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Abstract. The ability to continuously monitor the positions of mobile objects is
important in many applications. While most past work has been set in Euclidean
spaces, the mobile objects relevant in many applications are constrained to spa-
tial networks. This paper addresses the problem of range monitoring of mobile
objects in this setting, in which network distance is concerned. An architecture
is proposed where the mobile clients and a central server share computation, the
objective being to obtain scalability by utilizing the capabilities of the clients.
The clients issue location reports to the server, which is in charge of data storing
and query processing. The server associates each range monitoring query with the
network-edge portions it covers. This enables incremental maintenance of each
query, and it also enables shared maintenance of concurrent queries by identify-
ing the overlaps among such queries. The mobile clients contribute to the query
processing by encapsulating their host edge portion identifiers in their reports to
the server. Extensive empirical studies indicate that the paper’s proposal is effi-
cient and scalable, in terms of both query load and moving-object load.

1 Introduction
In the management of moving objects, continuous monitoring queries have recently
gained attention, as they provide the fundamental support to different mobile services,
including services that monitor traffic at intersections, services that monitor fleets of
vehicles such as buses or police cars, and a variety of services that monitor sensitive re-
gions. Existing work on continuous monitoring queries has predominantly assumed that
the moving objects are embedded into two-dimensional Euclidean space, and has relied
on Euclidean distance as the relevant notion of distance. However, in many application
scenarios, including the ones mentioned above, the moving objects are constrained to a
spatial network, typically a road network. In this setting, Euclidean distance is not the
relevant notion of distance—rather, network distance is.

In a spatial network setting, the ability to efficiently monitor the part of a network
within a certain network distance of a query point for moving objects constitutes fun-
damental functionality for many mobile services. This paper proposes efficient tech-
niques for such continuous range monitoring queries in spatial networks, which we
term CRMQN queries. Figure 1 exemplifies a CRMQN query. In the partial road net-
work displayed in the figure, a CRMQN query q is issued with the position represented
by a small square and with a 5 km distance of interest. The dashed circle identifies the
range determined by the Euclidean distance, while the arrows with short bars identify
the sub-network within network distance 5 km of the query point. Therefore, for the



time point captured in the figure, moving objects A, B, C, and D belong to the re-
sult; object E does not, as the network path from query point q to E exceeds the query
range. Note that a moving object’s membership in the query result generally changes as
time elapses due to the object’s movements. The range monitoring query continuously
maintains the correct query result as time elapses.
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Fig. 1. CRMQN query example
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Fig. 2. Road network example
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Fig. 3. System framework

We assume a client/server system architecture, in which the moving objects (clients)
report their location information to the central server that is responsible for storing the
locations of the moving objects and for processing the range monitoring queries. As
the moving objects continually send their location reports to the server, the server must
update the results of the active queries to maintain the query results. We also assume
that query processing occurs in main memory, as do most online monitoring systems.

For each query, we initially use a network-expansion-based algorithm for identify-
ing those network links that are either fully or partially covered by the query. Then in
the subsequent query processing, all other ones are ignored as they have no impact on
the query result. A network link (formally defined in Section 2.1) is a maximum part of
a spatial network for which no exchange of traffic is possible .

For each link fully covered by the query, we report every object moving on it in the
query result; for each link partially covered by the query, additional refinement based on
the network distance is performed to discard non-qualifying objects. This identification
of different link types enables us to reduce query processing cost by expending different
amounts of effort on different types.

The identification of the links covered by each range monitoring query also dis-
closes the overlaps among concurrent queries. In other words, different queries may
cover the same link(s), although they have different query points and ranges. By ex-
ploiting such overlaps, we develop a shared maintenance mechanism for concurrent



queries. This mechanism comprises particular data structures and relevant algorithms
to efficiently update the results of concurrent queries.

In addition, we employ a novel client design that enables the mobile terminals to
contribute their computing capabilities to the continuous query maintenance, thus re-
ducing the server side computation. In particular, the host links of a moving object (the
road link on which it is moving) is easily determined on client side, and its identifer is
then encapsulated in the location report sent to the server, which uses this to facilitate
the shared maintenance of concurrent queries.

The paper’s key contributions are fourfold. First, we identify all links relevant to a
range monitoring query, differentiating between those links that are fully covered ver-
sus partially covered by the query. This minimizes the subsequent query maintenance
costs, and it also reveals the overlaps among concurrent queries, thus enabling a shared
maintenance of these queries. Second, as realistic scenarios entail large numbers of con-
current queries, it is essential to be able to maintain multiple query results correctly and
efficiently. We achieve this by means of shared maintenance based on the identification
of relevant links. We propose hash-based structures with efficient processing algorithms
for this purpose. Third, in link based query processing, the host links on which the mo-
bile objects reside must be identified. To offload the server, we delegate the host link
identification to the moving objects. This is enabled via a novel client design that adapts
the terminal’s navigation software module to determine the host link. Fourth, we report
on extensive empirical studies that characterize the efficiency and scalability of our
proposal.

In Section 2, we proceed to present some preliminaries. Section 3 describes the
specific data management on the mobile terminals. Section 4 details the server-side
design for concurrent continuous range monitoring queries of network constrained mo-
bile objects. Section 5 experimentally evaluates the paper’s proposals. Section 6 briefly
reviews related work, and Section 7 concludes this paper.

2 Preliminaries
2.1 Data Model

Similarly to other proposals (e.g., [3]), we model a road network as a particular kind
of spatial network that captures both the graph aspect of a road network and also cap-
tures the embedding of a road network into geographical space. Thus, a spatial network
SN = (N ,L) consists of a set of nodes N = {n1, n2, . . . , nN} and a set of links
L = {l1, l2, . . . , lL}. A link consists of a pair of elements from N , and a total function
weight : L → R+ assigns a weight to each link.

The embedding into geographical space is accomplished with two total functions.
First, posN : N → R2 maps each node to a position in two-dimensional Euclidean
space. Second, posL : L → {(posn(ns), p1, ..., pk, posn(ne)) | ns, ne ∈ N∧p1, . . . , pk

∈ R2 ∧ k ≥ 0} maps each link to a polyline. A link l = (ns, ne) is then mapped to
a polyline with the positions of ns and ne as its delimiting positions. The k positions
in-between these two are termed intermediate points. Consequently, a link is modeled
by a polyline consisting of k + 1 line segments.

We will assume that the weight of a link is the length of the associated polyline.
Next we assume a function dN that takes any two positions on polylines of a spatial



network as arguments and returns the (shortest) network distance between these. Such
a function can be defined in straightforward fashion. We will also assume that links
model bidirectional roads.

An example of road network is shown in Figure 2. Nodes are given by big dots and
intermediate points by small dots. The road network encompasses 8 links, one of which
does not contain any intermediate points (i.e., k = 0). Link 7 has the largest number of
intermediate points (k = 5).

We assume a set M of moving objects that are constrained to the spatial network.
Thus, a moving object at any point in time resides on a link in the network, and its
position intersects with the polyline that represents the link. Function posM maps an
object to its current position as known by the server.

2.2 Problem Statement
We assume a spatial network SN , a set of moving objects M constrained to this net-
work, and a network distance function dN . Moving objects continually issue updates to
the server, thus updating function posM.

A continuous network-distance-based range monitoring query R takes M as argu-
ment and accepts two parameters: (p, r), where p is the (stationary) query point and r
is the network query range. Such a query, termed CRMQN , is activated at some time
ts, the start time of the query, and it is terminated at some later time te, the end time of
the query. The query result is maintained from time ts to time te.

∀t ∈ [ts; te] (o ∈ R[p, r](M) ⇔ o ∈M∧ dN (posM(o), p) ≤ r)

The problem addressed in this paper is that of providing a complete set of techniques
that enable the correct and efficient maintenance of multiple such range monitoring
queries.

2.3 Distributed System Architecture
Our proposal is based on a client/server architecture, in which the clients are moving
objects equipped with mobile terminals and a central data server is in charge of the
query processing. The clients communicate with the server via some form of wireless
network, e.g., a 2.5 or 3G cellular network. The system framework is shown in Figure 3.

At the highest level of abstraction, a mobile terminal consists of three modules. A
navigation module is responsible for retrieving spatial data that represents the object’s
current location; this is obtained from positioning hardware such as a GPS receiver. A
visualization module is responsible for displaying the object’s location and results of
queries on a background map on the terminal’s screen; and it is responsible for passing
user input as query parameters to the moving object module. A moving object mod-
ule issues update and query requests to the server, and passes query results back to the
visualization module. The spatial network is organized in files and indexed by a com-
posite structure that includes a compact R-tree and sequential indexes. The spatial data
in use is maintained in a pool that is shared between the different modules. The data
management on the clients is detailed in Section 3.

The important modules on the server are the storage and query modules. The former
receives location reports from the moving objects and is responsible for storing this
moving object information. The query module is responsible for processing queries



issued by either the server itself or a moving object. Both modules access the moving
objects via a network-link-based index, which also refers to road network data. The
server-side data management is covered in Section 4.

3 Client-Side Data Management

Without loss of generality, we assume a client setting that resembles a GPS-enabled
smartphone, such as a pocket PC. Such terminals are currently being sold with naviga-
tion software by, e.g., TomTom. (The HP iPAQ hw6915 is a concrete example.) Such
terminals come with relatively limited flash storage and no disk. As the terminals may
obtain power from the vehicle in which they are installed, we do not consider power
issues.

This section first describes compact client-side data structures used for spatial net-
works, and then presents the client-side functionality that utilizes these structures.

3.1 Client-Side Index Structure
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Fig. 4. Index structure on device

We store the nodes and links of a
spatial network in two separate se-
quential data files. Due to the rela-
tively limited storage available on a
mobile terminal, it is not feasible to
maintain all records from these files
in main memory. For navigation pur-
poses, we need to efficiently retrieve
the data from the two files that re-
late to a region of interest. To en-
able this, we need a proper index
structure. In particular, to support the
range queries required for navigation
and data display, we adapt the R-

tree [10] into a compact structure suitable for a mobile environment. The client-side
index structure, comprising the compact R-tree and the two sequential files, and an
additional index file are illustrated in Figure 4 and explained next.

The sequential file of nodes stores the positions of the nodes, which are ordered
according to their identifiers. Similarly, the sequential file of links stores for each link
the two delimiting points of its polyline, as pointers to the node file; it stores the number
of intermediate points; and it stores the coordinates of the intermediate points.

An R-tree is created on the set of polylines representing all the links in the spatial
network. Each polyline is a unit to index. All non-leaf nodes are organized as in a
standard R-tree. Each leaf node holds the identifiers of all the network links it covers,
rather than pointers to the real link records in the link file. As link records are not
of equal length, a dense sequential index file on the link file is used. To access the
record of the link with identifier li, the ith record in the sequential index is retrieved.
This record contains the offset and content length of the link record in the link file. By
using a separate sequential index file, we retain the road link identifiers. This facilitates
potential identifier-based random data access on the client side.



The R-tree is mapped to a sequential file in a specific way. All nodes are stored in
a breadth-first order. Each non-leaf node is stored according to the format 〈MBR,flag ,
size, offsets〉, where MBR is the minimum bounding rectangle of a network link, flag
indicates whether the node is a leaf node, size contains the number of child nodes, and
offsets are offsets into the file that point to the child nodes. The leaf-node format is
similar, except that the field offsets is replaced by a field ids that stores the integer
identifiers of the network links covered by the leaf node; these identifiers correspond
to row numbers in the sequential index on the link file. To conserve storage space, we
allocate bits to the node fields in a compact way according to the ranges of parameters
such as R-tree fanout, R-tree height, and the number of links in the road network.

3.2 Client-Side Navigation and Visualization
The navigation module receives so-called NMEA sentences with location data from the
GPS receiver, retrieves pertinent link records via the data structures detailed in the pre-
vious section, and places the link records in a link pool that is used by the visualization
module for display of part of the map containing the object’s current location.

Initially, given the current location (xc, yc) of the object, the data within rectangle
(xc − w, yc + h, xc + w, yc − h) (left, top, right, bottom coordinates, as for bounding
rectangles) is to be displayed on the terminal’s screen, where w and h are configurable
parameters. This rectangle is called the active window, and a window query against the
data structure is used for retrieving the relevant data. Every link in the pool is of format
〈id ,MBR, points〉, where id is the link’s identifier, MBR is its minimum bounding
rectangle, and points is the sequence of coordinates defining the link polyline.

When receiving a new position from the GPS receiver, the navigation module first
checks whether the current location remains in the active window. If so, no new data
retrieval is needed. Otherwise, a new active window winnew is computed, those cur-
rently pooled links that are outside winnew are discarded, and those links that intersect
winnew , but are not in the pool, are retrieved via the data structure. This retrieval is
achieved by a modified window query that uses two windows winnew and winold . It
returns the links that intersect with winnew , but do not intersect with winold . Standard
depth-first or best-first R-tree traversals can be adapted to process such modified win-
dow queries. Upon the retrieval, the active window is set to winnew . During the data
retrieval, the network link and line segment on which the current location (xc, yc) re-
sides are determined on the fly. We call this link (segment) the handset client’s host link
(host segment) with respect to its current location. If no new data is to be retrieved, the
host link and segment are determined by the moving object module, covered next.

3.3 The Moving Object Module
The moving object module is responsible for ensuring that the server has up-to-date
location information for the object. It continually receives location data from the nav-
igation module, and maintains a record of the form 〈locc, velc, tc〉 that captures the
current location, velocity and the time of those for the object. It also maintains a record
of the form 〈lnkh, segh〉 that captures the host link and segment that correspond to the
current location.

If the navigation module has not performed data retrieval for the most recent lo-
cation, an update without a known host link and segment is sent to the moving object



Algorithm updateWithoutHosts(locn , veln , tn)
Input: locn is the new location

veln is the new velocity
tn is the report time

// Determine the host link and segment for locn

1. if (locn is still on segh)
2. if (|veln − velc | > ∆v) // Marked velocity change
3. Send UPT(oid , locn , lnkh , tn) to the server;
4. locc = locn ; velc = veln ; tc = tn;
5. else
6. for each segment segi after/before segh of link lnkh

7. if (locn is on segi)
8. Send UPT(oid , locn , lnkh , tn) to the server;
9. locc = locn ; velc = veln ; segh = segi ; tc = tn;
10. return;
11. for each link lnki 6= lnkh in pool
12. for each segment segi of link lnki

13. if (locn is on segi) // Moved to another link
14. Send UPT(oid , locn , lnkh , lnki , tn) to the server;
15. locc = locn ; velc = veln ; lnkh = lnki ; segh = segi ; tc = tn;
16. return;

Fig. 5. Update without known hosts
module. The relevant algorithm is shown in Figure 5. First, it is checked whether the
new location is still on the currently recorded host segment. If so and if the velocity has
changed markedly, an update message UPT is issued to the server and the records are
updated (lines 2–4). A pre-specified threshold ∆v of velocity change is used to judge
whether an update to the server is necessary (line 2). For such an update involving the
same host link, the UPT message includes the location, host link identifier and time.
The server will use the host link identifier to efficiently locate the record corresponding
to the moving object. If the object is not on the recorded host segment, the adjacent
segments on the recorded host link are checked. The check is carried out sequentially in
two directions one after the other: first from the segment after segh to the last one; then
from the one before segh to the first one (line 6). When a new host segment is found for
the location, an update message is sent to the server, the records are updated, and the
algorithm terminates (lines 8–10). If the object is no longer on the recorded link, a new
host link and segment are found by searching the link pool (lines 11–13). An update
message is sent, the records are updated, and the algorithm stops (lines 14–16).

If the navigation module has just invoked a data retrieval for the new location, an
update attached with the new host link and segment identifiers is sent to the moving ob-
ject module. If the update is the first positioning report received, a registration message
REG is sent to the server and the report is recorded. Otherwise, the process is similar to
that of the previous algorithm, by distinguishing among three cases.

4 Server-Side Data Management
In this section, we first present how mobile objects are organized on the server side in
accordance with the client design presented in Section 3. Then, we proceed to detail
how concurrent continuous range monitoring queries are efficiently processed on the
server side, which takes advantage of our specific system architecture.



4.1 Server-Side Mobile Object Management

Link-Based Moving Object Indexing On the server side, a hashing mechanism is
used for indexing the moving objects according to their current network locations. The
composite index structure is shown in Figure 6 and is explained next.

Recall that the L links in the spatial network are assigned integer identifiers from
1 to L. The top-level index is simply a sequential file with one entry for each link.
With the same link index file as on the client side, a link record can be easily fetched
given its identifier. Each link entry contains a pointer to a moving-object bucket, which
keeps all objects currently moving on that link. The identifier of a link is also used
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to locate the polyline associated with the link and the link’s topology information. All
links in polylines are organized in a sequential link file, as on the client side. Via a link
index file, the link record is easy to fetch. Node topology information is organized in
a separate file. Each node topology entry in this file contains the count of its incoming
links, the count of its outgoing links, and the identifers of these two types of links
sequentially. Link records and node topology information are associated via a node
index file, which for each node stores its offset into the topology file. To speed up
spatial operations needed in query processing, all network links are indexed by an R-
tree, so do all network nodes. These R-trees are not illustrated in Figure 6. Different
from previous indexes for disk-resident network constrained moving objects, ours does
not employ hierachical R-trees [8, 16] or index trajectories of moving objects [2].

Each element of an object bucket has the format 〈oid , loc, time〉, where oid is an
object identifier, loc is the most recently reported location, and time is the time of
the most recent report. To simplify the processing, we allocate oid ’s starting at 1. The
hashing of a moving object works as follows. Given a moving object oid , its host link
lnk is determined by its location loc. Identifier lnk is used to obtain the bucket pointer
bucket ptr in the corresponding link index entry. The object oid ’s record is kept in the
object bucket pointed by bucket ptr . The hashing for an object is created or updated
when the server receives an update report from that object, explained next.

Insertion An insertion occurs when a moving object issues a REG(oid , loc, lnk ,
time) message to the server. An insertion is quite straightforward. The field lnk is first
used together with the index structure to locate the bucket into which the moving object
should be inserted; then an object entry is created and inserted into that bucket.



Deletion An object may delete itself from the system. This can occur when a
mobile terminal is switched off, e.g., the user’s vehicle is parked. In this case, the ter-
minal issues a delete message prior to powering down. A deletion is performed on the
server when a DEL(oid , lnk ) message is received from an object. Upon receiving this
message, the server removes the relevant object from the database. Field lnk is used to
locate the moving object bucket via the index structure, and then the bucket is scanned
to remove the element in the bucket with identifier oid . As an option, by periodically
checking object buckets we are able to identify objects that have been inactive for a
long time, and delete them from the database.

Update Updates occur when the server received an UPT message from an object.
As mentioned in Section 3.3, there are two types of UPT messages. For an UPT(oid , loc,
lnk , time) message, which indicates that the object remains on the recorded host link,
the object’s entry is found, and the relevant record fields loc and time are updated. In
case of an UPT(oid , loc, lnk , lnkn, time) message, which indicates that the object has
moved out of the recorded host link, a deletion and an insertion are performed. Field
lnk is used to locate the current bucket for the deletion, while lnkn is used to find the
new bucket for the insertion.

After each index operation is finished, the query maintenance function will be in-
voked to correctly adjust query results accordingly. This is discussed in Section 4.4.

Discussion The server-side index structure has several important properties. First, its
overall performance is balanced. If a network link contains few moving objects, in-
dex maintenance is inexpensive. If the number of moving objects on a link is large,
the query processing is less expensive. This balance between index maintenance and
query processing costs is hard to achieve in moving object indexes [15]. Second, the
index structure supports easy and high concurrency as it separates moving objects on
different network links. Within each link, concurrency control on a hash table is much
easier compared to that on any tree index. Third, the index structure efficiently supports
queries based on network distance, which has not been addressed well in most previous
work on the indexing of moving objects. We do not organize all moving objects in a
global hash table, because a single large hash table is much more difficult to manage in
terms of scalability and conflict rate, and it does not facilitate our query processing.

4.2 Solution Overview and Data Structures for Concurrent Queries
In a scenario with monitoring queries, multiple such queries will typically be active
at a given point in time. We thus proceed to employ the shared execution [13, 18]
philosophy to process concurrent queries. As the movements of all objects in M are
constrained to the spatial network, only specific network links are relevant for each
CRMQN query. Further, the relevant links of different, concurrent CRMQN queries
may intersect. These observations provide the foundation for our shared query process-
ing solution for CRMQN queries.

Our solution identifies network links that are covered by multiple queries, organizes
the relevant information together with the query results in two hash tables, and updates
the hash table contents, including the query results, accordingly upon receiving moving
object updates. The data structures and query execution are illustrated in Figure 7.

Given a query, those links that are relevant for the query, termed its sensitive links,
are identified and classified into two categories: those completely within the query



region, termed fully sensitive, and those that merely intersect with the query region,
termed partially sensitive. The former links are kept in a list Lf , and the latter links are
kept in a list in Lp. Then the sensitive links are searched for moving objects within the
query region. For each fully sensitive link, the search simply retrieves all objects in its
bucket. For each partially sensitive link, its moving-object bucket is searched to retrieve
those objects whose network distance to the query point is within the query range.

We use a link-to-query hash table named Hlq that maps link identifiers to lists of
queries for which the link is a sensitive link: for a link li the list LQi thus contains the
queries for which li is sensitive. The query identifiers start from 1. For each query that
has li as a fully sensitive link, its identifier is simply stored in list LQi. For each query
that has li as a partially sensitive link, its identifier is stored in LQi with a negative sign.
Additionally, a pointer to the bucket of all objects currently moving on li is stored in
each element of Hlq .

All queries are stored in a hash table Hq that maps a query identifier qi to an entry
consisting of five relevant elements: the query point pos , the network query range r, the
fully sensitive links Lf , the partially sensitive links Lp, and the current query result R.
For each partially sensitive link li, Lp maintains a mapping of li to the network distance
from the query point pos to the link’s start or end node. If the link is partially covered
by the query from its end node, the distance is attached with a negative sign. Otherwise
the original distance value is used. This facilitates the network distance computation
during query processing.

For continuous maintenance, the link identifiers enclosed in the update messages
from the moving objects are used for accessing hash table Hlq . This way, the identifiers
of all relevant queries, whose results may be affected by the update, are found. These
identifiers are in turn used to explore hash table Hq, making it possible to update the
results of multiple queries in a shared fashion. To uninstall a query q, the identifiers
of its sensitive links, as stored in Lf and Lp in hash table Hq, are retrieved. These are
then used for accessing hash table Hlq from where the query identifier stored in relevant
link’s query list LQ is removed.

4.3 Query Initialization
The initialization of a single range monitoring query identifies all its sensitive links via
incremental network expansion [17], and it searches these (mainly the partially sensitive
ones) to determine the initial result. The algorithm, shown in Figure 8, does a network
expansion from the query point pos and places all nodes within the network query
range r in a priority queue Q. This Q gives priority to those nodes with shorter network
distances to pos , and supports network expansion to identify all sensitive links. If the
query point pos coincides with the position of a node, as determined by the function
isNode(pos) that searches the R-tree of all nodes, the node with a distance of 0 is
pushed into queue Q (lines 2–3). If pos is not a node, its host link lq is determined
(line 5) by calling find host(pos), which is implemented by searching the network link
R-tree. Then lq’s two nodes are checked to determine whether they are within distance r
of pos (lines 6–7). If both of them are within r, lq is searched as a fully sensitive link and
added to Hlq and Hq(id).Lf (lines 8–9). Otherwise, lq is searched as a partially sensitive
link and is added to Hlq (line 11). In the link-to-query hash table Hlq , fully sensitive and
partially sensitive links are distinguished by the sign attached to their query identifiers.



Algorithm monitorInit(pos, r, id)
Input: pos is the query point

r is the network query range
id is the query identifier

Output: the initial result
1. R = Ø; Q = Ø;

// Determine starting links
2. if (isNode(pos))
3. Q.enqueue(〈node(pos), 0〉)
4. else
5. lq = find host(pos);
6. if (dN (pos, lq.s) < r) Q.enqueue(〈lq.s, dN (pos, lq.s)〉);
7. if (dN (pos, lq.e) < r) Q.enqueue(〈lq.e, dN (pos, lq.e)〉);
8. if ((dN (pos, lq.s) ≤ r) and (dN (pos, lq.e) ≤ r))
9. R = R ∪ lq’s bucket; Add id to Hlq(lq).LQ; Add lq to Hq(id).Lf ;
10. else
11. R = R ∪ search(lq); Add −id to Hlq(lq).LQ; Add 〈lq, +/− dN 〉 to Hq(id).Lp ;

// Expansion, search for sensitive links
12. while (Q is not empty)
13. (n, dN ) = Q.pop();
14. foreach unvisited link li connected to n
15. if (dN + li.len > r) // A partially sensitive link
16. R = R ∪ search(li); Add −id to Hlq(li).LQ;

Add 〈lq, +/− (dN + li.len)〉 to Hq(id).Lp ;
17. else // A fully sensitive link
18. R = R ∪ li’s bucket; Add id to Hlq(li).LQ; Add lq to Hq(id).Lf ;
19. if (dN + li.len < r) Q.enqueue(〈li.n 6= n, li.len〉);
20. return R;

Fig. 8. Initialization of a CRMQN query

A partially sensitive link lq is also added to Hq(id).Lp with a corresponding distance
value (line 11). The distance value’s sign is determined based on whether lq’s start node
or end node is met.

Next, network expansion is repeated to identify all sensitive links until all unvisited
nodes are too far away from pos (lines 12–19). For each fully sensitive link, all objects
on it enter the initial result (line 18). Each partially sensitive link needs to be searched
for the objects that are really covered by the query range (line 16). Similar to the case
for lq above (lines 8–11), relevant operations are carried out on hash tables Hlq and Hq .

4.4 Shared Concurrent-Query Maintenance
Shared maintenance of concurrent range monitoring queries occurs when the server re-
ceives a registration, deletion or update message from an object. The pseudo code for
the shared maintenance mechanism is shown in Figure 9. The maintenance mechanism
identifies all the relevant queries from Hlq by hashing given link identifiers. If the mes-
sage from an object is a deletion (indicated by a negative oid in line 1), the object is
removed from the results of all relevant queries by means of the link-to-query hash ta-
ble (line 2). Upon receiving a first-time report, if link lnk is a fully sensitive link of
some query (i > 0 in line 7) or the object is within the query range of pos on a par-
tially sensitive link, the object is reported (line 8). For an update on the same link, any



Algorithm sharedMaintain(oid , loc, locn , lnk , lnkn)
Input: oid is the client object’s identifier

loc is the client object’s old position
locn is the client object’s new position
lnk is the client object’s old host link
lnkn is the client object’s new host link

1. if (oid < 0) // Object deletion
2. foreach query identifier i ∈ Hlq(lnk)
3. if ((i > 0) or (oid ∈ Hq(−i)’s result)
4. Remove oid from Hq(|i|)’s result;
5. else if (locn == null) // First report
6. foreach query identifier i ∈ Hlq(lnk)
7. if ((i > 0) or (dN (Hq(−i).pos, loc) ≤ Hq(−i).r))
8. Add oid to Hq(|i|)’s result;
9. else if (lnkn == null) // Still on the old link
10. foreach query identifier i ∈ Hlq(lnk)
11. if (i > 0) continue;
12. if (oid ∈ Hq(−i)’s result)
13. if (dN (Hq(−i).pos, locn) > Hq(−i).r)
14. Remove oid from Hq(−i)’s result;
15. else if (dN (Hq(−i).pos, locn) ≤ Hq(−i).r)
16. Add oid to Hq(−i)’s result;
17. else // Link change
18. foreach query identifier i ∈ Hlq(lnk)
19. if ((i > 0) or (oid ∈ Hq(−i)’s result)
20. Remove oid from Hq(|i|)’s result;
21. foreach query identifier i ∈ Hlq(lnkn)
22. if (i > 0) // A fully sensitive link
23. Add oid to Hq(i)’s result;
24. else if (dN (Hq(−i).pos, locn) ≤ Hq(−i).r)
25. Add oid to Hq(−i)’s result;

Fig. 9. Shared maintenance of concurrent queries

query having link lnk as a fully sensitive link is skipped (line 11) as no result change
occurs, while any query having lnk as a partially sensitive link needs further checking
(lines 12–16). For an update involving a link change, the object is removed from the re-
sults of current relevant queries if necessary (lines 18–20), and it is added to the results
of new relevant queries if necessary (lines 21–25).

4.5 Support for Moving Queries
A monitoring query may change its position, e.g., because it is attached to a moving
object. We term this a moving query. Naturally, such queries can be supported by ter-
minating the old query and initiating the new query when such an update in the position
of a query happens. This approach is already supported by the proposals presented thus
far. However, we can do better. With our hash-based data structures available, we do
not need to re-evaluate the new, or updated, query from scratch.

We apply a simplified variation of algorithm monitorInit (Figure 8). This algo-
rithm uses network expansion to identify the updated fully (partially) sensitive link list
L′f (L′p) with respect to the query’s new query point without searching them. Then



Algorithm queryUpdate(id, pos, L′f , L′p)
Input: id is the query identifier

pos is the new location of query point
L′f is the updated fully sensitive link list
L′p is the updated partially sensitive link list

Output: the updated result
1. foreach link li ∈ Hq(id).Lf

2. if (li 6∈ L′f )
3. Remove li from Hq(id).Lf ; Remove li’s objects from Hq(id).R;
4. else Remove li from L′f ;
5. foreach link li ∈ L′f
6. Add li to Hq(id).Lf ; Retrieve li’s objects to Hq(id).R;
7. foreach link li ∈ Hq(id).Lp

8. if (li 6∈ L′p)
9. Remove li from Hq(id).Lp; Remove li’s objects from Hq(id).R;
10. foreach link li ∈ L′p
11. Add li to Hq(id).Lp; Search li and add resultant objects to Hq(id).R;
12. return R;

Fig. 10. Support for moving queries

the update procedure shown in Figure 10 is invoked. Each expired fully sensitive link,
together with those objects on it, is removed (lines 2–3); for any new fully sensitive
link, objects on it are included in the result (lines 5–6). Each expired partially sensi-
tive link, together with the objects on it, is removed (line 8–9). Each remaining/new
partially sensitive link is searched, and the qualifying objects are included in the result
(lines 10–11).

To support moving queries efficiently as detailed above, a minor change to the result
(R) data structure in needed. It must consist of a hash table that maps link identifiers to
the lists of objects on the links. This facilitates the necessary link-based objects removal
in the algorithm above.

5 Empirical Performance Study
We first study the performance properties of the proposed server-side design and then
consider the client side.

5.1 Server Side Experiments

Settings To obtain good server-side performance, we have proposed two strategies: that
of shifting part of the server load to the clients by letting them report host links; and
that of processing concurrent queries in a shared manner. These two strategies are or-
thogonal. Therefore, by varying each of them, we obtain four different system schemes,
as listed in Table 1. In the horizontal dimension, clients report either their locations

Client report
Query execution Object Location Host Link ID

Isolated IXY IID
Shared SXY SID

Table 1. Different system schemes

Parameter Setting
Total time stamps 1000
Moving object card. 1K, 2K, . . . , 10K
Max object vel. 10, 20, . . . , 50, . . . , 100
Query sets card. 1K, 2K, . . . , 10K
Query range multiple 1, 2, . . . , 5

Table 2. Parameters used in experiments



(XY) or their host links (ID). In the vertical dimension, the server processes concurrent
queries either one by one in an isolated way (I) or in a shared manner (S). Conse-
quently, IXY, IID, SXY, and SID represent four possible system schemes. In the *XY
schemes, upon receiving a client report, the server invokes an additional procedure that
identifies the host link via the link R-tree and link index before further processing. In
the I* schemes, the link hashing table (Hlq ) does not contain the list LQ that contains
the queries on a link. In the experiments, we compare these four system schemes to
investigate the performance gains of the proposed strategies.

We used Brinkhoff’s generator and the road network of Oldenburg [4], to generate
network-based moving object workloads of 1K to 10K moving objects. Each workload
is active for 1000 time stamps. At each time stamp, new objects come to be active,
existing objects report to the server, and/or existing objects stop being active. The max-
imum object velocity is varied from 10 to 100 map units per time stamp. We generated
static query sets of 1K to 10K queries. Each static query is produced as follows. First,
a road network link is selected at random from all links. Then a position on that link is
chosen at random as the query point (by choosing a line segment of that link at random
and interpolating with a random ratio along that segment). Finally, the query range is
decided as a multiple (randomly picked from 1, 2 to 5) of the length of the host link just
selected. For the mobile query sets, we made the moving objects as query issuers, and
determined the query ranges in the same way as for static queries. The parameters used
in the experiments are listed in Table 2. The values in bold are the default settings used
when their corresponding parameters are fixed. We implemented all system schemes in
Java (JDK 1.4), and conducted all experiments on a Pentium IV desktop PC running
MS Windows XP with a 3.00GHz CPU and 1GB RAM.
Experimental Results on Static Query Sets We consider two performance metrics:
(1) the amortized CPU time spent on query processing per time stamp and (2) the av-
erage main memory consumption per time stamp. Each experiment ran for 1000 time
stamps, with all queries active from start to finish.

To understand the effect of object cardinality on CPU time, we varied the cardinality
from 1K to 10K. The results are reported in Figure 11(a). SID always performs signifi-
cantly better than other schemes, while IXY is always the worst. SID saves considerable
CPU time in the processing of network distance based queries by not only executing rel-
evant concurrent queries in a shared fashion, but also exploiting the clients’ capabilities
to determine host links. For object cardinalities up to 6K, SXY outperforms IID; the
opposite is seen when the cardinality exceeds 6K. For small object sets, the shared ex-
ecution of concurrent queries has the largest effect. However, for large object sets, the
host link ID reporting strategy becomes crucial, because the server needs to process
much more frequent update reports from the clients; thus, host link IDs in the reports
save significant CPU time. As object cardinality increases the CPU time cost of SID
grow slowly, which certainly demonstrates that it is scalable.

The results reported in Figure 11(b) show the effect on CPU time of the maximum
object velocity, which we varied from 10 to 100 map units per time stamp. Not sur-
prisingly, SID remains the best and most scalable scheme because it uses both efficient
strategies. The relative performance for SXY and IID is alike to that for the previous ex-
periment. As the objects move faster, their updates to the server become more frequent,
which finally renders the host link ID reporting strategy crucial.
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Fig. 11. CPU times on static query sets
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Fig. 13. Results on mobile query sets

To see the effect of query cardinality on CPU time, we varied it from 1K to 10K. The
results are reported in Figure 11(c). Due to the lack of shared execution, IXY and IID
degrade badly as more and more concurrent monitoring queries exist in the system. In
contrast, SXY and SID both perform steadily because of the shared execution strategy.
The slight improvements from 9K to 10K are due to more overlaps of sensitive links
among different queries caused by the larger number of concurrent queries.

The results reported in Figure 11(d) show the effect on CPU time of the query range
multiple, which we varied from 1 to 5. A larger query range means that more links are
covered by queries. Shared execution helps alleviate the burden caused by additional
sensitive links, as indicated by the better performance of SXY and SID. Nevertheless,
SXY degrades much more than SID because the latter benefits substantially from host
link ID reporting when many links are involved.

The experiments above also observed memory consumption, as shown in Figure 12.
For memory cost, we only consider the data structures used to process the queries. As
SXY (IXY) and SID (IID) use the same data structure on server side, we only compared
the costs of the “Shared” and “Isolated” schemes. We see that the shared scheme con-
sumes moderately more memory than the isolated scheme. This additional cost is due
to the link-to-query mapping in Hlq . As the query cardinality increases, more entries
are maintained in the query hash table (Hq). This leads to the memory cost increase in
both schemes, as shown in Figure 12(c). As the query range increases, more links are
maintained in the sensitive-link lists. This explains the observation in Figure 12(d) that
the memory costs grow as query range increases. The (almost) linear growing patterns,



together with the fact that neither object cardinality nor velocity impact the memory
consumption, indicate that our techniques are scalable.
Experimental Results on Mobile Query Sets For this set of experiments, we let all
moving objects send continuous range monitoring queries to the server with the query
points being their current positions. Each moving object issues a continuous query when
it sends a REG message to the server, and the query is updated when update reports are
received by the server. When a DEL message is received, the object’s mobile query is
terminated. As SID is shown to be the most efficient scheme in Section 5.1, we only
consider SID for the mobile query sets. Each experiment also ran for 1000 time stamps.

We first varied the mobile query cardinality, i.e., the number of moving objects,
from 1K to 10K. The CPU costs are shown in Figure 13(a). As expected, the CPU
cost is much higher compared to those obtained for static query sets—mobile queries
invoke extra updates. Figure 13(b) shows that as the mobile query cardinality increases,
the memory cost grows at a rate close to what is seen for static queries (Figure 12(c)).
This is because mobile queries use the same query hash as do static queries, and almost
need no extra memory space except the special mappings facilitating result removal.

Next we fixed the mobile query cardinality at 2K and varied the query velocity from
10 to 100. Results are reported in Figure 13(c) and 13(d). Faster mobile queries lead to
more frequent server-side computations, updating both the objects position information
and the query results. This trend is consistent with the results shown in Figure 13(c).
As seen in Figure 13(d), the memory cost does not change much as the query velocity
changes; the memory cost is affected mainly by the query cardinality. We also varied the
mobile query range multiple from 1 to 5 to observe its effect on the SID performance.
Both CPU time and memory cost exhibit slight variation as the query range changes,
and they are very close to their counterparts on the 2K mobile query set covered in
Figure 13(a) and 13(b). Due to the space limitation we omit the graphs here.

5.2 Client Side Experiments
We implemented our client design using SuperWaba [1], a Java-based open-source plat-
form for mobile terminal applications development. We conducted a set of experiments
on an HP iPAQ h6365 pocket PC, running MS Windows Mobile 2003 with a 200MHz
processor and 55MB user accessible SDRAM.

Our main concern is to determine how much extra CPU time is spent on our spe-
cial client design that involves the reporting of host links, compared to a usual mobile
handset client that only reports coordinate locations to the server. We used the moving-
object workloads generated in Section 5.1. For each data set, our client program on the
pocket PC processes all location updates for each network-constrained moving object.
For each object, the extra CPU time is accumulated and finally amortized across all time
stamps. We then report the average of all objects’ amortized extra CPU time costs.

The results reported in Figure 14(a) are those gained for moving objects of 1K to
10K. It is seen that at each time stamp, the client’s extra CPU time cost is close to
6 milliseconds, which is negligible compared to the gain we achieved by shifting the
server load to the clients, according to the results reported in Figure 11(a). This demon-
strates the benefit of our shifting strategy again. We also investigated the effect of the
maximum object velocity on the client side CPU time. The results are reported in Fig-
ure 14(b). During a fixed active period, as an object moves faster, it produces more
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Fig. 14. Additional CPU times on client side

location updates and tends to invoke more data retrieval because it moves out of the
current display window. Consequently, the extra CPU time costs due to host link identi-
fication decreases as the navigation module in our design contributes more by triggering
a simple update procedure with known hosts, described in Section 3.3. Therefore, the
amortized cost over time stamps decreases in spite of more updates occurring. The ob-
servations provide evidence that our client design is effective in taking advantage of the
navigation module, whose own costs increase as the object moves faster independently
of whether our specific additional design is present or not.

6 Related Work
Recent years have seen some research work on spatial-network constrained moving
objects. Vazirgiannis and Wolfson [20] proposed a variety of query types specific to
the network-constrained moving objects, together with corresponding query processing
algorithms. Shahabi et al. [19] employed an embedding technique to transform a road
network to a higher dimensional space, where shortest paths between original network
points are computed and used to help pruning in kNN search based on network distance.
Jensen et al. [12] formalized the data model and problem definition for nearest neighbor
queries in road networks, and adapted Dijkstra’s algorithm [7] to compute the nearest
neighbors for a mobile query point on the fly. Cho and Chung [6] considered continuous
kNN queries aiming at static points of interest in a road network, whereas we query
against mobile objects in this paper. Mouratidis et al. [14] addressed continuous kNN
monitoring for spatial network constrained moving objects. The authors employed some
specific tree structures to support the shared execution of multiple kNN monitoring
queries, whereas we in this paper use simple yet efficient hashing tables for concurrent
range monitoring queries. All these works [6, 12, 14, 19, 20] have assumed a central data
server responsible for processing queries solely. Our work is significantly different in
that we successfully exploit the computing capabilities of the mobile terminals to aid
the server in the query processing.

The idea of shifting work from the server to the clients has been addressed in the
context of monitoring free-moving objects. Gedik and Liu [9] proposed a distributed
mobile system architecture, in which relevant monitoring query information is installed
on mobile clients, enabling them to delay update reports to the server and process
queries locally. Cai et al. [5] identified a resident domains for each mobile client, who
in turn reports to the server only when it enters/leaves a resident domain so that queries
can be updated correctly. Hu et al. [11] proposed to send mobile clients safe regions,
within which continuous spatial monitoring results do not change. These techniques,
however, are not applicable to our problem concerning network-constrained moving
objects and network distance-based queries.



7 Conclusion
In this paper, we have proposed a full-fledged, novel solution to the continuous range
monitoring of moving objects in a road network setting. The proposal takes advantage
of the computing capabilities of mobile terminals to off-load computation from the
server-side to the moving objects, and the server groups relevant concurrent queries
together and then processes the queries in each group in a shared fashion. Extensive
experiments with the prototype implementation capture the performance characteristics
of the proposal, and suggest that the proposal is efficient and applicable in practice.
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