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Comparing protein structures in three dimensions is a computationally expensive process
that makes a full scan of a protein against a library of known protein structures imprac-
tical. To reduce the cost, we can use an approximation of the three dimensional structure
that allows protein comparison to be performed quickly to filter away dissimilar proteins.
In this paper, we present a new algorithm, called SCALE, for protein structure compar-
ison. In SCALE, a protein is represented as a sequence of secondary structure elements
(SSEs) augmented with 3D structural properties such as the distances and angles be-
tween the SSEs. As such, the comparison between two proteins is reduced to a sequence
alignment problem between their corresponding sequences of SSEs. The 3-D structural
properties of the proteins contribute to the similarity score between the two sequences.
We have implemented SCALE, and compared its performance against existing schemes.
Our performance study shows that SCALE outperforms existing methods in terms of
both efficiency and effectiveness (measured in terms of precision and recall). To avoid
exhaustive search, an index based on the structural properties is also proposed. The
index prunes away a considerable amount of dissimilar proteins given a query protein.

Keywords: Protein structure, similarity search, secondary structure elements, sequence
alignment, structural properties.

1. Introduction

Protein structure comparison is a very important tool that has wide applications
in protein structure analysis, structure-based drug design, molecular modelling and
knowledge-based protein structure predictions. Whenever a new protein structure is
solved, it is often necessary to determine whether the structure has been seen before.
This is typically done by searching a library of known protein structures. However,
automatic 3D structure comparison at the atomic coordinate level23,25,30 is so time-
consuming for it to be of practical use. Even with the use of sequence screening
and a hierarchical expansion scheme to reduce the search space, it is estimated
that approximately two weeks of computer time would be required to scan a large
protein domain such as a TIM barrel3,4,6. The problem is exacerbated by the rapid
increase in the sizes of databases for 3D protein structures as new structure data are
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increasingly being discovered. Thus, novel methods for structural bioinformatics are
required. In particular, approximate techniques that provide rapid protein structure
comparison are desirable as they can serve as a pre-screen for the computationally
expensive SSAP-type algorithms.

One promising approach is to represent the 3D structure of protein by its sec-
ondary structure elements (SSEs). However, SSE alone is not adequate in distin-
guishing (dis)similar protein since two proteins with the same SSE can be folded in
different ways. Instead, most of the existing works augment the SSE with additional
information3,9,17,22,24,32. For instance, TOPSCAN3 uses symbolic linear representa-
tion of SSE vectors augmented with properties such as SSE type, direction, length,
proximity, etc, and applies dynamic programming to align two linear representa-
tions. Another recently proposed method32 represents the various relationships,
such as distances, angles, types and lengths, among the SSEs in a protein as ma-
trices. Then it finds the maximum common parts of the corresponding matrices of
two proteins to detect their similarity. Unfortunately, TOPSCAN is not rotation
invariant and requires the same comparison to be performed 24 times between two
sequences of SSEs. As such, it is not expected to scale for large protein databases.
The method in Ref. 32 is also computationally expensive in determining common
submatrices between proteins. To keep the processing overhead low, the scheme re-
stricts its search space to a single connected SSE at the expense of the sensitivity
of the method.

In this paper, we present a new algorithm, called SCALEa (Structure-Conscious
ALignment of secondary structure Elements), for protein structure comparison. In
SCALE, a protein is represented as a sequence of secondary structure elements
(SSEs) augmented with 3D structural properties. As a first cut, we have used the
distances of closest approach and the dihedral packing angles between the SSEs
as the 3D structural properties. The similarity between two proteins can be de-
termined based on the SSE alignment and the 3D structural properties. As such,
the comparison between two proteins is reduced to a sequence alignment problem
between their corresponding sequences of SSEs. The 3-D structural properties of
the proteins contribute to the similarity score between the two sequences.

We have implemented SCALE, and compared its performance against
TOPSCAN3 and BLAST23,25 (using primary sequence alignment) on real datasets
obtained from the Protein Data Bank29. Two sets of experiments are performed.
The first evaluates the effectiveness of SCALE on a small dataset of 90 proteins, and
the second evaluates the efficiency of the proposed algorithm on a large dataset of
1000 proteins. Our performance study shows that BLAST is not effective to detect
proteins with similar structure if their primary sequences are dissimilar. Our study
also shows that the proposed method is not only efficient compared to TOPSCAN,
but is also more effective (in terms of minimizing false drops and maximizing the
number of true hits).

aA SCALE is a measuring instrument - in our case, a measure of similiarity between proteins.
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However, even with a rapid comparison algorithm, exhaustive database search
is still computationally expensive. Thus, we also develop an index scheme based on
protein SSE structural properties. Experiments show that this index scheme is able
to prune away considerable number of dissimilar structures in the database so that
only a small number of proteins which are presumed to be similar to the query need
to be examined by the comparison algorithm.

A preliminary version of this paper appears in Ref. 14. There, we presented the
proposed structure comparison scheme, SCALE, and reported some preliminary
results. In this version, we have extended the work to facilitate database searching
more efficiently using a newly designed index structure.

The rest of this paper is organized as follows. In the next section, we present our
scheme to represent a protein. Section 3 discusses the proposed protein structure
comparison algorithm. We introduce the index structure for database searching in
Section 4. In Section 5, we present an experimental study and report our findings.
Section 6 reviews some existing work on protein structure comparison, and finally,
we conclude in Section 7 with directions for future work.

2. Representation of a protein

Since the 3D structure of a protein is more conserved, we expect two similar proteins
to share common substructure(s). As such, in this work, each protein is represented
by its sequence of secondary structure elements (SSEs) and an angle-distance (AD)
matrix. There are two major types of SSEs, namely, α helix and β strand. A protein
SSE sequence is thus a string of α and β. For example, the protein 1cukb has 14
SSEs β-β-β-α-β-β-α-α-α-α-α-α-α-α.

The AD matrix captures the 3D information between the SSEs of a protein. It
is a n×n matrix that represents all pair-wise closest distances and dihedral angles
between the SSEs, where n is the number of SSEs the protein has. The upper triangle
part of the matrix stores the distance of closest approach between two SSEs, while
the lower triangle part contains the dihedral packing angle of two SSEs. Figure 1
illustrates how the closest distance (d) and the dihedral angle (Ω) are determined,
as described in Ref. 12.

Mathematically, AD is defined as:

ADi,j =





di,j if i < j,

0 if i = j,

Ωi,j if i > j.

(1)

where, 1≤ i,j ≤n, di,j and Ωi,j are the distance of closest approach and the dihedral
packing angle between the i-th and j-th SSEs in the protein, respectively. Figure 2
shows the AD matrices for several proteins. In the figure, the darker a cell is, the
smaller is the real number in that cell.

bThroughout this paper, we shall use the PDB code when naming protein.
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Fig. 1. Computation of the closest distance and dihedral angle between two SSEs. Each SSE is
represented by a vector with length and direction obtained from the N- and C-terminal Cα atoms.
Let A and B be two vectors corresponding to two SSEs, d is the closest distance between A and B.
Moreover, let A′ and B′ be the projected vectors onto the plane that is normal to d. The dihedral
angle (Ω) is the angle between A′ and B′ measured along the plane.

(a) 1cuk. (b) 1a5t. (c) 1kap. (d) 1sat.

Fig. 2. Examples of angle-distance matrix AD.

3. Protein Structure Comparison

In this section, we look at how to measure the similarity between two proteins. We
first discuss the similarity measure, and then present an algorithm to compute the
similarity measure between two proteins.

3.1. Similarity Measure

Before we look at the similarity measure between two proteins, let’s refer to Figure 2
again. From the figure, it is clear that 1cuk is more similar to 1a5t than 1kap and
1sat. Likewise, 1kap has a higher degree of similarity to 1sat than 1cuk and 1a5t.
This is not surprising as, according to CATH5,19, 1cuk and 1a5t belong to the same
class “main alpha” and architecture “orthogonal bundle”. Similarly, proteins 1kap

and 1sat both belong to class “main beta” and architecture “2 solenoid”. More
interestingly, we also note that the matrices from different categories (or families)
are quite dissimilar (compare Figure 2(a) and (c)).

With our representation of proteins, two proteins, p1 and p2, are similar if
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• p1 and p2 share common SSE subsequences.
• The pairwise distances between the common SSE subsequences are similar.
• the pairwise dihedral angles between the common SSE subsequences are

similar.

Our basic approach is to align the SSE sequences and to use the information in the
AD matrices in computing the degree of similarity based on the alignment. We shall
defer the discussion on the alignment algorithm to the next subsection. Suppose p1

and p2 are two proteins with SSE lengths l1 and l2 respectively. We shall denote the
SSE sequences of the two proteins as p1[1, l1] and p2[1, l2] respectively. Suppose p1

and p2 have been aligned, and the length of the final alignment is L (L > l1, L > l2).
Let pa

1 [1, L] and pa
2 [1, L] denote the sequences of p1 and p2 in the final alignment

respectively. Two subsequences in the alignment, pa
1 [i, j] and pa

2 [i, j] (i < j), are
said to be common if

∀ k pa
1 [k] = pa

2 [k] (i ≤ k ≤ j). (2)

The subsequences are said to be maximally common if Eq.(2) holds and there does
not exist i′ < i and j′ > j for which the equation holds.

Let pa
1 [i, j] and pa

2 [i, j] (i < j) be a maximally common subsequence (MCS).
Moreover, let p1[i1, i1 + j − i + 1] and p2[i2, i2 + j − i + 1] be the corresponding
subsequences in proteins p1 and p2, i.e., p1[k1] = p2[k2] for i1 ≤ k1 ≤ i1 + j − i +
1, i2 ≤ k2 ≤ i2 + j − i + 1. Let Td be a threshold value used to determine the
tolerance for the absolute difference between the distances of a matching pair of
SSE is acceptable. Ta is defined for angles in a similar way. The similarity value
obtained from the MCS is given by:

Score(MCS) =

wd

∑

1≤k≤j−i+1

Td − |d(p1, i1 + k − 1, i1 + k)− d(p2, i2 + k − 1, i2 + k)|
Td

+

wa

∑

1≤k≤j−i+1

Ta − |a(p1, i1 + k − 1, i1 + k)− a(p2, i2 + k − 1, i2 + k)|
Ta

(3)

where wd and wa are weights used to determine the relative importance of
distance and angle, and d(p, j, j + 1) denote the distance between the jth and
(j + 1)th SSE of protein p, and a(p, j, j + 1) denote the angle between the jth and
(j + 1)th SSE of protein p.

The score of the alignment between two proteins is thus given by the sum of all
MCSs. Assuming that there are k MCSs, then

Score(p1, p2) =
∑

1≤i≤k

Score(MCSi) (4)

We note that in the above formulation, we have only utilized the distance and
angle information for connected SSEs. In other words, we have not fully utilized the
information on SSEs that are not connected.
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We also note that it is possible for Score(MCS) and Score(p1, p2) to be 0. This
occurs when the distance difference and angle difference of a pair in the alignment
are larger than their respective thresholds. In these cases, by only looking at the
alignment score, we are unable to differentiate between two proteins that contain
similar SSEs and those that do not. To address this problem, similarity of two
proteins is measured by a 2× 1 vector:

Sim(p1, p2) = (Score(p1, p2),
∑

1≤i≤k

Len(MCSi)
L

) (5)

where Len(MCSi) denote the length of the ith MCS. The additional second compo-
nent is used to recover the “lost type information” due to large distance and angle
differences.

3.2. The Alignment Scheme: Algorithm SCALE

As mentioned, our approach is to align the SSE sequences, and use the AD matrices
to compute the degree of similarity. We call our algorithm SCALE (Structure-
Conscious ALignment of secondary structure Elements). Since sequence alignment
problem is so well studied, there are many good existing algorithms that we can
employ to find the optimal alignment efficiently. We adapted the Needleman-Wunsh
dynamic programming algorithm10 for our work. The algorithmic description of our
alignment scheme, SCALE, is shown in Figure 3. We note that in the figure, we
only show the computation of the scores, and have omitted the backtracking steps
to obtain the best alignment.

As shown, the algorithm is very similar to the basic dynamic programming
algorithm of Ref. 10. The main differences between the proposed scheme and the
basic dynamic programming scheme are the followings:

• Since the score is computed for pairs of connected SSEs, the matrix size
is smaller by 1 – given k SSEs, there are k − 1 connected SSE pairs. This
explains the “-1” in the algorithm (lines 3, 5, 7, 8).

• Since we are dealing with a 2D similarity vector, in our algorithmic de-
scription, we have essentially “overloaded” the addition operation, i.e., “+”
in line 9. In our work, each individual component is added and cumulated
accordingly.

• The score to be added to cell [i, j] is determined by the similarity between
the S[i, i + 1] and T [j, j + 1], i.e., the pair of connnected SSEs starting at i

and j.

We note that by performing alignment on SSE sequences, our proposed scheme
is efficient. With respect to existing algorithms that operate at atom levels, we not
only reduce a problem from 3D to 1D, but also reduce the complexity from Θ(NM)
to Θ(nm), where N and M are the number of atoms in the proteins and n and m are
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Algorithm SCALE.
Input: SSE sequences S and T , angle distance matrices ADS and ADT , gap penalty g

Output: dynamic programming matrix A with alignment scores tabulated in A(m,n).
A(i, j) provides the score for the best alignment of S[1..i] and T [1..j].

1. m = Length(S) // find length of S

2. n = Length(T ) // find length of T

3. for i = 0 to m− 1 do
4. A[i, 0] = i ∗ g // initialize first column
5. for j = 0 to n− 1 do
6. A[0, j] = j ∗ g // initialize first row
7. for i = 1 to m− 1 do // now iterate over every element
8. for j = 1 to n− 1 do
9. A[i, j] = max(A[i− 1, j] + g,

A[i− 1, j − 1] + Sim(S[i, i + 1], T [j, j + 1]), A[i, j − 1] + g)
10. return A

Fig. 3. A dynamic programming based algorithm.

the number of SSEs in the proteins. Clearly, N >> n and M >> m. Matrix-based
approaches (e.g., Ref. 32), on the other hand, has complexity of Θ(n2m2).

4. Protein Structure Database Search

As we shall see in our experimental study, SCALE is a promising structure compar-
ison algorithm. To search a database of protein structures, SCALE can be employed
to compare the query protein against all protein structures in the database. However,
usually, only the top few proteins with the relative larger similarity are of biolo-
gists’ interest. It is thus a waste of time and resources to rank the whole database.
Therefore, we design an index to speed up the search process by pruning away very
dissimilar proteins in the database before running a comparison algorithm. Given
a query protein, the index would be traversed first which returns a list of proteins.
Instead of feeding the comparison method with the entire database, now, only a
portion of it (obtained from the index search), which hopefully contains a superset
of the top few most similar proteins, is actually compared. Any structure compari-
son method can be used for the comparison step; in this work, we use SCALE. The
following subsections will introduce the index structure and how it is used to speed
up searching.

4.1. Index structure

Similar structures must share some common substructures, and hence common SSE-
multiplets (e.g., three SSEs form an SSE-triplet). Our idea is, for each kind of
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connected SSE-multiplet, to record all the proteins containing it. Given a query
protein, its similar proteins must share many common SSE-multiplets with it, thus,
they must be in the protein list(s) containing certain SSE-multiplet(s) that the
query protein contains.

Our index is a multi-attribute-tree based on connected SSE-triplets. A protein
with n SSEs generates n− 2 connected SSE-triplets, from 1-2-3, 2-3-4, to (n− 2)−
(n − 1) − n. For example, the protein 1bik whose SSE sequence is β-β-α-α-β-β-α
has the following connected SSE-triplets in order: β-β-α, β-α-α, α-α-β, α-β-β and
β-β-α.

The first level of the index is based on type. There are eight possibilities of SSE
type for a triplet, therefore, this level has eight nodes. The second level of the index
is based on dihedral angle. The range of dihedral angle is divided into m intervals.
Since each SSE-triplet has two dihedral angles, there are m2 nodes under each node
of the type level. The lowest level is based on closest distance. The range of closest
distance is divided into n intervals, and hence there are n2 nodes under each angle
node. Each distance node points to a leaf page, which contains the IDs of all the
proteins in the database that have at least one SSE-triplet whose type, angle and
distance values matching with the values in the path from the root to that leaf page.
The overall structure is illustrated in Figure 4.

4.2. Searching the index structure

Given a query protein, we need to go through the following steps to get the might-
be-similar protein ID list:

(1) Identify all the connected SSE-triplets in the query protein.
(2) For each SSE-triplet identified, get its type, angle and distance values. Then,

traverse the index in the following way:

(a) Move to the corresponding type node from the root.
(b) Extend each angle and distance value by Ea and Ed on each side, respectively.

Suppose originally the angles are a1 and a2, distances are d1 and d2, now we
have ranges: [a1 − Ea, a1 + Ea], [a2 − Ea, a2 + Ea], [d1 − Ed, d1 + Ed] and
[d2 − Ed, d2 + Ed].

(c) From the type node in step (a), move to all the angle nodes whose two angle
intervals intersecting with the range [a1−Ea, a1 +Ea] and [a2−Ea, a2 +Ea]
correspondingly.

(d) From all the nodes reached at the angle level, move to all the distance nodes
whose two distance intervals intersecting with the range [d1 − Ed, d1 + Ed]
and [d2 − Ed, d2 + Ed] correspondingly.

(e) Union and return the protein ID lists from all the leaf nodes pointed by a
distance node reached in the above step.

(3) Union the protein ID lists returned by all SSE-triplets from the previous step.
Keep a count of how many lists a protein ID belongs to. This provides a lower
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Fig. 4. An example of the proposed index structure. Suppose P1 and P2 are two proteins in the
database, and both have an SSE-triplet whose type is β-α-β. The portion of their AD matrices
corresponding to that SSE-triplet are shown in (a). As shown in (b), the index consists of type,
angle, distance level of internal nodes and leaf pages. Ai and Dj (for 1 ≤ i ≤ m and 1 ≤ j ≤ n)
are the ith and jth interval of angle and distance, respectively. Suppose ω1 ∈ A2, ω3 ∈ A3,
ω2, ω4 ∈ A5, d1, d3 ∈ D4, d2 ∈ D2, and d4 ∈ D3, then, P1 and P2 are inserted in the leaf pages
shown in (b).

bound of how many common SSE-triplets shared in this protein and the query
protein. The larger it is, the more similar these two proteins are presumed to
be.

(4) Return all the protein IDs associated whose count is at least Th, where Th is a
threshold controlling how stringent we want the pruning to be—the larger it is,
the more common SSE-triplets we expect to be shared between the query and
the picked protein, and thus, more proteins with less common SSE-triplets are
pruned.

Figure 4 also illustrates the query process of one SSE-triplet of the query protein
Q. Suppose Q has an SSE-triplet of type β-α-β and its AD matrix is shown in
(a). Assume before processing this SSE-triplet, Q has already hit P1 twice, but no
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hit on P2, thus the protein list PLQ = {. . . , (P1, 2), . . .}. Suppose ω5 − Ea ∈ A2,
ω6 ∈ A5, d5 ∈ D4 and d6 + Ed ∈ D3. Therefore, to process this SSE-triplet of
Q, we shall follow the paths Root-βαβ-(A2, A5)-(D4, D2) and Root-βαβ-(A3, A5)-
(D4, D3). The first path leads to the leaf page containing P1 while the second one
points to the leaf page of P2. Hence, the counter for P1 is increased by 1 and P2
is inserted into the protein list: PL′Q = {. . . , (P1, 3), . . . (P2, 1), . . .}.

5. A Performance Study

In this section, we present a performance study to evaluate the SCALE algorithm
and the proposed index. As references, we compare SCALE against the following
two methods:

- BLAST16. BLAST is the standard tool that molecular biologists used to search
for sequence similarity in protein databases. Comparing with it allows us to see
the benefits of incorporating structural information.

- TOPSCAN3. Like SCALE, TOPSCAN captures some structural information
(e.g., proximity, size, direction, etc.). However, it represents protein structure as
a sequence of symbols and employs sequence alignment technique to determine
the similarity between proteins. By comparing with TOPSCAN, we see how
critical are the distance and angle information, and how much can be gained
by these information.

The SCALE algorithm is implemented in the C++ programming language. We have
also obtained the source code of TOPSCAN from the authors. The BLAST version
that we used is NCBI BLAST27. The threshold values of Eq.(3) are set as follows:
Td is set to 10 Armstroms and Ta is set to 30 degrees. We consider both the angle
and distance information to be equally important by setting both wa and wd to be
equal to 1. These are also values used in Ref. 32. For TOPSCAN and BLAST, we
used the default settings suggested by the respective packages.

We compare the various schemes on their effectiveness and efficiency. The former
determines how accurately a method is in identifying structually similiar proteins
given a query protein. The latter reflects how fast a scheme is, and indicates how
well the scheme will scale in large databases.

We conducted two sets of experiments. The first study examines the accuracy of
the various methods. In this set of experiments, we followed the approach adopted in
Ref. 32 and used the same dataset of 90 proteins selected from the SCOP database31.
The second study evaluates the efficiency of the various schemes. The dataset in-
volves over 1000 proteins.

To examine the effectiveness of the index, we switched to use CATH4 protein
categorization scheme since large-scale structure-based classification is not available
in SCOP. We selected all the proteins from Protein Data Bank29 that comprise
either single domain, or multiple domains that belong to the same CATH group, and
wherein we are able to generate SSE information from WebMol program successfully.
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Finally, 8223 such proteins form the protein database for our index performance
study. All the experiments are preformed on SUN’s E450 running solaris.

5.1. Effectiveness of SCALE

As mentioned, we have used 90 proteins to study the effectiveness of the various
methods. These proteins are obtained from the SCOP database18 and have been
carefully selected with the following properties32:

• Proteins that have less than 40% homology. We only want to consider less ho-
mologous proteins since homologous proteins have less significance in estimating
the performance of the method.

• Proteins belonging to All alpha, All beta, Alpha and Beta in SCOP. Other cat-
egories in SCOP are not always classified from the structural viewpoint.

• Proteins that have more than 7 SSEs and fewer than 41 SSEs. Proteins that
have few SSEs have less structural information to work on.

The selected 90 proteins are shown in Tables 1-4.

Table 1. 18 proteins in All Alpha class

PDB Code Classification in SCOP (All Alpha)

1eca, 1hlb, 2hbg, 2lhb, 3sdh Globin-like
1bbh, 2ccy, 2tmv Ferritin-like
1rtp, 1scm, 2sas, 2scp EF Hand-Like
2gst, 1glp Gluthathione S-transferases, C-terminal domain
1ezm, 8tln Thermolysin-like metallopeoteases, C-terminal doman
1cpt, 1phg Cytochrome P450

Table 2. 31 proteins in All Beta class

PDB Code Classification in SCOP (All Beta)

1cd8, 1cid, 1hsb, 1tlk, 1cfb, 2mcm Immunoglobulin-like beta-sandwich
2cas, 2stv Viral coat and capsid proteins
4fgf, 1ilb, 1tie, 1hce beta-Trefoil
1arb, 2sga, 3sgb, 4sgb, 4htc, 1ppf, 3rp2 Trypsin-like serine proteases
2hpe, 2rsp, 2er7, 1mpp Acid proteases
1hbq, 1epa, 1mup, 1ftp, 1icn, 1crb Lipocalins
1sri, 1avd Streptavidin-like

For all the proteins, the sequence of SSEs and the angle-distance matrix (AD)
are computed from PDB files of the Protein Data Bank using a modified version of
the WebMol15 program.

Essentially, we perform all-against-all comparison of the 90 proteins. The fol-
lowing are the steps of the experiment for one protein comparison:

(1) Pick one protein out of the 90 proteins and compute similarity values against
all other proteins (using one of the methods studied), including itself. This will
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Table 3. 35 proteins in Alpha and Beta class

PDB Code Classification in SCOP (Alpha and Beta)

1byb, 1ghr, 1nar, 2acq, 2mnr, 4enl, 1oyc beta/alpha (TIM)-barrel
3cox, 1pbe, 3grs FAD/NAD(P)-binding domain
3chy, 2fcr, 2fx2, 1ovf, 1cus Flavodoxin-like
1dhr, 1ldm NAD(P)-binding Rossmann-fold domains
5p21, 2reb P-loop containing small nucleotide triphosphate hydrolases
1cse, 2sic Subtilases
3cla, 1eaf CoA-dependent acetyltransferases
1ede, 1tca, 3tgl alpha/beta-Hydrolases
4cpa, 2ctc, 1amp Phosphorylase/hydrolase-like
8abp, 1gca, 2lbp Periplasmic binding protein-like I
1pda, 1sbp, 1omp Periplasmic binding protein-like II

Table 4. 6 proteins in Alpha and Beta class

PDB Code Classification in SCOP (Alpha + Beta)

7rsa, 1onc Ribonuclease A-like
1frd, 1lgr beta-Grasp
1aya, 2pnb SH2-like

generate a list of similarity values of the picked protein compared against each
of the 90 proteins. Each element of the list is a triple, (proteinA, proteinB, sim),
where proteinA is the protein name of the picked protein, proteinB is the name
of the protein compared against and sim is a similarity score (in the case of
SCALE, it is a vector described in Eq.(5)).

(2) Sort this list (according to the ordering described in Section 4 for SCALE).
(3) Pick the top n proteins from the sorted list, and count the number of these top

n proteins that belong to proteinA’s SCOP category. Let this number be m.
Let the number of the proteins in the relevant SCOP category be N . We then
compute the precision and recall as follows:

Precision =
m

n

Recall =
m

N

The above steps are performed for every protein within each of the SCOP cat-
egory, namely, All Alpha, All Beta, Alpha / Beta and Alpha + Beta. Therefore,
all-against-all comparison is performed on the 90 proteins. For each SCOP category,
the average count in step 3 for the category is computed and recorded.

We have performed this experiment with SCALE, TOPSCAN and BLAST al-
gorithms to see how accurate they are. The results of the experiments are shown in
Figure 5 for the All Alpha category, Figure 6 for the All Beta category, Figure 7 for
the Aplha / Beta category and Figure 8 for the Alpha + Beta category.

From the figures, we can make several interesting observations. First, as ex-
pected, all the schemes’ precision decreases with increasing n, and their recall in-
creases as n increases. Second, we observe that BLAST did not perform well in
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terms of recall and precision. This is expected as the proteins used in our study
have little sequence similarity. Since structural similarity are not captured by the
sequence similarity, BLAST is unable to pick them out. This clearly shows the need
for 3D structural information in detecting structural similarity.

Third, SCALE performs better than TOPSCAN for the All Beta and Al-
pha/Beta categories. This shows that the angle and distance measures used by
SCALE is an important contribution to determining structural similarity between
proteins. For the All Alpha category, both schemes perform equally well.

Finally, all the schemes do not perform well for the Alpha + Beta category. But
as we increase n, we see that SCALE’s precision and recall improves as compared
to those of TOPSCAN and BLAST. The Alpha + Beta category groups together
the proteins that have mainly anti-parrallel beta sheets with alpha regions and
beta regions segregated. The SCALE and TOPSCAN experiments for this category
ranked proteins from the All Alpha and All Beta categories higher than proteins
from its own category. This is due to large segregated alpha or beta regions within
the protein getting aligned better with proteins that contain only aplha helices or
proteins that contain only all beta sheets as compared to other proteins with sege-
grated alpha and beta regions. Both algorithms SCALE and TOPSCAN produce
this result because both algorithms only consider information from connected SSEs.
The protein from the Aplha + Beta category may be structurally similiar to a All
Beta category protein, as the whole segregated beta region may match the entire All
Beta category protein. But, they are categorized by SCOP in different categories.
In order to be able to identify them as belonging to different SCOP categories, we
may require the use of extra information of angles and distances of non-connected
SSEs.

5.2. Efficiency of SCALE

To evaluate the efficiency of SCALE, we perform all-against-all comparison against
a extended dataset of 1000 proteins instead of 90 proteins. The average run-time of
the implemented algorithm is recorded. The results of this experiement is shown in
Table 5. As shown in the table, the run-time performance of SCALE is much faster
than TOPSCAN. From Table 5, we can see that the run-time of SCALE is about 20
times faster than TOPSCAN. This result is expected because the representation of
proteins used for TOPSCAN is not rotation invariant. As a result, TOPSCAN needs
to compare two proteins 24 times, each with a different orientation. For SCALE,
angles between SSEs and closest distance of approach between SSEs are rotation
invariant. Therefore, comparison bewteen two proteins only need to be performed
once.

To summarize, the proposed scheme, SCALE, is an effective and efficient scheme
for approximate protein structure comparison. The results also showed that the
angle and distance information provide critical structural information.
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Fig. 5. All Alpha category.
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Fig. 6. All Beta category.

Table 5. Run-time performance of SCALE and TOPSCAN.

Size of dataset SCALE run-time TOPSCAN run-time

90 vs 90 0h 00m 10.26s 0h 02m 32.14s

1000 vs 1000 0h 16m 51.44s 4h 58m 16.59s
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Fig. 7. Alpha / Beta category.
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Fig. 8. Alpha + Beta category.

5.3. Effectiveness of the index

Recall that in the index, the ranges of dihedral angle and closest distance are di-
vided into m and n intervals, respectively. The interval division is critical to the
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effectiveness of the index. Thus, we studied the distribution of angle and distance
of neighboring SSEs in all proteins in our database (please refer to Figure 9. Since
the angle distribution is not too skew, we simply divided its range into three equal-
length intervals: (−180◦,−60◦], (−60◦, 60◦], (60◦, 180◦].
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Fig. 9. The range of dihedral angle (a) and closest distance (b) of connected SSE pairs are evenly
divided into 36 intervals. The y-axis is the portion of proteins in the entire dataset that has at
least one SSE pair whose dihedral angle value and closest distance value fall into the corresponding
range define on x-axis in (a) and (b) respectively.

16 proteins (please refer to Table 6) which are the intersection of the
representative-protein-set defined by CATH4 and our database are selected to evalu-
ate the performance of our index scheme. Since biologists are usually only interested
in the few most similar structures, as long as the protein list returned by the index
contains most of the top few proteins in the SCALE result, and if the protein list is
much smaller than the database size, the index will be considered as a good scheme
for a pre-scanning step. The average size of protein list when varying Th value is
shown in Figure 10 (a).

For each query protein, we are interested in the number of missesc and true
dropsd. The averages of misses and true drops for threshold Th from 1 to 5 are
plotted in Figure 10 (b).

By observing Figure 10, we notice that the larger the Th is, i.e., the more
stringent the protein picking criteria is, the fewer the number of proteins will be

cA miss is defined as a protein which is inside the top 100 in SCALE output, but is not retrieved
when the index is used.
dTrue drop refers to a protein which belongs to the same CATH group as the query protein, but
is not picked by the index
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Table 6. 16 representative proteins from CATH

CATH group code/name Representative protein PDB id

1.10 (Mainly alpha, Orthogonal Bundle) 1gab
1.40 (Mainly alpha, Alpha solenoid) 1ppr
1.50 (Mainly alpha, Alpha/alpha barrel) 1cem
2.10 (Mainly beta, Ribbon) 2fnz
2.20 (Mainly beta, Single Sheet) 1atx
2.40 (Mainly beta, Barrel) 1hav
2.50 (Mainly beta, Clam) 4bcl
2.80 (Mainly beta, Trefoil) 1hcd
2.90 (Mainly beta, Orthogonal Prism) 1jpc
2.102 (Mainly beta, 3-layer Sandwich) 1rie
2.110 (Mainly beta, 4 Propeller) 1hxn
2.120 (Mainly beta, 6 Propeller) 1mwe
2.160 (Mainly beta, 3 Solenoid) 1thj
3.70 (Alpha beta, Box) 1plq
3.75 (Alpha beta, 5-stranded Propeller) 4jdw
3.80 (Alpha beta, Horseshoe) 2bnh
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Fig. 10. (a) Size of the protein list returned by the index and (b) Number of misses and true
drops when varying the value of Th. Note that the total size of the database is 8223, and the
numbers are averaged on 16 representative query proteins.

returned from the index—which is desirable. The best case for protein list size (wrt
the dataset we used) is at Th = 5, where three quarter of the database is pruned.
The size of the protein list decreases almost linearly with the increase in Th. The
number of true drops is always close to zero with very little increment as Th becomes
larger, though the number of misses increases dramatically. However, the number
of true drops is more of our interest because it compares against the true answer.
From the difference between the number of misses and true drops, we found that
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many misses are actually dissimilar proteins, and are beneficial to be missed by
using the index scheme. When Th is less than 5, the average number of true drops
is always 0.2. Note that we assume a biologist is looking at the top 100 proteins,
thus, the probability of missing an ought-to-be-picked protein due to the index is
only 0.2%. This shows the index scheme almost does not sacrifice the accuracy of
the search at all.

We shall also note that, it usually takes 14-20 minutes for SCALE to process
one query against a full database with 8223 proteins, while the average time to
traverse the index is less than 2 seconds (24.52 seconds for the 16 representatives).
Therefore, the overhead of traversing the index is almost negligible. If we can prune
away half of the database (which is the worst case in Figure 10, where Th = 1),
we are already able to save 10 minutes. Finally, we set our Th to be 4, where the
average size of protein list is 2772, and the average number of true drops is 0.2.
Thus, the index prunes away 2/3 of the database, while keeping 99.8% of the most
relevant proteins. Based on such an index, the time to search for a similar protein in
a database can be reduced to only 1/3 of that of an exhaustive search with almost
the same accuracy.

6. Related work

The problem of structural comparison or alignment is known to be NP-hard. A
number of approximation methods have been developed to solve the problem of
structural comparison.

DALI 23,25 is based on aligning 2D intra-molecular distance matrices. It com-
putes the best subset of corresponding residues from the two proteins such that
the similarity between the 2D distance matrices is maximized. Searches through
all possible alignments of residues are performed using Monte-Carlo and branch-
and-bound algorithms. DALI is known to be one of the most biologically sensitive
methods. However, it is computationally expensive.

In VAST 22, all pairs of SSEs that have the same type are represented as nodes of
a graph, and the nodes (SSE pairs) that share similar distance and angle properties
are connected by edges. Then, clique detection algorithm is applied to find the
maximal subgraph and hence the initial alignment between two structures. Next,
iterative superposition is applied to get the detailed alignment at the residue level. It
also takes the statistical significance of an alignment into account in calculating the
best superposition. TOP17 represents SSEs as vectors, and uses least square-fitting
approach to superimpose them. Detailed matching at the residue level is performed
based on various criteria. CE 26 algorithm involves a combinatorial extension of an
alignment path defined by aligned fragment pairs (AFPs), which are based on local
geometry of the structure. Combinations of AFPs that represent possible continuous
alignment paths are selectively extended leading to a single optimal path. LOCK 9

represents SSEs as vectors, and superimposes them using dynamic programming to
get the initial alignment. Then, atomic and core superpositionings are performed
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using a greedy algorithm.
Although fine-grain methods usually result in high accuracy, they are very slow.

Given the rapid growth rates of the protein structural databases in the near future,
there is increasing motivation to design coarse-grain approaches that are faster and
reasonably accurate.

Coarse-grain approach is used in Ref. 3, 24, 32, and they treat only SSEs as
the basic elements. 3D-Lookup24 also uses vectors to represent the SSEs, and uses
geometric hashing to hash them into the search space. Ref. 32 represents the various
relationships, such as distances, angles, types and lengths, among the SSEs in a
protein as matrices. Then it finds the maximum common parts of the corresponding
matrices of two proteins to detect their similarity. TOPSCAN 3 uses symbolic linear
representation of SSE vectors using the properties such as SSE type, direction,
length, proximity, etc, and applies Needleman and Wunsch dynamic programming
algorithem to align two linear representations.

Some survey reports1,21,28 are available for reviewing the background theories
and the various methods in this area.

Our method shares some common features with TOPSCAN 3, for instance, both
work on SSE level, both represent a protein linearly so that a 3D problem is reduced
to 1D, both employ dynamic programming algorithm. But there are two significant
differences. The spatial relationship between SSEs is captured much more precisely
in our method than in TOPSCAN. TOPSCAN divides the 3D space into 6 direc-
tions, namely, forward and backward on each coordinate. Thus, a β sheet with 1◦

to x axis will get the same representation as a β sheet with 40◦ to x axis. But in
our method, there is even no approximation at all. All the real numbers are used
in the representation as well as the alignment. Besides the loose capture of spatial
information, in TOPSCAN, since the structure is based on a 3D coodinate system,
the representation is not orientation-invariant. In order to compare proteins in all
the different orientations, each comparison needs to rotate one of the proteins 24
times. The rotation is done via permutation of the string. But our method concerns
the differences in a pairwise manner, and it is orientation-invariant. This contributes
significantly to its efficiency.

There are also some works on indexing protein structures33,8,20,13,7. All of these
methods deduce feature vectors from protein structures, and then index these fea-
ture vectors using existing indexing techniques. For example, ProtDex233 employs
inverted-file, Ref. 8 uses histograms, while Ref. 20, 7 build classical tree structures
—R-tree2, R*-tree11 and B+-tree, and Entropy Balanced Statistical (EBS) k-d tree
for Ref. 13. The major difference among these methods resides in where and how
to get the feature vectors. Ref. 8 decomposes the 3D space into sectors where each
sector corresponds to a bin in the histogram; Ref. 13 applies computer vision tech-
niques to extract the predominant information encoded in each 2D distance matrix
which is generated from 3D coordinates of protein chains; In Ref. 20, each amino
acid is represented as a vector, and the four distances among the four end-points of
two vectors are used to index; ProDex233 extracts seven properties (such as angle,
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average Cα-Cα distance) for each SSE pair, while Ref. 7 works on SSE-triplets.

7. Conclusion

In this paper, we have revisited the problem of protein structure comparison. We
have proposed a novel scheme called SCALE that approximates the 3D structural
information of a protein by its SSE sequence and pairwise distance and angle in-
formation. In this way, SCALE can compare two proteins by aligning their SSE
sequences and using the distance and angle information to augment the similar-
ity score. We have implemented SCALE, and evaluated its performance against
TOPSCAN and BLAST. Our performance study shows that SCALE outperforms
TOPSCAN and BLAST in terms of precision and recall. It is also more efficient
than TOPSCAN.

We also proposed an index structure based on protein SSE structural proper-
ties. Experiments showed that the index is able to retrieve similar proteins from a
database so that only a small portion of the database has to be explicitly compared
with the query protein using structural comparison tool, such as SCALE.

We plan to extend this work in several directions. First, in our current work,
we have not fully exploited the information in the AD matrix. In fact, we are
only using the information on connected SSEs. We believe a more precise similarity
measure that incorporates the distances and angles between non-connected SSEs
can further improve the precision and recall by pruning away false drops. Second,
we have also not tapped into information that TOPSCAN has used, e.g., size of
SSEs and proximity. Studying how much this information contributes to similarity
comparison between proteins is also in our agenda.
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