Artificial Chemistries

The Quest for Complexity

Martin Henz

Seminar of the School of Computing National University of Singapore

Overview

- Life
- Complexity
- The Chemistry of Life
- Artificial Chemistries
- Conclusions and Personal Remarks

Attempts to Define Life

- Physiological
- Metabolic
- Biochemical
- Genetic
- Thermodynamic

Phys: functional: breathing, moving, etc

metabolic: exchange of materials between org and surrounding

biochem: capability to store hereditary information in nucleic acid molecules

genetic: Equate life with evolution: Any system that achieves evoand heredity. J. Maynard Smith, E. Szathmáry: The Origins of lution is called alive. Defining features: multiplication, variation Life, 1999

thermodynamic: define living systems in terms of their ability to maintain low levels of entropy

Some Facts of Life

- Fossil records show single-celled life existed 3.8 billion years ago [Schidlowski, 1988]
- all terrestrial life seems to share these early ancestral roots
- carbon-based, aquatic, self-replicating structures
- replication through nucleic acid polymers coding for proteins

Earth formed about 4.6 billion years ago.

in sedimentary rocks. nature 333:313-318, 1988 M. Schidlowski: A 3,800-million-year isotopic record of life from carbon

makes the time for development of life very short, possibly zero Liquid water may have appeared only 3,900 million years ago, which

Major Transitions

- 1. Replicating molecules (RNA?) \Rightarrow populations of molecules enclosed in membranes (bilayered fatty acids?)
- 2. Independent replicators ⇒ chromosomes
- 3. RNA world \Rightarrow DNA and protein
- 4. Prokaryote ⇒ eukaryote
- 5. Asexual clones \Rightarrow sexual populations
- 6. Protists \Rightarrow animals, plants, fungi
- 7. Solitary individuals \Rightarrow colonies
- 8. Primate societies \Rightarrow human societies, the origin of language, second *memetic* evolution

- Manfred Eigen, Peter Schuster: The Hypercycle: A Principle of Stanley L. Miller, "A Production of Amino Acids Under Possible 529, 1953 Natural Self-Organization, Springer, Berlin, 1979 Primitive Earth Conditions", Science, Vol 117, No. 3046, pp 528-Evidence for the chemical possibility: Miller-Urey experiment, 1953,
- 2. in today's chromosomes (sequences of DNA), all genes are linked in all genes are replicated, all are replicated. This forces cooperation a strand (in prokaryotes one strand only). That means that when between genes
- its own self-replication (still unproven) RNA can function both as genes and as enzymes. Francis Crick: "Foreword" xi-xiv, The RNA World, R.F. Gesteland idea from Francis Crick 1968 speculation that RNA can catalyze RNA world is a way around the "chicken-egg-problem" (genes (DNA) require enzymes (proteins), enzymes require genes)

- and J.F. Atkins, eds. Cold Spring Harbor Laboratory Press, 1993 Panspermia, p 341–346, 19 Icarus, 1973 Later Crick wasn't so sure: F. Crick and L.E.Orgel: Directed
- 1986 Term "RNA world was introduced by Walter Gilbert, Harvard, in
- otes (bacteria): reproduction through mitosis DNA and protein interactions are the basic ingredients of prokary-
- 4. disappearance of the rigid cell wall, chromosomes, organelles (mitochondria and chloroplasts)
- 5. this step gives rise to much more rapid evolution. recombination. in Maynard Smith, Szathmary only when there is sex, we can talk about species. see chapter 7
- 6. embryonic differentiation, gene regulation
- cooperation/selfishness within societies

8. Susan Blackmore "Meme Machine" meme-gene co-evolution

Components of Evolution

- multiplication, variation, heredity
- information processing (coding, error correction, translation)
- separation (membranes, populations)
- integration (chromosomes, organelles, sex, multicellular organisms, colonies)
- co-evolution (meta, gene-meme)

novel types of inheritance systems, or development from limited heredity to unlimited heredity

populations: isolation by geography, habitat, seasonal, mechanical, hybrid inviability, hybrid infertility

gives rise to cooperation and conflict, selfish gene: Richard Dawkins. Group selection vs individual selection

Overview

- Life
- Complexity
- The Chemistry of Life
- Artificial Chemistries
- Conclusions and Personal Remarks

Notions of Complexity

- descriptive
- ontological
- algorithmic complexity (Kolmogorov/Chaitin):

$$K(s) = min\{|p| : s = C_T(p)\}.$$

 information theoretic complexity (Shannon): using mutual entropy, conditional on "universe"

- several different methods are needed to describe a phenomenon view, third person view) in a reasonably complete way: photon, consciousness (first person
- self-replication is possible (he could not characterize in detail) organized as a system of many non-identical components who collective behaviour which is different from the behavior of the able etc), and whose mutual interactions bring forth a kind of themselves have systems-like properties (being further decomposmind, when he talked about a complexity threshold beyond which parts. Von Neumann seemed to have this notion of complexity in
- minimal length of program for Turing Machine T; problem: random strings have highest complexity!
- information transmission capacity Adami used Shannon complexity where R is mutation rate and l is the length of the genome to find the information transmission capacity for genomes. Rl=c

Overview

- Life
- Complexity
- The Chemistry of Life
- Artificial Chemistries
- Conclusions and Personal Remarks

The Chemistry of Life

- watery solution of carbon molecules
- separation between information and function: DNA and proteines
- four different nucleic acids DNA codes the assembly of proteines out of 20 amino acids using
- double stranded-ness of DNA allows for error correction
- DNA can be transcribed to mRNA, which is transported to ribo-
- tRNA (anticodon) carrying amino acids dock successively to mRNA and build up protein

water absolutely necessary: hydrophile/hydrophobe reactions such as protein folding; osmosis, transportation; RNA world: problems with water

compare with RNA world; three nucleic acids code for one amino acids (Huffman code) acid: 64 possible, actually: 20; redundancy; roughly: more common amino acids are coded by multiple combinations of 3 nucleic

error correction allows "unlimited heredity", whereas RNA based heredity is limited to very simple organisms such as RNA viruses (influenza, Polio)

Complexity of Life

- descriptive: classical biology
- ontological: system-theoretic approach in biology
- Kolmogorov/Chaitin complexity: DNA sequences could be taken as length of descriptions
- information theoretic: treat inheritance between generations as information transmission

- morphology, cytology etc
- rich structure on many levels of abstraction
- genes) Nematode (roundworm) 100 million bases (11,800 to 13,800 genes) Drosophila (fruit fly) 165 million bases (15,000 to 25,000 problems of redundancy and noise; Simplest known organism: mycoli (bacteria) 4.67 million bases (3237 genes) H. influenzae (bacgenes) Yeast (fungus) 14 million bases (8355 to 8947 genes) E. teria) 1.8 million bases M. genitalium (bacteria) 0.58 million bases coplasma genitalium; 480 genes. Human 3000 million bases (30,000 (400 genes)
- Adami computes information processing capacity during evolution. can be quantified. See Christoph Adami: Artificial Life, 1998 the learning capacity of the genome, under very rigid assumptions information channel with noise. Information processing is viewed as Idea:view genome inheritance from on generation to the next as an

Overview

- Life
- Complexity
- The Chemistry of Life
- Artificial Chemistries
- Conclusions and Personal Remarks

Artificial Chemistries: Motivation

- Theory of evolution has the problem of having only one instance available for study
- use artificial chemistries to enable evolutionary processes
- "life as it could be"
- Goals: scientific study of evolution, optimization, artificial intelligence

physical, lack of repeatability Karl Popper suggests that evolution theory is not scientific but meta-

Artificial Chemistries: Overview

- Wet artificial life
- Rewriting systems
- Cellular automata
- Self-replicative codes

Wet Artificial Life

- Goal: reproducing the RNA world: (sets of) RNA strings that catalyze their own replication.
- Quest for missing link in origin of life. Milestones:
- polymerase chain reaction, reverse transcription Bartel, Szostak: Evolution using "tag" molecules,
- Wright, Joyce: Use tag for targeted PCR, but complex reactions involving double-stranded DNA

approach to the construction of a minimal cell. Ber. Bunsenges. Phys. approaches: core-and-shell self-reproduction P.L. Luisi, P. Walde, T. imenter (except occasional dillution in a fresh reaction solution); other function. Science 276, 614. 1997. Emphasis: no interaction of exper-M.C. Wright, G.F. Joyce. Continuous in vitro evolution of catalytic Chem. 98, 1160. 1994. Oberholzer. Enzymatic RNA syntehsis in self-reproducing vesicles: An

Rewriting Systems: Principle

- ullet Define set of molecules S.
- Define set of reaction rules R of the form

$$r=s_1+\cdots s_n \to s_1'+\cdots s_m'$$
 between molecules $s_i\in S$.

 Define reactor algorithm, for example stochastic molecular collisions

Rewrite Systems: Examples

- Chemical rewriting system on multisets (ARMS), develstract Machine (Berry, Boudol), additional rule order oped by Suzuki, Tanaka, similar to the Chemical Ab-
- Chemical casting model (CCM), developed by Kanada and Hirokawa, goal-driven, used for optimization
- Lambda-calculus (AlChemy), used by Fontana and Buss, eta reduction as single reaction rule

cooling/heating rules, ion rule inspired by CCS, able to model oscillating chemical systems

optimization eling salesman etc), quality defined by local order degree used for chemical casting model: problems con be encoded using links (trav-

self-replication easy, different levels of organization appear with different variants of the experimental setup

Cellular Automata: Background

- introduced by John von Neumann to study self-replicative automata
- used to study both
- self-replication (nanotechnology, space exploration), and
- reproduction (evolution)

Cellular Automata: Definition

A cellular automaton is a tuple (L,S,N,f), where

- L is a regular lattice of cells with dimensionality d,
- S is a finite set of states,
- N is a finite set (of size |N|=n) of neighborhood indices such that for all $i \in N$ and $c \in L$ we have $c + i \in L$,
- $f:S^n \to S$ is a transition function

 point lattice: discrete subgroup of Euclidean space, other structures allowed (hexagonal)

dimensionality d

i of course d-dimensional vector

Classes of Automata

- usually neighborhood is defined using "radius"
- states and 8³²⁷⁶⁸ different transition functions rule tables are large. Example: |S|=8, d=1, r=2 (5 neighbors). Then there are $8^5 = 32768$ neighborhood
- problem: find the right chemistry
- spacial isotropy
- quiescent state yields quiescent state

spacial isotropy: all planar rotations of a neighborhood should map to the same state

savento, 1995, using 32 states, and others). A. Ray Smith showed von Neumann constructed 2-dimensional CA with 29 states and the for construction universality (unfinished work, completed by PevN neighborhood, which is computationally universal, but asked that for self-replication, only computational universality suffices

Behavior Classification

- Wolfram investigated 1d automata with $|S|=2,\,r=1,2$
- Wolfram class I: limit point behavior,
- Wolfram class II: limit cycle behavior,
- Wolfram class III: "uniformly chaotic" behavior,
- Wolfram class IV: none of the above

a turing machine built in game of life. of life is of Class IV. look at http://www.rendell.uk.co/gol/tm.htm for cidable; Class IV most interesting; complex patterns; self-organization; conjectured to be capable of universal computation. Conway's game Karel Culick and Shen Yu showed that Wolfram's classification is unde-

Langton's Experiments

- How to find "interesting" rule sets?
- Langton analyses CA for d=1, |S|=2, r=2
- probability of getting a non quiescent state is significant
- self-replicative structures for d=2

class I, II, III with IV between II and III; look at urlhttp://cell-auto.com/links for applets

not necessary for self-replication construction universality: be able to construct any other automaton

Complexity in Cellular Automata

- Defined mostly negatively: absence of unstructured chaos, periodicity
- emphasis on self-replication, quest for simplest self-replicating structure

Self-replicative Code

- computer viruses
- Coreworld
- tierra
- avida
- amoeba

Coreworld

- Developed by Steen Rasmussen out of "Core War", a game where programmers compete for the memory of a virtual machine
- Uses circular memory, Core War instruction set, called Redcode
- Introduce noise through a stochastic copy instruction.
- Self-replicating programs can be easily written, but are not stable.
- Different "ecologies" emerge from different parameter settings
- Coreworld generally fragile under mutation, consequence of instruction set

tierra

- developed by Tom Ray
- 32 instructions, vaguely based on Intel i860
- pattern based addressing, using nop0 and nop1.
- scheduling using slicer queue
- memory management using reaper queue

Behavior of tierra

- seeded with self-replicating code (80 instructions)
- different "species" emerge:
- parasites
- immune hosts
- symbionts
- "cheaters"
- "super-parasites"

avida

- developed by Christoph Adami
- based on tierra, but two-dimensional structure
- each cell contains circular program
- refined rules for code sharing and migration
- replication by copying code into neighbor
- facing

Other Chemistries for Self-replicative Code

- amoeba
- target: evolution of self-replication; smallest self-replicators are only 5 instruction long
- sanda
- similar to avida, but allows targeted evolution by regulating the speed of execution in a cell
- parallel implementation allows large-scale experiments

Complexity in Self-Replicative Code

- Tom Ray uses mostly descriptive complexity, no attempt for quantitative analysis
- Most developed quantitative analysis done by Christoph Adami on avida
- uses Shannon complexity, based on average string length structions in population, frequency of genotypes, volatility of in-

Overview

- Life
- Complexity
- The Chemistry of Life
- Artificial Chemistries
- Conclusions and Personal Remarks

Shortcomings of Life

- protein synthesis is slow
- higher life forms are stuck on earth
- communication bandwidth narrow
- duration of generation long (decades for humans)
- brain is slow
- 5ms between firing of connected cortical neurons
- 1m/s speed of signal transmission within neuron
- neurons are large (4 microns)

are so complicated (parallelism). aas, so 27 seconds for assembling one single protein! No wonder, cells 60ms for adding a single amino acid; average human protein has 450

no wonder 10^{11} neurons with 10^4 fanout are needed for a real-time intelligent brain!

feature size in modern VLSI: 130 nano meter: 30 times smaller!

We Should Do Better

- understand and exploit evolution
- understand and exploit meta-evolution
- exploit feature size and speed
- Hard Artificial Life: third evolution

look at the major factors in natural life: information processing, sepa-

ration, integration Let us study "life as it could be" the limitations apparently inherent in carbon-based aquatic chemistry. many of the "impressive facts" about carbon-based life are artifacts of