starts with an initial variable assignment or initial state. If the 

current state does not satisfy the cnf, the search strategy is to move to an adjacent state 

that has a difference of one or more variables depending on its preset Hamming 

distance. For a Hamming distance of one, the neighboring states would be the states 

that only have one different variable assignment. The search strategy will do repeated 

moves until a satisfiable assignment is found or the time-out limit on moves is 

reached. The limit imposed for this type of algorithms should be high enough that 

satisfiable problems are detected with high accuracy. For the WalkSAT and GSAT 

algorithms investigated in this thesis, the Hamming Distance is set to one. 

 

                    procedure SLSSAT(cnf, maxtries, maxflips) 
                            output: satisfying variable assignment for cnf 
                            for i := 1 to maxtries do /* outer loop */ 
                                  INIT_ASSIGN(V); 
                                  for j := 1 to maxflips do /* inner loop */ 
                                          if V satisfies cnf then 
                                                  return V 
                                          else 
                                                  CHOOSE_FLIP(f, V, cnf); 
                                                  V := V with variable f flipped; 
                                          end 
                                  end 
                            end 
                    end 

 

Figure 2.1: Stochastic Local Search Algorithm 

 

A general outline for the Stochastic Local Search algorithm SLSSAT is given in 

Figure 2.1. SLSSAT algorithms are different in two aspects, namely: the generation of 

the initial assignment (INIT_ASSIGN) and the selection for the next state 
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(CHOOSE_FLIP). All the investigated SLSSAT algorithms have a common 

INIT_ASSIGN procedure that randomly chooses the initial assignment from the 

variable space according to a uniform distribution. Hence, we concentrate on the 

CHOOSE_FLIP procedure that differentiate the investigated SLSSAT algorithms. As 

shown in Figure 2.1, there are two limits imposed in the algorithms. As the algorithm 

repeatedly performs flips to the current state, we limit the number of repetitions to 

maxflips. When it reaches maxflips with no solution found, the algorithm would exit 

the inner loop and restart with a new initial assignment. This stage is essential for the 

algorithm to escape from the local minima in the variable space. It means that for 

SLSSAT algorithms there exists a state in the variable space from which a solution 

will not be reached without reinitializing the search. The second time-out stage ends 

the execution of the algorithm when a certain number of tries (maxtries) has been 

reached. In that case, the algorithm fails to prove satisfiability. 

      For the CHOOSE_FLIP procedure, the score, which is the number of clauses 

satisfied by variable assignment V, plays a crucial role in the selection for the next 

variable to flip. We declare some score and additional functions that will be used in 

the following sections. 

1. The function score(cnf, V) returns the number of clauses satisfied as a 

results of using a variable assignment V in cnf. 

2. The function scoref(i, cnf, V) returns the number of clauses in cnf that are 

satisfied by using the modification of the assignment V where the truth 

value of the i-th variable is inverted. 

3. The function scoreb(i, cnf, V) returns the number of clauses in cnf that 

would be broken (unsatisfied) when the truth value for the i-th variable in 

V is flipped. 
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4. The function CHOOSE_ONE returns an element from a sequence using 

uniform distribution. 

5. The function UNSATISFIED returns a sequence of unsatisfied clauses 

from cnf for the variable assignment of V. 

 

2.2.1   The GSAT Architecture 

The greedy local search procedure called GSAT was first introduced by Selman, 

Levesque, and Mitchell [SLM92] and Gu [Gu92] in 1992. Since then, a number of 

GSAT variants have been derived such as GSAT with Tabu Search (GSAT/TABU) 

[MSK97, MSG97, SSS97] and GSAT with History (HSAT) [GW93]. Figure 2.2 

shows the CHOOSE_FLIP procedure used by GSAT. The procedure 

CHOOSE_FLIP gathers the variables that produce the highest scoref in the sequence 

named scores and performs a random selection in function CHOOSE_MAX to 

determine the next variable f to flip. This algorithm is referred to as ‘greedy’ since it 

assumes that a neighboring state with the highest scoref  would have the highest 

probability leading to a solution.  

                    procedure CHOOSE_FLIP(f, V, cnf) 
                             output: variable f that produces the maximum score 
                             for i := 1 to n do       /* for all variables */ 
                                      scores[i] := scoref(i, cnf, V); 
                             end 
                             return CHOOSE_MAX(scores); 
                    end 

 

Figure 2.2: CHOOSE_FLIP Algorithm for GSAT 

 

A straightforward implementation of GSAT in Figure 2.2 from [SLM92] is rather 

inefficient, since for each call to CHOOSE_FLIP the scores for all the variables are 

recalculated. An implementation of GSAT by Selman and Kautz version 41 (GSAT41) 
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is an optimized software implementation that usually serves as a reference benchmark 

implementation. Their method to efficiently implement GSAT is to evaluate the 

affected scores of some variable after each variable flip. A detailed description of 

GSAT41 together with a complexity analysis is given in  [Hoo96]. 

 

2.2.2   The WalkSAT Architecture 

The WalkSAT architecture is based on ideas first published by Selman, Kautz, and 

Cohen in 1994 [SKC94] and it was later formally defined as an algorithmic framework 

by McAllester, Selman, and Kautz in 1997 [MSK97]. WalkSAT is a family of 

stochastic algorithms that assigns all the variables a random truth assignment and then 

attempts to heuristically refine the assignment until all the clauses evaluate to true. 

WalkSAT is based on a 2-stage variable selection process focused on the variables 

occurring in currently unsatisfied clauses. For each local search step, in a first stage a 

currently unsatisfied clause c’ is randomly selected. In a second step, one of the 

variables appearing in c’ is then flipped to obtain the new assignment. Thus, while the 

GSAT architecture is characterized by a static neighborhood relation between 

assignments with Hamming distance one, WalkSAT algorithms are effectively based 

on a dynamically determined subset of the GSAT neighborhood relation. 

      WalkSAT family is in general a kind of robust stochastic local search algorithm. In 

WalkSAT family, the specific method of varying the truth assignment defines the 

variant of WalkSAT. All variants share the common behavior of occasionally ignoring 

their heuristic and making a random refinement according to some fixed probability.  

In our FPGA-based WalkSAT implementations described in Chapter 7, the 

algorithm we adapted is based on a variant called WalkSAT-B [MSK97]. Figure 2.3 

briefly describes this algorithm. 
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In Figure 2.3, given a SAT problem instance in format cnf, a random truth 

assignment V, and a noise setting p, the procedure will return a variable f which will be 

the next to be flipped. The function UNSATISFIED returns a list of clauses that are 

unsatisfied by the assignment of V.  Then randomly choose an unsatisfied clause c in 

this list. Following, with probability p choose f in c randomly; with probability 1-p  

choose f with the smallest scoreb.  

 

                          procedure CHOOSE_FLIP(f, V, p, cnf) 
output: variable f  
c := CHOOSE_ONE(UNSATISFIED(cnf, V)); 
min := m; /* number of clauses */ 
flip := 0; /* 0-list whose length is n (number of  variables) */ 
with probability p choose f in c randomly; 
with probability 1-p choose f in c with following heuristic: 

                                     for i := 1 to k do /* for each variable found in c */ 
                                           vi := i-th variable in c; 
                                           ci := scoreb(vi, cnf, V); 
                                           if ci < min then 
                                                  flip[vi] := 1; 
                                                  min := ci; 
                                           else if ci = min then 
                                                   flip[vi] := 1; 
                                           end 
                                     end 

 f := CHOOSE_ONE(flip); 
                               return f 
                    end 

 

Figure 2.3: Algorithm for WalkSAT-B Variant in WalkSAT Family 

 

As discussed in [MSK97], it is well known that the performance of a stochastic local 

search procedure depends upon the setting of its noise parameter, and that the optimal 

setting varies with the problem distribution. It is therefore desirable to develop general 

principles for tuning the procedures. In [MSK97], they presented two statistical 
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measures of the local search process that allow one to quickly find the optimal noise 

settings. These properties are independent of the fine details of the local search 

strategies, and appear to be relatively independent of the structure of the problem 

domains. 

      In Chapter 7, we investigate two extreme implementations based on the above 

WalkSAT variants by setting p to 1 (Random-Strategy) and 0 (Greedy-Strategy) 

respectively.  

 

2.2.3   WalkSAT Variants 

2.2.3.1   WalkSAT/TABU 

A well-known search mechanism in WalkSAT family is called WalkSAT/TABU 

which uses Tabu Search [MSK97]. It uses the same two-stage selection mechanism 

and the same scoring function scoreb as WalkSAT and additionally enforces a tabu 

tenure. A local search can be stuck at a local minima when it actually performs 

variable flips over a certain variable pattern. In order to avoid the repeating patterns, 

all recently flipped variables are restricted from getting flipped again for a certain 

duration. This duration is usually based on the number of variable flips, which is often 

referred to as tabu tenure. With the addition of the tabu mechanism the local search 

will hopefully be forced to flip a different variable that breaks the pattern and escapes 

the local minima. This however is not a guaranteed performance and is only a 

heuristic. As for the length of the tabu tenure, there is still no formal function for it to 

attain the Probabilistic Approximate Completeness (PAC) property. 

 

2.2.3.2   History Mechanism  
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The history mechanism, as the name implies, makes use of history information in 

guiding the local search of SLSSAT. Typically, in the situation where several 

variables with the same score arise, a random selection over uniform distribution is 

done. In this procedure, it would be possible to have variables that are never chosen 

even though they have been eligible many times. The history information eliminates 

this scenario by adding an additional step in the variable selection process whenever 

tie-breaking between variables is needed. This step would select the variables that are 

the least recently flipped. Although this may appear to be an unimportant addition to 

the algorithm, results from [GW93] show that SLSSAT combined with history 

provides superior performance. 

 

2.2.3.3 Self-Tuning Implementation of WalkSAT 

The ability of stochastic satisfiability solvers to successfully find a problem’s solution 

depends on how the trade-off between random decisions and heuristic decisions is 

managed during the solution search. This trade-off is controlled by a parameter setting, 

typically called the noise, which ranges from 0% to 100%. The optimal noise setting 

can vary greatly depending on the specifics of the algorithm used and the problem 

being solved. For a particularly hard problem, whose solution is unknown, it would be 

very useful to know the optimal noise setting. 

In [PK01], Donald J. Patterson and Henry Kautz presented an algorithm that uses a 

variant of WalkSAT [SCK94] to probe the parameter space of noise settings for the 

value which will maximize the probability of finding a solution. In [PK01], they 

introduce Auto-WalkSAT which is a general algorithm that automatically tunes any 

variant of the WalkSat family of stochastic satisfiability solvers. 
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In [PK01], their algorithm Auto-WalkSAT is able to successfully minimize the 

invariant ratio using a bracketed search supplemented with parabolic interpolation. 

The additional overhead of minimizing this ratio is very small, adding approximately 

one minute to the running time of the algorithm. Using a heuristic of adding ten 

percent noise to this value, Auto-WalkSat then efficiently solves many problems which 

critically depend on a proper noise setting. 

 

2.2.3.4   Davis-Putnam Procedure + WalkSAT 

WalkSAT is an incomplete method and is claimed to be more efficient than Davis-

Putnam Procedure [DLL62] which is a complete method. However, WalkSAT may 

come into difficulties on big SAT instances with many variables. In [ZHZ02], Wenhui 

Zhang et al. improved the efficiency by combining the Davis-Putnam procedure and 

the WalkSAT algorithm. 

      In 1960, Davis Putnam introduced a resolution algorithm for solving propositional 

satisfiabilty, which is called as the Davis-Putnam algorithm [DP60]. After two years, 

Davis, Logemann and Loveland improved on the algorithm and developed the Davis-

Putnam procedure [DLL62]. The former algorithm uses an elimination rule, while the 

latter which became more famous uses backtracking. Further references to both works 

became ambiguous, but are likely to refer to the Davis-Putnam Procedure. The detailed 

algorithm for Davis-Putnam procedure can be found in [DLL62] which is the 

backtracking search algorithm. 

      Davis-Putnam procedure is one of the most efficient complete search algorithm for 

SAT. Many systems based on this procedure have been implemented and many 

interesting problems have been solved by these tools. A major problem with DP is that 

it may have to go through a very large search space. 
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      In [ZHZ02], a hybrid approach was adopted. Firstly, use the DP procedure 

partially, and produce some subproblems. Then the subproblems are given to 

WalkSAT. In [ZHZ02], there are two parameters for controlling the number of 

subproblems. One is the maximum depth to be searched by DP, the other is the 

maximum number of subproblems. 

      If a subproblem is proven to be satisfiable within the given depth, the satisfiability 

checking is also finished. Otherwise, the subproblems which have not yet been proven 

to be unsatisfiable are recorded in files. In each subproblem, the propositional 

variables are renumbered consecutively from 1 to the number of remaining variables. 

These subproblems are given to WalkSAT in a loop until a solution is found or the 

maximum number of repetitions is reached. 

      The advantage of partitioning a problem into subproblems compared to using 

WalkSAT alone is that each subproblem is much smaller than the original problem. 

The implication of this is that the time needed for each trial of such a subproblem with 

WalkSAT is much shorter; and a solution of such a subproblem is expected to be 

found with much less time, if this subproblem indeed has a solution. For hard SAT 

instances, the speed up with their approaches is significant.  
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Chapter 3 

 

Reconfigurable Computing Paradigm 
 

Reconfigurable computing is a new and emerging computing paradigm that uses 

reconfigurable hardware, like Field Programmable Gate Arrays (FPGAs), to 

implement computationally intensive tasks. An FPGA provides the benefits of a 

customized CMOS-VLSI chip, and at the same time, avoids the fabrication cost and 

inherent risk of using conventional masked gate array. Similar to current application-

specific hardware accelerators, reconfigurable hardware benefits from the 

customization of data widths, instructions, memory access, etc. as compared to 

general-purpose computer. The resulting hardware can be optimally designed for the 

target application and exploits fine-grain parallelism. 

 

3.1   General-Purpose    Computer   vs.  Special- 

        Purpose Computer 

When we use the word “computer”, we are normally referring to a general-purpose 

computer. By definition, general-purpose computers are computing machines that can 



                                                                                                                                       16       

be used for a wide range of applications. On the other hand, there are also special 

purpose computers used for a single application or a class of similar applications. 

      The design of a general-purpose computer takes into account a wide range of 

considerations and constraints. Through several generations, a family of general-

purpose computers often maintains a relatively stable instruction set. There are many 

applications available for these computers. In addition, programming for such 

computers is very easy because there are many software tools available. General-

purpose computers offer good performance on wide range of applications at a very 

reasonable price. 

      For a particular application, however, a general-purpose computer does not always 

provide the highest performance. When the performance requirement of certain 

applications exceeds the performance of the available general-purpose computer, there 

are different approaches to create higher performance computing machines to provide 

the necessary computing power. One way is through parallel computing. A number of 

general-purpose processors can be combined to form a parallel computer. Very high 

performance can be achieved by partitioning the problem into small pieces and letting 

many computers work in parallel to solve the problem. However, the application 

should be suitable for such parallel computing. Another approach is to build 

specialized computers according to the application to provide higher performance 

specially for this application. The application-specific approach may provide very high 

performance for the targeted application, often with less hardware usage than the 

parallel computing approach. 

      There is one major obstacle in building application-specific computing machines. 

That is the cost for designing and building such a computer. The initial cost for 

designing and manufacturing integrated circuit (ICs) is very high and the subsequent 
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cost for fabricating the IC is relatively small. When an integrated circuit is fabricated 

in large quantities, the initial cost can be amortized and each chip produced is only 

responsible for a small portion of the initial cost. This is the major reason that popular 

general-purpose computers can be sold at relatively low prices. On the other hand, 

special-purpose computers require special-purpose integrated circuits. The initial cost 

is so high that it may dominate the total cost of building such system. It lacks the 

economy of scale. 

      Another difficulty with the special-purpose approach is the development time. It 

often takes a very long time to develop such a system, because a large amount of work 

is involved. Because the performance of general-purpose computer improves very 

quickly, special-purpose hardware may become obsolete very soon. 

Taking into the cost and short life, special-purpose computers are not an attractive 

approach unless the need for such hardware is very strong. However, if the cost and 

development time can be significantly reduced, this can be a viable approach for many 

problems. 

 

3.2   Field Programmable Gate Array (FPGA) 

Reconfigurable computing is a novel approach that combines the strengths of general 

purpose computing and the special-purpose approach. The research for reconfigurable 

computing is motivated by pursuit of higher computing performance with modest 

hardware cost. The advances in integrated circuits has brought about the class of 

programmable logic devices that can achieve high computing performance and yet 

provide the flexibility of gate-level programming. The typical hardware device used 

for reconfigurable computing is Field Programmable Gate Array (FPGA) [BFRV92, 

Sha99]. The basic idea of reconfigurable computing is to build a hardware system 
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based on FPGAs or other programmable devices. This system is configured, or 

programmed, according to a particular application to achieve high performance. On 

the other hand, the hardware should be general enough that many different 

applications can be mapped to the same hardware and run quickly. 

      The advent of reconfigurable computing bridges the gap between general-purpose 

processors and special-purpose computers or accelerators. It blurs the distinction 

between hardware and software. The study of reconfigurable computing also brings 

together knowledge on computer architecture, parallel computing, compilers, software 

development, hardware and IC design, and VLSI CAD. 

      A general-purpose computer has a fixed instruction set.  Different applications are 

implemented using different software programs. User programming is performed at 

the instruction level. Reconfigurable computing takes a different approach. There is no 

fixed instruction set. Instead of a general-purpose processor, reconfigurable computing 

uses FPGAs as the computing elements. The FPGAs are essentially integrated circuits 

that can be configured into specific logic functions. Different applications are realized 

by different configurations for hardware. The user programming can be performed at 

the logic gate level. Reconfigurable computing achieves high performance by creating 

specific functional units and better exploiting the parallelism. 

      A reconfigurable hardware system normally cannot operate as a stand-alone 

machine. It should work in tandem with a general-purpose processor, called a host 

machine. The host machine should handle the operating system and many basic 

functions such as program loading, file I/O and control functions. There can be 

different coupling mechanisms between the reconfigurable computer and the host. 

There have been proposals and recent design work on very closely coupled 

architectures, in which the processor and the FPGA are located on the same chip 
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[RS94, RLG98]. There are less closely coupled systems, in which the FPGA 

communicates with the processor through some I/O bus [GHK91, VBR96]. This has 

an impact on the communication bandwidth and latency, hence how the application is 

implemented. It will affect the programming model and performance model of the 

implementation. 

      Secondly, there are differences in total logic capacity of reconfigurable systems. 

The number of FPGA chips ranges from one to a few dozens or even thousands. The 

logic capacity determines the maximum complexity of application that can be mapped 

to hardware. It places an upper limit of parallelism that can be exploited. 

      There are also differences in the programming model of reconfigurable hardware. 

In some systems, all instructions are compiled into an FPGA hardware configuration. 

In other systems the reconfigurable hardware supports a limited instruction set. In this 

case, the programming model bares some similarity with general-purpose processor 

with the added flexibility in the instruction set. An application can be either fully 

implemented on reconfigurable hardware or partitioned between reconfigurable 

hardware and a general-purpose computer. 

      An FPGA is a type of programmable device, wherein a general-purpose chip can 

be configured to perform a wide variety of applications.  The first programmable 

device that has achieved widespread use was the PROM (Programmable Read-Only 

Memory). PROMs, a one-time programmable device come in two basic versions: the 

Mask-Programmable Chip programmed only by manufacturer, and the Field-

Programmable Chip programmed by the end-user. The Field Programmable PROM 

developed into two types, the Erasable Programmable Read-Only Memory (EPROM) 

and the Electrically Erasable Programmable Read-Only Memory (E2PROM). The 

E2PROM has the advantage of being erasable and re-programmable many times. 
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      Another step took place in this field which lead to the development of the 

Programmable Logic Device (PLD). These devices were constructed to implement 

logic circuits. The PLD include an array of AND-gates connected to an array of OR-

gates. The PAL (Programmable Array Logic) is a commonly used PLD consisting of a 

programmable AND-plane followed by a fixed OR-plane. PALs come in both mask 

and field versions. The PAL was designed for small logic circuits. 

      The Mask-Programmable Gate Array (MPGA) was developed to handle larger 

logic circuits. A common MPGA consists of rows of transistors that can be 

interconnected to implement desired logic circuits. User specified connects are 

available both within the rows and between the rows. This enables implementation of 

basic logic gates and the ability to interconnect the gates. As the metal layers are 

defined at the manufacturer, significant time and cost are incurred in producing the 

run.  In 1985, Xilinx Inc. introduced the FPGA (Field Programmable gate Array). An 

FPGA is a universal logic device structures as an array of user programmable logic 

and I/O cells interconnected by a programmable routing network. 

      There are four FPGA technologies in use: static Ram cells, anti-fuse, EPROM 

transistors, and E2PROM transistors. For this discussion, we focus on the static RAM 

technology on symmetrical array configuration developed by Xilinx. In the static 

RAM FPGA, programmable connections are made using pass-transistors, transmission 

gates, or multiplexers that are controlled by SRAM cells. Only SRAM cells allow fast 

in-circuit reconfiguration for any number of times. The major disadvantage, on the 

other hand, is the size requirement of the RAM technology. 

 

3.2.1   Principle of FPGA  
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FPGAs are based on the structure of Look-Up-Table (LUT), and LUT is essentially a 

RAM. Currently, most FPGAs adopt 4-input LUT, thus each LUT can be viewed as a 

16-deep and 1-bit RAM with a 4-input address line. From a schematic or VHDL code, 

the synthesis tool computes all possible results and writes these results into the RAM. 

address line

    out     out put

The look-up-table implementation

(a) (b)

16x1 RAM

(LUT)
d

The practical logic circuit

a

d

b

c

a

b

c

 
Figure 3.1: A Four- Input AND Gate Example 

Figure 3.1 shows a 4-input AND gate example. Sub-figure (a) describes the schematic 

of the practical logic circuit of a 4-input AND gate; sub-figure (b) is the Look-Up-

Table implementation respondent to sub-figure (a). 

 4-input AND Gate 16-deep and 1-bit RAM 
input  of  “abcd” logic output address line “abcd” data in 16x1RAM 

0000 0 0000 0 
0001 0 0001 0 
0010 0 0010 0 
0011 0 0011 0 
0100 0 0100 0 

    0101 0 0101 0 
0110 0 0110 0 
0111 0 0111 0 
1000 0 1000 0 
1001 0 1001 0 
1010 0 1010 0 
1011 0 1011 0 
1100 0 1100 0 
1101 0 1101 0 
1110 0 1110 0 
1111 1 1111 1 

 

Table 3.1: Implementing a Four-Input AND Gate with the LUT in FPGA 
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In Table 3.1, column 1 shows the input signals “abcd” of the four-input AND gate, 

column 2 shows the expected output of the four-input AND gate when input signals 

are as in column 1. Column 3 shows signals on the 4-bit address line of the 16x1 

RAM, column 4 shows the data stored in this 16x1 RAM and addressed by “abcd” 

shown in column 3. Thus, a four-input AND gate can be implemented with the Look-

Up-Table structure in FPGA. 

 

3.2.2   Structure of FPGA 

An FPGA is an integrated circuit (IC) that can be programmed after manufacture. 

Since it is re-programmable on the field, it is a kind of reconfigurable hardware. 

Typical architecture of an FPGA comprises a regular array of Configurable Logic 

Blocks (CLBs) with routing resources for interconnection and surrounded by 

programmable Input/Output Blocks (IOBs). CLBs provide the functional elements for 

constructing logic while IOBs provide the interface between the pins of the package 

and the CLBs. FPGAs are widely used as a prototype before fabricating a VLSI 

design, or can be used directly in a product. Figure 3.2 shows the basic structure of 

Xilinx SRAM-based FPGAs.   

    CLB  

Interconnect Resources

     IOB

 

Figure 3.2: Basic Structure of Xilinx SRAM-based FPGAs 
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The structure of Xilinx Virtex IOB is shown in Figure 3.3. The three D-type flip-flops 

are synchronized on the same clock. Two of them are for input and output, and the 

other one is for the control to the output tri-state buffer. The input signal can be routed 

to the internal logic either directly or through an input flip-flop. A programmable delay 

element at the D-input of the input flip-flop is to eliminate the pad-to-pad hold time. 

Moreover, by configuring the threshold voltage Vref  at the input buffer, the device 

can support designs with different voltage level. Similarly, the output from the internal 

logic can be routed to the pad either directly or through the optional output flip-flop. 

All I/O pins involved in configuration are set to high impedance state so that the 

internal logic is isolated. 

T  D Q 
TCE  CE

O  D Q 
OCE  CE

IQ  Q D Programmable Delay

CE 
       Vref

SR
CLK
ICE

SR

SR

OBUFT

         PAD

I

SR

IBUF

 

Figure 3.3: Structure of Xilinx Virtex IOB 
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The basic building block of the Xilinx Virtex FPGA is the Logic Cell (LC). A LC 

includes a 4-input function generator, carry logic and a storage element. Each Virtex 

CLB contains four LCs, organized in two slices (Figure 3.4). The 4-input function 

generator are implemented as 4-input look-up tables (LUTs). Each of them can 

provide the functions of one 4-input LUT or a 16x1-bit synchronous RAM(called 

“distributed RAM”). Furthermore, two LUTs in a slice can be combined to create a 

16x2-bit or 32x1bit synchronous RAM, or a 16x1-bit dual-port synchronous RAM 

[Xil00]. 

          COUT           COUT

YB YB
Y Y

G4 G4
G3 D       Q G3  D       Q

YQ YQ
G2 G2
G1 G1

BY XB BY XB

X X
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XQ XQ
P2 P2
P1 P1

BX BX

             CIN              CIN

        Slice 0        Slice 1
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Control

LUT Carry & 
Control

LUT Carry & 
Control

LUT Carry & 
Control

 

Figure 3.4: Simplified Structure of Xilinx Virtex CLB 
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Chapter 4 

 

Current SLS SAT Hardware 

Implementations 
 

There has been considerable recent interest in the application of FPGAs as accelerators 

for solving SAT problems. Most previous research on using FPGAs as accelerators for 

solving SAT problems has concentrated on complete algorithms. Complete algorithms 

are guaranteed to find a solution if one exists, whereas incomplete algorithms like 

stochastic local search may not find a solution even if one exist as we have discussed 

in Chapter 2.  

      For the complete algorithms, Zhong et al. developed a design for SAT problems 

utilizing the Davis-Putnam algorithm [ZMAM98a] as well as an unimplemented 

design which used nonchronological backtracking [ZAMM98].  

Yokoo et al [YSS96] developed a machine based on FPGAs which implemented a 

tree search with forward checking for SAT problems. Implementations from 

Abramovici and Saab [AS97] can also be used to solve for SAT problems. A path-

oriented decision making (PODEM) algorithm [Goe81] was used to solve for an 

encoded SAT problem. This algorithm was developed primarily for Automatic Test-

Pattern Generation (ATPG) problems and does not perform quite well with SAT 

problems. In addition, Suyama et al [SYS98] developed a machine with a dynamic 
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variable ordering heuristic. These approaches are less efficient than the Davis-Putnam 

procedure as stated in their paper. All of these implementations didn’t outperform state 

of the art DP based algorithms. 

Due to the inherent algorithm complexity of the DP SAT algorithm, it is not 

feasible to extract more parallelism than the implementation in [ZMAM98a]. Our 

research will focus on the FPGA implementations of WalkSAT algorithms which is a 

robust family in stochastic local search. In this chapter, we first review two recent 

implementations of GSAT [HTY01] and WalkSAT [Tan02]. These two 

implementations can achieve “one flip per clock cycle” performance. After that, 

another two implementations for GSAT [YSLL99] and WalkSAT from [LSW01] are 

discussed. 

 

4.1   One Flip per Clock Cycle for GSAT 

This section reviews the implementation of GSAT given by Henz, Tan, and Yap 

[HTY01]. In their work, they showed how GSAT can be implemented to be as fast as 

possible in hardware. Their implementation using FPGA achieves one flip per clock 

cycle by exploiting maximal parallelism and at the same time avoiding excessive 

hardware cost in terms of gates. 

      The speed of the GSAT implementations given in Hamadi and Merceron [HM97] 

and Yung et al. [YSLL99] is limited, because only clause evaluation is parallelized but 

variable scoring is not, hence the minimal depth of CHOOSE_FLIP after applying 

pipelining will still have a factor of n (n is the number of variables).  

In the algorithm shown in Figure 2.2, Henz et al. found that there is no 

dependency between the score computation of different variables. Thus, this is 
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obviously another parallelism opportunity. Figure 4.1 shows this naive maximum 

parallelism strategy. 

                    procedure CHOOSE_FLIP( f, V, cnf ) 
                             output: variable f that produces the maximum score 
                             par (for i := 1 to n ) do /* for all variables */ 
                                      scores[i] := scoref (i, cnf, V); 
                             end 
                             return CHOOSE_MAX(scores); 
                    end 

 

Figure 4.1: Basic CHOOSE_FLIP Design with Parallelized Variable Scoring 

 

In Figure 4.1, with key word par, the algorithm compute scoref [1] to scoref [n] in 

parallel. The depth of the this algorithm is O(log m) (m : the number of clauses), since 

the scoref computation is bounded by O(log m + log n), the CHOOSE_MAX 

computation is bounded by O(log n), and we assume n < m. While this is closer to 

achieving their goal, the drawback is that the cost in gate increases by a factor of n to 

O(mn2). With the exception of small problems, this design will not be practical. 

In [HTY01], they turned to an alternative hardware design. The ideas are related to 

the software optimizations for GSAT but the rationale is to decrease the circuit size 

while keeping parallel score evaluation. The key observations are: 

1. The selection of the flip variable can be done on the basis of relative 

contribution to the score of that variable when flipped. 

2. The number of clauses which will be affected by a change to one variable is 

small and typically bounded. 

In [HTY01], Henz et al. developed a new procedure as shown in Figure 4.2. As only 

the affected clauses should be referred, function scorec(i, cnfc(i), V) and function 

scorec(i, cnfc(i), V’[¬V(i)/i]) are used. Function scorec(i, cnfc(i), V) returns the 
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number of clauses satisfied as a result of using a variable assignment V in cnfc(i), 

while function scorec(i, cnfc(i), V’[¬V(i)/i]) returns the number of clauses satisfied as 

a result of using a new variable assignment  V’[¬V(i)/i]. The new variable assignment 

V’[¬V(i)/i] is generated from the old variable assignment V when V is changed with 

the i-the variable is flipped. The notation cnfc(i) represents the set of clauses which 

contain variable i.  For a particular SAT problem, cnfc(i) is constant. Thus, for each 

variable i, a fixed Boolean function can be extracted from cnfc(i) in order to get 

OldS[i] and NewS[i].   

The bound on the maximum number of clauses per variable can be denoted by 

MaxClauses. In practice, most SAT problems have also a bound on the number of 

variables per clause, which can be denoted by MaxVar. For example, for 3-SAT, 

MaxVars is 3. Thus, the number of gates for procedure in Figure 4.2 is O(MaxVars 

MaxClauses n). The depth for it is O(log MaxClauses + log MaxVars),  which for 

practical SAT problems is much smaller than O(log m). One more advantage of their 

design is that the circuit for scorec is also smaller because the actual size of the 

numbers to be considered requires less bit. 

                    procedure CHOOSE_FLIP(f, V, cnf) 
                             output: variable f that produces the maximum score 
                    s1:    par (for i := 1 to n ) do /* for all variables */ 
                                      NewS[i] := scorec(i, cnfc(i), V’[¬V(i)/i]); 
                            end 
                    s1:    par (for i := 1 to n ) do /* for all variables */ 
                                      OldS[i] := scorec(i, cnfc(i), V); 
                             end 
                    s2:    par (for i := 1 to n ) do /* for all variables */ 
                                      Diff[i] := NewS[i] – OldS[i]; 
                             end 
                    s3:    f := CHOOSE_MAX(Diff); 
                    end 

 

Figure 4.2: Parallel CHOOSE_FLIP with Relative Scoring 



                                                                                                                                       29       

With the above procedure the innermost loop of GSAT is over flips. Unfortunately, it 

is not possible to pipeline the different flip iterations of CHOOSE_FLIP, since each 

iteration is dependent on the flip of the previous iteration. Instead, pipelining the outer 

loop of the procedure show in Figure 2.1 is available, which is called multi-try 

pipelining in [HTY01]. Since there is no dependency between different tries in GSAT, 

essentially one can parallelize each try independently. Each pipeline stage deals in 

parallel with the work for a different try. For simplicity, maxtries should be a multiple 

of the number of stages in the pipeline.  

In practice, in the actual implementation it is feasible in one clock cycle to 

accommodate the scorec for all variables. Therefore, to achieve one flip per clock 

cycle for GSAT is only need to allocate each design block in the procedure in Figure 

4.2 to a pipeline stage s, leading to a pipeline with four stages. The first three stages, 

s1 to s3 are labeled in the procedure in Figure 4.2. The last stage, s4, which is not in 

the CHOOSE_FLIP procedure, is the circuit to make actual flip. This is illustrated in 

Figure 4.3, where procedure in Figure 4.2 is implemented as a four-stage pipeline 

which gives one flip per clock cycle. 

 

Tries time1 time2 time3 time4 time5 time6 time7 time8 …
Try1 s1 s2 s3 s4 s1 S2 s3 s4 …
Try2  s1 s2 s3 s4 S1 s2 s3 …
Try3   s1 s2 s3 S4 s1 s2 …
Try4    s1 s2 S3 s4 s1 …

 

Figure 4.3: A Four Stage Pipeline for GSAT 

 

4.2   One Flip per Clock Cycle for WalkSAT 

In this section, we review another FPGA-based implementation which is of WalkSAT 

algorithm and also achieved one flip per clock cycle in [Tan02].  
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The WalkSAT algorithm is technically an offspring of a GSAT variant, GSAT 

with random walk [SKC94]. For this reason, Tan et al. [Tan02] adapted many 

implementation details from GSAT in [HTY01] which is reviewed in the previous 

section. The algorithm they used is as the procedure shown in Figure 2.3, and they set 

the noise parameter N to 0%. 

WalkSAT uses a function scoreb that counts for the number of clause that will be 

unsatisfied when a variable is flipped. It is found that the clause evaluation as the 

procedure in Figure 4.1 is ideal for a fast WalkSAT solver design. For GSAT, the 

procedure in Figure 4.1 is truly impractical due to the large size increase to a factor of 

n. But for a WalkSAT implementation of a 3-SAT problem, the increase of the 

hardware size is only a factor of 3. 

      Figure 4.4 shows the complete instance-specific WalkSAT hardware design in 

[Tan02]. The main computation is divided into six data dependent stages, labeled s1 to 

s6. In stage s1, the function CHOOSE_ONE selects one unsatisfied clause c from Cp 

using uniform distribution; Cp contains the sequence of unsatisfied clauses from the 

last iteration. This stage also determines whether the last iteration has produced a 

satisfying solution; all the clauses are satisfied when SUM(Cp) is equal to zero. For 

the next stage s2, the VARIABLE_LIST(Vp, j, i) returns the variable sequence V’p 

with the i-th variable in clause j inverted. It is assumed that there are three variables 

per clause, therefore, there are V[1], V[2], V[3] to store the variable assignments with 

different variable flipped. The next stage s3 evaluates the variable assignments to the 

cnf and then forms a list of unsatisfied clauses for each of the variable assignments. 

Stage s4 computes for the scoreb for each of the three variable assignments (Function 

scoreb is discussed in Section 2.2).  The next stage s5 determines the variable 

assignment that produced the least scoreb. In the next stage s6, the new variable 



                                                                                                                                       31       

assignment will be updated, as well as the list of unsatisfied clauses. This loop would 

repeat until a satisfying solution is found or the maxflips number of iterations is 

reached. 

 

         MAIN(): 
                       Vp := RECEIVE_INITIAL_ASSIGNMENT(); 
                       Cp := {1:  j ∈ [1…m]}; 
                       for i := 1 to maxflips do 
         s1:                  par{ 
                                       if SUM(Cp) = 0 then BREAK; 
                                       c := CHOOSE_ONE(Cp);              
                                }; 
         s2:                  par{ 
                                       V[1] := VARIABLE_LIST(Vp, c, 1); 
                                       V[2] := VARIABLE_LIST(Vp, c, 2); 
                                       V[3] := VARIABLE_LIST(Vp, c, 3); 
                                }; 
         s3:                  par{ 
                                       C[1] := {¬EVALj(V[1]) : j ∈ [1…m]}; 
                                       C[2] := {¬EVALj(V[2]) : j ∈ [1…m]}; 
                                       C[3] := {¬EVALj(V[3]) : j ∈ [1…m]}; 
                                } 
         s4:                  par{ 
                                       S[1] := SUM( ¬Cp∧C[1]); 
                                       S[2] := SUM( ¬Cp∧C[2]); 
                                       S[3] := SUM( ¬Cp∧C[3]); 
                                } 
         s5:                  i := OBTAIN_MIN_INDEX(S); 
         s6:                  par{ 
                                       Vp := V[i]; 
                                       Cp := C[i]; 
                                }  
                       end; 
                       SEND_ASSIGNMENT(Vp) 

 

 

Figure 4.4: Instance Specific Implementation of the WalkSAT Algorithm 
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As we can see from the procedure in Figure 4.4, the innermost loop of WalkSAT is 

also over flips. Just like the implementation of GSAT, it is impossible to pipeline the 

different flip iterations of CHOOSE_FLIP since the data dependency between the 

consecutive flips. Instead, pipelining the outer loop of the procedure show in Figure 

2.1 is also available for WalkSAT, which is called multi-try pipelining in [HTY01]. 

Since there is no dependency between different tries in WalkSAT, essentially one can 

parallelize each try independently, in this way, one flip per clock cycle for WalkSAT 

is achieved.  

 

4.3   GSAT Variant by Yung et al. 

In this section, we will review another FPGA-based GSAT implementation which was 

given by Yung et al. [YSLL99]. 

Although the implementations discussed in section 4.1 and 4.2 can run at one flip 

per clock cycle and can get performance gains of about two orders of magnitude over 

software, their approach are not practical as a general SAT problem solver, because 

the time to re-synthesize, place and route the new design for a new SAT problem is 

likely to significantly exceed the runtime improvement from the faster solvers. In 

section 4.3 and 4.4, we will review two implementations which address this problem. 

From 1999, bitstream reconfigurable systems have been employed to address the 

re-synthesis problem occurring in instance-specific implementations for solving SAT 

problems. In [YSL99], Yung et al. provide a method of modifying the bitstream in a 

problem specific fashion without requiring re-synthesis.  Like [ASS99], the runtime 

configurable systems in [YSL99] also used Xilinx XC6200 series devices [Xil6200] 

which document the manner in which the bitstream relates to the hardware of the 

device. However, XC6200 devices have been discontinued by Xilinx and also have 
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very small logic capability (The largest reported bitstream reconfigurable system only 

supports 13 variables and 29 clauses [ASS99].). 

The difference in the work by Yung et al. [YSLL99] is the use of partial re-

synthesis of the design that bypasses the synthesis. Their design technique is only 

possible with two assumptions. First, the device vendor like in their case Xilinx Inc. 

has provided enough information to reconstruct their configuration file for the Xilinx 

XC6216 FPGA. Secondly, the changes to their design should be simple and should do 

not affect the timing constraints 

      Yung et al. was able to provide partial reconfiguration to the FPGA given the 

advantage of knowing how to construct the configuration file. Their approach allows 

reconfiguration that skips the synthesis tool and allows directly changing the 

configuration of the FPGA. Current FPGA chips do not provide an open architecture 

thus rendering this technique useless. Xilinx has currently announced that they would 

release future FPGA chips that would allow partial reconfiguration. Partial 

reconfiguration will allow CLB rows to be configured separately and could reduce 

synthesis time by a factor. This technology has yet to come out and it would improve 

the performance of instance-specific design implementation. 

Since the algorithm used in [YSLL99] was patterned after the algorithm provided 

by Sleman, Levesque and Mitchell in [SLM92] rather than the optimized version as in 

GSAT41 [Hoo96], the respondent FPGA-based implementation in [YSLL99], like that 

in [HM97], was not fully parallelized. Thus the implementation in [YSLL99] didn’t 

provide enough performance increase compared with the GSAT implementation we 

discussed in the previous section which significantly improved over GSAT41 running 

on fast CPUs.  
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4.4   WalkSAT based on ROM Array 

In 2001, Leong et al. [LSW01] achieved a bitstream reconfigurable FPGA 

implementation for WalkSAT. The algorithm they adopted is as the procedure shown 

in Figure 2.3. In their implementations, the noise N is set to 100%. Their 

implementation stores clauses for a SAT problem in the 16x1-bit ROM available in the 

Logic Cells (LCs) of the Xilinx FPGA. A different SAT instance requires various 

ROM definitions to be modified. Normally this would require re-synthesis of the 

FPGA to generate a new bitstream configuration for downloading. Leong et al. were 

able to achieve an implementation without requiring re-synthesis by designing a 

transformer for the ROM configuration.  

      In their scheme, the circuit is designed in the normal fashion and the ROMs can be 

placed at arbitrary locations. After synthesis, technology mapping, placing and 

routing, a circuit description file (for the Xilinx tools, this file has an extension .ncd 

which means Native Circuit Description.) is generated. This file can be opened with 

Xilinx tool FPGA Editor. FPGA Editor is a graphical application for displaying and 

configuring FPGAs. The FPGA Editor can read from and write to NCD files, macro 

files (NMC), and Physical Constraints Files (PCF).  Under the environment of FPGA 

Editor, the names and physical locations of those LCs, by which the ROM arrays of 

the clause checker are implemented, can be found. 

At the same time, with another kind of Xilinx tool named ncd2xdl, the binary-

format bitstream file .ncd, which stores the contents of the circuit, can be converted 

into a human readable format, and then, with the information regarding the names and 

the physical locations of the LCs of the ROM array acquired under FPGA Editor, data 

stored in these LCs can be extracted and modified. 
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In [LSW01], a program was written which takes as input the normal .ncd file and 

the specification of a specific SAT problem in the standard DIMACS benchmark 

format [DIMACS]. For each SAT problem, this transformer designed modifies the 

bitstream .ncd file according to the SAT problem specification by customizing the 

ROM values and recomputed the Cyclic Redundant Check (CRC) of the .ncd file. 

After that, the resulting bitstream file .bit generated by Xilinx tool bitgen can be 

downloaded to a Virtex FPGA to find a solution for this SAT problem instance. 

      In their scheme, they elect to recalculate the CRC checksum inside their software 

transformer. In this way, they can avoid running the Design Rules Checker (DRC) 

when recreating the configuration .bit file.  CRC bits are checksum bits that the FPGA 

uses to verify that the bitstream transmitted correctly. 

      This approach requires analysis of the bitstream .ncd file to figure out how to 

rebuild the configuration without re-synthesis. Like [YSLL99], the implementation in 

[LSW01] simulates re-synthesis in a very efficient fashion. However, it is also 

dependent on the ability to modify the FPGA configuration.  
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Chapter 5 

 

Clause Evaluator without Re-Synthesis 
 

Instance specific implementations for SAT problems have provided an outstanding 

performance from their compact sizes. This is achieved by using a customized design 

that is specific for each problem. The disadvantage of these implementations is that a 

high level description of a circuit customized for a particular SAT problem is needed. 

In order to execute the design, an entire iteration of the synthesis, map, place and route 

(P&R) cycle was required for each problem. These steps are time consuming (it can 

take several hours to synthesize, map, place and route a large design.) and preclude 

their use in real time systems. Our goal is to develop a general system which avoids 

these steps. We develop a general clause evaluator for WalkSAT solvers, which fits 

well within an FPGA architecture and can be reconfigured according to different SAT 

problems quickly in a portable fashion. In this Chapter, Section 5.1 discusses the 

compilation (synthesis) time on current platform in order to demonstrate the 

shortcoming of the instance-specific implementations. Section 5.2 describes our 

general clause evaluator. 
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5.1   Compilation Time on Current Platform 

For instance-specific designs, since the circuit is generated according to the specific 

SAT problem to be solved, the problem solving time should take into account 

compilation time. In this section, we investigate the actual compilation time for 

instance-specific designs by reviewing the implementations which achieved one flip 

per clock cycle in [Tan02]. These implementations are based on GSAT and WalkSAT 

strategies respectively.  

As shown in Table 5.1 and Table 5.2, for instance-specific implementations using 

FPGAs, the following steps contribute to the total compilation time. 

 1. Handel-C Synthesis (Syn):   This is a process called logic synthesis 

which compiles a Handel-C project into a Electronic Design Interface Format 

(EDIF) netlist file. EDIF netlist is a standard netlist format which describes a 

circuit including the basic elements and their connections. This process takes 

the Handel-C project as input and then generates the circuit structure 

implementing the functions described in the Handel-C. 

 

  2. Xilinx mapping (Map):   The EDIF netlist uses generic constructs to 

describe the circuit while the FPGAs have their own logic functional units. 

For example, a netlist can express combinational circuits in terms of AND, 

OR and inverter gates. The target FPGA uses the CLBs to realize logic 

functions. Fitting the logic gates into the LUTs in the CLBs is called 

technology mapping. After mapping, the circuit is represented by the 

functions of the CLBs and the routing newtwork between these CLBs. 

 

 3. Xilinx placement and routing (Par):   This is the placement and routing 

of physical design.  The task of placement is to determine the location of the 
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logic functions on the target FPGA. The placement of the logic functions 

should facilitate later routing. A good placement should minimize the routing 

congestion and routing delay. Typically, placement is optimized through 

iterative improvement after an initial constructive placement. With the logic 

elements in place, routing takes care of creating the connections between 

these elements. Since the routing resources are limited, there is no guarantee 

that a circuit can be routed. It may take several tries to get an acceptable 

routing. 

  4. Xilinx bitstream generation (Bitg): After the logic functions and routing 

are all determined, Xilinx’s bitstream generation program, BitGen, takes a 

fully routed circuit description file as its input and produces a configuration 

bitstream – a binary file. This bitstream file contains all of the configuration 

information. 

 

 5. Download configuration: This process download the bitstream  file into 

the FPGA’s memory cell. On our current AMD Athlon 1.2GHz CPU it takes 

about 0.14 seconds or so. 

 

SAT Problems Var Cla Slices Syn 
(min)

Map 
(min)

Par 
(min) 

Bitg 
(min) 

Total
(min)

uf20-01 20 91 17% 10 1 2 2 15 
aim-50-1_6-yes1-1 50 80 18% 10 1 1 2 14 
aim-50-2_0-yes1-1 50 100 20% 13 1 2 2 18 
aim-50-3_4-yes1-1 50 170 31% 40 3 3 2 48 
aim-50-6_0-yes1-1 50 300 54% 171 6 6 2 185 
aim-100-1_6-yes1-1 100 160 34% 43 3 4 2 52 
aim-100-2_0-yes1-1 100 200 40% 63 5 4 2 74 
aim-100-3_4-yes1-1 100 340 64% 199 11 14 2 226 
flat30-01 90 300 57% 198 7 8 2 217 
BMS_k3_n100_m429_0 100 286 56% 199 7 8 2 216 
RTI_k3_n100_429_0 100 429 79% 293 19 12 2 326 
uf50-01 50 218 39% 55 5 3 2 65 
uf100-01 100 430 89% 294 19 12 2 327 
 

Table 5.1: Time Spent on Re-synthesis for GSAT in Section 4.1 
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Table 5.1 shows the time spent on these steps for different problems for instance-

specific one flip per clock cycle implementation for GSAT achieved in [HTY01].      

Table 5.2 shows the time spent on the re-synthesis steps for different problems for the 

instance-specific one flip per clock implementation for WalkSAT achieved in [Tan02]. 

      The compilation tools used in both Table 5.1 and Table 5.2 are Celoxica’s Handel-

C 3.0 and Xilinx Foundation Series ISE 3.1i; and the PC on which these tools ran is of 

an AMD Athlon 1.2GHz CPU.  

      Table 5.1 and Table 5.2 demonstrate compile-time statistics for two subsets of the 

SAT suite. The total compilation time to generate hardware solution for a specific big  

SAT problem can be of several hours for big problems.  

 

SAT Problem Var Cla Slices Syn 
(min)

Map 
(min)

Par 
(min) 

Bitg 
(min) 

Total
(min)

aim-100-1_6-yes1-1 100 160 28% 13 2 2 2 19 
aim-100-2_0-yes1-1 100 200 25% 13 2 2 2 19 
aim-100-3_4-yes1-1 100 340 38% 18 11 2 2 34 
aim-100-6_0-yes1-1 100 600 51% 33 6 4 2 45 
aim-200-1_6-yes1-1 200 320 52% 74 7 5 2 88 
aim-200-2_0-yes1-1 200 400 53% 79 5 5 2 91 
aim-200-3_4-yes1-1 200 680 74% 113 21 8 2 144 
aim-200-6_0-yes1-1 200 1200 99% 170 94 52 2 318 
aim-50-1_6-yes1-1 50 80 14% 3 1 1 2 7 
aim-50-2_0-yes1-1 50 100 15% 4 1 1 2 8 
aim-50-3_4-yes1-1 50 170 20% 5 2 1 2 10 
aim-50-6_0-yes1-1 50 300 27% 8 3 2 2 15 
BMS_k3_n100_m429_0 100 286 37% 25 3 3 2 33 
Flat30-1 90 300 29% 13 3 2 2 20 
RTI_k3_n100_m429_0 100 429 48% 33 4 4 2 43 
uf100-01 100 430 47% 23 4 4 2 33 
uf200-01 200 860 96% 120 31 14 2 167 
uf20-01 20 91 12% 2 1 1 2 6 
uf50-01 50 218 24% 6 2 1 2 11 
 

Table 5.2: Time Spent on Re-synthesis for WalkSAT in Section 4.2 
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Since the compilation time is on the order of hours, the implementations in [Tan02] 

will not provide practical speedups for problems that can be solved in minutes or less 

by software approach.  As we can see from Table 5.1 and Table 5.2, for instance-

specific implementations, basically the hardware space cost is proportional to the size 

of the SAT problem; and the more the space cost, the longer the compilation time. 

Figure 5.1 and Figure 5.2 demonstrate a relation between the space cost of a design 

and the compilation time of this design.   

      As we can see, hardware compilation problems such as optimal partitioning and 

placement are quite complicated, and hardware compilation time can be on order of 

hours, research for means to reduce synthesis time is being done. Our method is to 

develop a general clause evaluator in WalkSAT rather than instance-specific, which 

fits well within an FPGA architecture and can be reconfigured quickly in a portable 

fashion.  
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Figure 5.1: Space Cost & Compilation Time for GSAT Instance-Specific Designs 
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Figure 5.2: Space Cost & Compilation Time for WalkSAT Instance-Specific Designs 

 

5.2 A General Clause Evaluator 

As we have discussed in the previous section, the compilation overhead limits the 

usage of instance-specific implementations. Our method is to develop a general clause 

evaluator in a SAT solver, which avoids those re-synthesis steps described in Section 

5.1, and at the same time this clause evaluator should fit well in an FPGA architecture 

and can be reconfigured quickly in a portable fashion. 

 

5.2.1  Decompose   one   Clause   into   Small   Boolean 

          Function Blocks 

In our design, we will focus on the Xilinx Virtex FPGA chips.  As we mentioned in 

Chapter 3, two LUTs in a slice can be combined to create a 16x1-bit dual port RAM. 



                                                                                                                                       42       

Our clause evaluator represents the clauses in a SAT instance in a 16x1-bit dual port 

RAM array, which can be generated from the Xilinx RAM16x1D primitive. 

 

5.2.1.1   Function of RAM16X1D 

RAM16x1D is a 16-word by 1-bit static dual port random access memory with 

synchronous write capability.  The device has two separate address ports: the read 

address port (DPRA3 – DPRA0) and the write/read address port (A3 – A0). These two 

address ports are completely asynchronous.  The read address controls the location of 

the data driven out of the output pin (DPO), and the write/read address controls the 

destination of a valid write transaction and also the data driven out of the output pin 

(SPO). This means SPO output reflects the data in the memory cell addressed by A3–

A0. DPO output reflects the data in the memory cell addressed by DPRA3–DPRA0. 

The write process on the write/read port won’t be affected by the address on the read 

address port. Figure 5.3 shows the external pins of RAM16x1D. Figure 5.4 gives the 

function block diagram of RAM16x1D. 

 
 Inputs Outputs 

WE (mode) WCLK D SPO DPO 

0 (read) X X data_a data_d  

1 (read) 0 X data_a data_d 

1 (read) 1 X data_a data_d 

1 (write)  D D data_d 

1 (read)  X data_a data_d 

data_a = word addressed by bits A3-A0 
data_d = word addressed by bits DPRA3-DPRA0 

WE RAM16X1D SPO
D

WCLK DPO
A0
A1
A2
A3

DPRA0
DPRA1
DPRA2
DPRA3

            
    Figure 5.3: External Pins                      Table 5.3: Mode Selection of RAM16x1D 
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Figure 5.4: Function Block Diagram of RAM16x1D 

 

When the write enable (WE) is Low, transitions on the write clock (WCLK) are 

ignored and data stored in the RAM is not affected. If we assume an active-High 

WCLK, when WE is high, any positive transition on WCLK loads the data on the data 

input (D) into the word selected by the 4-bit write address. For predictable 

performance, write address and data inputs must be stable before a Low-to-High 

transition. Table 5.3 shows the mode selection for RAM16X1D. WCLK can be active-

High or active-Low.  
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5.2.1.2   Map Boolean Functions to RAM16x1Ds  

After describing the function of RAM16x1D, we describe how to map a clause in a 

SAT problem to RAM16x1Ds by an example. Consider a SAT clause, c3, of the form,  

x1 ∨ x2 ∨ ¬x15, and let us assume that c3 is a clause of a SAT problem over 20 

variables.  The clause can be written as  f3,0(x0, x1, x2, x3) ∨ f3,1(x4, x5, x6, x7) ∨        

f3,2(x8, x9, x10, x11) ∨ f3,3(x12, x13, x14, x15) ∨ f3,4(x16, x17, x18, x19), where 

f3,0(x0, x1, x2, x3) = x1 ∨ x2,  f3,1(x4, x5, x6, x7) = FALSE,  f3,2(x8, x9, x10, x11) = 

FALSE, f3,3(x12, x13, x14, x15) = ¬x15, f3,4(x16, x17, x18, x19) = FALSE;  thus, 

clause c3 can be decomposed into a disjunction of 5 small Boolean functions, each of 

these functions is over four consecutive Boolean variables. In this way, all the clauses 

of a SAT problem can be decomposed into a set of small Boolean functions. 

a row of 5 RAM16x1Ds respondent to clause  : x1 ∨ x2 ∨ ¬x15 signals 
on  address 
A3A2A1A0 

RAM_0 RAM_1 RAM_2 RAM_3 RAM_4 

x0x1x2x3 x4x5x6x7 x8x9x10x11 x12x13x14x15 x16x17x18x19Input signal 
of each small 
function block

x1 ∨ x2 FALSE FALSE ¬x15 FALSE 

0000 0 0 0 1 0 
0001 0 0 0 0 0 
0010 1 0 0 1 0 
0011 1 0 0 0 0 
0100 1 0 0 1 0 
0101 1 0 0 0 0 
0110 1 0 0 1 0 
0111 1 0 0 0 0 
1000 0 0 0 1 0 
1001 0 0 0 0 0 
1010 1 0 0 1 0 
1011 1 0 0 0 0 
1100 1 0 0 1 0 
1101 1 0 0 0 0 
1110 1 0 0 1 0 
1111 1 0 0 0 0 

 

Table 5.4: Decompose a Clause into Small Boolean Function Blocks  
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We map each Boolean function fi,j arising from the j-th part of clause i to a 

RAM16x1D primitive, treating the four variables as the address to the read port 

(DPRA3 – DPRA0). The function fi,j is configured by using the write port (A3 – A0) 

to define its truth table. Note that one advantage of this representation is that negated 

variables are handled automatically inside the fi,j function block.  

      Table 5.4 shows the truth tables of the 5 Boolean functions whose disjunction 

represents the clause c3 we mentioned above.  

 

5.2.2   Hierarchical Structure of our Clause Evaluator 

In the previous section, we described the principle of our general clause evaluator. 

With this principle, we can construct a clause whose variables vary over all the 

variables occurring in a SAT problem. In this section, we develop our general clause 

evaluator without requiring re-synthesis. 

   First of all, since more detailed descriptions in the register-transfer level (RTL) 

can be available in VHSIC (an acronym for Very High Speed Integrared Circuits) 

Hardware Description Language (VHDL), we designed our general clause evaluator in 

VHDL language. VHDL is a hardware description language that can be used to model 

a digital system. The digital system can be as simple as a logic gate or as complex as a 

complete electronic system. A hardware abstraction of this digital system is called 

entity. An entity X, when used in another entity Y, becomes a component for entity Y. 

Therefore, a component is also an entity, depending on the level at which you are 

trying to model. VHDL supports three basic different description styles: structural, 

dataflow, and behavioral.  
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      Our clause evaluator is of hierarchical design and expressed in combination of 

these three descriptive styles. To understand our structural style of modeling, we 

should first understand the concept of  entity in VHDL.  

   In structural design, an entity is modeled as a set of components connected by 

signals, that is, as a netlist. The behavior of the entity is not explicitly apparent from its 

structural model. The component instantiation statement is the primary mechanism 

used for describing structural model of an entity. 

    Our clause evaluator is hierarchically a three-level design. In this design, we 

developed three kinds of entities (components), plus a Xilinx RAM16x1D entity. The 

entity declaration specifies the name of the entity being modeled and lists the set of 

interface port. Ports are signals through which the entity communicates with the other 

models in its external environment. Our final clause evaluator is for up to 100 

variables and 220 clauses. (See the Appendix for the declarations of the entities in our 

final clause evaluator.) 

      Figure 5.5 shows the relationship of the four entities inside our clause evaluator. 

Entity clause_checker has its architecture body clause_checker_A. In our design, 

architecture body clause_checker_A is a purely structural model with a hierarchy of 

three levels, and clause_checker_A itself is of the top-level. It contains 221 

components, one is called ctrl, while the other 220 components are named clause_0, 

clause_1, … , clause_219. 

The dashed lines represent the bindings of components used in the architecture 

body with other entities. Component ctrl in architecture body clause_checker_A is 

bound to entity cc_ctrl; component clause_0, clause_1, … , clause_219 are all bound 

to entity cc_clause. Architectures of both entity cc_trl and entity cc_clause are of 

second-level.  
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The architecture body of entity cc_ctrl is cc_trl_A. It is of a mixed style of 

behavioral modeling and dataflow modeling, its function will be discussed in Section 

5.2.3.  

The architecture body of entity cc_clause is cc_clause_A. It is of a mixed style of 

structural modeling and behavioral modeling. Inside cc_clause_A, component ram_0, 

ram_1, … , ram_24 are all bound to entity ram16x1d. 

Hierarchically, the architecture body of entity ram16x1d, ram16x1d_A, is of third 

level. We have discussed the function of ram16x1d in Section 5.2.1.  

      Figure 5.6 shows the structure of the i_th clause in our clause evaluator. Since our 

clause evaluator is for SAT problems of up to 100-variable/220-clause, each clause is 

over 100 variables, thus it takes 100/4 = 25 RAM16x1Ds to store the Boolean function 

truth tables for each clause.    

      In Figure 5.6, 4-bit address line ADDR[11..8] are connected to the write address 

line A3-A0 of all the 25 RAM16x1Ds. Data line row_wdata[0], row_wdata[1], …, 

row_wdata[24] are connected to the data input Ds of the 25 RAM16X1Ds in the 

clause row consecutively. V0, V1, …,  V99 are connected to the 4-bit read address line 

DPRA3-DPRA0s of the 25 RAM16X1d in each clasue row 4 by 4 consecutively. 25 

DPOs in this clause row are “Or”ed together, the output of the 25-input OR gate is 

connected to row_out[i], i means the i-th clause. ROW_WEN[i] is the write enable 

signal comes from the read/write controller (see Section 5.2.3).   

      Figure 5.7 shows the entire structure of our general clause evaluator for SAT 

problems up to 100 variables and 220 clauses. Our clause evaluator evaluates 

all_clauses[0] to all_clauses[219] in parallel in one clock cycle. 
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Clause_0: ……

Clause_1: ……

Clause_219: ……

ram_0:…..

ram_1:…..             Second-
               Level

ram_24:….

cc_clause_A cc_ctrl_A

    Third-
    Level

       ram16x1d_A

Entity RAM16X1D

…
…

..

second-
Level

ctrl:…

…
…

..
clause_checker_A

Entity clause_checker

Entity cc_clause

Top-
Level

Entity cc_ctrl

 

Figure 5.5: Hierarchy of a General Clause Evaluator 
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ADDR [11] A3 DPO
ADDR [10] A2
ADDR [9] A1 SPO
ADDR [8] A0

row _wdata [0] D        RAM16x1D
V0 DPRA3
V1 DPRA2
V2 DPRA1
V3 DPRA0 WE CLK

A3 DPO
A2
A1 SPO
A0

row _wdata [1]
D        RAM16x1D

V4 DPRA3
V5 DPRA2
V6 DPRA1
V7 DPRA0 WE CLK

A3 DPO
A2
A1 SPO
A0

row _wdata [2]
D        RAM16x1D

V8 DPRA3
V9 DPRA2
V10 DPRA1
V11 DPRA0 WE CLK                              25 input OR

                                   row_out [i]
…

A3 DPO
A2
A1 SPO
A0

row _wdata [2]
D        RAM16x1D

V12 DPRA3
V13 DPRA2
V14 DPRA1
V15 DPRA0 WE CLK

A3 DPO
A2
A1 SPO
A0

row _wdata [24]
D        RAM16x1D

V96 DPRA3
V97 DPRA2
V98 DPRA1
V99 DPRA0 WE CLK

  CLOCK
  row_wen [ i ]

.  
.  

.  
.  

.

 

Figure 5.6: Structure of  Clause i 
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ADDR[11]
ADDR[10] row_out all_clauses[0]
ADDR[9]
ADDR[8]

row_wdata[24..0]

v[99..0]                 row_wen     clock

         row_wen[0]

row_out all_clauses[1]

                row_wen     clock

         row_wen[1]

row_out all_clauses[2]

                row_wen     clock

         row_wen[2]

row_out all_clauses[3]

                row_wen     clock

         row_wen[3]

row_out all_clauses[219]

                row_wen     clock
CLOCK

         row_wen[219]

CLAUSE_219

. .
 . 

.

CLAUSE_0

CLAUSE_1

CLAUSE_2

CLAUSE_3

 

Figure 5.7: Structure of our General Clause Evaluator 
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5.2.3   Control Logic inside our Clause Evaluator 

 

addr [11..0] row_wen [219..0]
rwn row_waddr [99..0]

wdata [24..0] rdata [24..0]
clock
reset

cc_sel row_rdata [219..0] [24..0]

cc_rdy

Read/Write
Controller

 

Figure 5.8: External Connections of Read/Write Controller 

 

Figure 5.8 shows the external connections of the read/write controller around the 

220x25 RAM16x1D arrays of our clause evaluator.  

-- write cycle

row_wen[219..i+1]
row_wen[i-1..0]

-- clk

-- cc.sel
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wdata

addr [11..0]

row_wen[i]

 

Figure 5.9: Waveform of Write Cycle 
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Figure 5.9 demonstrates the waveform of the write process. Signal cc_sel is the 

clause_checker ram array select signal, the clause_cheker ram array is selected when 

this signal is high.  If we want to write data into the ram array of the clause checker, 

we should first set cc_sel to high level. After setting this signal we should flip 

read/write control signal rwn from high level to low level (we define this signal is a 

high active read signal that means: if it is high, data will be read out from the clause 

checker; if it is low, data will be write into the clause checker.). The controller has 

addr[11..0] as its address input. Among the 12 signals, addr[7..0] select which clause 

among the 220 clauses will be written, while addr[11..8] select one unit from the 16 

units of each RAM16X1D. During each write clock cycle, 25-bit data on the writing 

date line wdata[24..0] will be written into the 25 RAM16X1Ds in parallel. Each bit 

represents the content of the unit addressed by addr[11..8] of the respondent 

RAM16x1D. Since we connect addr[11..8] to the 4-bit write port A3 – A0 of  all 25 

RAM16X1Ds in each clause and connect wdata[24..0] to the input D pin of all the 25 

RAM16X1D in this same clause, when we flip write clock from low to high, the 25-bit 

data wdata[24..0] will be written into  each unit of the 25 RAM16X1d in the selected 

clause respectively.  

Besides the write logic inside the controller, we also designed read logic whose 

function is to read the data addressed by the write address port A3 – A0. Although in 

our SAT implementations we needn’t to read data from this port, but during the 

process of system development, we can use this read function to read the data we have 

already written into the RAM16X1D in order to check if our write function works 

correctly. 
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Chapter 6  

 

Implementation Platform 
 

For this chapter, we discuss the implementation platform in order to give enough 

background information to issues that influenced the development of the designs. In 

both of our implementations that we will discuss in this chapter, we divide the system 

into a software programming part and a hardware design part. The software program, 

which includes the FPGA software driver, were written in the “C++” language and 

compiled using the “Microsoft Visual C++” version 6.0. On the other hand, the 

hardware part is designed using a combination of a new high-level hardware 

programming language Handel-C and VHDL. In section 6.1, we firstly introduce 

Handel-C and VHDL, then we discuss the combination of these two languages. 

Section 6.2 gives the configuration of the RC1000-PP prototype board developed by 

Celoxica which is used as target FPGA platform of our implementations. 

 

6.1   Handel-C vs. VHDL 

6.1.1   The Handel-C Programming Language 
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Handel-C is a programming language for rapid prototyping of synchronous hardware 

designs that uses a similar syntax with conventional “C” with the addition of inherent 

parallelism.  The output from Handel-C is a file that is used to create the configuration 

data for FPGAs. 

      The C-like syntax makes the tool appealing to software engineers with little or no 

experience of hardware.  They can quickly translate a software algorithm into 

hardware, without having to learn about VHDL or FPGAs in detail. Fundamentally, as 

a functional language, Handel-C allows you to code complex algorithms without 

having to consider lower-level designs. Using Handel-C constructs, the development 

cycle for the creation and testing of FPGA designs can be accelerated.  In addition, the 

package includes a library of basic functions and a memory controller to access the 

external memory on the FPGA board. 

      The timing model used by Handel-C is relatively simple and adheres to an idea 

that all instructions execute in one clock cycle.  Handel-C allows arbitrary length for 

sequences and includes a parallel construction which can easily implement the parallel 

evaluation for these sequences.  As individual statements execute in one clock cycle, 

the sequencing for instructions and loops fits accordingly. Variables are declared with 

fixed bit sizes, which is consistent with O(1) assumptions for operations on integers. 

Handle-C is convenient for rapid prototyping as we observed a shorter development 

cycle than with traditional hardware design languages such as VHDL or Verilog.  

While VHDL and Verilog give finer control and possibly better performance, the 

GSAT implementations in [HTY01] demonstrated the efficiency of Handel-C designs. 

 

6.1.2   VHDL Language Issues 
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VHDL is a hardware description language that can be used to model a digital system at 

many levels of abstraction, ranging from the algorithmic level to the gate level. The 

complexity of the digital system being modeled could vary from that of a simple gate 

to a complete digital electronic system, or anything in between. The digital system can 

also be described hierarchically. Timing can also be explicitly modeled in the same 

description. 

VHDL is a language, strongly influenced by Ada and Modula-2, originally 

intended for hardware documentation and modeling, whereupon due to growing 

popularity it was standardized in 1987. 

      VHDL is widely adopted as hardware modeling and design language in current 

electronic industry. VHDL features in hierarchical structures and both behavior and 

Register Transfer level (RTL) modeling and simulation. 

      However, VHDL does not completely succeed in abstracting from hardware and 

indeed requires knowledge of circuitry. VHDL talks of components, sensitivity to 

signals, and ports. There is also a timing model which specifies the time allocated to 

statements when simulating code.  

      Normally, more detailed descriptions in the register-transfer level (RTL) of VHDL 

are instantiated as components at the structural level. One approach to VHDL’s rich 

expressiveness is to write only in structured VHDL whereby components from a pre-

written library are selected from within the code. In particular, at RTL a restricted set 

of VHDL constructs can be employed to suit a particular synthesizer toolkit. Thus, in 

practice, VHDL introduces a multi-stepped programming environment. 

      While VHDL development follows the code, compile, execute cycle common with 

software development, the runtime environment is a hardware simulator instead of a 

host microprocessor. VHDL code once checked for syntax and type integrity will be 
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compiled into a repository of hardware entities. Simulation consists of executing the 

top-level hardware entity (the test bench) and saving the time ordered sequence of 

events and outputs generated by test bench stimuli. Subsequent analysis and 

verification is facilitated by a variety of waveform viewers and output capture tools. 

However, it is essential to check correct working by means of runtime capture and 

verification routines coded into test bench modules, as visual checking of waveform 

display is insufficient. 

      Once stimulation has verified the functional correctness of VHDL source, the next 

phase is Logic Synthesis. Historically, synthesis was the step of translating the top-

level design into a schematic diagram of gates and flip-flops. Software synthesis tools 

now automate this process by compiling source code into a netlist of gates and gate 

interconnections. The final stage involves passing the netlist into a layout tools, which 

is responsible for mapping logic onto device resources. 

 

6.1.3   Discussion 

Handel-C is best suited to rapid prototyping and proof of concept engineering rather 

than high-performance, optimal solutions. Handel-C allows hardware to be 

implemented without a digital background, although awareness of the underlying 

synchronous finite machine model and digital design tradeoffs is beneficial.  The par 

statement in Handel-C provides a flexible and code-efficient mechanism for specifying 

parallelism of arbitrary granularity. 

      Specification at behavioral-level in Handel-C minimizes the amount of code 

compared to VHDL and insulates the software engineer from low-level hardware 

detail. The trade-off is that the Handel-C compiler controls implementation detail so 

there is no opportunity to perform the gate-level optimization that is available to 
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VHDL-trained engineers. Consequently, gate counts may be higher than a VHDL 

solution, and the inability to dictate logic to the FPGA technology mapping can result 

in lower clock speeds.   

      Handel-C is a product which has only just made the transition from a research 

phase to commercial exploitation. There has probably simply not been time to develop 

extensive support for modularity and debugging facilities, as is present in VHDL 

toolkits.  As larger-scale projects are tackled, these two issues will become significant. 

Equally, long place-and-route times will make debugging aids imperative as programs 

become larger.  

 

6.1.4   Combination of Handel-C and VHDL 

Although there does a convergence of opinion now favor high-level languages as a 

means of creating high-level behavioral models for hardware and system-on-a-chip 

designers prefer C/C++ because partitioning between hardware and software can 

remain uncommitted for a longer time, we still choose a combination of Handel-C and 

VHDL as our hardware implementation platform.  

      There are two major advantages of this combination. Firstly, a number of 

macro procedures written in Handel-C are provided with the RC1000-PP 

prototype board which we used as our FPGA platform. These macros include: 

memory access macros which can be used to request ownership of one or more 

memory banks, to access the external memory banks on an RC1000-PP card, to 

release ownership of one or more memory banks; macro procedure to read a 

byte from the control port; macro procedure to write a byte to the status port; 

and et al. With these macro procedures we can design a wrapper in a succinct 
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Handel-C style, and achieve on board memory access functions and read/write 

control/status functions, in this way we can save a lot of time to design the 

interface between the FPGA and HOST in VHDL language. Secondly, on the 

other hand, by designing components in VHDL inside the wrapper, we can take 

advantage of capabilities of VHDL language and design the hierarchical 

structure of our general clause evaluator that we have described in Chapter 5. In 

this combinatorial way, we can bridge the gap between the high-level abstract 

version of a design and its actual implementation in a Xilinx FPGA, thus we can 

achieve high-performance SAT solving systems in Xilinx FPGAs. Figure 6.1 

illustrates the design flow of our system. 
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Figure 6.1: Design Flow of Handel-C and VHDL Combinatorial Method 
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6.2 RC1000-PP Prototyping Board 

Currently, there are a lot of different FPGA prototyping board that can be found in the 

market, with each having different architecture and FPGA chips installed.  For our 

implementations, we used the RC1000-PP development board specially made by 

Celoxica for use with the DK1 development suite that includes a Handel-C compiler. 

The practical advantage, when using this board, is the packaged communication 

library that is written in Handel-C. The communication library provides pre-built 

hardware design to gain access to the PCI bus and the on-board memories of the 

RC1000-PP.  The block diagram for the RC1000-PP board is shown in Figure 6.2.   

50 Pin TASK FPGA
Aux I/O Xilinx
Headers Vertex Family

Devices BG560
Up to 1,000,000
system gates

Clock

Host
PCI PMC-32
Bus  Bridge

   I/O

PCI-local Bus PMC-32
Bridge

   Local PCI Bus

PCI-PCI

                    Local FPGA Bus

SRAM
4 off 2MB

Data/Address
Muxes

 

Figure 6.2: RC1000-PP Block Diagram 

 

RC1000-PP board includes a PCI bridge, a clock generator, 8Mbytes SDRAM  and an 

XCV1000 FPGA chip. The board is designed to allow single byte transfers to and 

from the FPGA chip through a dedicated address port in the PCI bus. Multi-byte 

transfers are possible only by redirecting the data using direct memory access (DMA) 
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transfer to the external memory, before being read by the FPGA chip. Theoretically, 

the XCV1000 itself is capable of running at clock speeds of up to 200MHz, but the 

memory controller restricts the clock speed down to a maximum of 33 MHz when 

using the on-board RAM. A single XCV1000 chip contains 1 Mbyte of internal 

distributed RAM and 6144 CLBs (configurable logic blocks) that roughly amounts to 

1.5 million system gates. Each CLB in the Virtex series are divided into 2 

programmable slices that is roughly around 127 system gates each.  Therefore, we can 

program 12,288 individual slices in the XCV1000 chip. 
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Chapter 7 

 

Two Implementations of WalkSAT 

 

In Chapter 5, we present the structure of our general non-re-synthesis clause evaluator. 

Based on this kind of clause evaluator, and the techniques discussed in Section 4.1 and 

4.2 for improving the parallelism of SAT solving systems, we hope to achieve a high 

performance SAT solver without requiring re-synthesis. As we have described in 

Chapter 5, the non-re-synthesis reconfigurable clause evaluator requires O(mn) CLBs 

for an implementation with m clauses and  n variables.  This component consumes a 

significant fraction of the available CLBs (as much as 80%). As we would like to be 

able to handle as large a problem as feasible within the constraints of the FPGA, it is 

impractical to consider implementations that require multiple clause evaluators. This 

would consume too much of the chip real estate, even though there is considerable 

parallelism gain. 

Within the constraints of our hardware platform, only one non-re-synthesis clause 

evaluator is available. For GSAT, we find that the procedure shown in Figure 4.1 is 

truly impractical due to the large size increase to a factor of n. As for the general 

GSAT procedure shown in Figure 2.2, although we can design a general hardware 

system which containing only one non-re-synthesis clause evaluator, the performance 
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of such a system isn’t expected to be good since the scoring procedure is to be 

implemented sequentially.  

In contrast, when considering WalkSAT implementations for 3-SAT problems, it 

is of a different nature. As we have mentioned in Section 2.2.2, based on the algorithm 

given in Figure 2.3, by setting noise parameter p to 100% (Random-strategy) and 0% 

(Greedy-strategy) respectively, we can get two WalkSAT variants, the so-called 

Random-strategy and Greedy-strategy implementations. Since the computing 

complexities are different for the two variants, we adopted different hardware 

techniques when designing systems with our current FPGA. 

For this chapter, Section 7.1 describes Random-strategy-based WalkSAT 

implementation; Section 7.2 describes Greedy-strategy-based WalkSAT 

implementation. The two implementations represent different tradeoffs in using a 

single reconfigurable clause evaluator. 

 

7.1   Pipelined    Random-strategy-based   FPGA  

        Implementation  

Implementing algorithmic parallelism or pipelining is a frequently used technique in 

hardware design that reduces the number of clock cycles needed to perform complex 

operations. 

      Given that we are constrained to a single clause evaluator, we are left with 

pipelining as the only option for increasing the flip rate. For maximal reuse of the 

clause evaluator, it is important that the pipeline be well balanced with simple pipeline 

stages. Given that we already have a fully parallel clause evaluator, the most expensive 

step in WalkSAT is variable selection. A particularly simple WalkSAT variant is to set 
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p to 100% in algorithm shown in Figure 2.3, thus this variant it to choose the variable 

randomly in a selected unsatisfied clause. This strategy is also used in the WalkSAT 

implementation of Leong et al. [LSW01]. 

 

7.1.1   Five-stage Pipelined Random Implementation 

The program shown in Figure 7.1 gives the complete WalkSAT hardware design of 

Random-strategy. The main computation is divided into five stages, labeled s1 to s5. 

In stage s1, function Clause_Selector selects one unsatisfied clause from Cp using 

uniform distribution; Cp is a sequence of 1s and 0s, 1 means the respondent clause is 

satisfied and 0 means the respondent clause is unsatisfied. The index number of the 

selected clause is stored in Clause_Number. Since the system is designed for SAT 

problems of up to 220 clauses, Clause_Number is designed as 8-bit wide. For the next 

stage s2, three parallel Variable_Indexes_Generators generate three index numbers for 

the three variables occurring in the selected unsatisfied clause. It is assumed that there 

are three variables per clause, therefore, we have Variable_0, Variable_1, and 

Variable_2 to store the indices of the three variables respectively. Since the system can 

solve SAT problems of up to 100 variables, Variable_0, Variable_1, and Variable_2 

are designed as 7-bit wide. In the next stage s3, Pseudo_Random_Number_Generator 

generates a pseudo random number among 0, 1 and 2. With the generated random 

number PRN, function SelectFlip flips one variable upon variable assignment Vp, thus 

generates a new variable assignment Vars. In stage s4 , Clause_Checker evaluates if 

all the clauses are satisfied with variable assignment Vars. The final stage s5 transfers 

Vars to Vp. This stage also determines whether this iteration has produced a satisfying 

solution; all the clauses are satisfied when Sum(Cp) is equal to m. ( m is the total 

number of clauses.) 
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        main(): 
              Vp:= Receive_Initial_Assignment() ; 
              Cp:= Clause_Checker(Vp); 
              if Sum(Cp) = m then break; 
              for i :=1 to maxflips do 
 s1:             Clause_Number := Clause_Selector(Cp); 
 
 s2:             par { 
                       Variable_0:=Variable_Indexes_Generator(Clause_Number,0);
                       Variable_1:=Variable_Indexes_Generator(Clause_Number,1);
                       Variable_2:=Variable_Indexes_Generator(Clause_Number,2);
                   } 
                   
s3:              PRN := Pseudo_Random_Number_Generator(0, 1, 2); 
                   Vars := SelectFlip(Vp, Variable_0, Variable_1, Variable_2, PRN);
 
s4:              Cp := Clause_Checker(Vars); 
 
s5:              if Sum(Cp) = m then break; 
                   Vp := Vars; 
              end 
              Send_Assignment(Vp) 

 

Figure 7.1: Random-strategy-based Implementation of the WalkSAT-B Variant 

 

Figure 7.2 depicts the five-stage Random-strategy-based pipelined implementation.  

Stage 1 finds a random unsatisfied clause (this checks all clauses in parallel). Stage 2 

generates three variable indices for the selected clause.  Stage 3 implements the 

random selection heuristic and flips the selected variable in the selected unsatisfied 

clause. Stage 5 checks for satisfiability. There are a number of on-board storage 

buffers used. Buffer 1 stores the clause table which gives the mapping of clause to 

variables used within that clause as represented by variable indices.  The SAT problem 

is initially loaded into buffer 2 which is then used to initialize the fi,j blocks in the 

clause evaluator (See Section 5.2.1).  The result of this implementation is a one flip per 

clock cycle implementation. 
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Figure 7.2: Pipelined Random-Strategy WalkSAT 

 

7.1.2   A Pseudo Random Number Generator 

As we can see from the previous section, there is a Pseudo Random Number Generator 

(PRNG) in the stage 3 of our pipelined Random-strategy-based WalkSAT 

implementation. In the past, the random number generation was mostly done by 

software. However, as digital systems become faster and denser, it is feasible, and 

frequently necessary, to implement the generator directly in hardware. Although the 

software-based method are well understood [James90, Knuth81, LE88, Mar85], they 

frequently require complex arithmetic operations and thus are not feasible to be 

constructed in hardware. 

      Ideally, the generated random numbers should be uncorrelated and satisfy any 

statistical test for randomness. A generator can be either “truly random” or “pseudo 
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random”. The former exhibit true randomness and the value of next number is 

unpredictable. The later only appears to be random. The sequence is actually based on 

specific mathematical algorithms and thus the pattern is repetitive and predictable. 

However, if the cycle period is very large, the sequence appears to be non-repetitive 

and random. 

      True randomness can be derived from certain physical phenomena, such as the 

time between tics from a Geiger counter exposed to radioactive materials. In electronic 

circuit, thermal noise is frequently used as the source of randomness because of its 

well-qualified spectral and statistical properties. A representative implementation 

[Quan98] is shown in Figure 7.3. In this circuit, the source of the noise is the thermal 

noise of a precision resistor, which is represented as Vnoise. It is amplified by a low-

noise amplifier and then passed to a high-speed comparator. The threshold of the 

comparator (Vref) correspond to the mean voltage of the input noise signal. The output 

of the comparator is sampled and latched to a register. The latched signal is a one-bit 

binary signal that exhibits true randomness.  

low
noise
amp sampling

& latching 1-bit output

   V noise    V ref

 comparator

 

Figure 7.3: A True 1-bit Random Number Generator 

 

The true random number generator is fairly involved since it needs to preserve and 

amplify the thermal noise, and at the same time shield all the external disturbances. It 

consists of mainly analog components and cannot be implemented by pure digital 
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circuitry. The mixed-signal implementation significantly increases the system 

complexity. This implementation is also relatively slow and cannot match the high-

speed digital circuit. 

      There are many methods to generate pseudo random numbers. As our SAT 

accelerating hardware are FPGA based, it is more desirable to have FPGA PRNG 

(Pseudo Random Number Generator). Nova Engineering Inc. developed a so-called 

Linear Feedback Shift Register (LFSR) Megafunction [Nova96], this function is 

designed for application in digital signal processing (DSP) and wireless 

telecommunication systems). P. Chu et al [CJ99] described techniques suitable for 

hardware implementations. In our implementation, we designed our LFSR PRNG by 

adopting the LFSR Megafunction from Nova Engineering, Inc. [Nova96] and 

combining the techniques described in [CJ99]. Figure 7.4 shows the block diagram of 

our 8-bit LFSR PRNG. Here, the pattern of the random number sequence repeats itself 

after 256 numbers. This period is sufficient for our implementation. 
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Figure 7.4: 8-bit LFSR PRNG Block Diagram 
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7.2   FPGA Implementation of Greedy Selection 

A more typical WalkSAT variable selection heuristic is to select the variable, which 

best improves the score.  In terms of the constraints of the hardware, this corresponds 

to a design with more complex operations.  We have chosen to use a pure greedy 

heuristic without noise, a so-called Greedy-strategy-based implementation (but a noise 

component can be easily added). 

      Figure 7.5 shows the block diagram of our sequential Greedy-strategy-based 

implementation. Since we are dealing with 3-SAT, it is only necessary to determine at 

most which of the three variables in the selected unsatisfied clause to flip.  However, 

any kind of parallel implementation (duplication or pipelining) of this step would 

require evaluating the score of each of the three possibilities.  This would require three 

clause evaluator units in order to keep the resource independency, which we deem too 

much space consuming for the targeted SAT problem size. 

      Thus, we are restricted to a sequential implementation for the variable selection 

(Stages 4-6), which reduces the flip rate.  Our current implementation performs one 

flip in nine cycles, as opposed to one cycle achieved by the design for random 

selection heuristic described in the previous section. 

 

 

Figure 7.5: Sequential Greedy-Strategy WalkSAT 
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hapter 8 

xperimental Results 

he preceding chapters have described our general clause evaluator without requiring 

.1   Benchmark Selection 

C

 

E
 

T

re-synthesis and developed two WalkSAT implementations which adopted different 

strategies based on this same clause evaluator. This chapter, we investigate on the 

experimental results gathered by running a set of benchmarks on the two 

implementations.  Our prototype implementations investigate the two designs on two 

SAT problem sizes; a 50-variable/170-clause format and a 100-variable/220-clause 

format, the latter chosen to such that its reconfigurable clause evaluator fits on the 

FPGA which we used. Section 8.1 introduces the benchmarks. Section 8.2 describes 

the comparison schemes. Section 8.3 compares the flip rate performance between 

software implementation and hardware implementation. Section 8.4 compares the 

timing performance between software implementation and hardware implementation. 

Section 8.5 discusses the time/space cost about designs of different sizes. 

 

8
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Our benchmark set is just a sub-set of a more comprehensive set compiled by Hoos 

and Stützle in [HS00], which includes the AIM problems and the uniform random 3-

SAT problems. 

      AIM problems were produced from a Random-3-SAT generator, which was 

created by Asahio, Iwama, and Miyano [AIM].  These instances are particularly 

special due to its wide range of satisfiable and unsatisfiable instances.  These instances 

ranges from m = 1.6 n to 6.0 n for both satisfiable and unsatisfiable problems. For our 

benchmark set  (see Table 8.1) we include satisfiable problems (‘aim-{n}-{ratio}-

yes1-1’) with n = 50 and 100; m/n ratio = 1.6, 2.0, and 3.4. 

Problem Set Representative Variables Clauses 
Uniform Random-3-SAT uf20-09 20 91 
 uf20-031 20 91 
 uf20-037 20 91 
 uf50-01 50 218 
 uf50-010 50 218 
 uf50-0100 50 218 
 uf50-01000 50 218 
AIM Random-3-SAT aim-50-1_6-yes1-1 50 80 
 aim-50-1_6-yes1-2 50 80 
 aim-50-1_6-yes1-3 50 80 
 aim-50-1-6-yes1-4 50 80 
 aim-50-2_0-yes1-1 50 100 
 aim-50-2_0-yes1-2 50 100 
 aim-50-2_0-yes1-3 50 100 
 aim-50-2_0-yes1-4 50 100 
 aim-50-3_4-yes1-1 50 170 
 aim-50-3_4-yes1-2 50 170 
 aim-50-3_4-yes1-3 50 170 
 aim-50-3_4-yes1-4 50 170 
 aim-100-1_6-yes1-1 100 160 
 aim-100-1_6-yes1-2 100 160 
 aim-100-1_6-yes1-3 100 160 
 aim-100-1-6-yes1-4 100 160 
 aim-100-2_0-yes1-1 100 200 
 aim-100-2_0-yes1-2 100 200 
 aim-100-2_0-yes1-3 100 200 
 aim-100-2_0-yes1-4 100 200 

 

Table 8.1: The Benchmark Set 
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      The Uniform Random-3-SAT distributions are instances wherein the point of 

satisfiability is found at the phase transition region (i.e., 4.26 clauses per variable) 

[KS94, MSL92].  At this region, the average instance hardness for both systematic and 

stochastic local search algorithms is maximal [Yok97, CKT91, DLL62].  In Table 8.1, 

we included the problems (‘uf{n}-01’) with n = 20 and 50 to our benchmark set. 

The benchmarks shown in Table 8.1 are simply those, which fit within the 

required problem sizes.  As the main purpose of the benchmarks is to measure flip rate 

performance, the difficulty of the benchmark is not relevant. 

 

8.2   Performance Comparison Scheme 

To properly compare the performance of different WalkSAT implementations, we 

must first consider their underlying nature.  In the current scenario, there are two types 

of implementation of WalkSAT algorithms, namely: pure-software and hardware 

accelerated implementation.  The hardware accelerated implementations for the 

WalkSAT variants are generally patterned after the pure software implementation 

except for some trivial compiler functions. In this sense, algorithm specific factors like 

downward and sideway moves would generally be the same for both implementations. 

Performance factors used in empirical studies for WalkSAT that deals with probability 

of solubility are also not important.  Our intension for adding the hardware accelerator 

is basically to improve the performance by doing computationally intensive task in 

hardware and reduce run-time. The major performance factor would be the “flip rate” 

performance that is measured by dividing the total number of flips by the total time.  

The resulting performance value would have the unit of flips-per-second or fps.  
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On the other hand, we also compare the timing performance between the hardware 

accelerated implementations and the pure software implementations. This is to verify 

the “flip rate” performance further. 

 

8.3 Flip     Rate     Performance     Comparison:  

        Software  vs.  Hardware 

In this section, we establish the basis of comparison by gathering performance results 

from the software implementation of WalkSAT algorithm and the FPGA-based 

implementations. 

      We utilized WalkSAT35 (WalkSAT version 35) by Bart Selman as the software 

implementation.  The Linux workstation that we used to run the programs has an Intel 

Pentium 4 1500MHz processor and 899644 Kbytes of SDRAM. 

As for the FPGA-based SAT implementation, they are from our pipelined 

Random-strategy-based WalkSAT implementation and our sequential Greedy-

strategy-based WalkSAT. Our FPGA chip is Virtex 1000 and the work frequency of 

FPGA is 20Mhz. 

In Table 8.2, there are two sets of flip rate performance comparison. One for the 

Greedy-strategy-based WalkSAT, the other is for the Random-strategy-based 

WalkSAT.  For the Greedy-strategy-based implementation, the second column shows 

the flip rate performance of the pure software implementation, the third column shows 

the flip rate performance of the FPGA-based hardware implementation, the fourth 

column shows the speedup of column three versus column two. As for the Random-

strategy-based implementation, the fifth column shows the flip rate performance of the 

pure software implementation, the sixth column shows the flip rate performance of the 
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FPGA-based hardware implementation, the seventh column shows the speedup of 

column six versus column five.  

The resulting flip rate, fps, shows the program execution speed by dividing the 

number of flips performed with the execution time in seconds.  The flip rate in Table 

8.2 are shown in Kfps which is in thousands flip per second.    

 

Greedy-Strategy Random-Strategy  
SAT Problem Software

Kfps 
Hardware

Kfps 
Speed

Up 
Software

Kfps 
Hardware 

Kfps 
Speed 

Up 
uf20-09 265.8 2227 8.38 407.6 20345 49.91 
uf20-031 251.8 2225 8.84 390.9 20350 52.06 
uf20-037 303.2 2225 7.34 405.8 20335 50.11 
uf50-01 409.4 2230 5.45 536.2 20347 37.95 
uf50-010 459.6 2224 4.84 466.2 20371 43.70 
uf50-0100 474.3 2237 4.72 598.3 20468 34.21 
uf50-01000 476.9 2238 4.69 570.7 20367 35.69 
aim-50-1_6-yes1-1 832.6 2208 2.65 947.9 20444 21.57 
aim-50-1_6-yes1-2 814.1 2224 2.73 994.8 20521 20.63 
aim-50-1_6-yes1-3 793.7 2227 2.81 960.1 20483 21.33 
aim-50-1_6-yes1-4 868.1 2226 2.56 956.7 20461 21.39 
aim-50-2_0-yes1-1 775.4 2227 2.87 865.4 20332 23.49 
aim-50-2_0-yes1-2 775.3 2238 2.89 859.8 20407 23.73 
aim-50-2_0-yes1-3 805.1 2224 2.76 877.7 20355 23.19 
aim-50-2_0-yes1-4 783.2 2237 2.86 870.4 20433 23.48 
aim-50-3_4-yes1-1 609.2 2227 3.66 618.6 20635 33.36 
aim-50-3_4-yes1-2 596 2228 3.74 612.6 20557 33.56 
aim-50-3_4-yes1-3 572.4 2228 3.89 613.1 20570 33.55 
aim-50-3_4-yes1-4 561.2 2227 3.97 609.3 20613 33.83 
aim-100-1_6-yes1-1 814.2 2228 2.74 962.5 20569 21.37 
aim-100-1_6-yes1-2 787.4 2253 2.86 968.4 20427 21.09 
aim-100-1_6-yes1-3 805.4 2222 2.76 972.9 20480 21.05 
aim-100-1_6-yes1-4 872.2 2225 2.55 1014.4 20579 20.29 
aim-100-2_0-yes1-1 744.9 2233 3.00 838.5 20184 24.07 
aim-100-2_0-yes1-2 747.7 2245 3.00 814.3 20289 24.92 
aim-100-2_0-yes1-3 731.4 2236 3.06 812.6 20262 24.93 
aim-100-2_0-yes1-4 744.6 2233 3.00 834.4 20237 24.25 

 

Table 8.2. Flip Rate Performance Comparison: Software versus FPGA-based  
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Analysis of the results from the UF and AIM problems suggest that the 

performance of the pure software WalkSAT algorithm is directly proportional to the 

variable/clause ratio of the SAT problem. The resulting graph in Figure 8.1 clearly 

shows the dominance in raw flip rate of the Random-strategy-based WalkSAT variant 

over Greedy-strategy-based WalkSAT variant. This is an obvious case since the 

Random-strategy does less computation, which results in shorter execution time.  

Since our FPGA chip is clocked at 20 MHz, thus the flip rate for the random and 

greedy variable selection heuristics is constant throughout the problems – 20M for 

random, and 2.2M for greedy heuristics, due to its 9-stage implementation for each 

iteration inside the inner loop. In Table 8.2, the measured actual flip rate is shown in 

column 3 and column 6 respectively for Random-strategy and Greedy-strategy 

implementations.  

Compared to the WalkSAT reconfigurable FPGA implementation from Leong et 

al. [LSW01], which also uses a random strategy, our Random-strategy-based 

implementation is much better than theirs. Their implementation uses a smaller FPGA 

and can only solve problems of up to 50-variable/170-clause and hence could be 

clocked at a faster speed of 33 Mhz.  A major difference between their implementation 

and our pipelined implementation is that we use a constant flip rate.  Their 

implementation, on the other hand, has a variable flip rate, because the use of 

sequential clause selection, and is bounded by maximum flip rate of 364Kfps.  

      With the random variable selection heuristic, the preliminary results show that our 

reconfigurable FPGA implementation is faster than software and previous hardware 

implementations.  This implementation achieves one flip per clock cycle at 20Mhz. 

The greedy variable selection implementation has more modest speedups.  The 

speedup is likely comparable to software or slightly faster, if the fastest state of art 
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microprocessors are used, since performance scales at a lower rate with clock speed 

for microprocessors. However, the reduced flip rate may be offset by the increased 

effectiveness of the variable selection strategy. The greedy heuristic typically gives a 

better success rate than a random heuristic for WalkSAT.  A detailed analysis of the 

effect of different variable selection heuristics is given in [HS00]. 
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Figure 8.1: Pure Software Flip Rate Performance Chart 
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8.4   Timing Performance 

In the previous section, we compared FPGA-based hardware implementations versus 

software for various 3-SAT benchmarks. In this section, we will compare the run-time 

timing performance. 

      WalkSAT algorithm, like all SLS algorithms, strongly involves random decisions 

such as the choice of the initial assignment, random tie-breaking, or biased random 

moves. Due to this inherent randomness, given a specific soluble problem instance, the 

time needed by a WalkSAT algorithm to find a solution varies from run to run. 

Consequently, the most detailed characterization of such an algorithm’s behavior is 

given by its run-time distribution (RTD), which for a given instance maps the run-time 

t to the probability of finding a solution within time t [HS00]. 

To measure RTDs, one has to take into account that most SLS algorithms have 

some cutoff parameter bounding their run-time, like the maxtries and maxflips 

parameters in the generic algorithm schema of the procedure shown in Figure 2.1. 

      As argued in [HS98], this RTD will generally suggest the existence of an optimal 

setting of the maxSteps (Maxtries) parameter. Using this setting will indeed maximize 

the algorithm’s performance – but only in the sense that within a given time period, 

the number of problem instances randomly drawn from the instance set  (or 

distribution) which are solved within this time period will be maximal. However, as an 

RTD-based analysis shows, in this case the “optimal parameter setting” will not affect 

the performance on any individual instance from the set – it will only make sure that 

not too much is wasted trying to solve hard instances. Thus, using the optimal setting 

will effectively introduce a bias for solving easier problems – an effect which, except 

for very special application situations, will most likely be undesirable and can 

potentially give rise to erroneous interpretations of the observed behavior. This 
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problem becomes very relevant when the inter-instance difficulty within the test-set 

has a high variance, as is the case for Random-3-SAT. 

      In our work, our objective is not to find an optimal setting for each SAT problem, 

instead, we map the software algorithm into hardware and see the speedup by using 

hardware. What is important is the consistency between the software implementation 

and the hardware implementation. In order to provide a consistency comparison 

between the hardware and the software, we compare the timing performance in this 

section. 

      Table 8.3 Compares the run-time timing performance between our FPGA-based 

pipelined random-strategy-based WalkSAT implementation and the software random-

strategy-based WalkSAT implementation. Table 8.4 gives the timing performance 

comparison between the software implementation and FPGA-based hardware 

implementation based on greedy strategy. 

      Both our two kinds of FPGA-based hardware implementations are clocked at 

20Mhz, and the overhead work time is the same. As host we use a PC with an AMD 

Athlon 1.2GHz CPU. Our prototype generates the clause configuration for a new SAT 

instance in software in about 7ms (This is unoptimized and is probably dominated by 

file I/O and hence could possibly be faster). Transferring the clause configuration from 

the host PC to the on-board SRAM takes 0.6ms. The FPGA takes 220 x 16 clock 

cycles to read the SRAM. With an FPGA clock frequency of 20MHz, this corresponds 

to 0.176ms. Thus the configuration overhead for solving a new SAT instance is 

7.776ms. In contrast, the time to download a new bitstream to the FPGA is around 

0.14s. 

      As for the pure software WalkSAT implementations, for all problems, the software 

execution time was measured on an Intel Pentium 4 1500MHz CPU.  
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      Additionally, both of the software and the hardware implementations set maxtries 

to 256000 and set maxflips to 4000. Table 8.3 and Table 8.4 show the average 

software and hardware execution times computed over 100 trials respectively for 

random and greedy implementations.  

 

Hardware Software  
SAT Problems Time (s) Avg- 

Tries 
Suc 
% 

Time (s) Avg- 
Ttries 

Suc 
% 

Speed
Up 

uf20-09 0.0004 1 100 0.0039 1 100 9.75 
uf20-031 0.0004 1 100 0.0042 1 100 10.5 
uf20-037 0.0005 1 100 0.0071 1 100 14.2 
uf50-01 0.0028 14 100 0.07834 10.5 100 27.98
uf50-010 0.0012 5 100 0.04818 5.6 100 40.15
uf50-0100 0.0188 91 100 0.51749 77 100 27.53
uf50-01000 0.0049 25 100 0.13001 19 100 26.53
aim-50-1_6-yes1-1 1.6880 7763 100 39.6707 9401 100 23.50
aim-50-1_6-yes1-2 4.1922 19262 100 81.4133 20247 100 19.42
aim-50-1_6-yes1-3 0.6535 3009 100 21.6208 5190 100 33.08
aim-50-1_6-yes1-4 1.3824 6355 100 26.2875 6287 100 19.02
aim-50-2_0-yes1-1 0.0196 97 100 1.8083 391 100 92.26
aim-50-2_0-yes1-2 0.0580 272 100 1.3615 293 100 23.47
aim-50-2_0-yes1-3 0.0386 185 100 1.6067 353 100 41.62
aim-50-2_0-yes1-4 0.0771 359 100 3.0008 653 100 38.92
aim-50-3_4-yes1-1 0.0205 107 100 0.9381 145 100 45.76
aim-50-3_4-yes1-2 0.0264 127 100 0.7892 121 100 29.89
aim-50-3_4-yes1-3 0.0308 146 100 0.7958 122 100 25.84
aim-50-3_4-yes1-4 0.0128 65 100 0.4849 74 100 37.88
aim-100-1_6-yes1-1 56.8889 256000 timeout  1064.34 256000 timeout 18.71
aim-100-1_6-yes1-2 57.5281 256000 timeout 1057.00 256000 timeout 18.37
aim-100-1_6-yes1-3 57.7540 256000 timeout 1058.52 256000 timeout 18.33
aim-100-1_6-yes1-4 57.7984 256000 timeout 1029.99 256000 timeout 17.82
aim-100-2_0-yes1-1 56.7512 256000 timeout 1238.59 256000 timeout 21.82
aim-100-2_0-yes1-2 35.2324 174364 3 1270.55 256000 timeout - 
aim-100-2_0-yes1-3 31.1952 154384 3 1269.93 256000 timeout - 
aim-100-2_0-yes1-4 56.8618 256000 timeout 1240.75 256000 timeout 21.82

 
Table 8.3: Timing Performance Comparison based on Random Strategy 

 

As we can see from Table 8.3 and Table 8.4, the Average Tries (Avg-Tries) and the 

Success Rate (Suc) of the hardware and software implementations are quite similar, 

indicating that the statistics of our clause selection algorithm is similar to that of the 
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software implementation of the WalkSAT algorithm. As can be seen from the “Speed 

Up” column, the hardware performance for all problems is approximately two to seven 

times faster than the software for the greedy-strategy-based implementation; and it is 

almost ten to ninety times faster for the random-strategy-based implementations. 

       

Hardware Software        
SAT Problems Time (s) Avg- 

Tries 
Suc 
% 

Time (s) Avg- 
Tries 

Suc 
% 

Speed
Up 

uf20-09 0.0048 2.6 100 0.0317 2.1 100 6.67 
uf20-031 0.0080 4.4 100 0.0567 3.6 100 7.07 
uf20-037 0.0029 1.6 100 0.0202 1.5 100 6.83 
uf50-01 0.0255 13 100 0.0634 6.5 100 2.48 
uf50-010 0.0067 3.4 100 0.0225 2.6 100 3.34 
uf50-0100 0.0763 39 100 0.1017     12 100 1.33 
uf50-01000 0.0319 15 100 0.0859 10 100 2.69 
aim-50-1_6-yes1-1 0.3775 194 100 0.8034 167 100 2.13 
aim-50-1_6-yes1-2 1.1509 594 100 2.5934 528 100 2.25 
aim-50-1_6-yes1-3 0.2966 153 100 0.4959 98 100 1.67 
aim-50-1_6-yes1-4 0.2549 131 100 0.4417 96 100 1.73 
aim-50-2_0-yes1-1 0.5868 326 100 2.3624 458 100 4.03 
aim-50-2_0-yes1-2 0.4220 217 100 0.8384 162 100 1.99 
aim-50-2_0-yes1-3 0.2525 130 100 0.4975 100 100 1.97 
aim-50-2_0-yes1-4 0.7510 374 100 1.3009 255 100 1.73 
aim-50-3_4-yes1-1 0.0310 15 100 0.0369 5.6 100 1.19 
aim-50-3_4-yes1-2 0.0080 4.4 100 0.0513 7.6 100 6.42 
aim-50-3_4-yes1-3 0.0230 11 100 0.0646 9.2 100 2.81 
aim-50-3_4-yes1-4 0.0122 6.1 100 0.0251 3.5 100 2.05 
aim-100-1_6-yes1-1 252.508 131425 43 587.648 119616 45 2.34 
aim-100-1_6-yes1-2 182.280 91130 47 554.998 109251 50 3.04 
aim-100-1_6-yes1-3 172.350 86166 63 596.606 120127 15 3.46 
aim-100-1_6-yes1-4 490.354 256000 timeout 1174.09 256000 timeout 2.39 
aim-100-2_0-yes1-1 42.64653 21321 100 131.487 24486 100 3.08 
aim-100-2_0-yes1-2 31.04498 15520 100 89.6451 16757 100 2.89 
aim-100-2_0-yes1-3 23.93 11928 100 75.8917 13877 100 3.17 
aim-100-2_0-yes1-4 72.8159 36404 100 175.518 32673 100 2.41 

 

 
Table 8.4: Timing Performance Comparison based on Greedy Strategy 
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SAT Problems Leong et al. 
[LSW01] 
 

Ours, 
Pipelined 

Speedup 

uf20-9 0.012 0.0004 30 
uf20-31 0.009 0.0004 23 
uf20-37 0.009 0.0005 23 

aim-50-2_0-yes1-1 3.93 0.0196 201 
aim-50-2_0-yes1-2 3.44 0.058 59 
aim-50-3_4-yes1-1 2.29 0.0205 112 
aim-50-3_4-yes1-2 0.98 0.0264 37 
aim-50-3_4-yes1-3 2.12 0.0308 69 
aim-50-3_4-yes1-4 3.93 0.0128 307 

 

Table 8.5: Running Time Comparison between Random-Strategy Implementations 

 

As can be seen in Table 8.5, when comparing the run-time timing performance 

between our pipelined random-strategy-based implementation and that from Leong et 

al. [LSW01], which also uses the random strategy, our random-strategy-based 

implementation is much better than theirs. Although the FPGA is clocked at 33MHz in 

their implementation, but as we have discussed in Section 8.3, the flip rate in their 

implementation is much lower than ours, and thus their timing performance is 

consequently much worse than ours.  

 

8.5   Time/Space   Cost   Comparison   of  FPGA- 

         based Implementation 

In comparing hardware implementations for WalkSAT, an additional important factor 

is the size of resulting design. For ASIC implementations the design size is estimated 

in terms of system gates and for FPGA implementations the design size is based on the 
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number of slice used. A single slice roughly amounts to 127 system gates or 2.25 logic 

cells. 

      Our prototype implementations investigate each of the random-strategy-based 

system and the greedy-strategy-based system on two SAT problem sizes; thus we get 

four circuits, two circuits are for a 50 variable/170 clause format and the other two are 

for a 100 variable/220 clause format, the latter format is chosen so that its 

reconfigurable clause evaluator fits on the FPGA which we used. 

       Table 8.6 gives the hardware costs in terms of slices for these four 

implementations.  The minimum gate delay is as reported by the Xilinx place and 

route tools.  These delays shown in column two and column five are just the worst 

delay inside the FPGA. In each system, there is board delay, for examples, along the 

signal from FPGA to SRAM, set up time of other devices and et al. The total delay is 

definitely larger than the FPGA delay alone. Experiments show that our systems can 

work stably when FPGA is clocked at 20 MHz. As we can see in Table 8.6, there is 

only a small difference in gate delay between the two implementations of the same 

size while their hardware cost are quite similar.  The larger influence is the increased 

delay due to larger problem sizes. This because the circuits is synthesized to more 

levels of logic and the routing congestion becomes denser as the system becomes 

bigger. For a simplest example, there are 25 input signals at the OR gate inside each 

clause for the bigger system, whereas only 13 inputs for the smaller one.  

 

 Random-Strategy WSAT Greedy-Strategy WSAT 
System Size Delay (ns) Cost of Slices Delay (ns) Cost of Slices 
50-var/170-c 24.097 4946 (40%) 24.842 6408 (52%) 
100-var/220-c 31.005 10396 (85%) 31.639 11834 (96%) 

 

Table 8.6:  Time/Space Cost Comparison of FPGA-based Implementation 
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Chapter 9  

 

Conclusions 
 

This thesis has studied the effects of solving SAT problems using stochastic local 

search algorithms on an FPGA platform.  The goal is to accelerate SAT solving using 

hardware in a practical way. This chapter summarizes the new techniques developed in 

the preceding chapters and then discusses the future work of this research. 

      We demonstrate two prototype hardware solvers implemented on the Xilinx Virtex 

XCV1000 FPGA with significantly better performance than software and previous 

hardware WalkSAT solvers.  Furthermore, the solvers are reconfigurable in real-time, 

with a reconfiguration time of a few milliseconds for problems with 100 variables. Our 

two implementations illustrate the tradeoff between time, space, and effectiveness of 

the SLS algorithm.  The random solver achieves an optimal flip rate at the cost of a 

simple variable selection strategy, while the greedy solver uses the more expensive 

and effective strategy but is not amenable to pipelining and is hence slower. 

      Both implementations are limited by the size of the Xilinx Virtex XCV1000 chip 

used, which can accommodate a reconfigurable clause checker only for problems with 

100 variables and 220 clauses.  This chip, dating from 1999, is fabricated using a 5-

layer metal 0.22um CMOS process.  In comparison, the current Virtex-II generation 
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uses an 8-layer 0.15um CMOS process, this leading-edge process and the Virtex-II 

architecture are optimized for high speed with low power consumption. Combining a 

wide variety of flexible features and a large range of densities up to 10 million system 

gates, the Virtex-II family enhances programmable logic design capabilities and is a 

powerful alternative to mask-programmed gates arrays. The XC2V10000 has about 10 

times more system gates than the XCV1000 and has significantly faster clock speeds. 

For example, a 100 variable/600 clause evaluator requires about 30K slices and fits in 

a XC2V6000 which has 6M system gates. 

      An FPGA implementation will have more limitations on problem sizes even when 

larger FPGAs are used.  A fast hardware based solver can however still be useful for 

general SAT solving.  One approach is with hybrid search and stochastic solvers.  For 

example, Zhang et al. [ZHZ02] combine Davis Putnam with stochastic solvers.  Their 

approach uses Davis Putnam to generate smaller sub-problems which are then solved 

with WalkSAT. 

      Another route to deal with larger problems is to use ASICs rather than FPGAs. Our 

implementation is not restricted to FPGAs since the reconfiguration for different SAT 

instances is not dependent on the reconfiguable logic of FPGAs.  The prototype uses 

FPGAs simply because they are more cost effective for development. Given the real-

time reconfiguration capability, this may be a promising candidate for direct ASIC 

implementation, which means higher clock speeds and much more resources for 

dealing with larger problems. 
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Appendix  
 
Entity Declarations in VHDL 
 
         ENTITY clause_checker IS 
              PORT ( 
                   clk : IN STD_LOGIC; 
                   rst : IN STD_LOGIC; 
                   cc_sel : IN STD_LOGIC; 
                   addr : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
                   rwn : IN STD_LOGIC;   
                   wdata : IN STD_LOGIC_VECTOR(24 DOWNTO 0);   
                   rdata : OUT STD_LOGIC_VECTOR(24 DOWNTO 0);   
                   cc_rdy : OUT STD_LOGIC; 
                   v : IN STD_LOGIC_VECTOR(99 downto 0);  
                   all_clauses : OUT STD_LOGIC_VECTOR(219 DOWNTO 0)); 
         END;  
 
 
         ENTITY cc_ctrl IS 
              PORT ( 
                  clk : IN STD_LOGIC; 
                  reset : IN STD_LOGIC; 
                  cc_sel : IN STD_LOGIC; 
                  addr : IN STD_LOGIC_VECTOR(11 DOWNTO 0); 
                  rwn : IN STD_LOGIC; 
                  wdata : IN STD_LOGIC_VECTOR(24 DOWNTO 0); 
                  rdata : OUT STD_LOGIC_VECTOR(24 DOWNTO 0); 
                  cc_rdy : OUT STD_LOGIC; 
                  row_wen : OUT STD_LOGIC_VECTOR(219 DOWNTO 0); 
                  row_waddr : OUT STD_LOGIC_VECTOR(99 DOWNTO 0); 
                  row_wdata : OUT STD_LOGIC_VECTOR(24 DOWNTO 0); 
                  row_rdata : IN allrowrdata_type) 
              ); 
         END; 

         ENTITY cc_clause IS 
              PORT ( 
                   row_wen : IN STD_LOGIC; 
                   row_wdata : IN STD_LOGIC_VECTOR(24 DOWNTO 0); 
                   row_srdata : OUT STD_LOGIC_VECTOR(24 DOWNTO 0); 
                   row_wclk : IN STD_LOGIC; 
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                   row_waddr : IN STD_LOGIC_VECTOR(99 DOWNTO 0); 
                   v : IN STD_LOGIC_VECTOR(99 DOWNTO 0); 
                   row_out : OUT STD_LOGIC 
               ); 
         END; 
 
         ENTITY ram16x1d IS 
              PORT ( 
                   dpo : OUT STD_LOGIC; 
                   spo : OUT STD_LOGIC; 
                   a0  :  IN STD_LOGIC; 
                   a1  :  IN STD_LOGIC; 
                   a2  :  IN STD_LOGIC; 
                   a3  :  IN STD_LOGIC; 
                   d    :  IN STD_LOGIC; 
                   dpra0 : IN STD_LOGIC; 
                   dpra1 : IN STD_LOGIC; 
                   dpra2 : IN STD_LOGIC; 
                   dpra3 : IN STD_LOGIC; 
                   wclk   : IN STD_LOGIC; 
                   we     :  IN STD_LOGIC                      
              ); 
         END; 
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