
Formalization and ‘Literate’ Programming

Hugh Anderson
Department of Computer Science, NUS

hugh@comp.nus.edu.sg

Abstract

The ‘literate’ programming model is extended to include
a concept of mechanical transformation. A prototype tool,
FLP (Formal Literate Programming tool), has been de-
veloped which uses this extended ‘literate’ programming
model in both a formal program proof setting, and within
a formal (refinement) program development setting. In both
settings, FLP provides history, access to tools, and an easy-
to-use interface. FLP is a system with

• a tree structured revision control system allowing easy
access to an entire software development history,

• a unifying semi-formal model encompassing both pro-
gram proof and refinement, and

• a single simple mechanism for managing both for-
mal transformations on programs (proofs, tests, refine-
ments) and informal transformations (explanations).

In this paper, we outline the underlying semi-formal model
for this extended ‘literate’ programming tool, briefly show
the system architecture, and demonstrate the tool’s use dur-
ing a sample program development.

1. Introduction

The FOLDOC1 dictionary of computing defines literate
programming as:

“Combining the use of a text formatting lan-
guage such as TEX and a conventional program-
ming language so as to maintain documentation
and source together. The program is sometimes
marked to distinguish it from the text, rather than
the other way around as in normal programs (the
inverse comment convention)”.

1The Free-On-Line-Dictionary-Of-Computing is found at
http://wombat.doc.ic.ac.uk/foldoc/index.html.

The ‘literate’ programming model ([9],[10]) allows code to
be structured independently of the explanation of the code.
In normal use a LATEX document is written, which describes
the program, along with in-line segments of code (there is
no requirement for LATEX, but it is commonly used). The
in-line code segments are extracted with a tool to produce
source-files [1]. The end result is a single document de-
scribing the code, which in addition can automatically pro-
duce the code as and when needed. This model of program-
ming has some advantages - in the ‘literate’ programming
community, it is common to associate the model with a no-
tion of correctness:

From a purist standpoint, a program could be
considered a publishable-quality document that
argues mathematically for its own correctness.
[13]

In practice, the model does not achieve this - it only pro-
vides a convenient way to develop programs along with
their documentation - there is not much of amathematical
argument involved.

However, software development often includes formal
(or mathematical) techniques along with the informal ones,
and the ‘literate’ programming model may be extended to
support this. For example, a software developer might per-
form any of the following actions:

1. exhaustively test an existing piece of code,

2. argue that a code segment always ensures that some
invariant is preserved,

3. convert one code segment into another using some rule
that preserves the intent of the original code (unravel-
ing a loop, reordering some assignments), or

4. use stepwise refinement to develop a segment of code
from a specification.

Each of the above actions is normally considered to be dis-
tinct from the others - requiring different tools, skills and
notations, and results are often lost forever when the soft-
ware developer moves on to the next task. Paige develops a

unifying model in [12] focusing on the use of heterogeneous
notations, but the focus here is different. In this extended
‘literate’ programming model, each activity is considered
to be equal - atransformfrom an existing document to a
new document.

The prototype revision-controlled ‘literate’ program-
ming tool FLP allows eachtransformto be undertaken in
a controlled and verifiable way. First the existing document
is saved, and archived in a read-only form, and then (for
each action given above), a relevant tool is applied directly
to mechanically transform the (new) literate document.

At any later stage, the complete history can be validated,
as all intermediate development steps are documented and
retained.

Note that traditional revision control systems provide an-
other way of preserving the history of a development, but
normally make no distinction between the code before a
test or proof and the code afterwards. From the software
developer’s point of view though, these two identical code
segmentsaredifferent - the goal of software development is
not only to produce software, but also to produce assurance
that the code is correct.

Each of these topics is expanded in the following sec-
tions, beginning with a semi-formal treatment for LP, con-
tinuing with explanations of interfaces used in FLP, and
concluding with a brief description of the architecture and
use of the prototype tool.

2. The extended LP model

This section introduces a single framework combining
LP and a wide range of program development tools and
techniques. It provides steps towards a formal justification
for the model, emphasizing that the principal goal of soft-
ware engineering isassured software- not justsoftware.

Our model of formal LP program development begins
with a notion of the ‘document’D which, in addition to
free text, embodies components of both the specificationS,
the implementationI, and the proof thatI satisfiesS. Dur-
ing intermediate steps of the development ofD, it may also
contain incomplete subcomponents of either a suggested re-
finement, or the proof.

The initial documentD1 may contain only a specifica-
tion S, but a later documentDn may contain a full imple-
mentationI, as well as the assurance that this code is correct
- a ‘proof’ that it matches the specification. In this model,
no differentiation is made between a specification and an
implementation - each are considered to beprogramsat dif-
ferent levels of abstraction.

We express each documentDi as an aggregation of ele-
mentsDi ≡ {Ti, Pi} representing the textT at some stage,
and the associated programP for that document. The text

Ti may be ignored for the purposes of this treatment. Our
programsPi have an ordering imposed on them.

1. If our document transformation step is a refinement,
then we use the refinement ordering. IfPi+1 satis-
fies any correctness assertion thatPi satisfies, then we
write Pi v Pi+1 - Pi is-refined-byPi+1.

2. If our document transformation step is a proof, then an
association between some new specificationSi and our
programPi was made during the step, and a proof per-
formed thatPi satisfiesSi. Our new program segment
Pi+1 may be identical to the original, but we have new
knowledge thatSi v Pi.

We restrict our transformations of the documentDi to those
that preserve this relationship between thePi components.
This gives us a similar model as that found in refinement,
and borrowing the notation - we have:

D1 v D2 v ... v Di v Di+1 v ... v Dn

Various normally disjoint methods may now be used within
this model.

2.1. Refinement calculus

The refinement calculus falls naturally within the ex-
tended LP model - any refinement performed always sat-
isfies the specification that was refined, and all other parts
of the document are unchanged.

The history of a program refinement may be documented
by a sequence of LP documents. However at each stage of
the process, we have a choice of possible refinements - (with
not all refinements leading to an implementation) - and so
during the development of a refinement, we may have a tree
structure:

S v Sa v Sa.1 v Sa.1.1 ...
| |
| v Sa.2 ...
|
v Sb v Sb.1 v Sb.1.1 ...

|
v Sb.1.2 ...

In addition, incomplete refinements may lead to addi-
tional proof obligations that must at some time be dis-
charged. In FLP, such incomplete proof trees may be ex-
plicitly represented within a tree document structure - clar-
ifying each of the subcomponents of the proof. Window
inference [6] provides a formal basis for these styles of rea-
soning, allowing us to focus on a particular area of our proof
and work on it independently of other areas.

While developing a proof, a tree like this may have many
branches. Some of these branches may represent failed
attempts at proofs/refinements, others may just be incom-
plete. At the completion of the proof, the tree represents all
the steps of the proof.

The management and organization of these proof trees
is a matter of some concern. In the HOL proof tool [3],
incomplete proof steps are called subgoals, and listed in a
series. The following display shows an intermediate display
of a HOL proof, which has two incomplete subgoals:

OK.. 2 subgoals:
> val it =

A[j’]<=A[P-1]
--------------- (First Subgoal)

0. !i j. i<=P-1 /\ j<=P-1 /\ i<j
==> A[i]<=A[j]

1. j’<=P-1
2. ~(j’<P-1)

A[j’]<=A[P-1]
--------------- (Second subgoal)

0. !i j. i<=P-1 /\ j<=P-1 /\ i<j
==> A[i]<=A[j]

1. j’<=P-1
2. j’<P-1

Schubert and Biggs [4] describe a graphical tree based
interface for use with HOL which explicitly shows all sub-
goals, but due to the underlying architecture of HOL, can-
not show two in-progress (incomplete) attempts at the same
proof. Grundy’s “Refinement Calculator” [2] and Nickson
[5] have adopted similar ways of representing incomplete
refinements, but neither system retains incomplete attempts
to build a refinement. With these systems, at any one time
there exists only a single (possibly partially completed) re-
finement sequence.

2.2. Testing, proof and transformation

Each of these software development activities may be
treated in the same way as refinement, with some limita-
tions on the use of testing tools:

Testing: Testing tools may be used to check the behav-
ior of code segments. Model checkers such as the
spin/PROMELA tool [11], can do exhaustive state-
space analysis of surprisingly large code segments, and
may be used to transform an LP document within our
model. The use of one of these tools may generate an
assurance that, for example, some (partial) implemen-
tation Iia implies some part of the specificationSia

without affecting any other part of the document.

Proof: A similar argument to that given above demon-
strates that program proof techniques such as the appli-
cation of weakest-precondition calculus may be used

to transform an LP document. The new document has
an extra component - the assurance that someIia

im-
plies some part of the specificationSia

- in exactly the
same way that exhaustive testing does.

Program transformation: Finally, we consider the appli-
cation of a program transformation that preserves the
meaning of the original code. In this case our two
documentsDi and Di+1 are identical (at least as
far as the model is concerned), and so we have that
Di+1 satisfiesDi.

3. The ‘literate’ programming prototype

The following paragraphs give an introduction to the
specification of the literate programming tool. The FLP pro-
gram behaves simply - it has the following responsibilities:

1. It maintains a tree of literate program documents,

2. uses LYX to give a flexible user interface, and

3. allows the developer to apply an external (formal) tool
to selected fragments of a document, resulting in the
mechanical creation of a new descendant document.

The preceding section identified the utility of explicit proof
and refinement trees, and justified the use of tree structured
revision control in the ‘literate’ programming tool. A prop-
erty of this part of FLP is that, in order to improve the con-
sistency of the tree, if a document contains descendants,
then it is marked asno longer editable. In this way, we
cannot later change the antecedent of a document (which
might make all its descendants invalid).

LYX [8] is an open source document processor which
uses LATEX, and supports ‘literate’ programming directly. It
is used to provide the main interface for FLP. A small ap-
plication manipulates the LYX window, applying selected
transforms to the current document. The resultant docu-
ments are stored in child directories of the original docu-
ment, but this is not normally apparent to the user of the
tool.

3.1. Tree interface and consistency

FLP implements a graphical interface to a development
tree, in which the branches represent specific transforma-
tions. For example - a development tree may look like that
shown in Figure 1. The specific advantages of this interface
are that:

• it is extremely easy to select any intermediate step of a
development project, and access it, and

Figure 1. In-progress FLP development tree.

• traditional revision control processes have a natural
graphical analog. For example - if you wish to undo
a step, you may just select a transform further up the
tree.

When a new descendant document is created, the original
parent document must remain static in the area of the trans-
form. Otherwise we may develop a situation where a de-
scendant document is relying on something that has since
been changed in a parent document. Unfortunately, the tool
does not ensure thistree consistency, but it does attempt to
help, by manipulating the file permissions to inhibit further
modification.

3.2. Generic transform interface

FLP has a consistent view of program development ac-
tivities - treating refinement, code conversion, proof, test-
ing and informal justifications in a consistent manner -
textually. In use, the system feels natural, and can be
demonstrated in a few minutes. When the developer ap-
plies a tool to a marked section, the result always produces
a transformed document in a subdirectory, with the parent
marked asno longer editable.

The notions ofsuccessor failure of a transform are irrel-
evant in this model - both act in the same way, although the
transform tool interface names the subdirectories differently
dependent on the results of the transform. Failed transforms
are no longer editable, and are just kept for informative pur-
poses.

A single configuration file specifies the transform tools,
which are small interface scripts. Each script processes the
marked text into a suitable form before passing it to the as-
sociated tool.

The result from the tool is processed into a literate pro-
gramming fragment which is returned to FLP along with a
name for the transform. This is so that we can differentiate
between differing results from the tool. We might perhaps
use the namesBAD-proof andproof to represent a failed and
successful proof respectively.

3.3. Client/server architecture

LYX has a server mode of operation, in which the editor
may be remotely manipulated. This suggested its use as a
front end for FLP. The editor is used as a ‘literate’ program-
ming editor, with a client program that controls its behavior.
The client/server protocol is simple - there are only three
types of messages:

• client->LYX: "LYXCMD:<client>:<command>:<argument>"

• LYX->client (answer): "INFO:<client>:<command>:<data>"

• LYX->client (notify): "NOTIFY:<key-sequence>"

The NOTIFY message type is used by LYX for asyn-
chronously signaling client programs. Since the prototype
tool had no need of this, we have a simple tool architecture
as shown in Figure 2. In this view, there are several points
of interest:

1. The tool is displaying a tree. This tree represents a
tree-structured group of documents, any one of which
may be selected by clicking on the tool display.

2. A segment of code has been highlighted, and we are
about to select a particular transformation to apply to
the highlighted code.

Transformations are instigated from the prototype tool win-
dow. The results of the transformation generate a new docu-
ment, with the highlighted segment replaced with the trans-
formed segment. This new document is automatically gen-
erated and loaded back into the editor, with the cursor po-
sitioned at the same place in the new document. The origi-
nal document is write-protected to contribute to tree consis-
tency.

3.4. Example use of FLP

In this section, we show how a small piece of code
may be tested using a simple weakest-precondition analy-
sis proof tool. This tool is a modified version of an exam-
ple program-prover distributed with Harrison’shol-light [7],
which tests correctness (with respect to a Hoare-style spec-
ification) for a simple imperative language. In this applica-
tion, thehol-light program-prover runs as a background pro-
cess, communicating via named pipes with the FLP tool. A
literate program segment written in a C-like language may
be selected, before an interface script converts it to a suit-
able form before sending it to the program-prover.

Within the editor, we mark the program text with a
mouse and then select the C-proof menu, and the Wp-prove
item in the FLP tool (see Figure 3). The selected text is
an annotated C fragment which is supposed to calculate the
factorialy of any integern. If you look carefully in the code

to LyX

LyX responds with ’INFO’ messages

Tool #1

Tool #2

Tool #3

FLP sends ’LYXCMD’ messages

’Formal’ transformation tools

Figure 2. FLP tool architecture.

Figure 3. FLP in use.

in the diagram, you will notice thatn is never assigned a
value, but the theorem prover confirms that the final value
of the variabley is FACTn.

The marked text is submitted to the proof tool, and the
highlighted text on screen is replaced with new text. In this
case the original source is restored, but also including the
following text which reports the results of the test. In this
case, reporting that the C fragment is correct - matching the
specificationx, y, n : [T, y = FACTn] given as an annota-
tion in the original code:

The preceding code segment was submitted to
wp-prove.pl on Tue Nov 21 17:56:53 GMT-8
2000. The result was:

#EXAMPLE_43 : thm = |- correct (\(x,y,n). T)
(Assign (\(x,y,n). x,1,n) Seq
Assign (\(x,y,n). 0,y,n) Seq
Awhile (\(x,y,n). x <= n /\ (y = FACT x))

(measure (\(x,y,n). n - x))
(\(x,y,n). x < n)
(Assign (\(x,y,n). x,y * (x + 1),n) Seq
Assign (\(x,y,n). x + 1,y,n)))
(\(x,y,n). y = FACT n) #

The program developer can now continue with the devel-
opment of the program, either editing the new document, or
selecting sections for further transformation.

4. Conclusion

The development of this tool has identified various im-
provements and modifications necessary. Further work is
needed in the following areas:

Use with multiple users: The model cannot support mul-
tiple users.

Interfaces to more tools: The model has a very small set
of transformations.

Enforced consistency:FLP cannot guarantee consistency,
as we allow documents to be edited immediately after a
transform - a compromise solution to make FLP more
usable. However a nice solution to this problem has
presented itself, involving partial locks on documents.

In summary, FLP is a system which

• provides a simple revision control system allowing
easy access to an entire software development history,

• provides a unifying semi-formal model encompassing
both program proof and refinement, and

• provides a single simple mechanism for managing both
formal transformations on programs (proofs, tests,
refinements) and informal transformations (explana-
tions).

The prototype tool is easy to use, and may provide a useful
new tool in the software developer’s tool-box.

Acknowledgments: Thanks to the anonymous referees
for their helpful comments.

References

[1] David B. Thompson, "The Literate programming
FAQ,"
http://www.cs.cmu.edu/Groups/AI/html/faqs/lang/lit_prog/faq.html.

[2] Michael Butler, Jim Grundy, Thomas Långbacka,
Rimvydas Rukṧenas, and Joakim von Wright, "The
Refinement Calculator: Proof Support for Program
Refinement," in Formal Methods Pacific 97

[3] M.J.C. Gordon and T. Melham, "Introduction to HOL:
A Theorem Proving Environment for Higher-order
logic." Cambridge University Press, 1993.

[4] Tom Schubert & John Biggs, "A tree based graphical
interface for large proof development." International
Workshop on the HOL Theorem Proving System and
its Applications, September 1994.

[5] Ray Nickson, "Tool Support for the Refinement
Calculus." PhD Dissertation, Victoria University of
Wellington, 1994.

[6] Jim Grundy, "A Method of Program Refinement."
PhD Dissertation, University of Cambridge, Novem-
ber 1993.

[7] HOL-light, available at
http://www.cl.cam.ac.uk/users/jrh/hol-light/.

[8] LYX, available athttp://www.lyx.org/.

[9] Donald E. Knuth, "Literate programming."The Com-
puter Journal, 27(2), pages 97-111, May 1984.

[10] C.A. Lins, "A First Look at Literate Programming."
Structured Programming, vol. 10, no. 1, pg 60-62.

[11] Gerard J. Holzmann, "Design and Validation of Com-
puter Protocols." Prentice Hall, November 1990.

[12] R. Paige, "Formal Method Integration via Hetero-
geneous Notations." PhD Dissertation, University of
Toronto, November 1997.

[13] Christoper Lee, "Literate Programming – Propaganda
and Tools,"
http://www.cs.cmu.edu/~vaschelp/Programming/Literate/literate.html.

