Abstraction Learning

Joxan Jaffar

National University of Singapore
joxan@comp.nus.edu.sg

Abstract

A state-of-the-art approach for proving safe program@asinter-
Example-Guided Abstraction Refinem@ritGAR) which performs
an "abstraction-verification-refinement” cycle by stagtiwith a
coarse abstract model that is then refined repeatedly whaetev
spurious counterexample is encountered. In this paper,resept
a dual approach which starts with a concrete model of therarog
but progressively abstracts away details but only whenetlzes
known to be irrelevant. We call this concefibstraction Learning
(AL). In order to deal with loops, our algorithm is encapsulated
an iterative deepening search where, because of a partaeh
bound, abstraction is applied to program loops to avoid llingo
beyond the bound by building cycles. This abstraction cpoeds
to the strongest loop invariant we can discover. ASHEGAR, this
abstraction is of a speculative nature: if the proof is unsasful,

the abstraction is removed and another attempt using a deepe

bound is initiated.
A key difference betweemL and CEGAR is that AL detects

moreinfeasible pathsn the state-space traversal phase. We argue

that this key feature poses unique benefits, and demonstrate
performance of our prototype implementation against thtesbf-
the-artBLAST system.

1. Introduction

The increasing complexity of industrial software systemges the
development of verification techniques to identify errorpoove
programs safe. In the process of verification, there are tamm
desired characteristics: accuracy (i.e., no false pesitiend scala-
bility. In general, one feature is achieved at the expensiesofther.
One remedy to this fundamental problemaisstract interpreta-
tion [15] that attempts scalability by eliminating irrelevaretails
to the property of interest. However, arbitrary abstraci®inef-
fective since the lack of control on the loss of informatiasity
results in many false positives.

CounterExample-Guided Abstraction Refinem@#GAR, or
more briefly, AR) [2, 14, 34], has been a very successful tech-
nique for proving safe programs. This technique starts avitbarse
abstraction that represents an abstract model of the pro¢ah-
straction phasp The abstract model is checked automatically for
the desired propertyvérification phasg If no error is found, then
the program is safe. Otherwise, an abstract counterexampte-
duced which shows how the abstract model violates the piypper

[Copyright notice will appear here once "preprint’ opti@réemoved.]

Jorge Navas

National University of Singapore
navas@comp.nus.edu.sg

Andrew E. Santosa

National University of Singapore
andrews@comp.nus.edu.sg

The counterexample is then analyzed to test if it correspdnd

a concrete counterexample in the original program. If thishe
case, areal error has been found and the program is reperted a
safe. Otherwise, aounterexample-driven refinemestperformed

to refine the abstract model such that the abstract couatenge

is excluded fefinement phageand the process starts again. Several
systems have been developed during recent years followisgp-
proach such asLAM [3], Magic [12],BLAST [10], ARMC [32], and
Eureka [1].

In this paper, we present @ual algorithm to AR, called Ab-
straction Learning(AL). Essentially, this technique starts with the
most possible precise abstraction: the concrete modeleoptto-
gram. Then, the concrete model is checked for the desirguepso
(verification phasg If a counterexample is found, then it must be
a real error and hence, the program is unsafe. Otherwisgyrthe
gram is safe. In order to achieve scalability during thefieaiion
phase, our technique abstracts the model by learning the tfzet
are irrelevant to refuting error statdedrning phasg and then it
eliminates those facts from the modabétraction phase

Since a program may contain loops, the above process needs
to be run on the top of aiterative deepeningearch described as
follows. For a given depth, an abstraction is computed aed trs
generalize the states at the traversed looping points (@mogoints
where the merging of control paths construct some cycliatig).
Although the abstraction is nevertheless an over-appratim,
our algorithm attempts to minimize the loss of informatiasridg
the process. The abstraction constitutes what is knownlasma
invariant Typical generation of loop invariants employ advanced
mathematical reasoning (e.g., in [8]). In contrast, our potation
of the abstraction iBghtweightas it is computed by simple syntac-
tic manipulation of constraints. Thespeculativeabstractions for
loops may be still too coarse to establish safety. In thig ctse
depth-bounded search is run repeatedly increasing thé dept
and executing again theerification-learning-abstractiomprocess.
More importantly, the facts needed to exclude the counsangne
are kept in subsequent iterations. This iterative deeges@arch
will eventually either discover loop abstractions pre@seugh to
verify the program, find a true counterexample, or runs ferev

The rationale behind of the iterative deepening algorithrtoi
be as tight as possible to the concrete domain while stillinggthe
verification phase finite. At this point, it is clear that otgatment
of loops resemblesR where an abstraction is obtained via refine-
ment in the hope of being invariant through loops. If mat,needs
to refine on demand parts of the abstract model which have been
already constructed. However, a fundamental distincsahataL
attempts always to construct the most precise abstraatidodps
by searching for the strongest lightweight loop invariants

In summary, the main principle of design of the verification-
learning-abstraction loop performed by is to be as accurate as
possible with respect to the concrete model in order to perfan
earlier detection ofnfeasible pathsluring the verification stage.
This principle is in opposition taRr in which many actual infea-

2010/7/16

sible paths may be considered since they can be feasible thee
current coarse abstract model. While there are clearly dmmne-

fits of using the concrete model, it is also clear that thestiment

in added work for accurately reasoning about paths may natyal
pay off. Our thesis is that this investment often pays oft| anen

in examples where it does not, it is affordable. We will dssand
experimentally evaluate the performance issues usingeatiacx-
amples against the BLAST and ARMC systems, and we will use
real benchmarks (in fact these are BLAST benchmarks) in esmp
ison with the BLAST system.

1.1 Related Work

Our work is related to counterexample-guided abstractedime-
ment CEGAR) [1, 2, 14, 20, 21, 34], which perform successive
refinements of the abstract domain to discover the rightrabst
tion to establish a safety property of a program. An apprdbah
uses interpolation to improve the refinement mechanisocea&fAR
is presented in [20, 27]. Here, interpolation is used to maprthe
method given in "Lazy Abstraction” [21], by achieving bette-
cality of abstraction refinement. Ours differs fraag GAR formu-
lations in some important ways: first, insteadrefining abstract
states, weabstracta set of concrete states. In fact, our algorithm
abstracts a state after the computation subtree emanabimgtfie
state has been completely traversed so that infeasible pathbe
detected, and the abstraction is constructed frdeaeing phase
where the interpolations of the constraints along the pettie
subtree are generated. A second difference is: our algoiitker-
polates dreeas opposed toath More importantly, our algorithm
only traversespurious pathslue to abstractions done at looping
points, unlikeCEGAR where abstraction is done everywhere. We
shall exemplify these differences with some academic ekeasrip
Sec. 3 and in a comparison with teeAsT tool [10] in Sec. 6.

Recently, there have been some interesting works that ase te
generation features to enhance the process of satisfyomgpgres.
Synergy [19] carries a forest of tests cases in order to fincktyu
a counterexample through loops with deterministic choigbere
BLAST-like tools may fully unroll the loopsbAsH [7] uses only
test generation operations, and it refines and maintainsuadso
program abstraction as a consequence of failed test gemreog-
erations. By doing so, expensive calls to the theorem proaar
be avoided during the refinement phase. The previous idea-is i
proved and extended for intraprocedural programsmysH [18].
We consider that these ideas can be also applied to our ngon al
rithm.

An important alternative method for proving safety of prangs
is translating the verification problem into a Boolean folantinat
can then be subjected to SAT or SMT solvers [4, 5, 24, 25, 30,
36]. In particular, [11] introduces bounded model checkinbich
translatek-bounded reachability into a SAT problem. While prac-
tically efficient in case when the property of interest islaied,
this approach is in fact incomplete, in the sense that the space
may never be fully explored. An improvement is presente@8j,[
which achieves unbounded model checking by using intetipola
to successively refine an abstract transition relationighthien sub-
jected to an external bounded model checking procedurenh-Tec
niques for generating interpolants, for use in state-efdhtt SMT
solvers, are presented in [13]. The use of interpolants tsmtze
seen in the area of theorem-proving [29].

Our work is also related to various no-good learning teahesq
in CSP [17] and conflict-driven and clause learning techesgin
SAT solving [6, 11, 31, 35]. These techniques identify stbeé
the minimalconflict setor unsatisfiable coref the problem at hand
w.r.t. a subtree. This is similar to our use of interpolatiwhere we
generalize a precondition “just enough” to continue to rainthe
verified property.

main () { main () { main () {
x=0; x=0; 0: lock=0; new=old+1;
0: if (%) x++; 0: if (%) x++; flag=1;
1:0f (%) x+=2; 1 if (y>=1) x+=2; 1: while (new!=o0ld)}
200t () x+=4; 20 if (y<l) x+=4; 2: lock=1; old=new;
3 if (x>7) 3: if (x>5) 30 if (%)
?1 error (); ;1 error (); 4: lock=0; new++;
5: if (! flag)
6: lock=0;
7: if (lock==0)
8: error ();
}
(@) (b) (c)

Figure 1. Three Example Programs

@ x<=0

subsumed

Figure 2. Interpolation and Subsumption of Feasible Paths in Pro-
gram 1(a)

Finally, our closest related work has been recently present
in [23]. They consider the problem of exploring the sear@etr
of a CLP goal in pursuit of a target property. Although some of
the main features of our algorithm such as detection of gifda
paths, interpolation, and subsumption are already predetihe
algorithm does not perform automatic abstractions for $oohich
we consider the core of our algorithm proposed in this paper.

2. The Basic ldea

Our algorithm traverses the execution tree of the prograimtgw
attempting to find an execution path that reaches etheor ()
function. If such path cannot be found, the it concludes that
program is safe.

Let us first consider the program in Fig. 1(a). Here (thesym-
bol denotes a condition of nondeterministic truth values €kecu-
tion of the program starting in states satisfyixep results in the
execution tree shown in Fig. 2(a). A node corresponds toatime
(i.e., program point) and can be labeled with representing the
state at that particular location or withou} representing itéter-
polant (see below). We may annotate the node with a capital letter
so that we can refer to it without ambiguity. The node is drawith
filled circle if the path reaching it is infeasible. An edg@mesents
the control flow from one location to another and can be labele
with statements (predicates are denoted by [.]).

Suppose that the error condition @) is x>7. The algorithm
performs a depth-first traversal, first executing the patmfA to
F symbolically by strongest postcondition computationiszdver
the constraints that hold at every point along the path. Rius)
we label F with the state=0 which falsifies the error condition.
However, a more general formula, seg=5 would accomplish the
same. The constraimk=5 is an interpolant, since it is entailed by
x=0 and it falsifiesx>7. We could use it to generalize the label of
F, however, we rather use as general an interpolant as il
clearly in this case, it ig<=7. Hence, in Fig. 2(b) we replace the

2010/7/16

label of F &=0) with the interpolantx<=7. In this way, node G
with statex=4 (which has not yet been traversed) is nembsumed

by F with the new interpolant (since=4 satisfiesx<=7). Here

we conclude that it is not possible to fiedr or () by expanding

G and the algorithm backtracks. Here we can again generate an
interpolant for G such that it remains subsumed by F. The most
general is agair<=7, which we use to label G in Fig. 2(b).

We next use the interpolants of F and G to produce a gener-
alization of D. We first compute candidate interpolants frira (x=4}
interpolants of F and G, w.r.t. the state transitions fronoF and [x>5]
from D to G. The final interpolant of D is the conjunction of siee
candidate interpolants. In this process, we first renameshables
of F and G with their primed versions, such that F and G bottehav
the labelx’ <=7. First consider the transition from D to F, which is
in fact equivalent to aki p statement, and hence it can be repre-
sented as the constraixit==x. It can be easily seen that the label
x==0 of D ensures the unsatisfiability af ==x, x’ >7. Here again
we compute an interpolant, one that is entailecby0 but refutes
X' ==x, X’ >7. As interpolant, we again choose=71,

Similarly, considering the goal reduction D to G as the augime
tation of the constraint’ =x+4, we obtain a candidate interpolant
x<=3 for D. The final interpolant for D is the conjunction of all can

didates, which ix<=7 A x<=3 which in turn is equivalent te<=3. (b)
We label D with this interpolant in Fig. 2(b). In this way, Erisw - - - -)
subsumed by D, and its traversal is not necessary. Figure 3. Interpolation and Subsumption of Infeasible Paths in

We then generate an interpolant for E in the same way we did Program 1(b)
for G. By repeating the process described above for othezsiod
the tree, we obtain the smaller tree of Fig. 2(b), which igdinin
the size of the program. This tree represents the part ofthbalic
computation tree that woulattually be traversetly the algorithm.
Hence, while the tree’s size is exponential in the number fof
statements, our algorithm prunes significant parts of & tr

on information learned during traversal. The constructexp lin-
variant for a given loop is a conjunction of constraints wehtrsith
values remain unchanged after one or more iterations ofoiye |
Similar to AR, this process may require abstraction refinements in

21 With Infeasible Paths the case the abs_traction is too coarse to prove the safqmyerpryo
) o - We use a slightly modified version of the running example

Now consider the safe program in Fig. 1(b). The error coadits in [21] in order to illustrate the main features of our algom. We
x>5 and the error location is at poi#). We depict in Fig 3(a) the present the example in Fig. 1(c). Our modification consiéthe
naive tree if interpolation a_nd sqbsumptlon are not appked in addition of the variablél ag, initialized to1, and an f condition
Fig. 3(b) a smaller tree, which still proves the absence gébafter on Lines 5 and 6. Together with the program we depict the aglev
using interpolation and subsumption of infeasible paths. paths explored by our algorithm in Fig. 4.

A key principle of our algorithm is that preserves the infea- Our algorithm performs a depth-first traversal of the tree

sibility of _paths dL_Jring the traversal. Now let us foc_us on Fig. 3(D) from left to right. The first path explored i€),(1),(2),(3),(1’)
and consider, for instance, the path ending at F which izted@s (Fig. 4(a)) denoting a cyclic path from locatidf’) back to (1).
infeasible k=0Ay < 1Ay > 1). Applying our infeasibility preser- Qur algorithm examines the constraints at the entry of thp (oe.,
vation principle, we keep F labeled withise and the only possible | ock=0, new=ol d+1,f | ag=1) to discover those whose truth values
interpolant for F idalse itself. This would produce the interpolant remain unchanged after the loop (i.eock=1,new=ol d.f | ag=1).

y<l at D since this is the most general condition that preseh@s t Clearly, the constraintisock=0 andnew=ol d+1 are no longer sat-
infeasibility of F. Note that herey<1 is entailed by the original isfied whilef | ag=1 still holds.

statex=0 Ay<1 of D and in turn entaily>=1 |=false which is the At this point, our algorithm produces an abstraction at the |

weakest precondition délse w.r.t. the negation of thé condition cation (1) by making the truth values dfock=0 andnew=ol d+1

on the transition from D to F. o unknown. In this way, the constraints(dt) now entails the modi-

Now consider G withx=4 A y<1 and note that it satisfies<=5. fied constraints of1) that consists of a single constrafritag=1.

G can be interpolated ta<=5. As before, this would produce The next path is depicted in Fig. 4(b) and contains the lonati

the preconditionx<=1 at D. The final interpolant for D is the (0) (1),(2),(3),(4),(1"). At (1"), the constraints already entail the

conjunctionof x<=1 (produced from G) angl<1 (produced from generalized constraint @fl), and therefore, for the same reason as

F). In this way, E cannot be subsumed by D since its label does n (1) we stop the traversal.

satisfy both the old and the new labels of D. After the loop is traversed, the remaining constraintBtis
flag==1 and this is in fact a loop invariant discovered by the

2.2 Loops algorithm. Since we have removedw==ol d+1 from (1), the exit

We have previously explained the basis of our algorithm gelac path of the loop now becomes feasible as the conditew=ol d

execution paths. We now explain how our algorithm handlepso becomes satisfiable. For this reason the traversal redbhegth

In essence, our algorithm automatically infers loop ireat$ based the constraint | ag==1 propagated fron{1) andnew==ol d which
is obtained by strongest postcondition propagation thdbg loop

1 This interpolant corresponds to theeakest preconditiofil6] w.r.t. the exit transition.)))
statement=x; and the target property<=7, however, in general the ob- Since we keeff| ag==1 in the loop invariant at1), the algo-
tained precondition need not be the weakest, as long asritirg@rpolant. rithm manages to reason that the path, (5), (6) is infeasible

3 2010/7/16

lock=0,new=old+1,flag=1

lock=0,new=old+1,flag=1

Q {lock=0,new=old+1,flag=1}

[new !=old]
o {lock=0,new=old+1,flag=1}

lock=1, old=new

e {lock=1,new=old,flag=1}
*

{lock=0,new=old+1,flag=1}
[new !=old]
{lock=0,new=old+1,flag=1}

lock=1, old=new
Q {lock=1,new=old,flag=1}
*

{lock=1,new=old,flag=1}

lock=0,new++

@ {lock=1,new=old.flag=1} 0 {lock=0,new=old+1,flag=1}
@) (b)
o {lock=0, .ﬂag:l}

[new!=old] [new==old]

{lock=0,new=old+1,flag=1}
lock=0,new=old+1,flag=1

a {lock=0,new=old+1,flag=1}

[new == old]

lock=1, old=new

{lock=1,new=old,flag=1}

*

{new=old,flag=1}

e {lock=1,new=old,flag=1}

[flag]
(Iockrl,newzold,ﬂagzl) {lock=0,new=old+1,flag=1}
[lock!=0]

{new=old,flag=1} [! flag]
[lock==0]

[lock==0]

(d)

Figure 4. Execution Paths of Program in Fig 1(c)

(Fig. 4(c)). The crucial point here is that the algorithmtexhe
loop with as much loop invariant information as possibleisTn
effect is an attempt to preserve as many infeasible path®ss p
sible. It is worth mentioning that a counterexample-guidefihe-
ment tool would not detect that infeasible path and will fettee
error location later.

The algorithm next visits the nod¢8) and(8) also in Fig. 4(c),
which is an error location. The path is actually spurioug tre
algorithm discovers that the reason for the reachabilityisfpoint
is the removal ofiew==ol d+1 at (1). This is because the edge from
(1) to (5) cannot be executed wherew==o0l d+1 is considered.
After knowing this, the algorithmocks new==ol d+1 at (1) and
restart the traversal fronil). The purpose of the locking of a
constraint is to declare that the constraint cannot be rechéor
the purpose of generating loop invariant.

The next traversal after the locking is depicted in Figure)4(
The locked constraint is enclosed in a box. Similar to the firs
traversal, the path1), (2), (3), (1) is again re-traversed. At
(1’), the constraints do not entail the constraintg bf anymore.
Whereas in the first traversal we can obtain a candidate loop i
variant by the removal dfock==0 andnew==0l d+1, here, due to
locking of new==ol d+1, we are prevented from generating a loop
invariant. As the result, the traversal simply continues & man-
ages to complete the traversal without visiting the errcatimn
which is infeasible.

3. Comparison with Counterexample-Guided
Abstraction Refinement

In this section we present informally several academic @as
in order to highlight some essential differences betwernand
AL. We will use theBLAST the ARMC systems as examples far

oUlhw NR I

~ Rk PO~
o2

2000

TRACER - -,

1500

s+=complexfunc ();
[N/
if (b>0)
S++;
else
s+=complexfunc ();

if (s>N) error ();

1000

500

[

@) (b)

Figure 5. Bad for AR, Good for AL: Exploration of Infeasible
Paths

here, and use as our own prototypRACER to exemplifyaL. We
consider real benchmarks later in Section 6.

3.1 Exploration of Infeasible Paths

The core idea of abstraction refinement with predicate abtitn
is to be as coarse as possible until a counterexample is ftitthe
error is spurious, it extracts from the path some predicatgsh
demonstrate this. By minimizing the use of these predicates
can minimize the search space. On the other hand, minimiheg
use of predicates gives rise to the possibility of exploririgasible
paths This causes two problems: first, the verification stage ef th
abstraction-verification-refinement cycle is expensiweneexpo-
nential, in terms of the number of predicates. Second, thegss of
refinement (in order to discover yet more predicates) isexpen-
sive. This is perhaps the major shortcoming for countergtem
guided refinement tools. We quotA ‘thallenge is how to perform
an efficient analysis of an spurious counterexample anchléam
it a small set of facts such that the refined abstraction do¢son-
tain the spurious errgr[20].

Our first program is described in Fig. 5 (a) and illustrates th
expenses of exploring infeasible paths. A counter variabis
initialized to O together with another variabewhich is given 1
(Lines 1-2)2. Then, the following code is repeatdttimes: ifb is
positive thers is incremented by 1 through the statement (Line
4). Otherwise, assume that it is also incremented by 1 batigir
a complex functiorconpl ex_f unc (Line 6). After all the if’s are
considered, the value efis checked for being greater thiirfLine
11). A counterexample-guided refinement tool based on paéali
abstraction [10, 32] will discover thd + 1 predicates for the case
b is positive: 6=10), (s=1), (5= 2), ..., 6= N), one by one
before checking the error is not reachable. Similarly, It add the
predicates corresponding to the case wihénnon-positive (Lines
6-...-10). However, notice that this code will be never exed
since it lies on infeasible paths.

AL will start the traversal considering the concrete state
0Ab=1. A crucial distinction with respect tar is thatAL will
not consider the code whéns non-positive (Lines 6-...-10) since
it is able to detect those infeasible paths (se-,0ANb=1Ab<0
is unsatisfiable). A performance comparison, for this eXemp
shown in Fig. 5(b). A proof of absence of bugs was achievet wit
different values olN whereN is the number of times the code in
Lines 3-6 is repeated. The horizontal axis represents fferelit
values ofN and the vertical axis the total time in seconds.

2The ArMcC [32] tool performs some constant propagation optimizasion
we hideb=1 to disable standard compiler optimizations. For simpljaite
do not show the full code.

2010/7/16

3.2 Using Newly Discovered Predicates in Future Traversal

Another fundamental question iAR: after the set of predicates re-
quired to exclude the spurious counterexample has beenwdisc
ered, how should those predicates should be used in othes?at
We quote: Most predicates are only locally useful, i.e., only useful
when analyzing certain parts of the program, and irreleviartth-
ers. If locality is not exploited, then the sheer number offanay
render the abstract system too detailed to be amenable ttyana

sis, as the size of the abstract system grows exponentithythve
number of predicate’5[20]
main () { 500
. —-N- ARMC
3 iSf_(Z’) 2=0; TRACER
3: else z=999; 400
/11
4: if (x) s++ 30
5: else s+=2;
iI°N »
6: if (%) s++
7: else s+=2; 100 -
8: if (s+z>2«N && z==0) e
9: error ();) el el el
} 10 15 20 25 30 35 40 45 50

@) (b)

Figure 6. Bad forAR, Good forAL: Locality Not Exploited Prop-
erly

Consider our next program in Fig 6(a). The program initediz
s to O (Line 1). Given a non-deterministic choice it assigns th
variablez to either O (Line 2) or 999 (Line 3). After that, the
program executel times the following code: given another non-
deterministic choices is incremented by 1 (Lines 4-...-6) or by
2 (Lines 5-...-7). Finally, the program checks the errorditon
s+z> 2*N && z==0 at Line 8. A counterexample-guided tool will
discover the predicatés=0), (s=1),...,(s=2xN). Then, it will
either add(z= 0) or (z= 999 depending on the traversal order.
W.l.o.g assume that it first discovers the predicae- 0). The
key observation is that all the paths that incly@e= 999) (Line
3) will be traversed considering all the predicates disoeddrom
paths that includéz = 0) (Line 2), and hence, the traversal will be
prohibitively expensive.

Now, we explain how oumnL algorithm verifies this program
without facing the same problem thar. Our algorithm will basi-
cally perform the same amount of work for the case0. However,
it traverses the paths that include- 999 without consideration of
the facts learnt from paths that include= 0 since it only keeps
track of the concrete state collected so far (ise 0 A z= 999).
Then, after a path is traversed (e.g., 1-3-4-...-6-8) ogor&hm
can discover in a straightforward manner that 999 suffices to
refute the error state and hence, the rest of the paths wiube
sumed. It is worth mentioning thar will also discover the pred-
icate (z= 999 after the counterexample is found. The essential
difference, for this example, is that the predicates disoed pre-
viously (s=0),(s=1),...,(s=2xN)) are used, and hence, the
traversal will be significantly affected by them.

Another performance comparison, for this program, is shiown
Fig. 6(b). The program was proved safe with different valoiel
whereN is the number of times the code in Lines 4-5 is repeated.
The x-axis represents the valueshbind in the y-axis the time in
seconds to traverse all the paths that conta@®9 (Line 3).

Note thatARMC does not suffer from the same problem than
BLAST in this program. In fact, it is comparable t® ACERIN this
example. We believe that aftermc discovers predicates for the
current path it is very conservative when it comes to comside

them for other paths. MoreovexRmc performs more propagation
thanBLAST. More discussion in the next contrived program.

3.3 Running an Abstract State Hampers Subsumption

main (){ 400 -
1o if (#){ /oS T
2: x=0; 350 TRACER - - -
3: y=0; 300
} 250
4: elsef
5: x=complexfunction (¥®
6: y=0; 150
}
7 s=x;
8: t=y;
[1x/
9: I_f__(*){S++;t++;} 10 15 20 25 30 35 40 45 50
[N/
10: if (#){s++;t++;}
11: if (t>N & s>N) error ();
}

@) (b)

Figure 7. Bad for AR, Good forAL: Coarseness means Less Sub-
sumption

The next example illustrates another potential weaknegsRof
that is not presentiaL. Even if locality is well exploited, the like-
lihood of subsuming theurrently traversedstate may be dimin-
ished because the state, being abstract, is too coarseéd€onew
the program in Fig. 7(a). Given a non-deterministic choxcand
y are assigned to O (Lines 2-3). For one of the choicés as-
signed to 0 through a complex function (Line 5) and for theeoth
it is assigned directly (Line 2). The use of a complex functio
this example is to avoid propagation of information perfechin
practice bycEGARtools, even though this feature is not part of the
basic principles oAAR. In the next statements, the variablés as-
signed tox (Line 7) andt toy (Line 8). Then, the following code
is executedN times: given another non-deterministic chogcand
t are incremented by 1 (Lines 9-...-10). Finally, the cowditi>N
&& s>Nis checked at Line 11.

In principle, a counterexample-guided tool will behaveyer
similarly as in the program in Fig. 6(a). Assume again wgl.that
the if-branch is first taken (Lines 1-3). After that, it willsdover
the predicategx = 0),(s=0),(s=1),...,(s=N),(y=0),(t =
0),(t=1),...,(t =N). Again, those predicates will be likely used
during the exploration of the else-branch (Lines 4-6). Have
an essential difference with respect to program in Fig. B(#)at
although the discovered predicate (x=0) is taken into ctamation,
the abstract state cannot be covered since it is too coadsdcss
not entalil the predicate due to the loss of information cdumsethe
complex function. Therefore, the rest of paths will be exptbwith
the previously discovered predicates.

In contrast,AL does perform a systematic propagation of the
program state along the whole program. Therefore, evenisf
assigned 0 through a complex function it will be able to knbe t
resulting value. The main consequence is that the state niblev
subsumed.

In Fig. 7(b) we depict the result of the verification of the pro
gram in Fig. 7(a) with different values ®f, on the horizontal axis,
whereN is the number of times the code in Lines 9-10 is dupli-
cated. The vertical axis is the time (sec) of exploring thiapéhat
contain the statemertconpl ex_f unc() (Line 5).

Here again, the performancea®McC is comparable toRACER
although with an important overhead. The reason is sina#eIC
can propagate the value »fthrough theconpl ex_f unction and

2010/7/16

main(int N) { 2000 main (){
1: assume (y>= 0); P 4 1: if(rand()>0.5) s+=2; ¥ ARMC ——
2: n=0; TRACR™ 2: if (rand()>0.5) s+=3; Tk AST
3: while (n < N) { 10 3 (.;.—.1' 25 -
4 Y 4° it (c==0) error();
5: n++; ' - ’ xr
} ' 1000 } 5l
6: if (y+tn < N)
7: error(); w0}
} 500
B 51
0 s s L
= ® ° - * 100 ’ 0 50 100 150 200 250
@ (b)

Figure 8. Bad forARr, Good foraL: No Loop Invariant Discovery

hence, it is not as abstract aBsAsT and all paths that contain the
else-branch (Lines 4-6) will be subsumed.

3.4 Discovering Loop Invariants

Another major characteristic @fr lies in the simple treatment of
loops.

We now address the treatment of loops. Any symbolic traver-
sal method will have to eventually discover, implicitly ogqdicitly,
loop invariants that are strong enough for the proof protesen-
clude successfully. In the case &k, the abstract model is refined
from spurious counterexamples by discovering which pedic
can refute the error path, and in this process, litdpedthat these
predicates will in fact will be invariant through loops. (ibt, then
loop unwinding will be performed. This process may not termi
nate.) A crucial observation is that the inference of irsatipred-
icates can speedup significantly the convergence of loops:-H
ever,AR does not have a systematic methodology for searching for
those invariant predicates although ea&htool implements multi-
ple heuristics that work in practice very often. This togiaidely
treated in [8] but without experimental evaluation. Moregvhe
solution relies basically on an external loop-invarianme@tor to
guide the refinement phase. We consider the use of theseatools
orthogonal issue since both. andAR would benefit from it.

This challenge motivates another principal design comatam
of AL. We take the philosophy that we should discoverstnengest
loop invariant, in accordance with the philosophy thatuses the
concrete model during normal straight-line traversal ehpanARr
terminology, this may be described as choosisgnanypredicates
as possible. In contrastr, in accordance with its basic philosophy
of choosing the fewest predicates in straight-line patbsesetially
adopts aveakest invarianphilosophy. Note that ther approach
to loops is an implicit one because it focusses on conterpbesm
alone whereas imL, there is also focus on predicates that are loop
invariant. Our next program exhibits a bad behaviomafwhen
invariant predicates are not considered during the refineptease.
ConverselyAL searches for invariant constraints to strengthen the
abstract model as much as possible. The program in Fig. 8 (a)
illustrates the benefits. Given an input finite boland assuming
that a variablg is always non-negative, a while loop is executed
times. The body of the loop increments by one the variaplasd
n. After the loop, the conditiog+n < N is checked.

AR tools will discover the predicatgs = 0),(n=1),...,(n=
N —1) and also(y = 0),...,(y = N). The key point is that they
perform a full unwinding of the loop. To understand wy avoids
the full unwinding is essential the concept of inferencenvfiriant
constraints. Consider the path inside the loop until a baldee
is found (i.e.,(1),(2),(3),(4),(5),(3)). The state at the endpoint
can be specified by the constraint sequepce0AN=0AN <
NAY =y+1An =n+1onthe variableg andy. The constraint

(a) (b)

Figure 9. Bad foraL, Good forAR: Unnecessary Infeasible Paths
If Trivial Safety

sequence is obtained from the statements along the patte frekt
step, AL will attempt to infer which constraints are individually
invariant in order to get child-parent subsumption (i.elpse” the
loop). It is straightforward to see thgt> O is invariant through
the loop because when the program point 3 is first visiged 0 is
satisfied and the aforementioed constraint sequence ebtafier
one iteration of the loop constraigstoy’ > 0.

The second essential step is when the exit condition is taken
(i.e., (1),(3),(6)). AL will attachn > N to all individually invari-
ant constraints (in this cage> 0). More importantly, those two
constraints ¥ > 0 An > N) suffice to prove that the error condi-
tiony+n < N is false. ThereforeaL can prove the safety of the
program with only one iteration through the loop.

A performance comparison for this program is shown in Filg) 8(
The program was proved safe with different valuebloT he x-axis
represents the values Nf and the y-axis the time in seconds. Both
AR tools exhibit a prohibitive cost due to the full loop unwindi

3.5 Unnecessary Detection of Infeasible Paths

So far we have illustrated the cases whereperforms better than
AR. The advantage a&fRr being exploited in the preceding examples
is the preservation infeasible paths while abstractingdutethe
abstraction by lightweight loop invariants.

Unfortunately, this characteristic might be an importamivd-
side forAL if the program can be proved safe even traversing in-
feasible paths since all the work of generating abstractibite
maintaining infeasible paths would be wasteful.

Consider the program in Fig. 9(a). Assume an arbitrary numbe
of branches which can be false with some probability. Aftett
there is an assignment=1 that trivially makes false the error
condition (c = 0). In the case ofaL, all infeasible paths will be
detected and, more importantly, the interpolants that rentiem
will be computed. However, in counterexample-guided refieet
tools the proof of the absence of bugs is found after the desgo
of a single predicatéc = 1). The performance oL and AR
proving safe the program is shown in Fig. 9(b) where the numbe
of branches is on the horizontal axis and the time in secondkse
vertical axis.

We claim that eager detection of infeasible paths even yf éine
not relevant to the safety property at hand is not limitingriactice.
Intuitively, many of the infeasible paths must be considernereal
programs to block the error paths. Therefore, we believettiea
amount of extra work is often insignificant. The evaluatidroor
approach with real programs in Sec. 6 supports this view.

To ellaborate let us consider a real prograhat emat e [26]
(1276 LOC) used commonly for testing WCET tools. The program
is automatically generated code by the STAtechart Read-tiude
generator STARC. Its main feature is the significant amodnt o

2010/7/16

infeasible paths produced by the generator. We did thevioiigp main () { 0.xy) - (L,xy).
experiments by running it on three different propertiespfthem X=0: O,%y) 1= (L,X,y),X =x+1.
safe: g’f :; E*)>—X1;+>;<+—2- (Lxy) - (2xy),y<1
.)) 20 it (§<I) x+;4;’ (1,xy) - (2,X,y),X =x+2,y> 1.
e We instrument the program as follows: we add in the last state 5. j; (3=5) 2,%y):- (3xy),y>1
ment of the progranx=0 wherex is a fresh variable, and 4: error(); 2%y) - BX.Y)X =x+4y <l
then add the conditionf (x>0) error(). Thatis, the instru- ¥ (B,%Y) - (4%Y),X> 5.
mented program poses a s_imilar behavior to th_e one in Fig 9(a) (@) (b)
For aBLAST-like tool, it suffices to add the predicate= 0) to Figure 10. A Program and Its CLP Model

prove that the program is bug free. On the contraryneeds to
traverse the whole program with the corresponding costalue t
the encountered infeasible paths. The analysis timefasT
was gegligible (less than 1 second) while our tool took 88 sec
ondss

that ARMC decides to propagate the state of the variahlend
hence it will add the predicatg¢s=0), (s=1), (s=2), More
importantly, after a spurious counterexample is found #gslaot
e We now modify slightly the program: we now add the state- have the “systematic mechanism to release” those predicate
mentx=0 at the beginning of thet at emat e program and add In summary, whilear systems have the flexibility to adjust their
as before the conditionf (x>0) error() after the last state- propagation strategy, they canprinciple mimic our dual strategy
ment. HereBLAST performance deteriorates since it discovers AL which usesxactpropagation, up to loops. However, the critical
now 21 predicates. The reason of this degradation is thaeift difference is thanL has the ability on the one hand to use predi-
abstract counterexample has more than one causes foriinfeas cates in traversal, and on the other hatidregardpredicates when
bility to select the best cause to be considered in refinesnent they are not needed. This on-demand use of predicates isakerr
is not straightforward. In fact, this challenge was alreatly why we have called our method “learning”.
served in [19]: “If an abstract error trace has more than one
infeasibility, then existing refinement techniques use8layn- ..
like tools have difficulties in choosing the “right” infedsiity 4. Formalities
to refine.” Here we briefly formalize a program as a transition systemtaed
Surprisingly,BLAST takes 74 seconds and again 88 seconds. proof process as one of producing a closed tree of the tiamsit
steps. It is convenient to use the formal framework of Canstr
Logic Programming (CLP) [22], which we outline as follows.
Theuniverse of discoursis a set of terms, integers, and arrays
of integers. Aconstraintis written using a language of functions
and relations. In this paper, we will not define the constrkin-
guage explicitly, but invent them on demand in accordandé wi

e Finally, we instrument the same program to prove that the
number of statements does not exceed a certain bound. With
this more realistic safety propertgL overperformsBLAST
significantly since it can prove safety in less than 15 misute
while BLAST’s run exceeds 1 hour.

Concluding remarks on Academic Examples our e_xamples. Thus the terms of our CLP programs include the
o) . function symbols of the constraint language.

We have highlighted several technical aspects that areatent An atomis of the formp(f) wherep is a user-defined predicate

AR: i_n parti_cular, (a) traversing thru infeasible_ paths, (ls)ng symbol and thd a tuple of terms. Arule is of the formA: - é,(p

predicates in future traversal, (c) traversal using abstsgates, \here the ator is theheadof the rule, and the sequence of atoms

(d) discovering loop invariants, and finally, (e) reasonatgput B and the constrainp constitute thébodyof the rule. Agoal Ghas

infeasible paths when this is unnecessary. In our examjl@gea yactly the same format as the body of a rulegréund instancef

to highlight the shortcomings ofR, we note tharmC did not 5 constraint, atom and rule is defined in the obvious way.

share the same behavior@sAsT in (b) and (c). The reason for this A substitutionsimultaneously replaces each variable in a term

is that, in general, the issue about what predicates to vbsand or constraint into some expression. We specify a substituty the

then, how_to use these ghscovered predicates, is not stinedr notation[li/f(], whereX is a sequency, ..., X, of variables and

We call this thepropagationmethod. IndeedsLAST has several E alistEy,...,En of expressions, such tht is replaced byg; for

“options” implementing different strategies for propagat In the all 1<i < n. Given a substitutio®, we write asE0 the application

ARMC statistics for (b) and (c), it happens that the examples used of the substitution to an expressi A renamingis a substitution
were effective againgLAST (using some particular of its options) yhich maps variables into variables.goundingis a substitution

and not againstRMC. _ which maps each variable into a value in its domain.

In order not to suggest a relative performance betwermc Given a goaly = p(X), W(X), [] is the set of the groundings
andBLAST, consider a further example. 6 of the primary variableX such thaiW(X)6 holds. We say that a
main{ goalg = p(X), W(X) subsumeanother goal; = py(X’), W(X’)

LT Yk else s=s2; if k=K and[[¢] 2 [6]. Equivalently, we say thaf is ageneral-

izationof g. We write g, = G, if g; and g, are generalizations
of each other. We say that a sequencsuissumedf its last goal is
subsumed by another goal in the sequence.
Let g = (By,---,Bn,) andP denote a goal and program re-
This program is clearly safe and can be provedshgsT by spectively. LeR=A: -Cy,---,Cm, @1 denote a rule if®, written so
adding a single predicate = 0). Our algorithm will also prove that none of its variables appear ¢n Let A = B, whereA andB
the absence of bugs after a path is traversed since the code imare atoms, be shorthand for equations between their comdsym

1
2
3: i'f”(*) s++; else s=s+2;
4 if (x!=0) error()

}

Lines 2-...-4 will be further subsumed. Surprisinghgmc will arguments. Aeductof g usingRis of the form
add predicates for the irrelevant code that updsitd@herefore, the (By,--+,Bi~1,C1,+,Cm,Bis1, -, Bn,Bi = AA QA @)
analysis will be prohibitively expensive. The reason wepsas is providedB; = AA @A @ is satisfiable.
A derivation sequencis a possibly infinite sequence of goals
3on Intel 2.33Ghz 3.2 GB. Go,G1.--- Whereg,,i > 0 is a reduct ofg,_,. Given a sequence

7 2010/7/16

T defined to beg 4,6 4,-.., G, thencongT) is all the constraints
of the goalg,. We say that a sequence fsasibleif congT) is
satisfiable, anihfeasibleotherwise.

A derivation treefor a goal has as branches all derivation
sequences emanating from this goal. In this tree, aheestor-
descendantelation between nodes is defined in the usual way. A
derivation tree ilosedif all its leaf goals are either successful,
infeasible, or subsumed by some other goal in the tree.

In this paper, a program is compiled into a CLP program using
just one predicate symbol, . We thus omit writing a predicyte-
bol in CLP rules and goals. Symbolic states are goals of thra fo
(k,X),€wherek is a program pointx i a list of variables represent-
ing the variables of the underlying program, and a sequence of
constraints. Henceforth goals and states are synonymoeisaw
thatX are theprimary variables of the goal. Wherg is a goal, we
write g (X) to indicate thaixare the primary variables af . The
details of how to generally perform a compilation of an uhgerg
program into a CLP program is straightforward, and so ohitte
Instead, we refer to an example in Figure 10.

We can now informally present, in Figure 11, a naive proof

method for programs which have been encoded as a CLP program
The purpose of the description here is to set the stage for the

description of our advanced algorithm in the next sectione T
algorithm starts with an initial goal representing theialisymbolic
state and produces a derivation tree. The problem at haogisve
that the constraints of certain goals meet a given safefgatimn.

As the examples suggest, we assume this is implemented by an

error condition and so the problem reduces to proving that the erro
state is not reachable. If the algorithm terminates nomnalithout
aborting), then the underlying program is safe. If not, tbherent
path in the tree provides@unterexampléo safety.

We assume, without losing generality, that each goal oe stz
zero or exactly two descendants.

Naive(g)
switch(g)

caseg is anerror state: ABORT

caseg is terminal:return

caseg is infeasiblereturn

caseg subsumed by a state already traversed

default :
Il G has descendants; and G,; w.l.0.g. assumej, feasible
Naive(G,)
Naive(G,)
return

Figure 11. A Naive Algorithm

As an example, given the program in Fig. 1 (b), the derivation
tree is shown in Fig. 12.

The naive algorithm isoundin the sense that if it terminates
successfully, then the safety properties are assured. \owtbere
are two main shortcomings: it does not terminate in geneve if
it did, it does not scale. We address these shortcoming®inehkt
section.

5. Algorithm: Minimax

The algorithm below maintains knowledge about a state=
((k,%),c1,...,cn) by means of a vectotas,...,an) where each
a; is anannotationof one of the following kinds:

e amaxannotation, indicating that the constragimust be kept

e a min annotation, indicating that the constraigt must be
deleted or

e aneutralannotation.

(0,%0,¥0),% =0
F (1,%,Y0),% =0
(2,%0,¥0),%0 =0,y0 < 1

(3,%0:Y0),%0 =0,yo <1y >1
infeasible

(3,x1,¥0), X0 =0,x1 =X +4yo <Ly <1
(4,x1,¥0), %0 =0,x1 =X +4Yo < Lyo < 1x >5
infeasible

(2,x1,¥0), %0 =0,x1 =X +2,yo > 1
(3,X1,¥0),%0 =0,x1 =x0+2,yo > 1,yo > 1
(4,%1,¥0), %0 =0,x1 =X +2,Yo>Lyo>1x >5
infeasible
(3,%2,¥0),% =0,X1 =X0+2,x2 =X1+4,Yo > 1yo < 1
infeasible

S (Lx,y),x =% +1
... (the rest of the second subtree)

Figure 12. An Example Derivation Tree

A maxannotation essentially provides a restriction that argnayit

‘at abstracting this state must not “exceed” the constraimjuies-

tion. That is, any abstraction employed must result in tbisseraint
remaining entailed. Dually, min annotation defines an abstraction
on the state in question. Why and when states need to be @hstra
is explained below.

A vectorv associated with a statg = (k, X, €) is jointly called
an annotated stateThe meaning of an annotated statg,v) is
obtained in one of two ways:

e amaxinterpretatiormaxy, G) is the state obtained by deleting
all but themaxannotated constraints therein.

e dually, amin interpretationmin(v, g) is the state obtained by
including all but theminannotated constraints therein.

and these are used in two main ways. The former is used in the
process of memoization where it is desired to memo the most
general state. The latter is used in symbolic traversal. Mfmeate
below. Meanwhile, suppose we have the annotated state

(K, X1,%2,X3),X1 = 1,2 = 2,x3 = 3, (min, neutral, max

Thenmin(g) andmaxg) are, respectively, the following two
states:

(K, X1,%2,%3), %0 = 2,X3 = 3
(kx1,%2,%3),X3 = 3

The algorithm operates on annotated states, and is presente
Figure 13. We assume, without losing generality, that etatle fas
up to two descendants. We also assume, for notational ciemasn
that the descendant of a state has exactly one more consham
the state itself. Finally, where is a vector for a state, we write
v.neutral to denote the elongation @fby one neutral annotation.

The algorithm begins with an initial state whose vector has n
min or maxannotations, only neutral annotations. As it progresses,
maxannotations are created to indicate constraints that aeede
in order to preservéalsepaths (see the case for infeasible state).

In the more general case where stgtehas descendants, we
consider the first subcase whefehas no looping parent. Here we
process its first descendag which cannot be an infeasible state.
(W.l.o.g, we assume every nonterminal feasible state hé=aat
one feasible descendant.) Suppeses the input vector fog , and
that we just obtained a vectey from G ;. Now we process the sec-
ond descendant but now, instead of usingre usevi. This means
that we are actually running what is an abstraction of thie sta.

If the processing ofvy, G ,) then concludes successfully or with a
real counterexample, we are done. Otherwise, it must beabe c

2010/7/16

that a “conflict” has occurred, that is, sommén annotations irv;y
conflicts with somemaxannotations required by the processing of
G ». It is here when the system is restartadthe looping parent
which gave rise to the offending min annotation(s)

The crucial step to note that the restart will now take plaste n
with the original parent, say, Gp), but with a new vectoty, Gp)
wherev is such that the offendingin annotation(s) irvp are now
replaced bynaxannotations (via thenaximize() function in Figure
13). The effect of this is that certain constraints are faskedand
prevented from beingnin annotated again. This is the mechanism
for unrolling a loop when a previous attempt at invariantdisery
fails.

We now describe the alternative subcase whetes a looping
parentgp. As mentioned above, straightforward symbolic execu-
tion does not terminate and so some speculation in the fotoopf
invariantdiscoverings required. Theninannotations represent our
mechanism for this. More precisely, at a looping statene which
has parent statg, with the same program point, we employ an al-
gorithm to determine which of the constraintsgnareindividually
invariant through this path frong, to G . The idea is that thether
constraints are nownin annotated. More details are provided in
the description of the functicinvariant() below. Although it seems
that a loop invariant can always be found in this manner, eg. w
could annotatall the constraints i, obtaining a correct (though
generally useless) loop invariant, in general some cdnssrin Gp
may be alreadynaxannotated. It is at this point that loop invari-
ant discoveryfails, and so the attempt to “close” the loop here is
abandoned.

Finally we explain the restart strategy of our algorithm.t&o
that eachmin annotation is associated uniquely with a stgfe
representing a particular (parent) looping point. Thattg, min
constraint arose because it was not independently intarfdre
general idea is simply that whenrain annotation is designated
“conflict”, we perform a restart at the associated stgie All
system data structures are essentially reset to the poieitevgy
was previously executed, with one crucial difference. Thise,

Gp Will be executed with moremax annotations because some
conflictingminannotations are rewritten toax In short, we restart
but this time some constraints are “locked”.

We now fill in some details for the algorithm in Figure 13.

e interpolate(&, V)
This returns a “minimal” vector instantiatingv* such that
maxV,) is infeasible. Essentially this is computed by adding
the fewestmaxannotations tw, thus representing a computa-
tion of an “interpolant”. In our experiments described bglo
we employ a greedy algorithm which deletes constraints from
¢, proceeding from the first constraint @ &s long as the re-
maining constraints remain infeasible.

For example, consider the following annotated state

(kx1,%2),x1 >3,x1 =y1+1y1 =2,x =0,
(max max neutral, neutral)

Then interpolation of; wrt the conditiornx; < 0 would produce
the annotation vector:

(max max max neutral)

That is, the third constrain = 2 is now annotatedhaxfrom
neutral, while the other annotations are unchanged. Neate th
the annotation of the last constraint remains neutral scthis
constraint is not needed to demonstrate infeasibility.

e subsumed(G, G4)
Simply, this istrue if the stateg is subsumed by;,.

4V has all themin/maxannotations of.

e invariant(€(X), v, Cp(Xp)))
Note thatc’is a prefix ofcy, and that we have indicated the pri-
mary variables ot ‘andc, here. This function returns a vector
vy which is identical tov except that some neutral annotations
have been changed mainannotations such thatin(&(X),v) en-
tails min(¢p(Xp), V). More precisely, a constraint ini§ said to
beindividually invariantif it holds through the path in question
without consideration of any other conditions. All othemeo
straints inc'will then be annotatedhin. Essentially, this is the
loop invariant discovery phase where the new state is atbstta
in such way that it is now subsumed by its parent state.
For example, consider the program snippet:
0: x =0;
1. if (y >0) 22 while (*) 31 x++; y++;
and so the statg, = (2,x,y),x= 0,y > 0 represents an entry to
the loop. We then obtain from this state a derivation seqeienc
leading tog = (2,x1,y1),x=0,y > 0,x1 = x+1y1 =y+1
corresponding to the end of the loop body. The idea now is that
the constraint x = 0 must be deleted in order for the lattéesta
to be subsumed by the former, that is:

(2,%1,¥1),y > 0,y1 =y+ 1 is subsumed by2,x,y),y > 0.

Thus, for examplanvariant(x = 0,y > 0, (neutral, neutral), x =
0,y > 0,x1 =X+ 1y; =y+1) is (min,neutral) where themin
annotation has now replaced the first neutral annotation.

It is important to note that such an invariant may not alwags b
found (because of the requirement that only neutral anedtat
constraints can be abstracted). In such a case, the function
returns a null value as failure.

State associated with a conflict

Recall that a conflict vector is such that at least of one of its
maxannotations had previously beemén annotation. Further
recall that eacimin annotation had been brought into existence
because of one of two reasons:

(a) theinvariant() function, which serves to delete constraints
in order to obtain a loop invariant. Here the “associateteta
refers to the looping parent state in question.

(b) in the case for subsumption, itis indicated which caists
must be deleted in order for subsumption to hold. Here “assoc
ated state” refers to the closest state which is a commompare
of both the subsumed and subsuming state.

push_system(g), pop-system(g)

The push saves the state of the system and timestamps it with
the identifierg. The pop restores to system state to the point
where the corresponding push took place.

merge(Vy, V2)

This function simply merges thminandmaxannotations of the
input vectorsv; andvs into a single vector, possibly replacing
neutral annotations in one vector if the corresponding &no
tion in the other vector is is anin and maxannotations. This
function is well-defined because andv, do not conflict, that
is, it is not the case that one vector hasia annotation while
the corresponding annotation in the other ima@xannotation.

memo(§G, V)

This simply records in persistent memory the fact that thean
tated statég ,v) has already been processed. It survives forever
unless retracted by@op_system(gp) operation of some ances-
tor Gp.

We now demonstrate a run of the algorithm on the example of
Fig. 1 (c), whose tree traversals are depicted in Fig. ialhjf the
memo table is empty, and we start the algorithm by calliirgmax

with the annotated stat®, locky, newp, oldp, flagy), () denoting the
initial state of the program where all variables are unaaiséd.

2010/7/16

Minimax(Gg = ((k,X),€), v) returns OK(v) or CONFLICT(v)
switch(g)
caseg is anerror state:
let € denote the constraints in nfiq, v)
if (€is feasible) ABORT
return CONFLICT (interpolate(¢i, V))
caseg is terminal:return OK(v)
casesubsumed(min(g ,v),max G,v1)) for some memo'd G;,v1):
let &; denote the common prefix of constraintsgrand g,
Vo = v except some neutral annotations are replacechioy
In particular,vo has the fewest such replacements so that
min(g ,v) is subsumed bynin(g,,vo).
return OK(v2)
casemin(g,V) is infeasible:
return OK(interpolate(€,V))
caseg has a looping pareny:
for (each looping parent), of g
let ¢p denote the constraints gp
if (v =invariant(€(X), v, €p(Xp)) return OK(v)
continue// (to the case below
default :
Il G has at most two descendantg and G,; G, is feasible
if (¢ is alooping pointpush_system(g)
STATUS{/1) = Minimax(g,, v.neutral)
if (STATUS == CONFLICT){
if (g is associated with confliat) {
pop_system(g);
return Minimax(g ,Vv1)
} else return CONFLICT (v1)

if (¢ doesn't have a second descendant) returnv@k(
let g, denote the second descendant
Il speculative abstraction
STATUS() = Minimax(g,, vi.neutral)
if (STATUS == CONFLICT){
if (g is associated with confliab) {
pop_system(g);
return Minimax(g ,Vz)
} else return CONFLICT (v2)

V' = mergevy, Vo)
memo(gG, V);
return OK(V);

Figure 13. The Minimax Algorithm

With these arguments, only the default case can be takemewhe
the algorithm generates a redugtof the current statg and calls

Minimax recursively. The reductg, is

(1,locks, new, oldp, flag,),

lock; = 0,new; = oldp + 1,flag; = 1. @

The annotation is the vectdneutral neutral neutral)®. Each el-
ement of the vector corresponds to the constraint added éy th
reduct. In this recursive call also, only the default case lva se-
lected, where we execufmish_system(g) (for ¢ (1)) since the
state corresponds to looping point and we recursively idall-
max with the annotated stafé, locks, new, oldp, flag;), lock; =0,
new = oldp+ 1, flag; = 1, new # oldp, (neutral neutral neutral

5As in this case, there is only one outgoing transition fromititial pro-
gram point(0). The transition is feasible, and we assume that the geoerati
of second reduct, and its recursive call in Fig. 13 is not executed.

81n Fig. 13 we only add oneeutral, however, in general, this depends on
the number of constraints added in the reduction.

10

neutral). Notice that here we added a constraiety # oldg to the
constraint sequence, and correspondingly lengthen thenetth
aneutral

We perform generation of reducts recursively, such that the
derivation sequence corresponds to the path in Fig. 4 (athdn
recursive call that corresponds {t), the state is:

(1,locky, new, old1, flag;), locky = 0,news = oldg + 1, @
flag; = 1,new; # oldp, locky = 1,0ld; = newy

and the annotation is a vector of neutral values correspgniti
the sequence of constraints. (2) is subsumed by its ancd3tdr
we remove the constraintsck; = 0 andnew; = oldg + 1 leaving
only flag; = 1. Projecting this constraint on the primary variables
of the ancestor and writing it using the proper variable reme
get the constraintlag = 1. Removing the same constraints from
(2) results in the projectiofiag = 1, lock = 1, and old = new
Obviously, this conjunction entaiéag = 1. The algorithm marks
lock; = 0 andnew; = oldg + 1 for deletion (in) in the vector.
The vector at(1’) becomes(min,min,neutral neutral neutral
neutral). The first twomins correspond to the first two constraints
in the constraint sequence that must be deleted.

Subsequent traversal propagates the deletion (min) irsftiom
In the path shown in Fig. 4 (b), for instance, the statélat is

(1,locks, newp, old; , flag;), lock; = 0,new; = oldg + 1,
flag; = 1,new; # oldo, lock, = 1,
old; = new,locks = 0,new, = new + 1

®)

and the vector is(min,min, neutral neutral neutral neutral
neutral, neutral). The first two markings of the vector denotes
the deletion ofock; = 0 andnew; = oldg + 1, inherited from the
traversal of Fig. 4 (a). Subsumption of (3) by the ancestdr (1
which is handled by the second caseMihimax, holds without
further need for deleting constraints. In this case, theesaector

is returned without modification.

Notice that(3) is visited both in Fig. 4 (a) and Fig. 4 (b) such
that Minimax, combines the vectors returned by the recursive calls
using themerge procedure. In this case, both paB), (1) and
(3),(4),(1") return the same vectgmin, min, neutral, neutral
neutral, neutral), which is then included in the return value of
Minimax.

Again, by the previous deletion of constraints, the progsae
at (1) is described bylag = 1. This allows the algorithm to make
the reduction step fror{il) to (5) in Fig. 4 (c). The reduction from
(5) to (6) is infeasible, where in its third caséinimax handles the
state

(6,locks, new, oldp, flag;), locky = 0,new; = oldp + 1,

flag; = 1,new; = oldo, flag; = 0. 4)

with annotation{min, min, neutral neutral neutral). The first two
min markings are due to subsumption of (2) by (1) explained pre-
viously. Here the algorithm computes an interpolant byiglthe
interpolate function with the constraint sequence as the first argu-
ment and the vector as the second to compute a minimal set of
constraints that must be kept in order to preserve the wfisdi-

ity. The result of this computation is the updating of theteeavith
maxannotations. Since boftag; = 1 andflag; = 0 must be kept

to maintain the unsatisfiability of the constraints, we mik cor-
responding positions in the vector wittax resulting in the vector
(min, min, max neutral max.

The algorithm visits the error poir{8) in Fig. 4 with the con-
straint sequencéock; = 0, new; = oldp + 1, flag; = 1, new =
oldo, flag; # 0, lock; = 0 of the state and vectdmin, min, neutral
neutral, neutral neutral). Here the algorithm discovers the unsat-
isfiability of the sequence, and therefore, it has found dlicbalue
to over approximation. It also discovers that the point offtiot is
at (1), where the removal of the constraints took place. Here the al

2010/7/16

BLAST (AR) TRACER (AL)
Program LocC PT T S [7T
gpnouse 400 4 0.42 974 0.42
tlan 8069 || 14 | 17.10 4382 5.78
cdaudi o 8921 * * 6258 | 10.53
di skper f 6984 || 92 82.3 3326 8.21
f1 oppy 8570 || * * 3124 | 6.47
kbfiltr-safe 5931 || 45 | 44.03 1392 2
kbfiltr-unsafe-1 62 | 108.59 463 0.56
kbfiltr-unsafe-2 53 | 71.92 283 0.32
serial 10380 || * * 51935 | 328.6
tcas-la-safe 394 || 23 3.6 6029 6.97
tcas- 1b-safe 56 | 78.35 6050 6.77
tcas-2a-safe 22 3.25 6029 6.74
tcas-3b-safe 39 | 15.68 6017 6.63
tcas-5a-safe 31| 10.29 6029 6.36
tcas-2b-unsafe 40 | 17.46 91 0.01
tcas- 3a-unsafe 25| 18.96 243 0.16
t cas- 4a-unsafe 45 | 14.44 243 0.15
tcas-4b-unsafe 36 6.44 91 0.01
t cas-5b-unsafe 54 | 40.31 91 0.02

Table 1. BLAST Benchmarks

gorithm mark the constraint such that it can no longer be xeto
thatis, “locking” it, and restarts the traversal from thaftict point,
that is, (1) after callingpop_system(g) (with g the state of (1)).
The second traversal is shown in Fig. 4 (d). It uses the proesd
that have been exemplified here and therefore we do not elebor
further.

A soundness proof for the algorithm is nontrivial only in the
following aspect: when a statg is declared subsumed by an entry
G, inthe memo table, itis possible that the memo entry is foatest
within a loop that isnot yet closedClosure here means that the
state at hand has been fully traversed and analyzed. Thatds,
though g, appears in the memo table, its pareptis a looping
state which is not yet memoed. This means thatitself is not
yet closed. More specifically, th@ax annotations forg, are not
yet finalized, and becausg is in the loop body o, its own max
annotations are not finalized. A problem can thus arise whensg
the current memo information abogs, which depends only on its
maxannotations, in order to subsume other states (such)al
is for this reason that in the process of subsumption, thewubd
state generatesrain annotation on constraints thatdepends on
to be deletedn order to be subsumed. Overall, the formal proof of
soundness, while nontrivial, is not deep and hence omitted.

We conclude this section by mentioning that the central step
deleting constraints, the effect ofmain annotation, can in fact be
relaxed to some other mechanism that abstracts the stasmdt h
Instead of deleting a constraint, one coti@nsforma constraint.
For example, one could apply a process of “slackening” taaequ
tionsx =y to obtain an inequality, either<y or x >y. This kind
of abstraction is in fact employed in the BLAST system whiah w
benchmark against, but at this time, we do not use for our own e
perimental results. Even more generally, we could replatene
but a collection of constraints by another collection whisten-
tailed by the original collection.

6. Experimental Evaluation

We ran our prototypefRACER, on several programs and compare
with BLAST [10], a state-of-the-art verification tool based on ab-

7We also tried witharmc available at [33] but we were only successful to
run ont cas andst at emat e but timeout expired in both cases after 30m
and 1h, respectively.

11

straction refinement. Since we wanted a faithful comparisith
BLAST we downloaded all programs from [9] already instrumented
with safety conditions, and together with a script whichsrtimose
programs with the most favorable system options.

The first two programs are Linux device driveggnouse and
t1an. The device drivers can acquire or release a spinlock t@writ
or read data. The safety condition checks that the driveraaio
perform two consecutive calls in order to either acquirestialock
or release it.

The next five programs are Microsoft Windows device drivers:
cdaudi o, di skperf, floppy, kbfiltr, andserial . These pro-
grams are run on an IO request packet (IRP) completion spacifi
tion. The specification provides correct ways for the dedideers
to handle IRPs by specifying a sequence of functions to Hectal
in a certain order, and specific return codes.

Finally, t cas is an implementation of a traffic collision avoid-
ance system, a real-life safety-critical embedded systéra.pro-
gram is instrumented with five safe conditions and five unsafe
Those properties are about anti-collision conditionse safvisory
selection, best advisory selection, avoid unnecessassicrg, no
crossing advisory selection, and optimal advisory sedecti

The results, obtained on an Intel 2.33Ghz 3.2 GB, are summa-
rized in Table 1. We present two set of numbers: aaST the
number of discovered predicate®) the total time in seconds),
and forTRACER, our prototype tool, the number of nodes of the ex-
ploration tree §) and also the total time in second®.(Although
the number of discovered predicates and nodes of the etiplora
tree are not comparable they are shown to provide an ided timou
hardness of the proof.

In summary, TRACER is competitive withBLAST in most of
the benchmark examples, sometimes much faster. Howewzg th
are two programs whereLAST is faster {cas- la-safe, and
t cas- 2a- saf €). We believe the main reason is tha@ACER does
perform some extra work due to unnecessary infeasible patvs
ertheless, the numbers show that the differences are notisémt.

Note that programs such adaudi o, f | oppy, andseri al are
annotated with the symbol ™ in theLAST column which means
that BLAST raised an exception and aborted. Therefore, we were
not able to verify those programs usiBgAST. However, we are
aware thatcdaudi o andfl oppy have been proved safe in [20]
after 21m59s and 11m17s discovering 196 and 156 predicates,
respectively on an IBM ThinkPad T30 laptop with 2.4Ghz Remti
processor and 512MB RAM. We were surprised by the numbers
obtained for the cases where the programs were proved unsafe
In these cases,RACER found a real counterexample much faster
thanBLAST. We believe that the reason can lie on the difficult in
choosing the "right” infeasibility to refine since theas program
poses an important amount of infeasible paths.

7. Concluding Remarks

We presented Abstraction LearningL(), a dual approach to sym-
bolic traversal tacEGAR (AR). The main algorithm is a process of
classifying constraints intmin andmaxconstraints. Thenin con-
straints are those which must be abstracted in order to\axhieh-
sumption and loop invariance, while theaxconstraints are those
those which must not be abstracted so as to detect infeguitiie
and also to preserve safety. The idea is to have as few of tivese
kinds of constraints as possible. We then discussed th@/estaer-
its of AL andAR using academic examples. While escapes sev-
eral shortcomings ofR, it does have the shortcoming of detecting
infeasible paths when this may not be necessary.

We then evaluated our prototype implementatibRACER
againstBLAST, using a significant benchmark collection obtained
from the BLAST literature. The results showed competitive per-
formance, with some examples showing great improvemerall In

2010/7/16

cases, the results show that the potential shortcomingsbésyati-
cally detecting infeasible paths was in fact affordable.

In order to strengthen this point, first note that verificatio
was not the only motivation for this work oaL; also, it was
analysis That is, we wished taliscoverproperties, and not just
to verify then?. As a quick example of analysis, consider running
AL on an underlying program butithout a safety properfyThe
minimax algorithm would still produce a useful closed prtefe.
For example, this tree could serve as a (now path-senséra)jol
flow graph for use by standard analysis algorithms. such @seth
for determining an upper bound for a variable, or for deteing
certain relationsips between variables. Such a graph alstbe
used by path-sensitive algorithms suctBassST andTRACER, but
this time the motivation ispeed For example, constructing such

a graph for the cas program, and running the graph (as though it

were just another program) iRRACER using the provided safety
properties, we saw a three-fold increase in speed. Perhaps m
importantly, this particular proof tree can be construaiétine

We have in fact run many other programs with no safety prop-

erty, and have found the size of the tree (which will always1be
greater in size than when a nontrivial safety property iduse
be very manageable. This then, is added evidence that tlaeeayip
shortcoming of systematically detecting infeasible p&hs fact,
affordable in practice.

References

[1] A. Armando, M. Benerecetti, and J. Mantovani. Abstractrefine-
ment of linear programs with arrays. TACAS’07 pages 373-388.

[2] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. famatic
predicate abstraction of C programs. 16th PLDI|, pages 203-213.
ACM Press, May 2001. SIGPLAN Notices 36(5).

[3] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. gaani.
SLAM and Static Driver Verifier: Technology Transfer of Fam
Methods inside Microsoft. lFM’2004, 2004.

[4] C. Barrett and S. Berezin. CVC Lite: A new implementatiohthe
cooperating validity checker. [b6th CAV

[5] C. Barrett, D. L. Dill, and J. R. Levitt. Validity checkinfor combina-
tions of theories with equality. IRMCAD’96, pages 187-201.

[6] R. J. Bayardo, Jr. and R. Schrag. Using csp look-backnigcies to
solve real-world sat instances. 1dth AAAI/9th IAAlpages 203-208.
AAAI Press, 1997.

[7] N. E. Beckman, A. V. Nori, S. K. Rajamani, and R. J. SimmdPofs
from tests. INSSTA '08 pages 3-14.

[8] D. Beyer, T. A. Henzinger, R. Majumdar, and A. RybalchenlPath
Invariants. INPLDI'07, pages 300—309.

[9] D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar. BOA®JRL
http://mtc.epfl.ch/software-tools/blast/index-epfbph

[10] D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar. Bo&ware
Model Checker BLASTInt. J. STTT9:505-525, 2007.

[11] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolicadel
checking without BDDs. In R. Cleaveland, editéth TACASvolume
1579 ofLNCS pages 193-207. Springer, 1999.

[12] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Madwlerifi-
cation of software components in CEEE Transactions on Software
Engineering 30(6):388—-402, June 2004.

[13] A. Cimatti, A. Griggio, and R. Sebastiani. Efficienténpolant gener-
ation in satisfiability modulo theo ries. [PACAS’08 pages 397-412.

[14] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, ahahi
Veith. CounterrExample-Guided Abstraction Refinemend@0

8 AR fundamentally depends on the notion of a counterexampteydiwaL .

9 Technically, this is achieved by simply usitrge as the safety property at
the terminal points.

12

[15] P. Cousot and R. Cousot. Abstract Interpretation: AfiddiLattice
Model for Static Analysis. Idth POPL pages 238-252. ACM Press,
1977.

[16] E. W. Dijkstra. A Discipline of ProgrammingPrentice-Hall Series in
Automatic Computation. Prentice-Hall, 1976.

[17] D. Frost and R. Dechter. Dead-end driven learning.12th AAA|
pages 294-300. AAAI Press, 1994.

[18] P. Godefroid, A. V. Nori, S. K. Rajamani, and Sai DeepalietCom-
positional may-must program analysis: unleashing the pofvalter-
nation. POPL'10, pages 43-56.

[19] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori,d$. K.
Rajamani. Synergy: a new algorithm for property checkingn |
SIGSOFT '06/FSE-14ages 117-127, 2006.

[20] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMilla Ab-
stractions from proofs. 181st POPL pages 232-244. ACM Press,
2004.

[21] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.ylLAbstrac-
tion. In29th POPL pages 58-70. ACM Press, 2002. SIGPLAN No-
tices 37(1).

[22] J. Jaffar and M. J. Maher. Constraint logic programmigurvey. J.
LP, 19/20:503-581, May/July 1994.

[23] J. Jaffar, A. E. Santosa, and R. Voicu. An interpolatioathod for
CLP traversal. IrL5th CR volume 5732 o .NCS Springer, 2009.

[24] R. B. Jones, D. L. Dill, and J. R. Burch. Efficient valigithecking for
processor verification. ICCAD 1995 pages 2—6.

[25] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT teaures for
fast predicate abstraction. ©AV'06, pages 424—-437.

[26] Malardalen WCET research group benchmarks. URLL -
p://www. nrt c. ndh. se/ proj ect s/ weet / benchmar ks. ht i , 2006.

[27] K. L. McMillan. Lazy abstraction with interpolants. RAV'06 pages
123-136.

[28] K. L. McMillan. Interpolation and SAT-based model ckew. In
15th CAV volume 2725 of.NCS pages 1-13. Springer, 2003.

[29] K. L. McMillan. An interpolating theorem proveiTCS 345(1):101—
121, 2005.

[30] Ken L. McMillan. Applying SAT methods in unbounded syoiic
model checking. pages 250-7??, 2002.

[31] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and Sal\d.
Chaff: Engineering an efficient SAT solver. 88th DAC pages 530—
535. ACM Press, 2001.

[32] Andreas Podelski and Andrey Rybalchenko. ARMC: The italy
Choice for Software Model Checking with Abstraction Refirn
In PADL, 2007.

[33] A. Rybalchenko. ARMC: Abstraction Refinement Model Cker.
URL http://www.mpi-sws.org/"rybal/armc/.

[34] Hassen Saidi. Model checking guided abstraction aatyais. INSAS
'00, 2000.

[35] J. P. Marques Silva and K. A. Sakallah. GRASP—a new $earc
algorithm for satisfiability. INTCCAD 1996 pages 220-227.

[36] A. Stump, C. Barrett, and D. L. Dill. CVC: A cooperatinglidity
checker. In E. Brinksma and K. G. Larsen, editd4th CAV volume
2404 ofLNCS pages 500-504. Springer, 2002.

2010/7/16

