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Abstract
A state-of-the-art approach for proving safe programs isCounter-
Example-Guided Abstraction Refinement(CEGAR) which performs
an ”abstraction-verification-refinement” cycle by starting with a
coarse abstract model that is then refined repeatedly whenever a
spurious counterexample is encountered. In this paper, we present
a dual approach which starts with a concrete model of the program
but progressively abstracts away details but only when these are
known to be irrelevant. We call this conceptAbstraction Learning
(AL ). In order to deal with loops, our algorithm is encapsulatedin
an iterative deepening search where, because of a particular depth
bound, abstraction is applied to program loops to avoid unrolling
beyond the bound by building cycles. This abstraction corresponds
to the strongest loop invariant we can discover. As inCEGAR, this
abstraction is of a speculative nature: if the proof is unsuccessful,
the abstraction is removed and another attempt using a deeper
bound is initiated.

A key difference betweenAL and CEGAR is that AL detects
more infeasible pathsin the state-space traversal phase. We argue
that this key feature poses unique benefits, and demonstratethe
performance of our prototype implementation against the state-of-
the-artBLAST system.

1. Introduction
The increasing complexity of industrial software systems urges the
development of verification techniques to identify errors or prove
programs safe. In the process of verification, there are two main
desired characteristics: accuracy (i.e., no false positives) and scala-
bility. In general, one feature is achieved at the expense ofthe other.
One remedy to this fundamental problem isabstract interpreta-
tion [15] that attempts scalability by eliminating irrelevant details
to the property of interest. However, arbitrary abstraction is inef-
fective since the lack of control on the loss of information easily
results in many false positives.

CounterExample-Guided Abstraction Refinement(CEGAR, or
more briefly, AR) [2, 14, 34], has been a very successful tech-
nique for proving safe programs. This technique starts witha coarse
abstraction that represents an abstract model of the program (ab-
straction phase). The abstract model is checked automatically for
the desired property (verification phase). If no error is found, then
the program is safe. Otherwise, an abstract counterexampleis pro-
duced which shows how the abstract model violates the property.

[Copyright notice will appear here once ’preprint’ option is removed.]

The counterexample is then analyzed to test if it corresponds to
a concrete counterexample in the original program. If this is the
case, a real error has been found and the program is reported as un-
safe. Otherwise, acounterexample-driven refinementis performed
to refine the abstract model such that the abstract counterexample
is excluded (refinement phase) and the process starts again. Several
systems have been developed during recent years following this ap-
proach such asSLAM [3], Magic [12],BLAST [10], ARMC [32], and
Eureka [1].

In this paper, we present adual algorithm to AR, called Ab-
straction Learning(AL ). Essentially, this technique starts with the
most possible precise abstraction: the concrete model of the pro-
gram. Then, the concrete model is checked for the desired property
(verification phase). If a counterexample is found, then it must be
a real error and hence, the program is unsafe. Otherwise, thepro-
gram is safe. In order to achieve scalability during the verification
phase, our technique abstracts the model by learning the facts that
are irrelevant to refuting error states (learning phase), and then it
eliminates those facts from the model (abstraction phase).

Since a program may contain loops, the above process needs
to be run on the top of aniterative deepeningsearch described as
follows. For a given depth, an abstraction is computed and used to
generalize the states at the traversed looping points (program points
where the merging of control paths construct some cyclical paths).
Although the abstraction is nevertheless an over-approximation,
our algorithm attempts to minimize the loss of information during
the process. The abstraction constitutes what is known as aloop
invariant. Typical generation of loop invariants employ advanced
mathematical reasoning (e.g., in [8]). In contrast, our computation
of the abstraction islightweightas it is computed by simple syntac-
tic manipulation of constraints. Thesespeculativeabstractions for
loops may be still too coarse to establish safety. In this case, the
depth-bounded search is run repeatedly increasing the depth limit
and executing again theverification-learning-abstractionprocess.
More importantly, the facts needed to exclude the counterexample
are kept in subsequent iterations. This iterative deepening search
will eventually either discover loop abstractions preciseenough to
verify the program, find a true counterexample, or runs forever.

The rationale behind of the iterative deepening algorithm is to
be as tight as possible to the concrete domain while still making the
verification phase finite. At this point, it is clear that our treatment
of loops resemblesAR where an abstraction is obtained via refine-
ment in the hope of being invariant through loops. If not,AR needs
to refine on demand parts of the abstract model which have been
already constructed. However, a fundamental distinction is thatAL
attempts always to construct the most precise abstraction for loops
by searching for the strongest lightweight loop invariants.

In summary, the main principle of design of the verification-
learning-abstraction loop performed byAL is to be as accurate as
possible with respect to the concrete model in order to perform an
earlier detection ofinfeasible pathsduring the verification stage.
This principle is in opposition toAR in which many actual infea-
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sible paths may be considered since they can be feasible under the
current coarse abstract model. While there are clearly somebene-
fits of using the concrete model, it is also clear that the investment
in added work for accurately reasoning about paths may not always
pay off. Our thesis is that this investment often pays off, and even
in examples where it does not, it is affordable. We will discuss and
experimentally evaluate the performance issues using academic ex-
amples against the BLAST and ARMC systems, and we will use
real benchmarks (in fact these are BLAST benchmarks) in compar-
ison with the BLAST system.

1.1 Related Work

Our work is related to counterexample-guided abstraction refine-
ment (CEGAR) [1, 2, 14, 20, 21, 34], which perform successive
refinements of the abstract domain to discover the right abstrac-
tion to establish a safety property of a program. An approachthat
uses interpolation to improve the refinement mechanism ofCEGAR
is presented in [20, 27]. Here, interpolation is used to improve the
method given in ”Lazy Abstraction” [21], by achieving better lo-
cality of abstraction refinement. Ours differs fromCEGAR formu-
lations in some important ways: first, instead ofrefining abstract
states, weabstracta set of concrete states. In fact, our algorithm
abstracts a state after the computation subtree emanating from the
state has been completely traversed so that infeasible paths can be
detected, and the abstraction is constructed from alearningphase
where the interpolations of the constraints along the pathsin the
subtree are generated. A second difference is: our algorithm inter-
polates atreeas opposed to apath. More importantly, our algorithm
only traversesspurious pathsdue to abstractions done at looping
points, unlikeCEGAR where abstraction is done everywhere. We
shall exemplify these differences with some academic examples in
Sec. 3 and in a comparison with theBLAST tool [10] in Sec. 6.

Recently, there have been some interesting works that use test-
generation features to enhance the process of satisfying properties.
Synergy [19] carries a forest of tests cases in order to find quickly
a counterexample through loops with deterministic choiceswhere
BLAST-like tools may fully unroll the loops.DASH [7] uses only
test generation operations, and it refines and maintains a sound
program abstraction as a consequence of failed test generation op-
erations. By doing so, expensive calls to the theorem provercan
be avoided during the refinement phase. The previous idea is im-
proved and extended for intraprocedural programs bySMASH [18].
We consider that these ideas can be also applied to our main algo-
rithm.

An important alternative method for proving safety of programs
is translating the verification problem into a Boolean formula that
can then be subjected to SAT or SMT solvers [4, 5, 24, 25, 30,
36]. In particular, [11] introduces bounded model checking, which
translatesk-bounded reachability into a SAT problem. While prac-
tically efficient in case when the property of interest is violated,
this approach is in fact incomplete, in the sense that the state space
may never be fully explored. An improvement is presented in [28],
which achieves unbounded model checking by using interpolation
to successively refine an abstract transition relation thatis then sub-
jected to an external bounded model checking procedure. Tech-
niques for generating interpolants, for use in state-of-the-art SMT
solvers, are presented in [13]. The use of interpolants can also be
seen in the area of theorem-proving [29].

Our work is also related to various no-good learning techniques
in CSP [17] and conflict-driven and clause learning techniques in
SAT solving [6, 11, 31, 35]. These techniques identify subsets of
the minimalconflict setor unsatisfiable coreof the problem at hand
w.r.t. a subtree. This is similar to our use of interpolation, where we
generalize a precondition “just enough” to continue to maintain the
verified property.

main ( ) {
x =0;

0 : i f (∗ ) x ++;
1 : i f (∗ ) x +=2;
2 : i f (∗ ) x +=4;
3 : i f ( x>7)
4 : e r r o r ( ) ;
}

main ( ) {
x =0;

0 : i f (∗ ) x ++;
1 : i f ( y>=1) x+=2;
2 : i f ( y<1) x+=4;
3 : i f ( x>5)
4 : e r r o r ( ) ;
}

main ( ) {
0 : l oc k =0; new= o ld +1;

f l a g =1;
1 : whi le ( new != o ld ){
2 : l oc k =1; o ld=new ;
3 : i f (∗ )
4 : l oc k =0; new++;

}
5 : i f ( ! f l a g )
6 : l oc k =0;
7 : i f ( l oc k ==0)
8 : e r r o r ( ) ;
}

(a) (b) (c)

Figure 1. Three Example Programs

{x=0}

4 4 4 4 4 4 44

0

11

2 2 2 2

3 3 3 3 3 3 3 3

A

B C

D E

F G

[x>7]

{x=0}
[x>7] [x>7] [x>7]

x+=4

{x=3}

x+=4
{x=1}

x+=2
{x=1}

x+=4
{x=2}

x+=4

x+=2

{x=0}

x++

{x=0}

{x=2}{x=4} {x=6} {x=1} {x=5} {x=3} {x=7}

x<=00

11

2 2

3 3

subsumed

subsumed

subsumed

A

B C

D E

F G

4

[x>7]

x<=7x<=7

x<=3

x<=1
x<=1

x<=3

(a) (b)

Figure 2. Interpolation and Subsumption of Feasible Paths in Pro-
gram 1(a)

Finally, our closest related work has been recently presented
in [23]. They consider the problem of exploring the search tree
of a CLP goal in pursuit of a target property. Although some of
the main features of our algorithm such as detection of infeasible
paths, interpolation, and subsumption are already presented, the
algorithm does not perform automatic abstractions for loops which
we consider the core of our algorithm proposed in this paper.

2. The Basic Idea
Our algorithm traverses the execution tree of the programs while
attempting to find an execution path that reaches theerror()
function. If such path cannot be found, the it concludes thatthe
program is safe.

Let us first consider the program in Fig. 1(a). Here the(∗) sym-
bol denotes a condition of nondeterministic truth value. The execu-
tion of the program starting in states satisfyingx=0 results in the
execution tree shown in Fig. 2(a). A node corresponds to a location
(i.e., program point) and can be labeled with{.} representing the
state at that particular location or without{.} representing itsinter-
polant (see below). We may annotate the node with a capital letter
so that we can refer to it without ambiguity. The node is drawnwith
filled circle if the path reaching it is infeasible. An edge represents
the control flow from one location to another and can be labeled
with statements (predicates are denoted by [.]).

Suppose that the error condition at〈4〉 is x>7. The algorithm
performs a depth-first traversal, first executing the path from A to
F symbolically by strongest postcondition computation to discover
the constraints that hold at every point along the path. Fromthis,
we label F with the statex=0 which falsifies the error condition.
However, a more general formula, sayx<=5 would accomplish the
same. The constraintx<=5 is an interpolant, since it is entailed by
x=0 and it falsifiesx>7. We could use it to generalize the label of
F, however, we rather use as general an interpolant as possible, and
clearly in this case, it isx<=7. Hence, in Fig. 2(b) we replace the
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label of F (x=0) with the interpolantx<=7. In this way, node G
with statex=4 (which has not yet been traversed) is nowsubsumed
by F with the new interpolant (sincex=4 satisfiesx<=7). Here
we conclude that it is not possible to finderror() by expanding
G and the algorithm backtracks. Here we can again generate an
interpolant for G such that it remains subsumed by F. The most
general is againx<=7, which we use to label G in Fig. 2(b).

We next use the interpolants of F and G to produce a gener-
alization of D. We first compute candidate interpolants fromthe
interpolants of F and G, w.r.t. the state transitions from D to F and
from D to G. The final interpolant of D is the conjunction of these
candidate interpolants. In this process, we first rename thevariables
of F and G with their primed versions, such that F and G both have
the labelx’<=7. First consider the transition from D to F, which is
in fact equivalent to askip statement, and hence it can be repre-
sented as the constraintx’==x. It can be easily seen that the label
x==0 of D ensures the unsatisfiability ofx’==x, x’>7. Here again
we compute an interpolant, one that is entailed byx==0 but refutes
x’==x, x’>7. As interpolant, we again choosex<=71.

Similarly, considering the goal reduction D to G as the augmen-
tation of the constraintx’=x+4, we obtain a candidate interpolant
x<=3 for D. The final interpolant for D is the conjunction of all can-
didates, which isx<=7 ∧ x<=3 which in turn is equivalent tox<=3.
We label D with this interpolant in Fig. 2(b). In this way, E isnow
subsumed by D, and its traversal is not necessary.

We then generate an interpolant for E in the same way we did
for G. By repeating the process described above for other nodes in
the tree, we obtain the smaller tree of Fig. 2(b), which is linear in
the size of the program. This tree represents the part of the symbolic
computation tree that wouldactually be traversedby the algorithm.
Hence, while the tree’s size is exponential in the number ofif
statements, our algorithm prunes significant parts of the tree.

2.1 With Infeasible Paths

Now consider the safe program in Fig. 1(b). The error condition is
x>5 and the error location is at point〈4〉. We depict in Fig 3(a) the
naive tree if interpolation and subsumption are not applied, and in
Fig. 3(b) a smaller tree, which still proves the absence of bugs, after
using interpolation and subsumption of infeasible paths.

A key principle of our algorithm is that itpreserves the infea-
sibility of paths during the traversal. Now let us focus on Fig. 3(b)
and consider, for instance, the path ending at F which is detected as
infeasible (x= 0∧y < 1∧y≥ 1). Applying our infeasibility preser-
vation principle, we keep F labeled withfalse, and the only possible
interpolant for F isfalse itself. This would produce the interpolant
y<1 at D since this is the most general condition that preserves the
infeasibility of F. Note that here,y<1 is entailed by the original
statex=0 ∧ y<1 of D and in turn entailsy>=1 |= false, which is the
weakest precondition offalse w.r.t. the negation of theif condition
on the transition from D to F.

Now consider G withx=4 ∧ y<1 and note that it satisfiesx<=5.
G can be interpolated tox<=5. As before, this would produce
the preconditionx<=1 at D. The final interpolant for D is the
conjunctionof x<=1 (produced from G) andy<1 (produced from
F). In this way, E cannot be subsumed by D since its label does not
satisfy both the old and the new labels of D.

2.2 Loops

We have previously explained the basis of our algorithm on acyclic
execution paths. We now explain how our algorithm handles loops.
In essence, our algorithm automatically infers loop invariants based

1 This interpolant corresponds to theweakest precondition[16] w.r.t. the
statementx=x; and the target propertyx<=7, however, in general the ob-
tained precondition need not be the weakest, as long as it is an interpolant.
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Figure 3. Interpolation and Subsumption of Infeasible Paths in
Program 1(b)

on information learned during traversal. The constructed loop in-
variant for a given loop is a conjunction of constraints whose truth
values remain unchanged after one or more iterations of the loop.
Similar to AR, this process may require abstraction refinements in
the case the abstraction is too coarse to prove the safety property.

We use a slightly modified version of the running example
in [21] in order to illustrate the main features of our algorithm. We
present the example in Fig. 1(c). Our modification consists of the
addition of the variableflag, initialized to1, and anif condition
on Lines 5 and 6. Together with the program we depict the relevant
paths explored by our algorithm in Fig. 4.

Our algorithm performs a depth-first traversal of the tree
from left to right. The first path explored is〈0〉,〈1〉,〈2〉,〈3〉,〈1’〉
(Fig. 4(a)) denoting a cyclic path from location〈1’〉 back to〈1〉.
Our algorithm examines the constraints at the entry of the loop (i.e.,
lock=0, new=old+1,flag=1) to discover those whose truth values
remain unchanged after the loop (i.e.,lock=1,new=old,flag=1).
Clearly, the constraintslock=0 andnew=old+1 are no longer sat-
isfied whileflag=1 still holds.

At this point, our algorithm produces an abstraction at the lo-
cation 〈1〉 by making the truth values oflock=0 andnew=old+1
unknown. In this way, the constraints at〈1’〉 now entails the modi-
fied constraints of〈1〉 that consists of a single constraintflag=1.

The next path is depicted in Fig. 4(b) and contains the locations
〈0〉,〈1〉,〈2〉,〈3〉,〈4〉,〈1”〉. At 〈1”〉, the constraints already entail the
generalized constraint of〈1〉, and therefore, for the same reason as
〈1’〉 we stop the traversal.

After the loop is traversed, the remaining constraint at〈1〉 is
flag==1 and this is in fact a loop invariant discovered by the
algorithm. Since we have removednew==old+1 from 〈1〉, the exit
path of the loop now becomes feasible as the conditionnew==old
becomes satisfiable. For this reason the traversal reaches〈5〉 with
the constraintflag==1 propagated from〈1〉 andnew==old which
is obtained by strongest postcondition propagation through the loop
exit transition.

Since we keepflag==1 in the loop invariant at〈1〉, the algo-
rithm manages to reason that the path〈1〉, 〈5〉, 〈6〉 is infeasible
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Figure 4. Execution Paths of Program in Fig 1(c)

(Fig. 4(c)). The crucial point here is that the algorithm exits the
loop with as much loop invariant information as possible. This, in
effect is an attempt to preserve as many infeasible paths as pos-
sible. It is worth mentioning that a counterexample-guidedrefine-
ment tool would not detect that infeasible path and will reach the
error location later.

The algorithm next visits the nodes〈7〉 and〈8〉 also in Fig. 4(c),
which is an error location. The path is actually spurious, and the
algorithm discovers that the reason for the reachability ofthis point
is the removal ofnew==old+1 at 〈1〉. This is because the edge from
〈1〉 to 〈5〉 cannot be executed whennew==old+1 is considered.
After knowing this, the algorithmlocks new==old+1 at 〈1〉 and
restart the traversal from〈1〉. The purpose of the locking of a
constraint is to declare that the constraint cannot be removed for
the purpose of generating loop invariant.

The next traversal after the locking is depicted in Figure 4(d).
The locked constraint is enclosed in a box. Similar to the first
traversal, the path〈1〉, 〈2〉, 〈3〉, 〈1’〉 is again re-traversed. At
〈1’〉, the constraints do not entail the constraints of〈1〉 anymore.
Whereas in the first traversal we can obtain a candidate loop in-
variant by the removal oflock==0 andnew==old+1, here, due to
locking of new==old+1, we are prevented from generating a loop
invariant. As the result, the traversal simply continues, and it man-
ages to complete the traversal without visiting the error location
which is infeasible.

3. Comparison with Counterexample-Guided
Abstraction Refinement

In this section we present informally several academic examples
in order to highlight some essential differences betweenAR and
AL . We will use theBLAST theARMC systems as examples forAR

main ( ) {
1 : s =0;
2 : b =1;

/∗ 1∗ /
3 : i f ( b>0)
4 : s ++;
5 : e l s e
6 : s += complex func ( ) ;

. . .
/∗N∗ /

7 : i f ( b>0)
8 : s ++;
9 : e l s e
10 : s += complexfunc ( ) ;

11 : i f ( s>N) e r r o r ( ) ;
}
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Figure 5. Bad for AR, Good for AL : Exploration of Infeasible
Paths

here, and use as our own prototypeTRACER to exemplifyAL . We
consider real benchmarks later in Section 6.

3.1 Exploration of Infeasible Paths

The core idea of abstraction refinement with predicate abstraction
is to be as coarse as possible until a counterexample is found. If the
error is spurious, it extracts from the path some predicateswhich
demonstrate this. By minimizing the use of these predicates, one
can minimize the search space. On the other hand, minimizingthe
use of predicates gives rise to the possibility of exploringinfeasible
paths. This causes two problems: first, the verification stage of the
abstraction-verification-refinement cycle is expensive, even expo-
nential, in terms of the number of predicates. Second, the process of
refinement (in order to discover yet more predicates) is alsoexpen-
sive. This is perhaps the major shortcoming for counterexample-
guided refinement tools. We quote “A challenge is how to perform
an efficient analysis of an spurious counterexample and learn from
it a small set of facts such that the refined abstraction does not con-
tain the spurious error” [20].

Our first program is described in Fig. 5 (a) and illustrates the
expenses of exploring infeasible paths. A counter variables is
initialized to 0 together with another variableb which is given 1
(Lines 1-2)2. Then, the following code is repeatedN times: ifb is
positive thens is incremented by 1 through the statements++ (Line
4). Otherwise, assume that it is also incremented by 1 but through
a complex functioncomplex func (Line 6). After all the if’s are
considered, the value ofs is checked for being greater thanN (Line
11). A counterexample-guided refinement tool based on predicate
abstraction [10, 32] will discover theN+1 predicates for the case
b is positive: (s = 0), (s = 1), (s = 2), . . . , (s = N), one by one
before checking the error is not reachable. Similarly, it will add the
predicates corresponding to the case whenb is non-positive (Lines
6-. . . -10). However, notice that this code will be never executed
since it lies on infeasible paths.

AL will start the traversal considering the concrete states =
0∧b = 1. A crucial distinction with respect toAR is thatAL will
not consider the code whenb is non-positive (Lines 6-. . . -10) since
it is able to detect those infeasible paths (i.e.,s= 0∧b = 1∧b≤ 0
is unsatisfiable). A performance comparison, for this example, is
shown in Fig. 5(b). A proof of absence of bugs was achieved with
different values ofN whereN is the number of times the code in
Lines 3-6 is repeated. The horizontal axis represents the different
values ofN and the vertical axis the total time in seconds.

2 The ARMC [32] tool performs some constant propagation optimizationso
we hideb=1 to disable standard compiler optimizations. For simplicity, we
do not show the full code.
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3.2 Using Newly Discovered Predicates in Future Traversal

Another fundamental question inAR: after the set of predicates re-
quired to exclude the spurious counterexample has been discov-
ered, how should those predicates should be used in other paths?
We quote: “Most predicates are only locally useful, i.e., only useful
when analyzing certain parts of the program, and irrelevantin oth-
ers. If locality is not exploited, then the sheer number of facts may
render the abstract system too detailed to be amenable to analy-
sis, as the size of the abstract system grows exponentially with the
number of predicates.” [20]

main ( ) {
1 : s =0;
2 : i f (∗ ) z =0;
3 : e l s e z =999;

/ / 1
4 : i f (∗ ) s ++
5 : e l s e s +=2;

. . .
/ / N

6 : i f (∗ ) s ++
7 : e l s e s +=2;

8 : i f ( s+z>2∗N && z ==0)
9 : e r r o r ( ) ;
}
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Figure 6. Bad forAR, Good forAL : Locality Not Exploited Prop-
erly

Consider our next program in Fig 6(a). The program initializes
s to 0 (Line 1). Given a non-deterministic choice it assigns the
variable z to either 0 (Line 2) or 999 (Line 3). After that, the
program executesN times the following code: given another non-
deterministic choices is incremented by 1 (Lines 4-. . . -6) or by
2 (Lines 5-. . . -7). Finally, the program checks the error condition
s+z> 2*N && z==0 at Line 8. A counterexample-guided tool will
discover the predicates(s= 0),(s= 1), . . . ,(s= 2∗N). Then, it will
either add(z = 0) or (z = 999) depending on the traversal order.
W.l.o.g assume that it first discovers the predicate(z = 0). The
key observation is that all the paths that include(z = 999) (Line
3) will be traversed considering all the predicates discovered from
paths that include(z= 0) (Line 2), and hence, the traversal will be
prohibitively expensive.

Now, we explain how ourAL algorithm verifies this program
without facing the same problem thanAR. Our algorithm will basi-
cally perform the same amount of work for the casez= 0. However,
it traverses the paths that includez= 999 without consideration of
the facts learnt from paths that includez = 0 since it only keeps
track of the concrete state collected so far (i.e.,s = 0∧ z = 999).
Then, after a path is traversed (e.g., 1-3-4-. . . -6-8) our algorithm
can discover in a straightforward manner thatz = 999 suffices to
refute the error state and hence, the rest of the paths will besub-
sumed. It is worth mentioning thatAR will also discover the pred-
icate (z = 999) after the counterexample is found. The essential
difference, for this example, is that the predicates discovered pre-
viously ((s= 0),(s= 1), . . . ,(s= 2∗N) ) are used, and hence, the
traversal will be significantly affected by them.

Another performance comparison, for this program, is shownin
Fig. 6(b). The program was proved safe with different valuesof N
whereN is the number of times the code in Lines 4-5 is repeated.
The x-axis represents the values ofN and in the y-axis the time in
seconds to traverse all the paths that containz=999 (Line 3).

Note thatARMC does not suffer from the same problem than
BLAST in this program. In fact, it is comparable toTRACER in this
example. We believe that afterARMC discovers predicates for the
current path it is very conservative when it comes to considering

them for other paths. Moreover,ARMC performs more propagation
thanBLAST. More discussion in the next contrived program.

3.3 Running an Abstract State Hampers Subsumption

main ( ){
1 : i f (∗ ){
2 : x =0;
3 : y =0;

}
4 : e l s e{
5 : x= c omp le x func t i on ( ) ;
6 : y =0;

}
7 : s=x ;
8 : t =y ;

/∗ 1∗ /
9 : i f (∗ ){ s ++; t ++;}

. . .
/∗N∗ /

10 : i f (∗ ){ s ++; t ++;}
11 : i f ( t>N && s>N) e r r o r ( ) ;
}
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Figure 7. Bad for AR, Good forAL : Coarseness means Less Sub-
sumption

The next example illustrates another potential weakness ofAR
that is not present inAL . Even if locality is well exploited, the like-
lihood of subsuming thecurrently traversedstate may be dimin-
ished because the state, being abstract, is too coarse. Consider now
the program in Fig. 7(a). Given a non-deterministic choice,x and
y are assigned to 0 (Lines 2-3). For one of the choicesx is as-
signed to 0 through a complex function (Line 5) and for the other
it is assigned directly (Line 2). The use of a complex function in
this example is to avoid propagation of information performed in
practice byCEGAR tools, even though this feature is not part of the
basic principles ofAR. In the next statements, the variables is as-
signed tox (Line 7) andt to y (Line 8). Then, the following code
is executedN times: given another non-deterministic choices and
t are incremented by 1 (Lines 9-. . . -10). Finally, the conditiont>N
&& s>N is checked at Line 11.

In principle, a counterexample-guided tool will behave very
similarly as in the program in Fig. 6(a). Assume again w.l.o.g. that
the if-branch is first taken (Lines 1-3). After that, it will discover
the predicates(x = 0),(s = 0),(s = 1), . . . ,(s = N),(y = 0),(t =
0),(t = 1), . . . ,(t = N). Again, those predicates will be likely used
during the exploration of the else-branch (Lines 4-6). However,
an essential difference with respect to program in Fig. 6(a)is that
although the discovered predicate (x=0) is taken into consideration,
the abstract state cannot be covered since it is too coarse and does
not entail the predicate due to the loss of information caused by the
complex function. Therefore, the rest of paths will be explored with
the previously discovered predicates.

In contrast,AL does perform a systematic propagation of the
program state along the whole program. Therefore, even ifx is
assigned 0 through a complex function it will be able to know the
resulting value. The main consequence is that the state now will be
subsumed.

In Fig. 7(b) we depict the result of the verification of the pro-
gram in Fig. 7(a) with different values ofN, on the horizontal axis,
whereN is the number of times the code in Lines 9-10 is dupli-
cated. The vertical axis is the time (sec) of exploring the paths that
contain the statementx=complex func() (Line 5).

Here again, the performance ofARMC is comparable toTRACER
although with an important overhead. The reason is simple:ARMC
can propagate the value ofx through thecomplex function and
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main ( i n t N) {
1 : assume ( y>= 0 ) ;
2 : n = 0 ;
3 : whi le ( n < N) {
4 : y++;
5 : n++;

}
6 : i f ( y+n < N)
7 : e r r o r ( ) ;
}
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Figure 8. Bad forAR, Good forAL : No Loop Invariant Discovery

hence, it is not as abstract asBLAST and all paths that contain the
else-branch (Lines 4-6) will be subsumed.

3.4 Discovering Loop Invariants

Another major characteristic ofAR lies in the simple treatment of
loops.

We now address the treatment of loops. Any symbolic traver-
sal method will have to eventually discover, implicitly or explicitly,
loop invariants that are strong enough for the proof processto con-
clude successfully. In the case ofAR, the abstract model is refined
from spurious counterexamples by discovering which predicates
can refute the error path, and in this process, it ishopedthat these
predicates will in fact will be invariant through loops. (Ifnot, then
loop unwinding will be performed. This process may not termi-
nate.) A crucial observation is that the inference of invariant pred-
icates can speedup significantly the convergence of loops. How-
ever,AR does not have a systematic methodology for searching for
those invariant predicates although eachAR tool implements multi-
ple heuristics that work in practice very often. This topic is widely
treated in [8] but without experimental evaluation. Moreover, the
solution relies basically on an external loop-invariant generator to
guide the refinement phase. We consider the use of these toolsan
orthogonal issue since bothAL andAR would benefit from it.

This challenge motivates another principal design consideration
of AL . We take the philosophy that we should discover thestrongest
loop invariant, in accordance with the philosophy thatAL uses the
concrete model during normal straight-line traversal of paths. InAR
terminology, this may be described as choosingas manypredicates
as possible. In contrast,AR, in accordance with its basic philosophy
of choosing the fewest predicates in straight-line paths, essentially
adopts aweakest invariantphilosophy. Note that theAR approach
to loops is an implicit one because it focusses on conterexamples
alone, whereas inAL , there is also focus on predicates that are loop
invariant. Our next program exhibits a bad behavior ofAR when
invariant predicates are not considered during the refinement phase.
Conversely,AL searches for invariant constraints to strengthen the
abstract model as much as possible. The program in Fig. 8 (a)
illustrates the benefits. Given an input finite boundN and assuming
that a variabley is always non-negative, a while loop is executedN
times. The body of the loop increments by one the variablesy and
n. After the loop, the conditiony+n < N is checked.

AR tools will discover the predicates(n = 0),(n = 1), . . . ,(n =
N− 1) and also(y = 0), . . . ,(y = N). The key point is that they
perform a full unwinding of the loop. To understand whyAL avoids
the full unwinding is essential the concept of inference of invariant
constraints. Consider the path inside the loop until a back edge
is found (i.e.,〈1〉,〈2〉,〈3〉,〈4〉,〈5〉,〈3〉). The state at the endpoint
can be specified by the constraint sequencey ≥ 0∧ n = 0∧ n <
N∧y′ = y+1∧n′ = n+1 on the variablesx′ andy′. The constraint

main ( ){
1 : i f ( rand ()>0.5) s +=2;
2 : i f ( rand ()>0.5) s +=3;

. . .
3 : c =1;
4 : i f ( c ==0) e r r o r ( ) ;
}
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Figure 9. Bad forAL , Good forAR: Unnecessary Infeasible Paths
If Trivial Safety

sequence is obtained from the statements along the path. In the next
step, AL will attempt to infer which constraints are individually
invariant in order to get child-parent subsumption (i.e., “close” the
loop). It is straightforward to see thaty ≥ 0 is invariant through
the loop because when the program point 3 is first visited,y≥ 0 is
satisfied and the aforementioed constraint sequence obtained after
one iteration of the loop constrainsy′ to y′ ≥ 0.

The second essential step is when the exit condition is taken
(i.e., 〈1〉,〈3〉,〈6〉). AL will attach n ≥ N to all individually invari-
ant constraints (in this casey ≥ 0). More importantly, those two
constraints (y ≥ 0∧ n ≥ N) suffice to prove that the error condi-
tion y+ n < N is false. Therefore,AL can prove the safety of the
program with only one iteration through the loop.

A performance comparison for this program is shown in Fig. 8(b).
The program was proved safe with different values ofN. The x-axis
represents the values ofN, and the y-axis the time in seconds. Both
AR tools exhibit a prohibitive cost due to the full loop unwinding.

3.5 Unnecessary Detection of Infeasible Paths

So far we have illustrated the cases whereAL performs better than
AR. The advantage ofAR being exploited in the preceding examples
is the preservation infeasible paths while abstracting, modulo the
abstraction by lightweight loop invariants.

Unfortunately, this characteristic might be an important down-
side for AL if the program can be proved safe even traversing in-
feasible paths since all the work of generating abstractionwhile
maintaining infeasible paths would be wasteful.

Consider the program in Fig. 9(a). Assume an arbitrary number
of branches which can be false with some probability. After that,
there is an assignmentc=1 that trivially makes false the error
condition (c = 0). In the case ofAL , all infeasible paths will be
detected and, more importantly, the interpolants that ensure them
will be computed. However, in counterexample-guided refinement
tools the proof of the absence of bugs is found after the discovery
of a single predicate(c = 1). The performance ofAL and AR
proving safe the program is shown in Fig. 9(b) where the number
of branches is on the horizontal axis and the time in seconds on the
vertical axis.

We claim that eager detection of infeasible paths even if they are
not relevant to the safety property at hand is not limiting inpractice.
Intuitively, many of the infeasible paths must be considered in real
programs to block the error paths. Therefore, we believe that the
amount of extra work is often insignificant. The evaluation of our
approach with real programs in Sec. 6 supports this view.

To ellaborate let us consider a real programstatemate [26]
(1276 LOC) used commonly for testing WCET tools. The program
is automatically generated code by the STAtechart Real-time-Code
generator STARC. Its main feature is the significant amount of
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infeasible paths produced by the generator. We did the following
experiments by running it on three different properties, all of them
safe:

• We instrument the program as follows: we add in the last state-
ment of the programx=0 where x is a fresh variable, and
then add the conditionif (x>0) error(). That is, the instru-
mented program poses a similar behavior to the one in Fig 9(a).
For aBLAST-like tool, it suffices to add the predicate(x = 0) to
prove that the program is bug free. On the contrary,AL needs to
traverse the whole program with the corresponding cost due to
the encountered infeasible paths. The analysis time forBLAST
was negligible (less than 1 second) while our tool took 88 sec-
onds.3

• We now modify slightly the program: we now add the state-
mentx=0 at the beginning of thestatemate program and add
as before the conditionif (x>0) error() after the last state-
ment. Here,BLAST performance deteriorates since it discovers
now 21 predicates. The reason of this degradation is that if the
abstract counterexample has more than one causes for infeasi-
bility to select the best cause to be considered in refinements
is not straightforward. In fact, this challenge was alreadyob-
served in [19]: “If an abstract error trace has more than one
infeasibility, then existing refinement techniques used bySlam-
like tools have difficulties in choosing the “right” infeasibility
to refine.”

Surprisingly,BLAST takes 74 seconds andAL again 88 seconds.

• Finally, we instrument the same program to prove that the
number of statements does not exceed a certain bound. With
this more realistic safety property,AL overperformsBLAST
significantly since it can prove safety in less than 15 minutes
while BLAST’s run exceeds 1 hour.

Concluding remarks on Academic Examples

We have highlighted several technical aspects that are central in
AR: in particular, (a) traversing thru infeasible paths, (b) using
predicates in future traversal, (c) traversal using abstract states,
(d) discovering loop invariants, and finally, (e) reasoningabout
infeasible paths when this is unnecessary. In our examples above
to highlight the shortcomings ofAR, we note thatARMC did not
share the same behavior asBLAST in (b) and (c). The reason for this
is that, in general, the issue about what predicates to discover and
then, how to use these discovered predicates, is not standardized.
We call this thepropagationmethod. Indeed,BLAST has several
“options” implementing different strategies for propagation. In the
ARMC statistics for (b) and (c), it happens that the examples used
were effective againstBLAST (using some particular of its options)
and not againstARMC.

In order not to suggest a relative performance betweenARMC
andBLAST, consider a further example.

main{
1 : x =0; s =0;
2 : i f (∗ ) s ++; e l s e s=s +2;

. . .
3 : i f (∗ ) s ++; e l s e s=s +2;

4 : i f ( x != 0 ) e r r o r ( )
}

This program is clearly safe and can be proved byBLAST by
adding a single predicate(x = 0). Our algorithm will also prove
the absence of bugs after a path is traversed since the code in
Lines 2-. . . -4 will be further subsumed. Surprisingly,ARMC will
add predicates for the irrelevant code that updatess. Therefore, the
analysis will be prohibitively expensive. The reason we suspect is

3 on Intel 2.33Ghz 3.2 GB.

main ( ) {
x =0;

0 : i f (∗ ) x++;
1 : i f ( y>=1) x +=2;
2 : i f ( y<1) x +=4;
3 : i f ( x>5)
4 : e r r o r ( ) ;
}

(0,x,y) :- (1,x,y).
(0,x,y) :- (1,x′,y),x′ = x+1.

(1,x,y) :- (2,x,y),y < 1.

(1,x,y) :- (2,x′,y),x′ = x+2,y≥ 1.

(2,x,y) :- (3,x,y),y≥ 1.

(2,x,y) :- (3,x′,y),x′ = x+4,y < 1.

(3,x,y) :- (4,x,y),x > 5.

(a) (b)

Figure 10. A Program and Its CLP Model

that ARMC decides to propagate the state of the variables, and
hence it will add the predicates(s= 0), (s= 1), (s= 2), . . . . More
importantly, after a spurious counterexample is found it does not
have the “systematic mechanism to release” those predicates.

In summary, whileAR systems have the flexibility to adjust their
propagation strategy, they canin principle mimic our dual strategy
AL which usesexactpropagation, up to loops. However, the critical
difference is thatAL has the ability on the one hand to use predi-
cates in traversal, and on the other hand,disregardpredicates when
they are not needed. This on-demand use of predicates is the reason
why we have called our method “learning”.

4. Formalities
Here we briefly formalize a program as a transition system andthe
proof process as one of producing a closed tree of the transition
steps. It is convenient to use the formal framework of Constraint
Logic Programming (CLP) [22], which we outline as follows.

Theuniverse of discourseis a set of terms, integers, and arrays
of integers. Aconstraint is written using a language of functions
and relations. In this paper, we will not define the constraint lan-
guage explicitly, but invent them on demand in accordance with
our examples. Thus the terms of our CLP programs include the
function symbols of the constraint language.

An atomis of the formp(t̃) wherep is a user-defined predicate
symbol and thẽt a tuple of terms. Arule is of the formA:-B̃,φ
where the atomA is theheadof the rule, and the sequence of atoms
B̃ and the constraintφ constitute thebodyof the rule. Agoal Ghas
exactly the same format as the body of a rule. Aground instanceof
a constraint, atom and rule is defined in the obvious way.

A substitutionsimultaneously replaces each variable in a term
or constraint into some expression. We specify a substitution by the
notation[Ẽ/X̃], whereX̃ is a sequenceX1, . . . ,Xn of variables and
Ẽ a listE1, . . . ,En of expressions, such thatXi is replaced byEi for
all 1≤ i ≤ n. Given a substitutionθ, we write asEθ the application
of the substitution to an expressionE. A renamingis a substitution
which maps variables into variables. Agroundingis a substitution
which maps each variable into a value in its domain.

Given a goalG ≡ pk(X̃),Ψ(X̃), [[G ]] is the set of the groundings
θ of the primary variables̃X such that̃∃Ψ(X̃)θ holds. We say that a
goalG ≡ pk(X̃),Ψ(X̃) subsumesanother goalG ≡ pk′(X̃′),Ψ(X̃′)
if k = k′ and[[G ]] ⊇ [[G ]]. Equivalently, we say thatG is ageneral-
ization of G . We writeG1 ≡ G 2 if G1 andG 2 are generalizations
of each other. We say that a sequence issubsumedif its last goal is
subsumed by another goal in the sequence.

Let G ≡ (B1, · · · ,Bn,φ) and P denote a goal and program re-
spectively. LetR≡ A:-C1, · · · ,Cm,φ1 denote a rule inP, written so
that none of its variables appear inG . Let A = B, whereA andB
are atoms, be shorthand for equations between their corresponding
arguments. Areductof G usingR is of the form

(B1, · · · ,Bi−1,C1, · · · ,Cm,Bi+1, · · · ,Bn,Bi = A∧φ∧φ1)
providedBi = A∧φ∧φ1 is satisfiable.

A derivation sequenceis a possibly infinite sequence of goals
G 0,G 1, · · · whereG i , i > 0 is a reduct ofG i−1. Given a sequence
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τ defined to beG 0,G 1, . . . ,G n, thencons(τ) is all the constraints
of the goalG n. We say that a sequence isfeasibleif cons(τ) is
satisfiable, andinfeasibleotherwise.

A derivation tree for a goal has as branches all derivation
sequences emanating from this goal. In this tree, theancestor-
descendantrelation between nodes is defined in the usual way. A
derivation tree isclosedif all its leaf goals are either successful,
infeasible, or subsumed by some other goal in the tree.

In this paper, a program is compiled into a CLP program using
just one predicate symbol, . We thus omit writing a predicatesym-
bol in CLP rules and goals. Symbolic states are goals of the form
(k, x̃), c̃ wherek is a program point, ˜x is a list of variables represent-
ing the variables of the underlying program, and ˜c is a sequence of
constraints. Henceforth goals and states are synonymous. We say
that x̃ are theprimary variables of the goal. WhereG is a goal, we
write G (x̃) to indicate that ˜x are the primary variables ofG . The
details of how to generally perform a compilation of an underlying
program into a CLP program is straightforward, and so omitted.
Instead, we refer to an example in Figure 10.

We can now informally present, in Figure 11, a naive proof
method for programs which have been encoded as a CLP program.
The purpose of the description here is to set the stage for the
description of our advanced algorithm in the next section. The
algorithm starts with an initial goal representing the initial symbolic
state and produces a derivation tree. The problem at hand is to prove
that the constraints of certain goals meet a given safety obligation.
As the examples suggest, we assume this is implemented by an
error condition and so the problem reduces to proving that the error
state is not reachable. If the algorithm terminates normally (without
aborting), then the underlying program is safe. If not, the current
path in the tree provides acounterexampleto safety.

We assume, without losing generality, that each goal or state has
zero or exactly two descendants.

Naive(G )
switch(G )

caseG is anerror state: ABORT
caseG is terminal:return
caseG is infeasible:return
caseG subsumed by a state already traversed
default :

// G has descendantsG1 andG2; w.l.o.g. assumeG1 feasible
Naive(G1)
Naive(G2)
return

Figure 11. A Naive Algorithm

As an example, given the program in Fig. 1 (b), the derivation
tree is shown in Fig. 12.

The naive algorithm issoundin the sense that if it terminates
successfully, then the safety properties are assured. However, there
are two main shortcomings: it does not terminate in general,even if
it did, it does not scale. We address these shortcomings in the next
section.

5. Algorithm: Minimax
The algorithm below maintains knowledge about a stateG ≡
((k, x̃),c1, . . . ,cn) by means of a vector〈α1, ...,αn〉 where each
αi is anannotationof one of the following kinds:

• a maxannotation, indicating that the constraintci must be kept

• a min annotation, indicating that the constraintci must be
deleted, or

• a neutralannotation.

infeasible

infeasible

... (the rest of the second subtree)

infeasible

(3,x2,y0),x0 = 0,x1 = x0+2,x2 = x1 +4,y0 ≥ 1,y0 < 1

(4,x1,y0),x0 = 0,x1 = x0 +2,y0 ≥ 1,y0 ≥ 1,x1 > 5
infeasible

(0,x0,y0),x0 = 0

(3,x1,y0),x0 = 0,x1 = x0 +4,y0 < 1,y0 < 1

(3,x0,y0),x0 = 0,y0 < 1,y0 ≥ 1

(2,x0,y0),x0 = 0,y0 < 1

(1,x0,y0),x0 = 0

(2,x1,y0),x0 = 0,x1 = x0 +2,y0 ≥ 1

(3,x1,y0),x0 = 0,x1 = x0+2,y0 ≥ 1,y0 ≥ 1

(1,x1,y),x1 = x0 +1

(4,x1,y0),x0 = 0,x1 = x0 +4,y0 < 1,y0 < 1,x1 > 5

Figure 12. An Example Derivation Tree

A maxannotation essentially provides a restriction that any attempt
at abstracting this state must not “exceed” the constraint in ques-
tion. That is, any abstraction employed must result in this constraint
remaining entailed. Dually, aminannotation defines an abstraction
on the state in question. Why and when states need to be abstracted
is explained below.

A vectorv associated with a stateG ≡ (k, x̃, c̃) is jointly called
an annotated state. The meaning of an annotated state(G ,v) is
obtained in one of two ways:

• a maxinterpretationmax(v,G ) is the state obtained by deleting
all but themaxannotated constraints therein.

• dually, amin interpretationmin(v,G ) is the state obtained by
including all but theminannotated constraints therein.

and these are used in two main ways. The former is used in the
process of memoization where it is desired to memo the most
general state. The latter is used in symbolic traversal. We elaborate
below. Meanwhile, suppose we have the annotated stateG :

(k,x1,x2,x3),x1 = 1,x2 = 2,x3 = 3,〈min,neutral,max〉

Thenmin(G ) andmax(G ) are, respectively, the following two
states:

(k,x1,x2,x3),x2 = 2,x3 = 3
(k,x1,x2,x3),x3 = 3

The algorithm operates on annotated states, and is presented in
Figure 13. We assume, without losing generality, that each state has
up to two descendants. We also assume, for notational convenience,
that the descendant of a state has exactly one more constraint than
the state itself. Finally, wherev is a vector for a state, we write
v.neutral to denote the elongation ofv by one neutral annotation.

The algorithm begins with an initial state whose vector has no
minor maxannotations, only neutral annotations. As it progresses,
maxannotations are created to indicate constraints that are needed
in order to preservefalsepaths (see the case for infeasible state).

In the more general case where stateG has descendants, we
consider the first subcase whereG has no looping parent. Here we
process its first descendantG 1 which cannot be an infeasible state.
(W.l.o.g, we assume every nonterminal feasible state has atleast
one feasible descendant.) Supposev was the input vector forG , and
that we just obtained a vectorv1 fromG 1. Now we process the sec-
ond descendant but now, instead of usingv, we usev1. This means
that we are actually running what is an abstraction of the stateG 2.
If the processing of(v1,G 2) then concludes successfully or with a
real counterexample, we are done. Otherwise, it must be the case
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that a “conflict” has occurred, that is, somemin annotations inv1
conflicts with somemaxannotations required by the processing of
G 2. It is here when the system is restartedat the looping parent
which gave rise to the offending min annotation(s).

The crucial step to note that the restart will now take place not
with the original parent, say (vp,Gp), but with a new vector(v,Gp)
wherev is such that the offendingmin annotation(s) invp are now
replaced bymaxannotations (via themaximize() function in Figure
13). The effect of this is that certain constraints are nowlockedand
prevented from beingmin annotated again. This is the mechanism
for unrolling a loop when a previous attempt at invariant discovery
fails.

We now describe the alternative subcase whereG has a looping
parentGp. As mentioned above, straightforward symbolic execu-
tion does not terminate and so some speculation in the form ofloop
invariantdiscoveringis required. Theminannotations represent our
mechanism for this. More precisely, at a looping stateG , one which
has parent stateGp with the same program point, we employ an al-
gorithm to determine which of the constraints inGp areindividually
invariant through this path fromGp to G . The idea is that theother
constraints are nowmin annotated. More details are provided in
the description of the functioninvariant() below. Although it seems
that a loop invariant can always be found in this manner, eg. we
could annotateall the constraints inGp obtaining a correct (though
generally useless) loop invariant, in general some constraints inGp
may be alreadymax-annotated. It is at this point that loop invari-
ant discoveryfails, and so the attempt to “close” the loop here is
abandoned.

Finally we explain the restart strategy of our algorithm. Note
that eachmin annotation is associated uniquely with a stateGp
representing a particular (parent) looping point. That is,the min
constraint arose because it was not independently invariant. The
general idea is simply that when amin annotation is designated
“conflict”, we perform a restart at the associated stateGp. All
system data structures are essentially reset to the point whereGp
was previously executed, with one crucial difference. Thistime,
Gp will be executed with moremax annotations because some
conflictingminannotations are rewritten tomax. In short, we restart
but this time some constraints are “locked”.

We now fill in some details for the algorithm in Figure 13.

• interpolate(c̃,v)
This returns a “minimal” vectorv′ instantiatingv4 such that
max(v′, c̃) is infeasible. Essentially this is computed by adding
the fewestmaxannotations tov, thus representing a computa-
tion of an “interpolant”. In our experiments described below,
we employ a greedy algorithm which deletes constraints from
c̃, proceeding from the first constraint in ˜c, as long as the re-
maining constraints remain infeasible.

For example, consider the following annotated stateG :

(k,x1,x2),x1 > 3,x1 = y1 +1,y1 = 2,x2 = 0,
〈max,max,neutral,neutral〉

Then interpolation ofG wrt the conditionx1 < 0 would produce
the annotation vector:

〈max,max,max,neutral〉

That is, the third constrainty1 = 2 is now annotatedmaxfrom
neutral, while the other annotations are unchanged. Note that
the annotation of the last constraint remains neutral because this
constraint is not needed to demonstrate infeasibility.

• subsumed(G ,G1)
Simply, this istrue if the stateG is subsumed byG1.

4 v′ has all themin/maxannotations ofv.

• invariant(c̃(x̃),v, c̃p(x̃p)))
Note that ˜c is a prefix of ˜cp, and that we have indicated the pri-
mary variables of ˜c andc̃p here. This function returns a vector
v1 which is identical tov except that some neutral annotations
have been changed tominannotations such thatmin(c̃(x̃),v) en-
tails min(c̃p(x̃p),v). More precisely, a constraint in ˜c is said to
beindividually invariantif it holds through the path in question
without consideration of any other conditions. All other con-
straints in ˜c will then be annotatedmin. Essentially, this is the
loop invariant discovery phase where the new state is abstracted
in such way that it is now subsumed by its parent state.

For example, consider the program snippet:
0: x = 0;
1: if (y > 0) 2: while (*) 3: x++; y++;

and so the stateGp ≡ (2,x,y),x = 0,y > 0 represents an entry to
the loop. We then obtain from this state a derivation sequence
leading toG ≡ (2,x1,y1),x = 0,y > 0,x1 = x+ 1,y1 = y+ 1
corresponding to the end of the loop body. The idea now is that
the constraint x = 0 must be deleted in order for the latter state
to be subsumed by the former, that is:

(2,x1,y1),y > 0,y1 = y+1 is subsumed by(2,x,y),y > 0.

Thus, for example,invariant(x= 0,y> 0,〈neutral,neutral〉,x=
0,y > 0,x1 = x+1,y1 = y+1) is 〈min,neutral〉 where themin
annotation has now replaced the first neutral annotation.

It is important to note that such an invariant may not always be
found (because of the requirement that only neutral annotated
constraints can be abstracted). In such a case, the function
returns a null value as failure.

• State associated with a conflictv:
Recall that a conflict vector is such that at least of one of its
maxannotations had previously been aminannotation. Further
recall that eachminannotation had been brought into existence
because of one of two reasons:
(a) the invariant() function, which serves to delete constraints
in order to obtain a loop invariant. Here the “associated state”
refers to the looping parent state in question.
(b) in the case for subsumption, it is indicated which constraints
must be deleted in order for subsumption to hold. Here “associ-
ated state” refers to the closest state which is a common parent
of both the subsumed and subsuming state.

• push system(G ), pop system(G )
The push saves the state of the system and timestamps it with
the identifierG . The pop restores to system state to the point
where the corresponding push took place.

• merge(v1,v2)
This function simply merges theminandmaxannotations of the
input vectorsv1 andv2 into a single vector, possibly replacing
neutral annotations in one vector if the corresponding annota-
tion in the other vector is is amin andmaxannotations. This
function is well-defined becausev1 andv2 do not conflict, that
is, it is not the case that one vector has amin annotation while
the corresponding annotation in the other is amaxannotation.

• memo(G , v)
This simply records in persistent memory the fact that the anno-
tated state(G ,v) has already been processed. It survives forever
unless retracted by apop system(Gp) operation of some ances-
tor Gp.
We now demonstrate a run of the algorithm on the example of

Fig. 1 (c), whose tree traversals are depicted in Fig. 4. Initially, the
memo table is empty, and we start the algorithm by callingMinimax
with the annotated state(0, lock0,new0,old0,flag0),〈〉 denoting the
initial state of the program where all variables are unconstrained.
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Minimax(G ≡ ((k, x̃), c̃), v) returns OK(v) or CONFLICT(v)
switch(G )

caseG is anerror state:
let c̃ denote the constraints in min(G ,v)
if (c̃ is feasible) ABORT
return CONFLICT(interpolate(c̃1,v))

caseG is terminal:return OK(v)
casesubsumed(min(G ,v),max(G1,v1)) for some memo’d(G1,v1):

let c̃2 denote the common prefix of constraints inG andG1
v2 = v except some neutral annotations are replaced bymin
In particular,v2 has the fewest such replacements so that

min(G ,v) is subsumed bymin(G1,v2).
return OK(v2)

casemin(G ,v) is infeasible:
return OK(interpolate(c̃,v))

caseG has a looping parentGp:
for (each looping parent)Gp of G

let c̃p denote the constraints ofGp
if (v = invariant(c̃(x̃),v, c̃p(x̃p)) return OK(v)
continue // (to the case below)

default :
// G has at most two descendantsG1 andG2; G1 is feasible
if (G is a looping point)push system(G )
STATUS(v1) = Minimax(G1, v.neutral)
if (STATUS == CONFLICT){

if (G is associated with conflictv1) {
pop system(G );
return Minimax(G ,v1)

} else returnCONFLICT(v1)
}
if (G doesn’t have a second descendant) return OK(v1)
let G2 denote the second descendant
// speculative abstraction
STATUS(v2) = Minimax(G2, v1.neutral)
if (STATUS == CONFLICT){

if (G is associated with conflictv2) {
pop system(G );
return Minimax(G ,v2)

} else returnCONFLICT(v2)
}
v′ = merge(v1,v2)
memo(G , v′);
return OK(v′);

Figure 13. The Minimax Algorithm

With these arguments, only the default case can be taken, where
the algorithm generates a reductG1 of the current stateG and calls
Minimax recursively5. The reductG1 is

(1, lock1,new1,old0,flag1),
lock1 = 0,new1 = old0 +1,flag1 = 1.

(1)

The annotation is the vector〈neutral,neutral,neutral〉6. Each el-
ement of the vector corresponds to the constraint added by the
reduct. In this recursive call also, only the default case can be se-
lected, where we executepush system(G ) (for G (1)) since the
state corresponds to looping point and we recursively callMini-
max with the annotated state(1, lock1,new1,old0,flag1), lock1 = 0,
new1 = old0+1, flag1 = 1, new1 6= old0, 〈neutral, neutral, neutral,

5 As in this case, there is only one outgoing transition from the initial pro-
gram point〈0〉. The transition is feasible, and we assume that the generation
of second reductG2 and its recursive call in Fig. 13 is not executed.
6 In Fig. 13 we only add oneneutral, however, in general, this depends on
the number of constraints added in the reduction.

neutral〉. Notice that here we added a constraintnew1 6= old0 to the
constraint sequence, and correspondingly lengthen the vector with
a neutral.

We perform generation of reducts recursively, such that the
derivation sequence corresponds to the path in Fig. 4 (a). Inthe
recursive call that corresponds to〈1’〉, the state is:

(1, lock2,new1,old1,flag1), lock1 = 0,new1 = old0 +1,
flag1 = 1,new1 6= old0, lock2 = 1,old1 = new1

(2)

and the annotation is a vector of neutral values corresponding to
the sequence of constraints. (2) is subsumed by its ancestor(1) if
we remove the constraintslock1 = 0 andnew1 = old0 + 1 leaving
only flag1 = 1. Projecting this constraint on the primary variables
of the ancestor and writing it using the proper variable names we
get the constraintflag = 1. Removing the same constraints from
(2) results in the projectionflag = 1, lock = 1, and old = new.
Obviously, this conjunction entailsflag= 1. The algorithm marks
lock1 = 0 andnew1 = old0 + 1 for deletion (min) in the vector.
The vector at〈1’〉 becomes〈min,min,neutral, neutral, neutral,
neutral〉. The first twomins correspond to the first two constraints
in the constraint sequence that must be deleted.

Subsequent traversal propagates the deletion (min) information.
In the path shown in Fig. 4 (b), for instance, the state at〈1”〉 is

(1, lock3,new2,old1,flag1), lock1 = 0,new1 = old0 +1,
flag1 = 1,new1 6= old0, lock2 = 1,
old1 = new1, lock3 = 0,new2 = new1 +1

(3)

and the vector is〈min,min, neutral, neutral, neutral, neutral,
neutral, neutral〉. The first two markings of the vector denotes
the deletion oflock1 = 0 andnew1 = old0 + 1, inherited from the
traversal of Fig. 4 (a). Subsumption of (3) by the ancestor (1),
which is handled by the second case ofMinimax, holds without
further need for deleting constraints. In this case, the same vector
is returned without modification.

Notice that〈3〉 is visited both in Fig. 4 (a) and Fig. 4 (b) such
thatMinimax, combines the vectors returned by the recursive calls
using themerge procedure. In this case, both path〈3〉,〈1〉 and
〈3〉,〈4〉,〈1”〉 return the same vector〈min, min, neutral, neutral,
neutral, neutral〉, which is then included in the return value of
Minimax.

Again, by the previous deletion of constraints, the programstate
at 〈1〉 is described byflag= 1. This allows the algorithm to make
the reduction step from〈1〉 to 〈5〉 in Fig. 4 (c). The reduction from
〈5〉 to 〈6〉 is infeasible, where in its third caseMinimax handles the
state

(6, lock1,new1,old0,flag1), lock1 = 0,new1 = old0 +1,
flag1 = 1,new1 = old0,flag1 = 0.

(4)

with annotation〈min, min, neutral, neutral, neutral〉. The first two
min markings are due to subsumption of (2) by (1) explained pre-
viously. Here the algorithm computes an interpolant by calling the
interpolate function with the constraint sequence as the first argu-
ment and the vector as the second to compute a minimal set of
constraints that must be kept in order to preserve the unsatisfiabil-
ity. The result of this computation is the updating of the vector with
maxannotations. Since bothflag1 = 1 andflag1 = 0 must be kept
to maintain the unsatisfiability of the constraints, we markthe cor-
responding positions in the vector withmax, resulting in the vector
〈min, min, max, neutral, max〉.

The algorithm visits the error point〈8〉 in Fig. 4 with the con-
straint sequencelock1 = 0, new1 = old0 + 1, flag1 = 1, new1 =
old0, flag1 6= 0, lock1 = 0 of the state and vector〈min, min, neutral,
neutral, neutral, neutral〉. Here the algorithm discovers the unsat-
isfiability of the sequence, and therefore, it has found a conflict due
to over approximation. It also discovers that the point of conflict is
at 〈1〉, where the removal of the constraints took place. Here the al-
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BLAST (AR) TRACER (AL)
Program LOC P T S T

qpmouse 400 4 0.42 974 0.42
tlan 8069 14 17.10 4382 5.78

cdaudio 8921 * * 6258 10.53
diskperf 6984 92 82.3 3326 8.21
floppy 8570 * * 3124 6.47
kbfiltr-safe 5931 45 44.03 1392 2
kbfiltr-unsafe-1 62 108.59 463 0.56
kbfiltr-unsafe-2 53 71.92 283 0.32
serial 10380 * * 51935 328.6

tcas-1a-safe 394 23 3.6 6029 6.97
tcas-1b-safe 56 78.35 6050 6.77
tcas-2a-safe 22 3.25 6029 6.74
tcas-3b-safe 39 15.68 6017 6.63
tcas-5a-safe 31 10.29 6029 6.36
tcas-2b-unsafe 40 17.46 91 0.01
tcas-3a-unsafe 25 18.96 243 0.16
tcas-4a-unsafe 45 14.44 243 0.15
tcas-4b-unsafe 36 6.44 91 0.01
tcas-5b-unsafe 54 40.31 91 0.02

Table 1. BLAST Benchmarks

gorithm mark the constraint such that it can no longer be removed,
that is, “locking” it, and restarts the traversal from the conflict point,
that is,〈1〉 after callingpop system(G ) (with G the state of (1)).
The second traversal is shown in Fig. 4 (d). It uses the procedures
that have been exemplified here and therefore we do not elaborate
further.

A soundness proof for the algorithm is nontrivial only in the
following aspect: when a stateG is declared subsumed by an entry
G1 in the memo table, it is possible that the memo entry is for a state
within a loop that isnot yet closed. Closure here means that the
state at hand has been fully traversed and analyzed. That is,even
thoughG1 appears in the memo table, its parentGp is a looping
state which is not yet memoed. This means thatG1 itself is not
yet closed. More specifically, themaxannotations forGp are not
yet finalized, and becauseG1 is in the loop body ofGp, its own max
annotations are not finalized. A problem can thus arise when we use
the current memo information aboutG1, which depends only on its
maxannotations, in order to subsume other states (such asG ). It
is for this reason that in the process of subsumption, the subsumed
state generates amin annotation on constraints that itdepends on
to be deletedin order to be subsumed. Overall, the formal proof of
soundness, while nontrivial, is not deep and hence omitted.

We conclude this section by mentioning that the central stepof
deleting constraints, the effect of amin annotation, can in fact be
relaxed to some other mechanism that abstracts the state at hand.
Instead of deleting a constraint, one couldtransforma constraint.
For example, one could apply a process of “slackening” to equa-
tionsx = y to obtain an inequality, eitherx≤ y or x≥ y. This kind
of abstraction is in fact employed in the BLAST system which we
benchmark against, but at this time, we do not use for our own ex-
perimental results. Even more generally, we could replace not one
but a collection of constraints by another collection whichis en-
tailed by the original collection.

6. Experimental Evaluation
We ran our prototype,TRACER, on several programs and compare
with BLAST [10]7, a state-of-the-art verification tool based on ab-

7 We also tried withARMC available at [33] but we were only successful to
run ontcas andstatemate but timeout expired in both cases after 30m
and 1h, respectively.

straction refinement. Since we wanted a faithful comparisonwith
BLAST we downloaded all programs from [9] already instrumented
with safety conditions, and together with a script which runs those
programs with the most favorable system options.

The first two programs are Linux device drivers:qpmouse and
tlan. The device drivers can acquire or release a spinlock to write
or read data. The safety condition checks that the drivers donot
perform two consecutive calls in order to either acquire thespinlock
or release it.

The next five programs are Microsoft Windows device drivers:
cdaudio, diskperf, floppy, kbfiltr, andserial. These pro-
grams are run on an IO request packet (IRP) completion specifica-
tion. The specification provides correct ways for the devicedrivers
to handle IRPs by specifying a sequence of functions to be called
in a certain order, and specific return codes.

Finally, tcas is an implementation of a traffic collision avoid-
ance system, a real-life safety-critical embedded system.The pro-
gram is instrumented with five safe conditions and five unsafe.
Those properties are about anti-collision conditions: safe advisory
selection, best advisory selection, avoid unnecessary crossing, no
crossing advisory selection, and optimal advisory selection.

The results, obtained on an Intel 2.33Ghz 3.2 GB, are summa-
rized in Table 1. We present two set of numbers: forBLAST the
number of discovered predicates (P) the total time in seconds (T),
and forTRACER, our prototype tool, the number of nodes of the ex-
ploration tree (S) and also the total time in seconds (T). Although
the number of discovered predicates and nodes of the exploration
tree are not comparable they are shown to provide an idea about the
hardness of the proof.

In summary,TRACER is competitive withBLAST in most of
the benchmark examples, sometimes much faster. However, there
are two programs whereBLAST is faster (tcas-1a-safe, and
tcas-2a-safe). We believe the main reason is thatTRACERdoes
perform some extra work due to unnecessary infeasible paths. Nev-
ertheless, the numbers show that the differences are not significant.

Note that programs such ascdaudio, floppy, andserial are
annotated with the symbol ’*’ in theBLAST column which means
that BLAST raised an exception and aborted. Therefore, we were
not able to verify those programs usingBLAST. However, we are
aware thatcdaudio and floppy have been proved safe in [20]
after 21m59s and 11m17s discovering 196 and 156 predicates,
respectively on an IBM ThinkPad T30 laptop with 2.4Ghz Pentium
processor and 512MB RAM. We were surprised by the numbers
obtained for the cases where the programs were proved unsafe.
In these cases,TRACER found a real counterexample much faster
than BLAST. We believe that the reason can lie on the difficult in
choosing the ”right” infeasibility to refine since thetcas program
poses an important amount of infeasible paths.

7. Concluding Remarks
We presented Abstraction Learning (AL ), a dual approach to sym-
bolic traversal toCEGAR (AR). The main algorithm is a process of
classifying constraints intomin andmaxconstraints. Themin con-
straints are those which must be abstracted in order to achieve sub-
sumption and loop invariance, while themaxconstraints are those
those which must not be abstracted so as to detect infeasiblepaths
and also to preserve safety. The idea is to have as few of thesetwo
kinds of constraints as possible. We then discussed the relative mer-
its of AL andAR using academic examples. WhileAL escapes sev-
eral shortcomings ofAR, it does have the shortcoming of detecting
infeasible paths when this may not be necessary.

We then evaluated our prototype implementationTRACER
againstBLAST, using a significant benchmark collection obtained
from the BLAST literature. The results showed competitive per-
formance, with some examples showing great improvement. Inall

11 2010/7/16



cases, the results show that the potential shortcoming of systemati-
cally detecting infeasible paths was in fact affordable.

In order to strengthen this point, first note that verification
was not the only motivation for this work onAL ; also, it was
analysis. That is, we wished todiscoverproperties, and not just
to verify them8. As a quick example of analysis, consider running
AL on an underlying program butwithout a safety property9 The
minimax algorithm would still produce a useful closed prooftree.
For example, this tree could serve as a (now path-sensitive)control
flow graph for use by standard analysis algorithms. such as those
for determining an upper bound for a variable, or for determining
certain relationsips between variables. Such a graph couldalso be
used by path-sensitive algorithms such asBLAST andTRACER, but
this time the motivation isspeed. For example, constructing such
a graph for thetcas program, and running the graph (as though it
were just another program) inTRACER using the provided safety
properties, we saw a three-fold increase in speed. Perhaps most
importantly, this particular proof tree can be constructedoffline.

We have in fact run many other programs with no safety prop-
erty, and have found the size of the tree (which will always benot
greater in size than when a nontrivial safety property is used) to
be very manageable. This then, is added evidence that the apparent
shortcoming of systematically detecting infeasible pathsis, in fact,
affordable in practice.
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