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Abstract. We propose a novel feature-based image registration method using 
both the local and global structures of the feature points. To address various 
imaging conditions, we improve the local structure matching method. 
Compared to the conventional feature-based image registration methods, our 
method is robust by guaranteeing the high reliable feature points to be selected 
and used in the registration process. We have successfully applied our method 
to images of different conditions. 
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1   Introduction 

Image registration, an important operation of multimedia systems, is a process of 
transforming the different images of the same scene taken at different time, from 
different view points, or by different sensors, into one coordinate system. The current 
automated registration techniques can be classified into two broad categories: area-
based and feature-based [1, 5]. 

In this paper, we propose and implement a novel image registration method to 
improve the quality of registration by guaranteeing the high reliable feature points to 
be selected and used in the registration process. Here we adapt the feature matching 
method proposed by Jiang and Yau [4]. However, it is mainly for fingerprint image 
under rotation and translation. We modify it so that we can obtain a set a reliable 
corresponding feature points for images of various conditions. The major 
contributions are: (1) we improve the quality of registration by applying a more 
reliable feature point selection and matching algorithm adapted from finger print 
matching, (2) we improve the local structure matching method, and (3) we implement 
the method in a software system and conduct various experiments with good results. 



2   Our work 

In this section, we describe how to extract the feature points and estimate their 
orientation (2.1), find correct matching pairs between two partially overlapping 
images (2.2), and derive the correct transformation between two images (2.3).  

2.1 Feature point detection and orientation estimation 
In our approach, the features are defined as points of large eigenvalues in the image. 
We employ the OpenCV function GoodFeaturetoTrack [3]. A number of methods 
have been proposed for orientation estimation of the feature points. We apply the least 
mean square estimation algorithm. A feature point is eliminated if its reliability of the 
orientation field is below a threshold. 

2.2 Feature point matching 
There are four major steps in our matching algorithm: an invariant feature descriptor 
to describe the local positional relations between two feature points (2.2.1), local 
(2.2.2) and global (2.2.3) structure matching, and cross validation to eliminate the 
false matching pairs (2.2.4). In (2.2.2), we describe our improvement. 

2.2.1 Define a feature descriptor 
We first represent each feature point i detected by a feature vector fi as:  

 fi=(xi,yi,ϕi), (1) 

where (xi,yi) is its coordinate, ϕi is the orientation. The feature vector fi represent a 
feature point’s global structure. A feature descriptor Fij is defined to describe the local 
positional relations between two feature points fi and fj by their relative distance dij, 
radial angle θij and orientation difference ϕij (see Fig. 1) as equation (2):    
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where 1 2( , )d t tφ is a function to compute the difference between two angles t1 and 
t2,. All these terms are shown in Fig. 1 for two feature points. 

Fig. 1. The local spatial relation between two feature points fi and fj. 

 

ϕi 

ϕj 

ϕj 

θij 

ϕij 

dij 

fj 

fi 



2.2.2 Local structure matching 
Employing the feature descriptor, for every feature point fi, a local structure LSi is 
formed as the spatial relations between the feature point fi and its k-nearest neighbors: 

LSi=(Fi1, Fi2,…, Fik), (3) 

where Fij is the feature descriptor consisting of the local positional relations between 
two minutiae fi and fj. as defined in equation (1). 

Given two feature sets Fs={fs1,…fsn} and Ft ={ft1,…ftm} respectively, the aim is to 
find two best-matched local structure pairs {fsp↔ftq} and {fsu↔ftv} to serve as the 
corresponding reference pair later in the global matching stage.  

Now, we start to describe direct local structure matching [4] and complex local 
structure matching (the proposed improvement). 

Direct local structure matching 
Suppose LSi and LSj are the local structure feature vectors of the feature points i and j 
from sensed image s and template image t respectively. Their similarity level is: 
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where W is a weight vector that specifies the weight associate with each component of 
the feature vector. The threshold bl can be defined as a function of the number of 
feature points in a neighborhood. The similarity level sl(i,j), 0≤sl(i,j)≤1, describes a 
matching certain level of a local structure pair. The two best-matched local structure 
pairs {fsp↔ftq} and {fsu↔ftv} is obtained by maximizing the similarity level [4]. The 
direct local structure matching method is efficient of O(k), where k is the number of 
feature points in a neighborhood. 

Complex local structure matching 
Though the direct local structure matching method is efficient, we found that if there 
are any dropped or spurious feature points in the neighborhood disturbing the order, 
the local structure matching will be invalid. We show an example in Fig. 2 to 
demonstrate this case. 

 
Fig. 2. Illustration of spurious or dropped feature points in the neighborhood.  

In Fig. 2, pi in the sensed image s has a neighborhood {p1, p2, p3}, and pi’s 
corresponding point pj in the template image t has a neighborhood {p0’, p2’, p3’}, of 
which {p1↔ p1’} and {p2↔ p2’}. Because of the image distortion or scene change, in 
the neighborhood of pj, there is no matching feature point for p3, but a spurious feature 
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point  p0’ which does not match to any feature point in the neighborhood of pj 
appears. Apply the direct local structure matching, we have LSi={Fi1

T,Fi2
T,Fi3

T}, 
LSj={Fj1

T,Fj2
T,Fj3

T}. Using equation (4), the similarity level between the local 
structures will be very low since their neighbors are mismatched. Thus the similarity 
level computed by equation (4) is not reliable.  

We address the problem by a more complex local structure matching method.  
First, when we match the two neighbors of two candidate feature points, we consider 
not only the relative distance but also the radial angle and orientation difference. 
Second, after we identify those matched neighbors, we will drop the unmatched 
feature points in the neighborhood in computation of the similarity level of two local 
structures. In the example shown in Fig. 2, only {p1↔ p1’} and {p2↔ p2’} will be 
considered in the local structure matching.   

Suppose we are checking the similarity level between the feature point p and q 
from the sensed image s and the template image t respectively. Let Knnp and Knnq 
denote the k-nearest neighborhood of the feature point p and q respectively. For every 
feature point n in Knnp, we will find its most similar point m in Knnq.  They are 
qualified as a matching pair if three conditions (equations (5), (6) and (7)) are 
satisfied: 

W|Fpn-Fqm|=minjW|Fpn-Fqj| and W|Fpn-Fqm|=miniW|Fpi-Fqm|, (5) 

where W|Fpn-Fqm|=wd|dpn-dqm|+wθ|θpn-θqm|+wϕ|ϕpn-ϕqm|. It searches every member in 
Knnq and every member in Knnp.  

W|Fpn-Fqm|<Tc, (6) 

where Tc is threshold value and W is a weight vector same as in equation (4). 

|θnp-θmq|≤π/4. (7) 

As we know if both {n↔m} and {p↔q} are matching pair, the relative orientation 
difference between θnp and θmq should be small (equation (7)). Adding this criterion 
will speed up the search time. If the constraint is not satisfied, it is not necessary to 
test conditions 1 and 2.  

Then the similarity level between the feature points p and q can be computed as 

 sl(p,q)=(bl-nsl(p,q))/bl,  (8) 

where nsl(p,q)=Σn,mW|Fpn-Fqm|, the similarly level only for those matched neighbor 
pairs from Knnp and Knnq according to conditions 1-3. From condition 2, we have 
W|Fpn-Fqm|<Tc if point n and point m are matched neighbors. Thus we define 
threshold bl as Tc times the number of matching neighbor pairs, bl=Tc|{n↔m|n∈knnp, 
m∈knnq}|, to make sure the similarly level sl(p,q) always greater than zero. The two 
best-matched local structure pairs {fsp↔ftq} and {fsu↔ftv} are obtained by maximizing 
the similarity level. Experimental results in Fig. 3 to Fig. 6 confirm the improvement.   

2.2.3 Global structure matching 
There are two limitations in the local structure matching: first, two different feature 
points from the sensed and template images may have similar local structure. Second, 
two images from the same scene may have only a small number of well-matched local 
structures. We need to apply the global structure matching. 



Assume that we obtain two best-matched local structure pairs, say (p,q),and (u,v), 
from the local structuring matching, either one of them can serve as a reliable 
correspondence of the two feature points’ sets.  We perform the global structure 
matching in two cues for consistence. The best-matched local structure pair (p, q) is 
sent to cue 1 as the corresponding reference to align two feature sets, while another 
best-matched local structure pair (u, v)is sent to cue 2 for the same purpose. In cue1, 
all feature points will be aligned as follows:  
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where GSi
s and GSi

t represent the aligned global structure of feature points i and j in 
sensed image s and template image t according to the corresponding reference p and 
q, respectively.  

Then we define the matching level ml(i,j) for feature point i of the sensed image s 
and feature point j from the template image t by: 

 0.5 0.5* | |,    if | |
( , )

0,                                              otherwise
i j i j
s t s tw GS GS GS GS Bg

ml i j
⎧ + − − <⎪= ⎨
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  (10) 

where w is a weight vector and Bg is a 3-D bounding box in the feature space to 
tolerate the image deformation. We empirically choose Bg =(10, π/4, π/4). 

Thus for an arbitrary feature point a in the feature sets Fs, we find a feature points 
b in the feature sets Ft such that ml(a,b)=maxj (ml(i,j)). While for this feature point b, 
we search for a feature point c in the feature sets Fs such that ml(b,c)=maxi (ml(i,j)). 

The feature point a and the feature point b will be recognized as a matching pair if 
and only if the feature points c and a are the same point. A matching pair set MP1 
containing all correspondences is generated as the output of cue 1.   

In cue 2, we align the two feature sets with respect to another corresponding 
reference fu and fv, and then perform the same global matching as what we did in cue 
1 to generate the matching pair set MP2. Only those pairs are found in both cues are 
considered as valid matching pairs. Finally, the matching pair set MP, which is the 
intersection MP1 and MP2, is the result of the global structure matching.  

2.2.4 Eliminating the low-quality matching pairs  
We have obtained a number of matching pairs from the global structure matching. 
Now, we apply the validation step to eliminate those low-quality matching pairs by 
cross-validation. First of all, we compute the mapping parameters (say, Map) from the 
whole matching pair set. Then in each step, we exclude one pair (say, Pi) from the set 
of matching pairs and compute the mapping parameters (say, Mapi). If the 
displacement between Mapi and Map is beyond a threshold, the matching pair Pi is 
identified as a low-quality matching. Eliminating them we get the correct matching 
pair set MP’. The experimental results are shown in Fig. 7 and Fig. 8. 



2.3 Transformation model estimation 
Assume that the matching pair set obtained is {ui↔vi}i=1,2,…,N. They should satisfy the 
relation vi=ui A, where A is the mapping function corresponding to the geometric 
transformation of the images. We compute it by least-square QR factorization. 

3   Experimental study 

A series of experiments are conducted. The majorities of our testing images are from 
[2], including optical, radar, multi-sensor, high-resolution and Landsat images. The 
testing platform is a Pentium 2.20GHz, 512MB RAM PC. 

3.1 Results of local structure matching 
To demonstrate the improvement of the local structure matching, we ran tests on the 
following four pairs of images with different types of image variations. The results 
are shown in Fig. 3 to Fig. 6. For every pair, the dots and arrows indicate the positions 
and orientations of the feature points, and the two best-matched local structure pairs 
computed are circled and numbered. The variations between the input and the 
template image and the number of feature points detected are listed in Table 1. From 
the results, we see that the best-match local structure pair computed by the improved 
local structure matching method is more reliable.  

  
(a) template image    (b) input image 

Fig. 3. An example of local structure matching on images with geometry 
transformation.  

  
Fig. 4. An example of local structure matching on images with highly temporal 

changes.  
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Fig. 5. An example of local structure matching on images with serious deformation.  

  
Fig. 6. An example of local structure matching on images from different sensors. In 

(a) SPOT band 3; (b) TM band 4.  
To compare the performance of the two local structure matching methods 

(subsection 2.2.2), we present Table 1 of the experiments results on the four pair of 
images by both methods. The variation between the input and the template images are 
shown in the 2nd column. The number of feature points used is listed in the 3rd 
column. In the 4th and 5th column, method 1 is the direct local structure matching and 
method 2 is the complex local structure matching. For each method the time of 
computing the best-local structure pair is listed, where × means the corresponding 
method fails to compute the best-matched local structure pair.  

Table 1. Comparisons of the two local structure matching methods. 

Testing Images Image variation type #Feature points Method 1 Method 2 

Fig. 3 transformation 95 and 86 2.04s 20.34s 

Fig. 4 temporal change 114 and139 × 57.80s 

Fig. 5 distortion 96 and 81 × 5.25s 

Fig. 6 different  sensors 97 and 103 × 46.63s 

From Table 1, we can see that the direct local structure matching method fails on 
images with significant scene changes, while the complex local structure matching 
method is applicable in those cases. However, the direct matching method is more 
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efficient of O(kmn). The computation time of the complex matching method is 
O(k2mn), where k is the number of feature points in a neighborhood, m and n are the 
number of feature points in the input and template images.  

3.2 Results of global structure matching 
In this subsection, we show how the reliability of the feature points matching is 

improved by the global structure matching and cross validation. The testing image is 
pair of urban images from SPOT and TM (Fig. 7), where the two align references 
pairs are shown in Fig. 6. The final result of global structure matching is shown in 
Fig. 8.   
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Fig. 7. The matching pairs detected from the global structure matching in cue 1. 

 

 
Fig. 8. The final matching pair set after cross-validation.  
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3.3 Using image mosaic for the registration results 
We use image mosaic to show the registration results intuitively. Because of the page 
limit, only two examples of our test are shown in Fig. 9 and Fig. 10. The correctness 
of the registration results can be verified visually by checking the continuity of the 
common edges and regions in the mosaic images.   

 

 

Fig. 9. Registration of Landsat images with 
four year difference and associated rotation.  

 

Fig. 10. Registration of images with serious 
distortions.  

 
We also compared the registration results generated by the UCSB automatic 

registration system [2]. In Table 2, [s1,tx1,ty1,θ1] are the registration parameters 
generated by our method and [s2,tx2,ty2,θ2] are the results by the UCSB system. In the 
last two column of Table 2, REMS is the root mean square error at the matching pairs. 
#MP indicates the number of matching pairs detected for each pair of images. It 
shows that our method performs better. 

Table 2. The registration results on 8 pairs of images. 

Scale: s Translation tx   Translation ty Rotation: θ 
Test 

 cases s1    s2 tx1 tx2 ty1 ty2 θ1 θ2 REMS #MP 

1 1.002 1.002  715.1 714.9  -489.66 -490.67 -25.02 -24.98 1.607 211 

2 1.012 0.996 87.07 75.06 9.83 9.57 -1.234 -1.098 4.192 8 

3 1.042 0.997 21.49 22.35 -8.205 -8.937 -0.668 -0.168 1.498 6 

4 (Fig 9) 0.994 0.991 87.88 87.65 -78.98 -79.30 0.125 0.193 1.081 19 

5 1.020 0.997 -4.12 0.020 2.064 -0.625 0.562 0.291 11.751 13 

6 0.991 0.991 33.57 34.24 -183.43 -186.24 0.984 1.032 9.428 17 

7 0.998 0.997 1.44 1.84 -3.17 -0.91 -0.269 -0.047 2.185 8 

8 (Fig 10) 0.997 1.004 144.90 144.86 75.33 74.22 -19.90 -20.20 1.611 21 



4   Conclusion 

Image registration is an important operation in multimedia system. We have presented 
a feature-based image registration method. Compared to the conventional feature-
based image registration methods, our method is robust by guaranteeing the high 
reliable feature points to be selected and used in the registration process. We have 
successfully applied our method to images of different conditions.  
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