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Abstract— Current research on the retrieval systems for 3D 

models focuses on using the shape of the models to facilitate 

search and retrieval. This paper explores the possibility of 

augmenting the existing 3D shape-based similarity measures 

by combining shape and color. First, a new descriptor was 

developed based on the D2 shape descriptor. In our method, N 

pairs of faces are randomly chosen from a 3D model, with 

probability proportional to the area of the face. The ratio of 

the smaller area over the larger area is computed and its 

frequency stored, generating a frequency distribution of N 

ratios which is stored as the second dimension of a 2D array, 

while the first dimension contains the frequency distribution of 

distances of randomly generated point pairs (the D2 

distribution). Second, this research introduces the use of the 

color features of a 3D model in combination with the shape 

features to determine similarity. The research involves the 

study and adoption of an existing 2D color-based similarity 

measure for 3D models. The analysis of the results is based on 

the precision and recall of both approaches. 

Keywords-shape retrieval; shape database; color retrieval; 

3D models; similarity measures 

I.  INTRODUCTION  

The rapid expansion of the internet and advancements in 
computer hardware technology have facilitated the 
proliferation of 3D models on the web. These 3D models 
have become widespread in a variety of applications 
including computer graphics, mechanical CAD, molecular 
biology, and medicine [13].  

The growing usage and demand for these 3D models is 
brought about by new scanners and interactive tools that help 
produce 3D models practically and cost efficiently, graphics 
hardware that is becoming faster and more affordable (at 3 
times Moore’s Law), and the Internet that contributes to wide 
and rapid distribution of 3D models [4]. Therefore, there is 
now a great need for tools that will be able to analyze, 
classify, index, and store these models into a large database 
for easy access and retrieval.   

An important research area is the efficient storage and 
retrieval (shape-matching) of desired 3D models from such 
databases. For example, if one needs a 3D model of an 
airplane, searching a database using “airplane” as keyword 
may not be enough, since the filenames may not be 
descriptive, may be in a foreign language, or might be 
misspelled. A better way is to combine keyword searching 
with an actual 3D model as query model, or even hand-
drawn 2D sketches of the desired model. Such a system was 
developed and is available online [4], which can even be 
extended to even composing 3D models [8]. 

The similarity between two 3D models is measured by 
applying a distance measure (such as Euclidian distance) to 
the shape descriptors of the two models being compared.  

 

II. RELATED WORK 

Several studies have already been conducted to search 
and retrieve 3D models.  One of the problems being 
addressed is the efficient retrieval of different multimedia.  A 
study conducted by [4] observed that people find the use of 
text as the simplest approach to facilitate 3D model search 
and retrieval.  However, there are scenarios wherein using 
the text annotation will fail.  For instance, not all objects are 
annotated (e.g. “cty123.wrl”).  On the other hand, some 
annotated objects would have vague descriptions (e.g. 
“red.wrl”, “big.wrl”, searching for “faces” – i.e., human and 
not polygonal).   

This method of text annotation also reduces the amount 
of information that can be represented, especially if VRML 
is used to represent the 3D model.  VRML is optimized for 
visualization of the model but lacks the semantic definition 
and structure [3]. This results in a “polygon soup” 
representation of models with no useful descriptive element.  
Thus, 3D similarity algorithms have to be prepared to 
consider models, which are likely to be incomplete.  

Due to these problems, researches are now focusing more 
on retrieving 3D models based on similarity of content.  
Different approaches have been studied in other fields 
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including computer vision, computational geometry, 
computer aided design, and molecular biology [7].  In 
multimedia, most of the work done focuses on 2D images; 
only a few researchers work on 3D models. 

One of the problems that need to be addressed is finding 
a similarity measure for 3D models that is invariant to 
transformations.  A common approach used to solve this 
problem is to provide the 3D model with a shape descriptor 
in a form of a voxel grid [2].  The objective of this grid is to 
normalize the model into a standard pose (i.e. same rotation, 
scale, and translation) so that descriptors can be consistent. 

Aside from the voxel-based normalization, there are 
other approaches.  These approaches can be generally 
classified into two groups.  First are studies that use 3D 
matching algorithms (i.e. Reflective Symmetry Descriptors 
[5] and Spherical Extent Functions [11]) which transform the 
model into a canonical form.   The other group includes 
algorithms that construct descriptors or shape signatures that 
are invariant to any kind of transformation.  Examples for 
these are Shape Histograms [2], Shape Distributions 
[10][13], and Spherical Harmonics [6]. 

The studies mentioned above focus on shape based 
content to find a match with a given 3D model.  The studies 
show satisfactory results using the algorithms.  However, 
similarity is not only limited to comparing the shapes of two 
objects.  Other attributes can be used as well, such as color 
and texture. Thus, in this paper we also explore the 
possibility of using a multi-feature similarity measure 
considering both the shape and the color of the 3D model. 

 

III. OVERVIEW 

In this section, we provide the theoretical framework 

behind a shape descriptor for comparing 3D models and 

color-based similarity measures for 3D models. We discuss 

the general approach to shape comparisons of 3D models, 

the specific shape distribution we are extending and general 

color similarity measures considering perceptually similar 

colors. 

A. General Approach for Shape Comparison of 3D Models 

A typical approach in comparing the shape of two 3D 
models is to apply two steps [4]: 

1) Apply some function on the shape feature(s) of a 

given 3D model to extract a “shape descriptor” for the 3D 

model. Shape features include areas, distances, angles, 2D 

projections, etc. 

2) Apply a distance formula to compare the shape 

descriptors of 2 models.  Examples of distance formulas are 

the Manhattan, Euclidian, and Earth Mover’s distance 

formulas. Fig. 1 demonstrates this two-step process. 

 
The challenge in developing an ideal shape descriptor is 

twofold: 
1) To develop the best shape descriptor that can represent 

3D models, and  
2) To remain unaffected by all transformations (scale, 

rotation and translation). 

 

Figure 1.  The general approach to shape-based comparison of 3D models. 

There are two ways to address these challenges: 
1) Develop a transformation-invariant descriptor so that 

all rotations, scaling and translations of a model result in the 
same descriptor. 

2) Normalization. 3D models can be normalized by 
finding a suitable transformation for each one. Unfortunately 
for this approach, there is no robust way to normalize 
rotation transformations [6], unlike with scale or translation. 
It is also possible to normalize the shape descriptor itself 
instead of the 3D model. 

B. Shape Similarity Measures 

There are numerous shape-based similarity measures 
developed for 3D models. This paper focuses on the shape 
distribution, D2 [10]. A 3D model is made up of a finite 
number of vertices and faces. Theoretically, on those faces 
lie an infinite number of points. 

The distances between all pairs of points on the surface 
of the 3D model have a probability distribution. This 
probability distribution is D2. D2 is called a shape 
distribution because it is based on a feature of the model’s 
shape, i.e. distances between all pairs of points. Osada, et al. 
noted that the D2 shape distribution is distinctive for each 3D 
model [10], and therefore represents the model’s overall 
shape, i.e. it can be used as a shape descriptor. 

However, since it is impossible to find the probability 
distribution of an infinite set (i.e. the set of all points on a 3D 
model), the actual implementation of D2 approximates the 
distribution by randomly sampling a sufficient number of 
points and recording the frequency of each range of 
distances. For example, the D2 distribution can be 
approximated by 1,024 samples points, resulting in 
1,024*1,024/2 + 1,024 = 524,800 sample point-pair 
distances, since |Pi Pj| is the same as |Pj Pi|, and is counted 
only once. 

D2 is invariant to translation and rotation. Intuitively, no 
matter how the 3D model is rotated or translated, all of its 
vertices, faces and surface points move along with it, 
resulting in the same point-pair distances. However, it 
requires normalization for scale transformations. There are 
several ways to normalize a D2 distribution. The two 
simplest and most effective are aligning by mean and 
aligning by maximum distance. 
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After the shape distribution of a model has been 
computed it can now be compared with other 3D models. 
First the difference is determined based on a distance 
measure, such as the City-block distance (the L1-norm). 

                   d1(XS ,YS) = | xsi ysi |i=1

N
                    (1) 

Then the shape similarity function SIMshape is computed 
using the following formula: 

         SIMshape (XS,YS) =1 d1(XS,YS)               (2) 

C. Color  Similarity Measures 

We extend the color similarity measure from 2D images 
to 3D models.  Once the color feature vector of two models 
has been obtained, computing the similarity of the color 
features is done. 

Let XC and YC be the normalized color feature vectors of 
the query and 3D model collection, respectively.  
Computation of the final color similarity, denoted by 
SIMcolor is:  

                   SIMcolor (XC,YC) = [wi xci]
i=1

m

  

where:  

XC  = the color feature vector of the query 3D model 

YC  = the color feature vector of the 3D model in the collection 

i = a color in the histogram or feature vector 

wi = the overall similarity contribution by color i 

m = the number of elements in the color feature vector 

 

The final color similarity describes a value that gives 

different weight to the contribution of each color i based on 

its percentage in the model.  Formally wi, is written as: 

wi = sim(xci,yci) (1+ SIMPerceptualCol (xci,YC))   

where:   

i  = the color being computed for 

sim(xci, yci) = the similarity of the ith color in XC and YC 

SIMPerceptualCol(xci, YC)  = the perceptual similarity of Color xci     

                                          in YC 

 

This equation adds the perceptually similar colors, 

SIMPerceptualCol, with a lower contribution factor of the 

similarity of the exact color, sim(xci, yci).  The similarity of 

two colors, denoted as sim(xc, yc), and the similarity 

contribution of perceptually similar colors for color i are 

defined as: 

                     sim(xc,yc) =1
| xc yc |

max(xc,yc)
    

                SIMPerceptualCol (xci,YC) = sim(xci,yc j ) i, j
j=1

m
 

where:  
j    = the color bin which color i is perceptually similar to 

i,j = the perceptual similarity between color i and j 
The perceptual similarity between colors i and j is an 

element in the m x m perceptual similarity matrix denoted as: 

      Dsim (i, j) =

1 0,1 0,2 ... 0,m

1,0 1 ... ... ...

... ... ... 1 m,m 1

m,0 m,1 ... m,m 1 1

 

 

 
 
 
 

 

 

 
 
 
 

 

 

Each element  is pre-computed as the maximum distance 

between all CIE Luv colors pairs in the color bin i and j.  

Formally it is written as: 

         i, j =max( (Lik L jk )
2

+ (uik u jk )
2

+ (vik v jk )
2 )  

    k = 1 to b    

where:  
b  = the number of actual colors in the color bin. 

Lik  = the kth L component of the CIE Luv color in color bin i 

uik  = the kth u component of the CIE Luv color in color bin i 

vik  = the kth v component of the CIE Luv color in color bin i 

Ljk  = the kth L component of the CIE Luv color in color bin j 

ujk  = the kth u component of the CIE Luv color in color bin j 

vjk  = the kth v component of the CIE Luv color in color bin j 

 

IV. SIMILARITY MEASURE EXTENSIONS 

This section explains the two extensions we propose to 
augment existing shape-based similarity measure. The first 
extension is created by adding a new dimension to the D2 
shape descriptor. The second approach used the color feature 
of 3D models to create a multi-feature similarity measure. 

A. The D2a Shape Descriptor 

The intuition behind D2a is that objects made up of 

faces with more varied sizes (i.e. has very big, very small 

and in-between sized surfaces) should look different from 

objects made up of faces with more uniform sizes (i.e. has 

mostly big, mostly small or mostly average-sized surfaces). 

For example, a 3D model of a car can have relatively large 

surfaces (making up the roof and windows), very small 

surfaces (making up the nuts and bolts), and many sizes in 

between (e.g. rear-view mirror) due to the discrete nature of 

mesh presentation for free form surfaces. A simple cube on 

the other hand, is made up of six equally-sized faces.  

The area ratio ar of a face pair (Fi,Fj) of an object O is 

defined as the area of the smaller face over the area of the 

larger face: 

          ar(Fi,Fj ) =
min(area(Fi),area(Fj ))

max(area(Fi),area(Fj ))
                     (9) 

Allying the equation to every face pair, we can derive the 

distribution of area ratio of the object. 

A practical way to compute the area variability (or 

uniformity) of an object’s faces is by sampling the area 

ratios of these faces in the following procedure: 
 
 
 

 (3) 

  (4) 

(5) 

 (6) 

 (7) 

(8) 
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ComputeAr(O) 
// Input: a 3D object O of M faces (F1..FM) 

// Output: histogram of area ratio of the faces 
 

choose N faces with probability of being chosen 
proportional to the area of each face 
 

for each face pair (Fi, Fj) of the selected N 
faces, 

 

 if area(Fi)>area(Fj)  
    ar = area(Fj)/area(Fi) 
else 
   ar = area(Fi)/area(Fj) 
 

index = ar* numBins  
Ratio_Histogram[index] :=   
      Ratio_Histogram[index] + 1 

 
Where numBins (2 in our experiment) defines the 

granularity of the frequency distribution, and 
Ratio_Histogram contains the area ratio frequency 
distribution. 

Since the car has varied polygon sizes, while the cube has 
uniform polygon sizes, one can expect the ratios of polygon 
areas on the car to be more variable than those of a simple 
cube. In fact, it can be easily observed that the only possible 
ratio between areas of faces in the cube is 1.0, since all faces 
have the same area. For the car, ratios of areas should tend to 
be lower than 1.0 and closer to 0.0 since one random face is 
likely to be much bigger or smaller than another random 
face. Thus, one can expect that in the frequency distribution 
of area ratios, a car’s graph should have higher frequencies 
for lower ratios (i.e. the graph should skew higher to the left) 
due to the variances in area ratios. 

It can also be conjectured that for 3D models which are 
made up mostly of same-sized polygons, the frequency 
distribution of area ratios should be lie near the value 1.0 (i.e. 
the graph should skew higher to the right), since one random 
face should not be much bigger or smaller than another 
random face. This conjecture can be verified by the graphs 
on Fig. 2.  

It can be seen that for objects with varied face areas (Fig. 
2), the probability of two random faces having different areas 
is greater (therefore most ratios are below 1.0), while for 
objects with uniform face areas (Fig. 2), the probability of 
two random faces having the same area is greater (therefore 
most ratios are exactly 1.0).  

The ratio of areas shape feature is stored in the second 
dimension of a 2D array whose first dimension contains the 
D2 distribution. The second dimension only has two bins for 
our experiment: the first to store the frequency of ratios that 
are < 1.0, and the second to store the frequency of ratios that 
are exactly 1.0. 
 

B. Multi-feature Similarity Measure 

The color feature of a 3D model gives the global color 
characteristics of the model.  It is represented as a 159-bin 
color histogram.  Each bin represents the percentage of the 
color in the model.  Similar to shape features, the color 
feature vector of all 3D models are also computed before 
running a query.   
 

 

Figure 2.  Shown are 3D objects and the graphs of their respective area 

ratio frequency distributions. The x-axis represents the ratio of 

areas, while the y-axis is the frequency. 

The algorithm for obtaining the color features is as follows: 

 
 

The similarity of two 3D models is described as follows: 

 

Let { XC, XS } and { XC, YS } be the color and shape 

vectors that fully describe two models X and Y,  then the 

similarity measure of 3D models X and Y, denoted as 

SIM(X, Y), is given as: 

 

 

 

 

GetColor() 
Open the colored OFF file  
 Extract all the polygons of the 3D model 
 Get one polygon 
Compute the area of the polygon 
 Get the RGB color of the polygon 
 Convert RGB color to CIE Luv 

Identify the index of the color in the   
   159-bin histogram. 
Add the area to the identified bin and to 
   the total surface area of the polygon. 

Normalize the color histogram. 
   For all bins in histogram, divide the  
      value by the total area of the model.    
 The total area is computed as the sum of  
      all the surface area of polygons. 
Write the histogram into the file 
COLOR_FV.COD 

   (10) 
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where:  

SIMcolor, SIMshape = color and shape similarity functions 

,  = non-negative weighting factor for the color and shape 

similarity measures, respectively 

XS = shape feature vector of the query 3D model 

YS = shape feature vector of the 3D model from the database 

XC = color feature vector of the query 3D model 

YC = color feature vector of the 3D model from the database 

V. RESULTS 

Precision and recall were used to evaluate the 
improvements of the different approaches.  Recall measures 
the ability of the system to retrieve all models that are 
relevant.  Precision measures the ability of the system to 
retrieve only the relevant models.   

A. 3D Model Collection 

The 3D model collection is composed of different 3D 
models in the Object File Format (OFF).  There were 2 kinds 
of OFF files used.  One OFF is for the shape information, 
which is obtained by converting VRML models into OFF 
using 3D model tools.  The other OFF is a modified version 
of the original OFF.  In addition to the shape information it 
also includes the RGB color information for each of the 
polygons in the 3D mode l.  For faster performance, the 
shape and color feature vectors of the models are 
preprocessed.  Preprocessing includes computing the feature 
descriptions of the models before the search begins. 

At the start of this research it was desired to collect only 
models with the number of polygons greater than 10,000 so 
that the color information can be diverse.  Upon collection of 
the models, it was discovered that the high quality models 
use only 1 color (i.e., gray, or white).   

One example of this is the plant model category.  To 
determine the performance of adding color information to 
the models, lesser quality models were also included for 
testing. The test data contain an average of 2440 vectors, 
3432 polygons and 3 colors.  The models fall under 26 
categories. The categories with the highest number of models 
were used for comparing the performance of the different 
similarity measure constructed. 

 

Figure 3.  Precision-Recall plot for D2 and D2a using the TEST set of 907 

models 

B. D2a Shape Descriptor Results 

Based on the cases that were tested, the best results were 

obtained using the following parameters: 

     Sample points: 1024         
     Distance bins/Area bins: 64 / 4             
     Normalization method:  Align by Max  
     Distance Metric: L1 Manhattan Distance 

The Princeton Shape Benchmark (PSB) utility program 
psbplot.exe was used to generate the precision-recall values, 
which were plotted using Microsoft Excel. psbplot.exe takes 
the distance matrix binary file (output of the proponent’s 
software) and the PSB class file (.cla) used, and outputs the 
precision-recall values to a text file. 

The precision-recall plot for the test data set in Fig. 3 
shows only a slight improvement for D2a over D2. 
Numerically, the average precision for D2a was 26.93% vs. 
26.11% for D2. This is an improvement of 3.16%. 

C. Multi-feature Similarity Measure 

An experiment was done to show the result of using the 
multi-feature similarity measure. This experiment examines 
the behavior of the multi-feature similarity feature using 
different threshold levels and different color ( ) and shape 
( ) weight values.  

Using L1-norm as the distance metric, results with the 
Humanoid model set having the best F-measure (64.52) 
obtained with a color weight( ) of 10%, shape weight( ) of 
90% and threshold at 70% (Table 1). 

Visually, the precision-recall plot for the test set in Fig. 6 
above shows an obvious improvement for multi-feature 
retrieval (using both shape and color) over shape or color 
alone. Numerically, the average precision for the multi-
feature similarity was 53.90% vs. 50.50% for shape. This is 
an improvement of 6.73% over shape similarity. 

TABLE I.  SUMMARY OF SETTINGS AND RESULTS USING L1-NORM 

 SIMILARITY MEASURE 

Best settings  
  Threshold F-measure 

Airplanes 50% 50% 25% 36.87 

Chairs 40% 60% 60% 48.78 

Humanoids 10% 90% 70% 64.52 

Plants 60% 40% 75% 58.73 

 

 

Figure 4.  Precision-Recall plot for Multi-feature Measure using =10%, 

= 90% and Shape-based Similarity Measure 
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VI. CONCLUSION AND RECOMMENDATIONS 

This study shows that combining two shape features 
(distance between point pairs and ratio of areas of surfaces) 
into a single shape descriptor; and combining shape and 
color features can result in better overall classification and 
retrieval performance. 

From the experiments it was observed that including 
color features improves the precision and recall of a retrieval 
system.  However, this is not always true for all cases.  For 
instance, simple models having only less than 5,000 
polygons must emphasize more weight on the shape of the 
object to have better results.  A color weight of 1%-10% and 
a threshold of 70%-75% are recommended for simple 
models.  Improvement of retrieval for simple models was 
only from 1%-5%.  In some cases performance even 
decreased.  

On the other hand, the developed similarity measure 
proved to be very effective in increasing precision and recall 
for more complicated models (more than 10,000 polygons). 
One contribution of this research is analyzing the effects of 
combining color information with shape information 
obtained using the Depth Buffer-based feature descriptor.  In 
the experiments in section V a bigger weight was usually 
given to shape feature over the color feature, because it was 
observed that the shape feature is still a better discriminator 
for 3D models. 

Also, it was observed that the models collected contain 
very few colors.  On average, the models only had three 
colors.  Normally, models would just have the color gray or 
white as its color for the entire model.  Constructing a 
database of models that have more color in them may change 
the results of this research and is thus recommended for 
future work.  For the models that have more than one color, 
it was observed that the colors were used to identify different 
parts of the model.  For example, the wings of the airplane 
were colored differently from the body, wheels or propeller.  
This color categorization of the model parts may be useful if 
the color of the model can be used as a filter in determining 
parts of an object. 

Additional research is needed to determine the effect of 
applying the similarity measure on other feature descriptors, 
such as those that are 3D-geometry based, statistical, 
topological, or features that are functions on a sphere.  

Furthermore, two problems may still persist in the D2a 
shape descriptor. First, the computation is high (O(n2)) as all 
the ratios need to be calculated. Second, 3D models that are 
represented by surfaces having the same areas, such as a 
sphere and a cube, cannot be differentiated by the D2a 
descriptor, since both have the same ratio distribution. 

Further studies can be made to address these issues. On the 
other hand, the storage requirements of D2a are still well 
below other algorithms with comparable performance. 

With regard to the multi-feature similarity measure based 
on shape and color, it must be noted that most high quality 
models nowadays are texture mapped rather than just simple 
material coloring. The possibility of incorporating the 
textures of 3D models can also be explored to replace the 
inherent color of the polygons. The color features of the 
textures can be extracted and similarity measures for 2D 
images can be used.  
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