
Abstraction on Demand

JOXAN JAFFAR ANDREW E. SANTOSA RĂZVAN VOICU

SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE

REPUBLIC OF SINGAPORE�
JOXAN,ANDREWS,RAZVAN � @COMP.NUS.EDU.SG

Abstract
We present an analysis technique for structured sequential pro-
grams based upon abstract reasoning over symbolic traces. The
novelty is that the technique performs abstraction on demand, as
opposed to systematically, in the pursuit of a safety proof. The idea
is to maintain precision to enhance the likelihood of proof, per-
forming abstraction only when efficiency is at stake. The technique
is automatic in the sense that no user input is required.

The main technical result is analysis of bounded programs,
those whose symbolic traces are bounded in length, where the anal-
ysis is exact. For example, loop-free programs fall into this class.
While the problem is exponential-time in general, we introduce a
notion of dynamic summarizations which can enable substantial
pruning of the search space of traces. Summarizations also allow
our analysis to be compositional, key to extending the bounded-
program analysis technique to the general case.

Finally, the technique is tunable, primarily for two reasons.
First, the technique is compositional. Second, the technique at its
core is a function which generalizes a set of constraints, and custom
functions may be directly used.

1. Introduction
We present an analysis technique for structured sequential pro-
grams based upon abstract reasoning over symbolic traces. The
novelty is that the technique performs abstraction on demand, as
opposed to systematically, in the pursuit of a safety proof. The idea
is to maintain precision to enhance the likelihood of proof, per-
forming abstraction only when efficiency is at stake. The technique
is automatic in the sense that no user input is required.

The main technical result is analysis of bounded programs,
those whose symbolic traces are bounded in length, where the anal-
ysis is exact. For example, loop-free programs fall into this class.
While the problem is exponential-time in general, we introduce a
notion of dynamic summarizations which can enable substantial
pruning of the search space of traces.

A summarization is a partial description of the input-output be-
havior of a program fragment. A key advantage of a summarization
is that, during analysis, invocations of the program fragment under
different contexts may be handled by the one summarization, with-
out the need to re-analyze the program fragment for the various

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c
�

ACM [to be supplied]. . . $5.00.

contexts. In this paper, we present a method for deriving summa-
rizations dynamically. In fact, it computes, opportunistically and
on-the-fly, expressive summarizations of arbitrary program frag-
ments. Our method can be used to augment an existing analysis
algorithm, which may or may not use a given abstraction function,
to perform a symbolic exploration of the state space with greater
efficiency.

In general, we consider a program P0, and the objective is to
summarize a certain program fragment P of P0, which is invoked
several times with different contexts when executing P0. As a triv-
ial example, suppose the program fragment P were if (x == 0)
count++, and that we were just interested in the variable count. A
summarization of P would state that the final value count � of count,
is equal to count � 1 in case the context implied x � 0; otherwise,
the summarization would state that count � � count.

However, it is often the case that the number of contexts that
need be considered is much smaller. Consider generalizing the
above example to a series of n if-statements. Then, even if the
number of contexts arising from executing the fragment is 2n, there
are in fact only n possible outcomes for the final value count � .

Another important feature of a summarization is that it allows
our analysis technique to be compositional. This feature is next
used to extend the bounded-program analysis technique to the gen-
eral case. The important new problem, is, of course, the loop. Here
we assume, recursively, that the loop body is already analyzed and
the result is realized as a summarization. We then attempt to prop-
agate the context in which this loop is called through the loop body
so that the context continues to hold after the loop body. In other
words, we check if the context is “loop invariant”. If not, we employ
a generalization algorithm to the context, and repeat the process.
This process can be easily made to terminate because the context
can only reduce, in the worst case, to the empty context.

Finally, the technique is tunable, primarily for two reasons.
First, the technique is compositional, and second, the generalization
functions may be customized.

Because of compositionality, program fragments may be ana-
lyzed with different specializations of the technique. For example,
while the basic algorithm is exact on a loop-free program, a judi-
cious partition of the program into two fragments can significantly
improve performance while preserving a proof. Proofs can then be
pieced together using summarizations. Now, for a single program
fragment, the technique, at its core, depends on functions which
generalize a set of constraints. User intervention here is easily ad-
mitted, and can greatly influence the efficiency of a proof. In its
original specification, this algorithm removes constraints one by
one, and the number of constraints is proportional to the length
of the symbolic trace being analyzed. It is straightforward to use
instead a different abstraction algorithm, for example, one that
is based on predicate abstraction [5]. While in principle even a
straight-line program will require exponential time to perform an

arbitrarily accurate analysis, summarizations seem to be an effec-
tive remedy. For loops, the abstraction algorithm can be specialized
by providing the appropriate invariant.

We elaborate in section 5 below.

1.1 Related Work

The framework of symbolic traces used here was introduced in [9].
There the emphasis was applying abstraction selectively, but not
on-demand, as is the case here.

Summarization is typically applied to syntactically identifiable
program fragments, such as blocks, procedures or transactions in
the presence of concurrency. An example for procedures can be
found in [3], which presents an approximation method for the
semantics of recursive procedures. Similarly, [14] presents ap-
proaches to interprocedural dataflow analysis of sequential pro-
grams, where one is based on summarizing each procedure into
an input-output relation, which, in the process of program analy-
sis, can replace the procedure at each call location. The work [12]
performs summarizations on the fly. However, it only summarizes
procedures, not arbitrary program fragments, as input-output func-
tions. By focusing only on dataflow analysis problems (which in
a sense defines a finite abstraction), it provides a polynomial-time
analysis algorithm. The paper [1] concerns predicate-abstraction,
that is, procedures are abstracted with a predicate which represents
input-output relations of the function. The work [11] presents a
method for summarizing procedures in concurrent programs. What
is actually summarized is a transaction, a sequence of statements
of a thread which consists of, for example, a sequence of lock ac-
quisitions, shared data updates and lock releases, and hence can
be treated as atomic. A transaction may span across a procedure
boundary. A summarization already created can be reused when-
ever the thread is to invoke the transaction.

Our approach differs mainly in that summarizations are com-
puted opportunistically and on the fly, for arbitrary program frag-
ments.

In this paper, we perform dynamic abstract interpretation in the
sense that the abstract function used for pruning search is computed
not statically, but on the fly. The most well-known dynamic abstrac-
tion method is CEGAR, see eg: [2]. Here predicate abstraction was
used to provide a family of abstraction functions, and the most gen-
eral abstraction function was used first in a standard abstract inter-
pretation algorithm in an attempt at proof. Upon failure, the specific
counterexample was then used in order to obtain a (slightly) more
specific abstraction function, and the process is repeated. The idea
is that more general abstraction functions, while providing for less
accuracy, provide for a more efficient search space. More specific
abstraction functions are thus on-demand. A strength of CEGAR
is that refinement proceeds automatically under the framework of
predicate abstraction. Possible weaknesses are that the refinement
operation may not be easily tunable to the problem at hand, and
more significantly in relation to this paper, CEGAR is not compo-
sitional.

We take a dual philosophy: we start with more specific abstrac-
tion functions (in fact no abstraction at all) and so are more likely
to achieve proof. However, when circumstances threaten efficiency,
we then resort to more general abstraction functions. While we do
not explicitly specify an automatic way to iterate through a space
of abstraction functions, this is straightforward to implement, in
principle.

2. Dynamic Summarizations for Bounded
Programs

Here we present informally our algorithm for the summarization of
a bounded program. Consider the program P

G22 : � 3 � t2 � � t � 0 ��� b1 � t1 � t � 2 ��� b2 � t2 � t1 � 2

G : � 1 � t � � t � 0
G1 : � 2 � t1 � � t � 0 � b1 � t1 � t � 1

G2 : � 2 � t1 � � t � 0 ��� b1 � t1 � t � 2

G11 : � 3 � t2 � � t � 0 � b1 � t1 � t � 1 � b2 � t2 � t1 � 1
G12 : � 3 � t2 � � t � 0 � b1 � t1 � t � 1 ��� b2 � t2 � t1 � 2

G21 : � 3 � t2 � � t � 0 ��� b1 � t1 � t � 2 � b2 � t2 � t1 � 1

Figure 1. A First Example

�
0 � count = 0�
1 � if b1 then count++ else count = count + 2�
2 � if b2 then count++ else count = count + 2
final = count

�
3 �

where we assume that the unspecified predicates b1 and b2 are
not related to each other, that is, all the four combinations of
truth values are possible across the various contexts in which the
program fragment may be executed.

We shall symbolically describe a set of states in the form
� k � c � f � � Ψ, where the expressions k � c � f represent the values of the
program counter and variables count and final, respectively. The
symbol Ψ is simply a constraint or conjunction of constraints on
these expressions. Call such an expression � k � c � f � � Ψ a goal. The
semantics of such a goal is simply the set of instances of � k � c � f �
for which the constraint Ψ is true.

A notion of strongest postcondition can now be obtained. For
example, the set of states described by G � � 1 � c � f � � c � 0 can
be propagated along the “then” branch of the first if statement
resulting in G1 � � 2 � c1 � f � � c � 0 � c1 � c � 1 � b1, substituting c
and f for count and final respectively. Propagating the same
along the “else” branch of the same if statement results in G2 �
� 2 � c2 � f � � c � 0 � c2 � c � 2 ��� b1. Note that through propagation,
the symbol c that appeared originally in G has now become an
auxiliary symbol in G1 and G2 (because it no longer appears in the
expression � 2 � c2 � f �).

We can regard G1 and G2 as the children of G in a computation
tree. Further strongest postcondition propagation steps can be ap-
plied to G1 and G2, resulting in the goals G11, G12, G21, and G22.
See figure 1 for a depiction of this computation tree.

It is important to note at this point that we have not applied
constraint simplification during the propagation process, but rather
preserved each constraint along every computation path. Thus in
figure 1, the constraints in each symbolic state continue to ap-
pear verbatim in its successor states. For example, the constraints
c � 0 � b1 � c2 � c � 1 in G1 continue to appear in both G 11 and G12.
Moreover, it is equally important to note that, since the program
constraints b1 and b2 are independent, all the four sets of states
G11, G12, G21, and G22 are in fact non-empty. That is, the compu-
tation paths depicted in the tree are feasible.

We now define the summarization of a program fragment as a
formula of the form G entry 	 Gexit, with the meaning that if the
program fragment is entered with a state satisfying G entry, then it
will be exited with a state satisfying G exit. The usefulness of such a
summarization is given by the fact that, whenever the program frag-
ment is entered in a more specific context, for example one satisfy-
ing G �entry � Gentry � Φ, where Φ is a set of constraints, the program
fragment will be exited in a context satisfying G �exit � Gexit � Φ.
Thus, a static analysis procedure would make use of the follow-
ing subsumption principle: when the entry point of the summarized
program fragment is reached, in a context G �entry that is subsumed
by Gentry, the corresponding context G �exit can be immediately com-
puted for the exit point.

G �1 : � 2 � t1 �
G �11 : � 3 � t2 � � b2 � t2 � t1 � 1
G �12 : � 3 � t2 � ��� b2 � t2 � t1 � 2

Figure 2. Subtree of First Example

Next, we show how we can derive a summarization for P,
where the variables of interest are count and final. First consider
the second if statement of P as a stand-alone program fragment,
denoted P � . The sub-tree rooted at G1 is a possible computation tree
for P � . Note that the constraints c � 0 � b1 � c2 � c � 1 appear at all the
three nodes of this subtree, Now, consider deleting these constraints
from all the nodes. We then obtain a valid computation tree for P � ,
depicted in Figure 2. Note that the new tree has the same shape as
the original subtree1. Thus, the constraints c � 0 � b1 � c2 � c � 1 are,
in fact, redundant, since they do not contribute to the input-output
relation of P � , as described by the computation tree at hand.

More formally, define the redundant constraints of a computa-
tion tree to be those constraints that appear at all nodes, and whose
removal does not lead to new computation paths being added to the
tree.

The original subtrees G 11 and G12 have now become G �11 �
� 3 � c3 � f � � c3 � c2 � 1 � b2 � f � c3 and G �12 � � 3 � c3 � f � � c3 � c2 �
2 ��� b2 � f � c3 respectively, after redundant constraints are re-
moved. Let Φ1 denote the disjunction of these two sets of con-
straints: � c3 � c2 � 1 � b2 � f � c3 ��� � c3 � c2 � 2 ��� b2 � f � c3 �

We can now derive our first summarization as:

� 2 � c2 � f � 	 � 3 � c3 � f � � Φ1 � 1 �

Note that our transformation from G 1 to G �1 preserves all the
information relevant to the state transformation performed by P � .
Because of this, as it shall be discussed later, the summarization of
P � captures its exact input-output relationship.
This summarization may be used on subsequent traversals of the
program fragment, as long as the context in which the program
fragment is entered is subsumed by the set of states at the root of
the summarizing tree.

Let us continue the process, and now derive a summarization
for the entire program fragment P. The main component of finding
this summarization is finding the redundant constraints for the
computation tree rooted at G . To simplify the language, we shall
often refer to the tree rooted at a goal as just simply the goal itself.
For example, we may say that the constraint c � 0 is redundant at
G , when in fact we mean that c � 0 is redundant in the tree rooted
at G .

Now the set of redundant constraints at G , is in fact the inter-
section of the sets of redundant constraints at G 1 and G2, respec-
tively. For G1, as we have seen above, the redundant constraints are
c � 0 � b1 � c2 � c � 1. For G2, we now apply a critical step. Instead
of analyzing it as we did G1, we use the fact G2 is subsumed by the
left hand side of the summarization (1). Therefore, any constraint
deemed to be redundant at G 1 at the time when (1) was derived,
will also be redundant at G 2 (if it appears). Thus, c � 0 is redun-
dant at G2 since it is the only goal that was redundant at G 1 and
also appears in G2. Now, since c � 0 is redundant in both G 1 and
G2, it follows that it is redundant at G , and it can be deleted from
all the nodes of G.

To simplify the language, we shall denote by G � � C 1 ��������� C k �
the symbolic set of states G from which the (redundant) constraints
C1 ��������� Ck have been removed. Thus, the current root of the com-

1 In general, by removing constraints from G1, we could add new paths to
the tree, since certain formerly infeasible paths may now become feasible.

putation tree is now G � � c � 0 � . Now, we can derive the summa-
rization of P informally as:

G � � c � 0 � 	 � disjunction of leaf goals in the tree �
Obviously, the disjunction of the leaves of G � � c � 0 � is the
union between the disjunction of leaves descending from G 1 � � c �
0 � , and G2 � � c � 0 � respectively. Since both these goals are
subsumed by the left hand side of the summarization (1), we can
use the subsumption principle given above to compute the required
expressions. They are, for G 1 � � c � 0 � and G2 � � c � 0 � :

� 1 � c � f � 	 � 3 � c3 � f � � b1 � c2 � c � 1 � Φ1 and
� 1 � c � f � 	 � 3 � c3 � f � ��� b1 � c2 � c � 2 � Φ1

respectively. Let Φ denote the disjunction of the constraints above:
� b1 � c2 � c � 1 ��� � � b1 � c2 � c � 2 � . We can now derive the follow-
ing summarization for G :

� 1 � c � f � 	 � 3 � c3 � f � � Φ � Φ1 � 2 �
Note that the use of subsumption here has conjoined a disjunction
Φ1 with another, Φ. Thus, in general, whenever subsumption can
be exploited, the size of the expression used for summarizing parent
goals grows linearly.

We discussed above that removing constraints from a compu-
tation tree may, in general, change the shape of the tree. Next, we
shall illustrate such a situation. Consider a modification of the ex-
ample so that b1 � � count � 0 � . Thus G 2 becomes false, since its
constraints are unsatisfiable, and the nodes G 21 and G22 would no
longer appear in the tree (since they reside on infeasible paths).
Now we can summarize G1 as before, and again, propagate this to
G2 to obtain that f � c2 	 � 1 � 2 � � c � 0 ��� b1 � c2 � c � 2. We how-
ever cannot perform the next step and declare a summarization of
G � � c � 0 � , as we were able to do previously. This is because the
removal of c � 0 would affect G 2, which would no longer remain
false, and therefore subject to possible further expansion.

We have indicated above that whenever subsumption applies
and a goal is summarized rather than traversed, that the size of
expressions used to summarize its parent node grows linearly. Even
so, it may often be the case that even simpler expressions are
required in order to achieve the desired level of performance. In
such a case, various simplification techniques may be applied to the
expression on the left hand side of the summarization. For example,
we could project out auxiliary variables from the left hand side
(and possibly other, not interesting variables, such as the variables
that are local to a procedure). Or, we could simply delete the if
conditions from the left hand side of the summarization. Applying
both these simplifying operations to (2), we get the following much
simpler summarization.

� 1 � c � f � 	 � 3 � c3 � f � � � f � c �
	 � 2 � 3 � 4 �
In this particular case, this simplification to obtain

Gexit � � 3 � c3 � f � � � f � c ��	 � 2 � 3 � 4 �
still provides the strongest postcondition of G entry � � 1 � c � f � wrt
the variables f and c. In general, however, the property that G exit � Φ
is the strongest postcondition of G entry � Φ is no longer true for all
constraints Φ. Because of this, the use of summarizations that have
been subjected to simplification will result in loss of precision, as
we now explain.

The simplification process may introduce spurious computation
paths in the tree, but these spurious paths would only lead to
states that are already reachable via feasible paths. For this reason,
the property that G exit is the postcondition of G entry is preserved.
However, when we add the arbitrary constraint Φ in the mix, the

tree rooted at G entry � Φ may have fewer paths than the tree rooted at
Gentry, as some of the paths may have become infeasible. Yet, some
of the states that are at the end of infeasible paths, and which should
have disappeared from the G entry � Φ tree, remain reachable via
the spurious paths introduced by simplifying the summarization.
As a result, G exit � Φ remains a postcondition of G entry � Φ, but not
necessarily its strongest postcondition.

We now sketch the algorithm for the general case as follows.
The algorithm is centered around computing the set of redundant
constraints for the computation tree of a given program fragment
P. Let us assume first that the computation tree at hand is finite. A
naïve version of our algorithm would be to perform a post-order
traversal of the tree, computing the set of redundant constraints
for the current node as the intersection of the sets of redundant
constraints of the children. In order to jump-start such an algorithm,
we need to compute sets of redundant constraints for the leaves of
the tree. In a computation tree, we have two kinds of leaves:
� Exit leaves: correspond to the exit point of the program frag-

ment at hand, possibly containing unsatisfiable goals. All the
constraints attached to such a node are redundant, since the
shape of a one-node subtree cannot change.

� Non-exit leaves: contain unsatisfiable goals, which correspond
to program points other than the exit point. Here the redundant
constraints are those whose removal do not render the goal
satisfiable. That is because a satisfiable goal would spawn new
feasible paths, and thus change the shape of the tree.

Once the redundant constraints for every node have been computed,
the following summarization can be derived for P.

G � R 	
�
l � L

G l �
where G is the root of P’s computation tree, R is the set of
redundant constraints at G , L is the set of leaves in the tree, and
G l is the goal attached to leaf l.

This naïve algorithm can be optimized by computing summa-
rizations for every subtree “on-the-fly”, and then, whenever we visit
a new node, check whether its goal is subsumed by the right hand
side of a previously computed summarization.

Note that our algorithm does not require any user input. In
addition to generating summarizations, it is also a generic engine
for abstract interpretation. In order to prove that a particular safety
property holds, it suffices to inspect the terminal nodes.

A final comment: it is easy to not just to prove a safety property
for a bounded program, but to discover what they are. Our simple
program above indicates that in more general programs where
resource usage is modelled using a distinguished variable, we could
discover a bound for this variable. We however do not take this
point further in this paper.

3. Constraint Transition Systems
This section presents a formal framework for describing an exist-
ing abstract interpretation algorithm into which our summarization
algorithm fits. The essence of this section formalizes the notion of
a computation tree.

3.1 Preliminaries

We start by defining a language of first-order formulas. Let V
denote an infinite set of variables, each of which has a type in
the domains D1 ������� � Dn, let Σ denote a set of functors, and Π
denote a set of constraint symbols. A term is either a constant (0-
ary functor) in Σ or of the form f � t1 ������� � tm � , m � 1, where f 	 Σ
and each ti is a term, 1 � i � m. A primitive constraint is of the
form φ � t1 ������� � tm � where φ is a m � ary constraint symbol and each

ti is a term, 1 � i � m. A constraint is constructed from primitive
constraints using logical connectives in the usual manner. Where Ψ
is a constraint, we write Ψ � x̃ � to denote that Ψ possibly refers to
variables in x̃, and we write ˜� Ψ � x̃ � to denote the existential closure
of Ψ � x̃ � over variables away from x̃.

A substitution θ simultaneously replaces each variable in a term
or constraint e into some expression, and we write eθ to denote the
result. A renaming is a substitution which maps each variable in the
expression into a distinct variable. We write 	 x̃
� ỹ � to denote such
mappings. A grounding is a substitution which maps each variable
into a value in its domain. Where e is an expression containing a
constraint Ψ, 	 	 e � � denotes the set of its instantiations obtained by
applying all possible groundings which satisfy Ψ.

3.2 A Proof System

Programs p will be represented as a transition system which can
be executed symbolically. The following key definition serves two
main purposes. First, it is a high level representation of the opera-
tional semantics of p, and in fact, it represents the exact trace se-
mantics of p. Second, it is an executable specification against which
an assertion can be checked.

We shall model computation by considering n system variables
ṽ � v1 ������� � vn with domains D1 ������� � Dn respectively, and a pro-
gram counter k ranging over program points. In this paper, we shall
use just two example domains, that of integers, and that of integer
arrays.

DEFINITION 1 (States and Transitions). A system state (or simply
state) is of the form � k � d1 ������� � dn � where k is a program point and
di 	 D i � 1 � i � n, are values for the system variables. A transition
is a pair of states.

DEFINITION 2 (Constraint Transition System). A constraint tran-
sition of p is a formula

p � k � x̃ �
� p � k1 � x̃1 � � Ψ � x̃ � x̃1 �
where � k � x̃ � and � k1 � x̃1 � are system states, and Ψ is a constraint
over x̃ and x̃1, and possibly some additional auxiliary variables. A
constraint transition system (CTS) of p is a finite set of constraint
transitions of p.

The above formulation of program transitions is familiar in the
literature for the purpose of defining a set of transitions. What is
new, however, is how we use a CTS to define a symbolic transition
sequences, and thereon, the notion of a proof.

By similarity with logic programming, we use the term goal to
denote a literal that can be subjected to an unfolding process in
order to infer a logical consequence.

DEFINITION 3 (Goal). A query or goal of a CTS is of the form:

p � k � x̃ � � Ψ � x̃ �
where k is a program point, x̃ is a sequence of variables over system
states, and Ψ is a constraint over some or all of the variables x̃, and
possibly some additional variables. The variables x̃ are called the
primary variables of this goal, while any additional variable in Ψ
is called an auxiliary variable of the goal. Where G is a goal, we
write G � x̃ � to hightlight the primary variables in G .

Thus a goal is just like the conclusion of a constraint transition.
We say the goal is a initial goal if k is the start program point.
Similarly, a goal is a final goal if k is the terminal program point.
For convenience, we assume there is only one transition involving
a final program point, and it is of the form p � k � x̃ �
� true.

Running a initial goal is tantamount to asking the question:
which values of x̃ which satisfy ˜� Ψ � x̃ � will lead to a goal at the
final point? The idea is that we successively reduce one goal to

�
0 � i=0;�
1 � while (i<99) ��
2 � j=0�
3 � while (j<99-i) ��
4 � if (a[j+1]<a[j])

� swap(a,j,j+1); t++; ��
5 � j++�
6 � ��
7 � i++�
8 ��� � 9 �

Figure 3. Bubble Sort

another until the resulting goal is final point, and then inspect the
results.

Next we define what it means for a CTS to prove a goal.

DEFINITION 4 (Proof Step, Sequence and Tree). Let there be a
CTS for p, and let G � p � k � x̃ � � Ψ be a goal for this. A proof step
from G may be obtained providing Ψ is satisfiable. It is obtained
using a variant p � k � ỹ �
� p � k1 � ỹ1 � � Ψ1 of a transition in the CTS
in which all the variables are fresh. The result is a goal of the form

p � k1 � ỹ1 � � Ψ � x̃ � ỹ � Ψ1

Note that this new goal is a false goal if the constraint Ψ � x̃ � ỹ � Ψ1
is unsatisfiable.

A proof sequence is a finite or infinite sequence of proof steps.
If a proof sequence ends with a final goal p � k � z̃ � � Ψ, we say that
the variables z̃ are the final variables of the constraints Ψ, and we
write Ψ � z̃ � .

A proof tree is defined from proof sequences in the obvious way.
A tree is complete if every internal node representing a goal G is
succeeded by nodes representing every goal obtainable in a proof
step from G .

3.3 Static Abstraction and Closed Proof Trees

Our algorithm accommodates the use of predefined or static ab-
straction. Given an arbitrary abstraction function A which maps a
goal p � k � x̃ � � Ψ into a goal p � k � x̃ � � Ψ � where Ψ � � Ψ � , we say that a
proof tree is obtained with static abstraction if the proof tree is ob-
tained as before, except that when a goal G is obtained via a proof
step, we replace G by the goal obtained by applying the abstraction
function G . Note that this allows, in particular, “intermittent” ab-
straction [9] where abstraction is performed only at selected goals.

A closed proof tree is, intuitively, a complete proof tree where
there is no need to perform any more proof steps. For a typical
abstract interpretation algorithm, the (static) abstraction function
ensures that traversal always leads to a finite closed proof tree. This
is done by limiting the number of constraint expressions that may
be encountered, and using a simple form of memoization to avoid
redundant traversal.

DEFINITION 5 (Closed Proof Tree). A proof tree, possibly ob-
tained by static abstraction, is closed if it is finite and every ter-
minal goal G is either a final goal, a false goal, or it is subsumed
by another goal in the tree.

Finally, we relegate the destination of all this work, the proof
of a property, to defining that a certain program point is unsafe. An
unsafe goal is one which involves an unsafe program point. We then
say that a closed proof tree is safe if it does not contain an unsafe
goal.

In Figure 3, we assume α is a paricular constant, and swap � a � i � j �
is a primitive function which swaps the ith and jth elements of the
array A. Its CTS representation is in Figure 4. The final program
point is 10, and the unsafe point 11, indicating that t exceeds a

(0,i,j,a,t) �� (1,i’,j,a,t), I’=0
(1,i,j,a,t) �� (2,i,j,a,t), I<α
(1,i,j,a,t) �� (9,i,j,a,t), I � α
(2,i,j,a,t) �� (3,i,j’,a,t), J’=0
(3,i,j,a,t) �� (4,i,j,a,t), J<α-I
(3,i,j,a,t) �� (7,i,j,a,t), J � α-I
(4,i,j,a,t) �� (5,i,j,a’,t’),

a[j+1]<a[j], a’=swap(a,j+1,j), t’=t-1
(4,i,j,a,t) �� (5,i,j,a,t), a[j+1] � a[j]
(5,i,j,a,t) �� (6,I,j’,a,T), j’=j+1
(6,i,j,a,t) �� (4,i,j,a,t), j<α-i
(6,i,j,a,t) �� (7,i,j,a,t), j � α-i
(7,i,j,a,t) �� (8,i’,j,a,t), i’=i+1
(8,i,j,a,t) �� (2,i,j,a,t), i<α
(8,i,j,a,t) �� (9,i,j,a,t), i � α, t=0.
(9,i,j,a,t) �� t 	 β, p(10,i,j,a,t).
(9,i,j,a,t) �� t > β, p(11,i,j,a,t).

Figure 4. CTS of Bubble Sort

certain bound β. The resource variable t here captures the time. We
assume the program is called with some constraints Ψ on the array
elements. Thus an accurate estimate for t is challenging. We shall
return to this example in Section 6.

4. The Algorithm
We first deal with the case where the program is bounded, that is,
all derivation sequences from the initial goal terminate. Then we
show how to compose the analysis over two consecutive program
fragments. Next we show how to augment the analysis of a bounded
program when it is wrapped inside a simple loop. In the final
subsection, we present the general algorithm.

In what follows, we assume we have a family A � A1 ������� of ab-
straction functions which is used to abstract or generalize a collec-
tion of constraints into a fixed set of abstract descriptions. We do
not specify which of these functions is to be used in a given situ-
ation. In the function REDUNDANT � � defined below, we generally
seek the most generalizing function satisfying the condition of use.
In the functions COMMON � � and INVARIANT � � , however, we gen-
erally seek the least generalizing function2.

We will sometimes specify the use of an abstraction function on
a goal G by means of a procedure to manipulate the syntax of G .
Most commonly, we shall speak of “deletion of constraints”. For
example, if G were of the form φ1 ������� � φn � p � 0 � x̃ � , we may tacitly
define the abstraction function A by saying that it deletes a certain
constraint, say φ1, from G . Clearly A � G � � φ2 ������� � φn � p � 0 � x̃ � is
a more general goal than G , that is, it subsumes G . We will be
taking such a function A , which was originally contructed for G ,
and applying it to a different goal G � . We shall do this only in the
following case. G � is a parent goal of G . That is, the constraints
of G � are an initial subsequence of those in G . In this case, A � G � �
would be obtained by applying those constraint manipulations of A
on the constraints of G � .

We write A1
 A2 to denote the abstraction function which
performs a generalization contained in both A1 and A2. This is
used when A1 and A2 operate on two sequences φ � Ψ1 and φ � Ψ2 of
constraints which share a common initial sequence φ. � A 1
 A2 � � φ �
is then obtained by replacing individual constraints in φ using
replacements that are common in A1 and A2. We denote by � the
special abstraction function where � A
 � � � � �
 A � � A , for all
A .

2 The function INVARIANT �� has a comparable status with the abstraction
refinement step of CEGAR, which dually, chooses the next most generaliz-
ing function.

4.1 The Basic Algorithm for a Bounded Program

We require two key functions.
The function REDUNDANT � G � generalizes G such that it re-

mains false. More formally, it is obtained by using the assumed
family of abstraction functions in order to transform various con-
straints (or groups of constraints) into some abstract description.
As mentioned above, we generally seek the most general abstract
description.

As an example implementation, consider removing each con-
straint in G (that is, tranforming it into true) if the removal keeps
G false. More precisely, let G be of the form c1 ������� � cn � p � k � x̃ � ,
let C � /0, and let G � initially be G . Now for each i � 1 ������� � n, if
G � � ci is false, then let C : � C � � ci � and G � : � G � � ci, and con-
tinue this loop. The final set of constraints C will then represent
those constraints in G which, if removed, will nevertheless keep G
false. Implementing REDUNDANT � � this way means that we simply
remove constraints as the abstraction mechanism. But in general,
REDUNDANT � G � is a mapping of constraints into abstract descrip-
tions.

Next we define that the function COMMON � x̃ � Ψ1 � Ψ2 � returns a
constraint that is at least as general as the projection of Ψ1 onto x̃
and Ψ2 onto x̃. (This projection is quite simple to compute, because
the general format of the constraints is a collection of equations
obtained from assignments xn � fn � xn � 1 � ������� � x2 � f2 � x1 � , where
xi is chronologically newer than xi � 1, and a collection of predicates,
each on some variables. We can then rewrite each variable in terms
of older variables. Since the oldest variables are the ones to be
projected onto, we can rewrite each other variable in terms of
these.)

For COMMON � x̃ � Ψ1 � Ψ2 � , we again resort to the assumed fam-
ily of abstraction functions to provide an abstract description,
and clearly we seek the best abstract description. For example,
COMMON � � t � � t � � t � � t � 1 � t � � t � 2 � would be t � � t � 2 assuming
there is such an abstract description. However, a straightforward
implementation is simply to collect the common constraints in the
projections of Ψ1 and Ψ2 onto x̃.

The following is a formalization of the algorithm presented
informally in section 2. As before, we consider a goal G which
has not already been summarized, and our objective is to return a
summarization of G . The algorithm is largely organized as a post-
order traversal of the proof tree, with a crucial step that allows
certain branches to be pruned. The algorithm returns, for a given
goal G a pair � A � Ψ � where A is an abstraction function and Ψ a
set of constraints.

ALGORITHM 1. Let G � p � k � x̃ � � Ψ be a node in the proof tree.

� G is false: Return � REDUNDANT � G � � true �� G is terminal:
If G is an unsafe goal, Return FAIL; else Return � � � Ψ �� There is a summarization � A � � Ψ � � for some G � such that

A � � G � � subsumes G :
Let A be the most general abstraction such that A � G �
remains subsumed by A � � G � � .
Return � A � Ψ �� G is not subsumed by a previous summarization:

Let � A1 � Ψ1 � ��������� � Am � Ψm � be returned for its descendants.
Without losing generality, assume the final variables in the Ψi
are the same, x̃ � . Let φi, 1 � i � m, denote the constraints from
the one step transition to Gi. Return

� A1
 �����
 A p � COMMON � x̃ � x̃ � � φ1 � Ψ1 ������� � φm � Ψm � �
Note that GENERALIZE � � is used for efficiency, to deal with the
exponential explosion caused by branches in expanding symbolic
traces of a bounded program. In contrast, COMMON � � is used to

represent the result of analysis of a bounded program, and this is
only used in case this bounded program is embedded in a larger
program needs to be analyzed.

The following theorem states that the above algorithm is exact.

THEOREM 1. Let P be a bounded program, p its CTS representa-
tion, and G the initial goal. The algorithm run on G returns � A � Ψ �
if and only if all derivations from A � G � in p are safe. Further, Ψ is
a postcondition of A � G � .
4.2 The Algorithm for Two Consecutive Bounded Programs

Let the CTS p and the CTS q represent two programs P and Q
respectively. Let G denote an initial goal of p, and let 0 denote the
initial program point of q.

Suppose the bounded algorithm on G returns � A � Ψ � . Let x̃
denote fresh primary variables for the atom q � 0 � x̃ � , and θ rename
the final variables in Ψ into x̃. Now run the bounded algorithm
again, this time on Ψθ � q � 0 � x̃ � , and say the return value is � A2 � Ψ2 � .
The return value of the program “P;Q” may now be returned as
� A � Ψ � Ψ2 � .
4.3 The Single-Loop Algorithm

A loop is defined by (a) a CTS p representing its body program
fragment, and (b) an exit condition exit � � . We now extend the
algorithm above to deal with a single “repeat-until” loop.

A key function needed here is INVARIANT � G � Ψ � . Let the goal
G � x̃ � represent the entry to the loop body, and let it have a deriva-
tion sequence giving rise to constraints Ψ � z̃ � at the end of the loop
body. Intuitively, INVARIANT � � generalized the constraints in G so
that what remains are constraints which are “invariant” through the
loop. More formally, INVARIANT � G � x̃ � � Ψ � z̃ � � returns a generaliza-
tion G � of G that is, G � � x̃ � subsumes
G � � z̃ � � Ψ ��� exit � z̃ � .

As with REDUNDANT � � , there is a straightforward implementa-
tion of INVARIANT � G � Ψ � : remove each individual constraint that
is not invariant through the loop. More precisely, let θ rename x̃
into z̃. We say that an individual constraint c is invariant through Ψ
if p � k � z̃ � � Ψ ��� exit � z̃ � � � cθ.

ALGORITHM 2. Input initial goal G � p � 0 � x̃ � � Ψ0 and exit condi-
tion exit � x̃ �
1. Let A � be � .
2. Perform bounded program analysis on G obtaining � A � Ψ � z̃ � � .
3. Let G � be the goal p � 0 � z̃ � � Ψ0 � Ψ � z̃ � .

If G subsumes G � , Return � A � � Ψ � z̃ ��� exit � z̃ � �
4. Let A � be INVARIANT � G � Ψ � .

Restart step 1 with A � � G � in place of G .

A key property of this algorithm is that all invariant constraints
in the calling context Ψ are automatically propagated through the
loop. We exemplify this below.

4.4 The General Algorithm

We now combine the above three algorithms for the general case. It
suffices to describe how to embed, in a bounded program, a single
loop.

Suppose we want to embed a loop in between program points k
and k � 1 in a CTS p for a bounded program. We now introduce a
special rule called a loop rule, of the form:

p � k � x̃ � : � loop � q � exit � x̃ � � z̃ � � p � k � 1 � z̃ � �
where the CTS q represents the loop-body, the predicate q is not
defined in terms of the predicate p, the term exit � x̃ � denotes the
exit condition of the loop, and finally, the variables z̃ are fresh (and
intended to represent the final variables of the analysis of q.

We now present our main algorithm as a generalization of the
unbounded algorithm. In this generalization, we shall be calling
the single-loop algorithm when we encounter a goal from a loop
rule. We assume, by recursive reasoning so that we can deal with
arbitrarily nested loops, that the single-loop algorithm will in turn
call this main algorithm (as opposed to the bounded algorithm).

ALGORITHM 3. Input G .
If G is not a loop goal: proceed as in the bounded algorithm.

Otherwise, let G be of the form

Ψ � loop � q � exit � x̃ � � z̃ � � p � k � 1 � z̃ �
Run the single loop algm on Ψ � q � 0 � x̃ � with the exit condition
exit � x̃ � . Obtain the pair � A � Ψ � � , and let the final variables in Ψ �
be z̃. Now (recursively) analyze using the (general) algorithm on
the new goal:

A � Ψ � � Ψ � � p � k � 1 � z̃ �
and obtain the new result � A � � Ψ � � � .
Return � A � Ψ � � Ψ � � � .
We finally state what is obviously needed.

THEOREM 2. Let P be a program, p its CTS representation, G the
the initial goal. The general algorithm on G terminates, and if it
does not return FAIL, the program P is safe. Further, the return
value � A � Ψ � is such that A � G � has a postcondition Ψ.

We finally mention that the user may apply an arbirtrary abstraction
function at any point. To so on a goal, say to apply A on Ψ � p � k � x̃ � ,
simply means the following. Let Ψ � φ1 ������� � φn. (a) remove each
constraint φi where φi � � A � Ψ � from Ψ, and (b) continuing the
analysis process with Ψ � A � Ψ � � p � k � x̃ � where this Ψ is what results
from step (a).

Consider a skeleton of the bubblesort program:

�
0 � repeat�
1 � j = 0�
2 � repeat�
3 � t++; j++�
4 � until (j = i)�
5 � i++�
6 � until (i = n)

�
7 �

Consider a top-level input constraint of t � i, and we prove auto-
matically that t � i at the end. First consider the single-loop algo-
rithm applied to the outer loop at point

�
0 � . We now analyze its

body at
�
1 � .

Consider the bounded loop algorithm on this body of three state-
ments. The first, at

�
1 � , leads us to analyze the second statement

�
2 �

with the new context t � i � j � 0. We now analyze the inner loop
body at

�
3 � .

We easily get the summarization � A � t � � t � 1 � j � � j � 1 � ; we
ignore A henceforth. Using step 3 of the algorithm, we check if
p � 3 � i � j � t � subsumes p � 3 � i � j � � t � � � t � i � j � 0 � t � � t � 1 � j � � j �
1 � j ���� i. It does not, and we apply INVARIANT � � which now deletes
j � 0 so that step 3 of the single loop algorithm succeeds. We
have now determined the summarization � A2 � t � � i � t � � t � 1 � j � �
j � 1 � j � � i � , where A2 simply deletes j � 0, for the inner loop.

Returning now to the third statement of the outer loop, we
propagate the above summarize formula through point

�
5 � to obtain

t � i � t � � t � 1 � j � � j � 1 � j � �� i � i � � i � 1, which can be simplified
into t � � i � by projecting onto t � and i � .

We have now completed the inner loop body with this for-
mula as a summarization. We are now back at step 3 of the sin-
gle loop algorithm, and because the subsumption test passes (ie:
p � 1 � i � j � t � � t � i subsumes p(1, i’, j’, t’), t � � i � � i � � n), we are done.

Next consider another example:

�
0 � repeat�
1 � i++�
2 � t = t + i�
3 � until (i = n)

�
4 �

We now demonstrate the use of a user-given invariant t � 0 � 5i2 at
point

�
1 � . We assume a new top-level constraint 0 � i � t � n and

we prove automatically that t � 0 � 5n2 at the end. We start with the
single loop algorithm, and analyzing the inner loop body at

�
1 � .

This point is marked with a user-defined abstraction t � 0 � 5i2 and
so we delete the contraints here which imply this; that is, we delete
0 � i � t. We now proceed with the analysis of point

�
2 � , now with

the constraint t � 0 � 5i2. We eventually get to the bottom of the loop
with the constraints t � 0 � 5i2 � i � � i � 1 � t � � t � i � . The rest of the
proof, that this constraint augmented with i �� n at � t � � i � � implies
the user-defined invariant at � t � i � , is straightforward.

5. Tuning the Algorithm
A key strength of the algorithm is that it is easily tunable. The key
technical concepts permitting this is the use of summarizations,
which in turn provides for compositional reasoning. That is, pro-
gram fragments may be analyzed with different specializations of
the technique, and pieced together using summarizations. For ex-
ample, while the basic algorithm is exact on a loop-free program,
a judicious partition of the program into two fragments can signif-
cantly improve performance while preserving a proof. One could
choose the partition point where the preceding program fragment
terminates after culminating a complex computation into a simple
set of constraints which can appeart in the summarization of the
fragment. Similarly, for loops, one could use different notions of
obtaining an invariant so that the loop need not be unrolled.

Now, for a single unbounded program fragment, the essential
challenge is that the analysis of a bounded program generally re-
quires consideration of an exponential number of symbolic traces.
The standard approach is to use a static abstraction function and
perform search by considering abstractly similar states or traces as
one. The problem is, of course, that the choice of the abstraction
function is not necessarily designed for the program at hand, and
hence the function may not give rise to an efficient proof. As men-
tioned above in section 1.1, dynamic abstract interpretation meth-
ods apart from CEGAR are not well developed, and they are not
compositional. Our technique of dynamic summarizations is an ef-
fective optimization of this exponential problem.

A key component in computing the summarization is the gen-
eralization function REDUNDANT � � which keeps a goal false. A
key component of the single-loop algorithm is also a generalization
function INVARIANT � � , but this time it computes a loop invariant.
In both these cases, there are straightforward and efficient algo-
rithms based upon constraint deletion. Such a standard algorithm
may not always be appropriate. We then could resolve to choosing
from a family of abstract functions, for example, a family specified
by predicate abstraction [5]. The important point is that one could
design this family of functions with the problem domain at hand.
We should mention that designing the abstraction family is also ap-
plicable in standard approaches using abstraction interpretation.

For loops, our use of a loop invariant is in fact less restrictive
than is standard. In particular, note that constraints which are invari-
ant will be propagated through the loop, regardless of abstraction.
For example, if we were to analyze the program fragment while
(i < n) do i++ ; j++2 end with a context i � 0 � i � j, then the
(standard) abstraction function would delete the constraint i � 0.
It will not, however, delete the second constraint i � j; thus this

constraint is available for subsequent use. Note that while this con-
straint can be (manually or automatically) proven invariant by some
generalization method, the point here is that we need not know
whether or not it in advance.

Finally we address the postcondition computed in a summariza-
tion by means of the COMMON � � function. This essentially involves
the abstraction of two constraint sequences into one. Here the idea
to generalize as little as possible while using a compact representa-
tion. Again, this is tunable if one has an idea about what is essen-
tial about the output of a program fragment. An important class of
examples is that only (the abstract values of) certain variables are
essential. In this case, the computation of COMMON � � would oper-
ate on the projection of the input constraints onto these variables.
After projection, one then needs a compact representation of the
disjunction of the resultant constraints, something that abstraction
functions are often designed to do.

6. Experimental Evaluation
In this section, we evaluate only bounded programs to demonstrate
the search reduction capabilities of dynamic summarizations. This
is the primary area of concern for efficiency. Loops are analysed
by composition of bounded programs, and so their performance is
secondary.

We implement example programs by direct translation into
the CLP(R) programming language [8]. Two critical features of
CLP(R) are its meta-level facilities [6], and its projection algo-
rithm [7]. The latter needs to deal with the basic problem in CTS
systems of dynamic variable creation. For example, one derivation
resulted in tens of thousands of constraints over a few hundred
thousand auxiliary variables, but CLP(R) ran in approximately
0 � 2 seconds. We also augmented the CLP(R) system with a mem-
oization mechanism, storing the summarization result of each en-
countered goal, in order to perform subsumption checking. Finally,
we implemented our basic algorithm presented in Section 4.1 to
perform the experiments. The REDUNDANT function which we
implemented uses constraint deletion at every false node.

Our first example, analyzes the value of t in the bubblesort
program in Figure 3, shows idealized behavior. The answer, as is
well known, is given by that fact that there are at most α � α � 1 ��� 2
swaps. The symbolic search space (which is already considerably
smaller than the concrete space) is exponential in this number and
hence unmanageable. Using dynamic summarizations, the search
space we obtain is in fact linear in the array size α.

Now, for this trivial example, there may be other algorithms
which can use the simple facts that each iteration increments t by at
most 2 and that the longest path has length α � α � 1 ��� 2. However,
in general there would be ad-hoc input constraints, For example,
suppose the array contained only binary elements. Then a simple
algorithm would be inaccurate: for example, the answer is 9 instead
of 15 for an array of size 6. We are unaware of any algorithm which
could solve this kind of problem efficiently.

To further demonstrate the handling of ad-hoc contexts we ran
bubblesort again, this time modelling the underlying microarchi-
tecture in order to produce ad-hoc but realistic contexts. We choose
a “data cache” microarchitecture as follows. At any time, the data
cache stores array elements a 	 3i � � a 	 3i � 1 � � and a 	 3i � 2 � for some
i � When there is a need to load a new set of array elements into
the cache, we give an additional cost of 1 to array element compar-
isons.

Results are shown in Table 1 with time in seconds, obtained
using Linux 2.4.22 OS on a Pentium 4 2.8GHz processor with
512Mb RAM. Note that the number of nodes is linear in the square

of array size (which in turn is linear in the maximal path length), in
both versions3.

Next we ran a few random programs such as the ADPCM
encoder (41 lines), and decoder (27 lines) [13] (which are similar
to a large class of embedded streaming applications). Here we
simply assumed that each C statement consumes 1 time unit. In
both programs, we also modelled an instruction cache which can
store 8 statements, and a cache miss would consume 10 time units.
For these examples, we modified our algorithm so that not just
proves but discovers the exact bound. Finally we ran an iterative
square root algorithm [15] and janne complex [4, 10] examples.
The results are shown in Table 2.

In all these examples, dynamic summarization produced signif-
icant improvements.

7. Concluding Discussion
We presented an analysis technique for structured sequential pro-
grams based upon abstract reasoning over symbolic traces. Its first
component deals with bounded programs, and the novelty here was
the use of dynamic summarizations to succinctly describe arbitrary
program fragments as relations. A summarization serves two pur-
poses. First, by means of abstraction on demand, its context of use
can be more general than in the original invocation of the program
fragment. This is the key idea that permits a reduction of the search
space. Second, a summarization permits the postcondition of the
program fragment, which is in general a large disjunction of con-
straints, to be compactly representation. These two purposes allow
our technique the crucial feature of compositionality.

We then extend the bounded program technique to the general
case. The important contribution here concerns how a loop invari-
ant is obtained. We presented a method where only certain parts
of a Hoare-style is required to be given, either manually, or via
the family of abstraction functions considered. Our technique will
automatically preserve invariant constraints in the sense that these
dynamically encountered constraints need not be accomodated by
the abstraction function in order to be propagated through the loop.

We demonstrated a standard implementation of the three core
functions as follows. For generalization, we simply removed con-
straints one at a time as long as some condition holds (REDUNDANT � �),
or until some condition holds (INVARIANT � �). For summarization
of postconditions, we simply collected the common constraints in
the intersection of two constraints. Even with these trivial imple-
mentations, we obtained an automatic analyzer which was useful.

In the end, we implemented a technique based on the philoso-
phy of performing analysis with as much precision as possible, un-
til efficiency is at stake, in other words, “abstraction on demand”.
Being compositional and having isolated its core functions of gen-
eralization and succint representation of postconditions, we believe
the technique is easily tunable.

3 Standard benchmarks [15, 10] usually fix the array values and consider
analysis only on a single execution path.

Array No Summarization W/ Summarization
Problem Size Nodes (Time) Nodes (Time)

Normal 5 1606 (9.98) 58 (0.06)
10 ∞ 218 (1.41)
15 ∞ 478 (10.71)
20 ∞ 838 (42.45)
25 ∞ 1298 (134.48)
30 ∞ 1858 (349.73)
35 ∞ 2518 (824.72)

Cached 5 2233 (20.46) 88 (0.20)
10 ∞ 336 (5.03)
15 ∞ 798 (45.02)
20 ∞ 1410 (216.60)

Table 1. Bubble Sort

No Summarization W/ Summarization
Problem Nodes (Time) Nodes (Time)

Encoder 494 (1.22) 266 (0.69)
Decoder 344 (0.46) 164 (0.30)

Encoder (Cached) 494 (1.63) 266 (0.95)
Decoder (Cached) 344 (0.56) 164 (0.39)

Square Root 923 (5.96) 253 (1.91)
Janne complex 1517 (24.25) 683 (5.8)

Table 2. Some Random Programs

References
[1] T. Ball, T. Millstein, and S. K. Rajamani. Polymorphic predicate

abstraction. ACM Transactions on Programming Languages and
Systems, 27(2):314–343, 2005.

[2] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for symbolic model
checking. Journal of the ACM, 50(5):752–794, September 2003.

[3] P. Cousot and R. Cousot. Static determination of dynamic properties
of recursive procedures. In E.Neuhold, editor, Formal Description of
Prog. Concepts. North-Holland, 1978.

[4] A. Ermedahl and J. Gustafsson. Deriving annotations for tight
calculation of execution time. In C. Lengauer, M. Griebl, and
S. Gorlatch, editors, 3rd Euro-Par, volume 1300 of LNCS, pages
1298–1307. Springer, 1997.

[5] S. Graf and H. Saı̈di. Construction of abstract state graphs of infinite
systems with PVS. In O. Grumberg, editor, 9th CAV, volume 1254 of
LNCS, pages 72–83. Springer, 1997.

[6] N. Heintze, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. Meta
programming in CLP(R). Journal of Logic Programming, 33(3):221–
259, December 1997.

[7] J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Output in
CLP(R). In Proc. Int. Conf. on Fifth Generation Computer Systems,
Tokyo, Japan, volume 2, pages 987–995, 1992.

[8] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R)
language and system. ACM TOPLAS, 14(3):339–395, 1992.

[9] J. Jaffar, A. E. Santosa, and R. Voicu. A CLP method for
compositional and intermittent predicate abstraction. In E. A. Emerson
and K. S. Namjoshi, editors, 7th VMCAI, volume 3855 of LNCS, pages
17–32. Springer, 2006.

[10] Mälardalen WCET research group benchmarks. URL htt-
p://www.mrtc.mdh.se/projects/wcet/benchmarks.html.

[11] S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing procedures in
concurrent programs. In 31st POPL. ACM Press, 2004.

[12] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In 22nd POPL, pages 49–61. ACM
Press, 1995.

[13] R. Richey. Adaptive Differential Pulse Code Modulation Using
PICmicro Microcontrollers. Microchip Technology, Inc., 1997.

[14] M. Sharir and A. Pnueli. Two approaches to interprocedural dataflow
analysis. In S. S. Muchnick and N. D. Jones, editors, Program Flow

Analysis: Theory and Applications, pages 189–233. Prentice-Hall,
1981.

[15] SNU real-time benchmarks. URL http://archi.snu.ac.kr/real-
time/benchmark/.

