
A Symbolic Execution Method for Bounds Analysis

JOXAN JAFFAR, ANDREW E. SANTOSA, D.H. CHU AND JORGE NAVAS

Department of Computer Science
National University of Singapore
Republic of Singapore 117543

{joxan,andrews,chuduchi,navas}@comp.nus.edu.sg

Abstract. Given a program whose loops are bounded, we address the problem of
estimating the upper bound of a variable which is monotonically increasing, and
its typical application in annotating a program so that bounds analysis produces
an estimate of the worst-case resource usage. The method presented is a system-
atic enumeration of symbolic states of the program. The novelty is twofold: first,
we useintermittent invariants, each being a property that is true of some but not
all iterations of a loop. This allows for the discriminationof analyses of different
iterations while still providing an abstraction so that theanalysis can be practical.
Second, we compute the bound estimate by simulating the behavior of the loop
using adynamic programmingalgorithm, relieving us from discovering a closed
form expression for the loop. The analysis time of a loop, which reasons aboutall
inputs, is then proportional to the actual running time of the loop, onone input.
The method compared formally with prior work, and evaluatedempirically on
benchmark programs.

1 Introduction

Predicting upper bounds on the resource usage is needed to verify that constraints are
not violated in hard real-time systems. The most important resource is often the exe-
cution time of a program. Unfortunately, the problem of inferring upper bounds on the
execution time of a program is undecidable. Instead, some restrictions are forced to
guarantee the program to be analyzed always terminates. Even so, to estimate the exe-
cution time is still of huge complexity [22]. Since all possible input value combinations
must be considered, the number of possible program paths increases exponentially with
the number of control flow branches. Therefore, testing all executable paths is unfeasi-
ble when dealing with larger applications.

Worst-Case Execution Time(WCET) analysis aims to provide the worst possible
execution time of a program used in a system and it is usually performed at two different
levels [18]. Thelow-level, which is done at the object code, provides the execution
time of basic blocks considering the effects of hardware level features such as cache,
pipelining, branch prediction, etc. [9, 5]. On the other hand, thehigh-levelanalysis is
performed at the source code and it focuses on characterizing possible execution paths.
A big advantage of performing the high level analysis in a separate step is that the
hardware model can be replaced independently of the rest of the tool, making a tool
much easier to retarget [23].

A main issue in WCET analysis is to avoid pessimism (overestimation) in timing
evaluation by providingtight bounds. One part of the overestimation is due to the pres-
ence of some hardware features that affect the execution time of instructions. On the

other hand, to achieve a tight estimation we need information about the program be-
havior such as infeasible paths and maximum number of loop iterations [4] which are
often provided by users. The design of an accurate and practical WCET analysis should
consider at least the following features:

1. Input Data dependent: the WCET of a piece of code depends on the value of its
input variables, where we would like to consider all possible executions efficiently,
for example, in the following program, wherea is an input array:

if (a[i][j] != 0) {...} else {...}

2. Non-rectangular loops: the maximum number of iterations of an inner loop de-
pends on the iteration number of an outer loop. For example:

for (i=0; i < N ; i++){ for (j=0; j < i; j++) {...} }

Here we would like to express the WCET of the inner loop as a function of some
variables (e.g.,i) defined in the scope of the outer loop.

3. Mutually exclusive paths: the execution of a piece of code forbids the execution
of another piece of code. The following example [2], we want to take into account
that the paths (a,c) and (b,d) are mutually exclusive:

if (E < 0){ condition = 0; x = E + 45;} /* a */
else{ condition = 1; x = -E;} /* b */
if (condition) result = x / y; /* c */
else result = y; /* d */

4. Down-sampling code: the execution of one part of the body of a loop is executed
less often than the rest of the body. For example, in the following code we would
like to consider the WCET of the inner if-statement only once.

for (i=0 ; i < N; i++){ if (i == 4) {...} }

5. Closed-form is not always possible: the WCET analysis can produce symbolic
expressions which are solved (closed-form) by using off-the-shelfComputational
Algebraic Systems(CAS). However, to obtain a closed-form can be unrealistic [24].
As an example, consider the well-known Collatz problem (also called 3x+1 prob-
lem) written as a program, which total correctness is yet to be proven (see e.g., [1]
and its references):

for(; n != 1;) { if (n % 2 == 0) n = n/2; else n = 3*n + 1; }

Furthermore, WCET estimates must be alsosafe, i.e., guaranteed not to underesti-
mate the execution time, in order to be valid for use in hard real-time systems. There-
fore, the correctness depends not only on the results of the computations, but also on
the time at which the result is provided. To be able to guarantee the correctness, we also
need a proof of the WCET estimate [4, 7, 16].

1.1 Summary of Contributions

In this paper, we present a general method for inferring and proving tight bounds on
the resource usage of programs in which termination is guaranteed, and applied this
result to the high-level analysis of Worst-Case Execution Time (WCET). We start with
a universally used basic methodology of not unrolling loops, but to treat a loop in a
sequence of statements as just one statement to be analyzed.In order to be safe, the

loop body must be analyzed not with the current context, but with a loop invariant,
obtained by a simple invariant discovery method applied to the current context.

The first innovation is to allow specializations of this loopinvariants inintermittent
invariants, i.e. each one is true for some but not all iterations of a loop. This allows for
the discrimination of different cases within a loop improving the accuracy of the overall
method but still being practical. Since the automatic discovery of these invariants is in
general infeasible, our method depends on manual intervention for this purpose. Even
so, we believe the methodology is intuitive and easy to use, given that the programmer
knows about the essential properties that give rise to different bounds in the loop body.

The second innovation is, in contrast to the general approach of analyzing a loop
by only analyzing its body, is in fact to unroll the loop and discover the bound. This is
performed at a different stage in the analysis, at the time when the analysis of its body
has been completed. What is crucial here is that this unrolling and optimization problem
is amenable todynamic programing. Thus the cost is proportional to the actual running
time of the loop and the number of intermittent invariants employed. In contrast, all
prior methods need to discover a closed form expression for the loop, which is not just
impossible in principle, but also impractical.

We finally show, using standard benchmarks, that our method not only runs in good
time, but produces accurate (and oftenexact) results.

1.2 Related Work

High level WCET analysis has been the subject of much research, and substantial
progress has been made in the area (see [18, 25] for surveys ofWCET). There are
three main categories of high level analysis methods proposed in literature:tree-based,
path-based, andIPET (Implicit Path Enumeration Technique).
• In tree-based approach [19, 17, 16, 2, 5], the WCET is generated by a bottom-up

traversal of a tree, generally corresponding to the controlflow graph or syntax tree
of the program, using rules defined for each type of compound program statement
(if-statements, function calls, loops, etc).

• In path-based approach [3, 9, 22, 23], the WCET estimate is generated by calcu-
lating times for different paths in a program and searching for the path with the
longest execution time. The key feature is that possible execution paths are explic-
itly represented which may be valuable information for the programmer, e.g. for
debugging purposes.

• In IPET [13, 20, 15, 6, 8], the program flow is modeled using arithmetic constraints.
Each basic block and program flow edge in the program is given atime variable
(tentity) and a count variable (xentity), and the goal is to maximize the∑i∈entitiesxi ∗ ti,
subject to constraints expressing the structure of the program and possible flows.
The result is the worst-case count for each node and edge.

The tree and path-based approaches have problems with flow information stretching
across loop-nesting levels [8]. Moreover, tree-based methods cannot capture depen-
dencies across statements since the computations are localwithin a single program
statement [23]. In purely IPET methods the computational results are not better than
the results of a tree-based method [2]. However, complex flows can be expressed us-
ing user-definable constraints [6, 8] but the computationalcomplexity of solving the
resulting problem is potentially exponential, since the program is completely unrolled
and all flow information is lifted to a global level. Moreover, the correctness of those
constraints is not verified and the WCET may be untight or, worse, unsafe.

To the best of our knowledge our method is the first bounds analysis that can prove
upper bounds of the longest executable path of a program in the presence of complex
features such as input data dependencies, non-rectangularloops, down-sampling code,
and mutually-exclusive paths even when a closed-form can not be obtained by tradi-
tional CAS.

2 Preliminaries

We will use the formalism of Constraint Logic Programming (CLP) [10] in this paper.
We consider integer and array terms. Integer terms are constructed in the usual way,

with one addition: the array element. The latter is defined recursively to be of the form
a[i] wherea is anarray expressionandi an integer term. An array expression is either
an array variable or of the form〈a, i, j〉 wherea is an array expression andi, j are integer
terms. Aconstraintis either an integer equality or inequality, an equation between array
expressions. The meaning of a constraint is defined in the obvious way.

In what follows, we use constraint to mean either an atomic constraint or a con-
junction of constraints. We shall use the symbolψ or Ψ, with or without subscripts, to
denote a constraint.

An atomis of the formp(t̃) wherep is a user-defined predicate symbol andt̃ a tuple
of terms, written in the language of an underlying constraint solver. A rule is of the
form A:-Ψ, B̃ where the atomA is theheadof the rule, and the sequence of atomsB̃
and constraintΨ constitute thebodyof the rule. The constraintΨ is also written in the
language of the underlying constraint solver, which is assumed to be able to decide (at
least reasonably frequently) whetherΨ is satisfiable or not. In our examples, we assume
an integer and array constraint solver, as described below.

A programis a finite set of rules. Agoalhas exactly the same format as the body of
a rule.

A substitutionθ simultaneously replaces each variable in a term or constraint e into
some expression, and we writeeθ to denote the result. Arenamingis a substitution
which maps each variable in the expression into a distinct variable. A grounding is
a substitution which maps each integer or array variable into its intended universe of
discourse: an integer or an array. WhereΨ is a constraint, a grounding ofΨ results in
true or falsein the usual way.

A groundingθ of an atomp(t̃) is an object of the formp(t̃θ) having no variables. A
grounding of a goalG ≡ (p(t̃),Ψ) is a groundingθ of p(t̃) whereΨθ is true. We write
[[G]] to denote the set of groundings ofG . We say that a goalG subsumesanother goal
G ′ if [[G]] ⊇ [[G ′]].

LetG ≡ (B1, · · · ,Bn,Ψ) andP denote a non-final goal and program respectively. Let
R≡ A:-Ψ1,C1, · · · ,Cm denote a rule inP, written so that none of its variables appear in
G . Let the equationA = B be shorthand for the pairwise equation of the corresponding
arguments ofA andB. A reductof G using a ruleR, denotedreduct(G ,R), is of the
form

(B1, · · · ,Bi−1,C1, · · · ,Cm,Bi+1, · · · ,Bn,Bi = A,Ψ,Ψ1)
provided the constraintBi = A∧Ψ∧Ψ1 is satisfiable.

A derivation sequencefor a goalG 0 is a possibly infinite sequence of goalsG 0,G 1, · · ·
whereG i , i > 0 is a reduct ofG i−1. If the last goalG n is a final goal, we say that the
derivation issuccessful. A derivation treefor a goal is defined in the obvious way.

p(1, [A,2, I ,0], [A,2, I ,T])

n > 999

q([A,2, I ,0], [A,2, I ,T])
I = 1

A[1] > 2,T1 = T +1, I1 = I +1 A[2] <= 2,T1 = T +2, I1 = I +1

A[1] > 2, ... A[1] > 2, ... A[2] <= 2, ...A[2] <= 2, ...

body q([A,2,3,3], body q([A,2,3,3], body q([A,2,3,4],

body q([A,2,4,3],

body q([A,2,4,4],

body q([A,2,4,4],

body q([A,2,4,5],

body q([A,2,4,4], body q([A,2,4,5],

body q([A,2,4,6],

[A,2,1,4]) [A,2,1,4]) [A,2,1,5])

p(0, [A,B, I ,0], [A,B, I ,T]),n = 4.

body q([A,2,1,0], [A,2, I ,T])

body q([A,2,2,1], [A,2, I ,T]) body q([A,2,2,2], [A,2, I ,T])

body q([A,2,3,2],
[A,2, I ,T]) [A,2, I ,T]) [A,2, I ,T]) [A,2, I ,T])

[A,2,4,3])

[A,2,4,4]) [A,2,4,5])
body q([A,2,4,5],

[A,2,4,5]) [A,2,4,6])

n <= 999,B = 2

Fig. 1.Execution tree for?- p(0, [, , ,0], [, , ,T]), n = 4

Definition 1 (Abstract Computation Tree). An abstract computation treeis defined
just like a derivation tree except that a node, representinga goalG , may be replaced
by another node representing another goalG ′ whereG ′ subsumesG .

Our concern in this paper is essentially to compute an abstract computation tree
which represents all the concrete traces of the underlying program being modeled. Es-
timating the bound of one distinguished variable can then performed by traversing the
tree.

2.1 Representing Programs as CLP Programs

In general, we shall represent a program as a transition system, expressed formally in
the CLP notation. This process is straightforward, and so wewill omit the details of the
representation in general. Instead, we will use an example:

〈0〉 if (n > 999) b = 1 else b = 2
〈1〉 for (i = 1; i < n; i++) if (a[i] > b) t = t + 1 else t = t + 2

where the variable of interest ist. Note that for this special variable, theresource vari-
able, the only operation allowed upon it is an increment of a constant, and further, the
variable is not used in any other way. The CLP representationis:

p(0, [A,B,I,T], V) :- n > 999, B1 = 1, p(1, [A,B1,I,T], V).
p(0, [A,B,I,T], V) :- n <= 999, B1 = 2, p(1, [A,B1,I,T], V).
p(1, [A,B,I,T], V) :- q([A,B,I,T], V).
q([A,B,I,T], V) :- I1 = 1, body q([A,B,I1,T], V).
body q(V, V) :- I >= n.
body q([A,B,I,T], V) :- A[I] > B, T1 = T+1, I1 = I+1, body q([A,B,I1,T1], V)
body q([A,B,I,T], V) :- A[I] <= B, T1 = T+2, I1 = I+1, body q([A,B,I1,T1], V)

wheren is a constant. Note that the predicatep represents transitions at onelevel, in this
case 2, while the predicateq, which represents the loop, is at level 1. The first argument
of p andq represent the program point, the second a list of variables representing the
program state before the transition, and the third is also a list of variables but it repre-
sents the program state attermination. The constraintsT1 = T+1 andT1 = T+2 shall
be called theresource constraints.

We call a rule for a predicate of levelm+ 1 which involves a predicate of level
m (such asp(1, [A,B,I,T], V) :- q([A,B,I,T], V) above) acompositerule. All
other rules arebasic.

We call predicates such asp straightline predicates, for they describe the transi-
tions between a sequence of program statements, and we call predicates such asq loop
predicates. It is important to note that in a derivation sequence, a rulethat defines a
straightline predicate can be employedat most once.

We finally display in Fig. 1 a computation tree for this example, for n = 4. Note
that the tree size is exponential inn, and clearly the bound for the resource variableT
is 6 in the casen = 4. Therefore, a naive traversal of this tree, i.e., unrolling the loop, is
clearly impractical. Note also that intuitively, we could have determined this answer in
three steps by considering only the transitions that incrementT by 2.

3 Analysis of Straight-Lines

The main focus of this paper is method for analyzing loops. However, it requires an
algorithm for determining the WCET of straight-line programs. In fact, the loop method
is intertwinedwith the straight-line algorithm.

We first assume the existence of a basic straight-line algorithm which can work on a
transition system of level 1, i.e., there are no loops. Call this algorithmA(1). For exam-
ple, we could employ an abstract interpreter in order to get a(hopefully small) closed
tree, and simply read off the maximum bound from the tree. Such a basic algorithm, in
conjunction with our method for loops in the next section, induces a general algorithm
A(m) for straight-lines, as follows.

Suppose the underlying program is represented by a transition system of levelm+1
for somem≥ 1. We now process the transitions at levelm+1 in a sequence according
the basic algorithmA(1). Upon encountering a composite rule

p(K, V, Vf) :- q(0, V, V1), p(K1, V1, Vf).

where the predicateq is at levelm, we now apply the loop algorithm in the next section
in order to obtain a CLP program for the predicateloop. Note that the loop algorithm
is being called forthis particularencounter of the loop transition. We now replace the
above rule with

p(K, V, Vf) :- loop(V, V1), p(K1, V1, Vf).

If we now can replace the predicateloop(V, V1) with a constraint, we have a transition
system at only one level (with the only predicatep). AlgorithmA(1) can now be applied
on the final transition system. We explain this process of replacement in more detail in
Section 5.

In what follows, let the proceduregenstrline(i, Ψ, S,Φ) produce the CLP program
strline i/21 as described below.

1 The notationp/2 emphasizes that the predicatep takes 2 arguments.

Input: a “name”i, a start contextΨ, an end contextΦ and straight-line programS

Output:

• if {Ψ}S{Φ} holds, then a CLP programstrline i(V, Vf)
which correctly returns the WCET timeT ∈Vf when the goal ?-Ψ, strline i(V,
Vf) is run. (The valueT is generallyfunctionally dependenton Ψ.)

• otherwise, no CLP program is generated.

In summary for this section, we assume an overall straight-line algorithm scheme
for determining the bound. Though this algorithm is not the focus of this paper, it is
important for accuracy because it has the potential of determining which paths through
the computation tree corresponding to a straightline are possible. In our examples, we
shall use a naive algorithm which generates the full computation tree (and we pick the
“longest path” from here). In practice, a more advanced algorithm may be needed. An
example is the interpolation-based algorithm described in[12].

4 Analysis of a Loop

Recall that to analyze a loop by extrapolating an analysis ofits body requires that the
body analysis takes place in the context of a loop invariant.The key idea here is that
we use, instead, a (small) number ofintermittent invariants, each of which is a true
property of the state just beforesomebut notall invocations of the loop body.

The definition of intermittent invariants is essentially manual, because it serves to
partition the loop iterations into important cases. Formally, we use a collection of for-
mulas (whose free variables are the program variables)A 1, · · · ,A m, for somem≥ 1, to
represent these invariants.

Let L stand for the loop

for (init(Xs); step(Xs); exit(Xs)) S

The proceduregen loop(Ψ, L) generates a CLP programloop i/2 as described below.
Before presenting it, we require a few definitions:

• step(V, V1):
is an abstraction of the transition relation of S. This is to represent that part of the
loop body which executes a well-founded order in order to ensure loop termination.
A typical step is the increment of a counter variable where the exit condition is that
the counter exceeds a given bound. Note that, in general, only a small part of the
body is needed to be considered in order to be assured of termination.

• initial context isΨ:
Clearly we cannot analyze the loop body under an arbitrary context such asΨ. In-
stead, we require aloop invariant. Toward this end, defineΨ to be a generalization
of Ψ so that{Ψ}S{Ψ} holds. There is a crucial exception:Ψ retains the resource
constraints. There is a simple implementation of this generalization: simply delete
from Ψ each individual constraint that may be changed inside the loop body. (This
process is therefore a form oflightweightinvariant discovery.)

• intermittent invariants:
The idea here is to allow discrimination into a small number of cases of abstract
statesA 1, · · · ,A m that precede the loop body. We call these states intermittent in-
variants because they are invariant only some of the time, and as such, they can

be thought as partitions of a (true) loop invariant. letAi : i ∈ {1, · · · ,m} denote the
subset of intermittent invariants that are entailed byΨ. Note that there must be at
least one suchAi . Suppose the set of suchi is Σ.

We can now present the proceduregen loop(Ψ, L). Note that though we use the specific
predicate namesloop andbody below,freshnames are used each time the procedure is
invoked.

write rule: loop(V, Vf) :- init(V, V1), bodyloop(V1, Vf).
write rule: bodyloop(V, V) :- exit(V).
let memo table be empty
for each i ∈ Σ run gen loop(i)

gen loop(i) {
memo i
for each (1≤ j ≤ m) {

gen strline(j, Ψ∧Ai, S, Ψ∧A j)
write rule:

body(V, Vf) :-
A i(V),
strline j(V, V1),
step(V1, V2),
body(V2, Vf)

if (j is not memoed) gen loop(j) }}

Note that above we have, for simplicity, considered all cases 1≤ j ≤ m for each case
i. Clearly we only need to consider thosej for which the straightline code from the
abstractionA i to A j is possible (and this is tested in proceduregenstrline).

Consider the example programS

k = 0;
for (i = 1; i <= n; i++)

for (j = 1; j <= i; j++)
if (k == 0)

if (j % 2 = 0) t++;

Calling the proceduregenstrline(4,true,S,true)on this results in:

strline4([I,J,K,T], Vf) :- K = 0, strline3([I,J,K,T], Vf).
strline3(V, Vf) :- loop2(V, Vf).

loop2(V,V1) :- V2=[I1,J,K,T], I1 = 1, body2(V2,V1).
body2([I,J,K,T], [I,J,K,T]) :- I > n.
body2([I,J,K,T], Vf) :-

strline2([I,J,K,T], [I1,J1,K1,T1]),
I2 = I1 + 1,
body2([I2,J1,K1,T1], Vf).

strline2(V, Vf) :- loop1(V, Vf).

loop1(V,V1) :- V2=[I,J1,K,T], J1 = 1, body1(V2,V1).
body1([I,J,K,T], [I,J,K,T]) :- J > I.
body1([I,J,K,T], Vf) :-

J = 2*Z,
strline1even([I,J,K,T], [I1,J1,K1,T1]),
J2 = J1 + 1,
body1([I1,J2,K1,T1], Vf).

body1([I,J,K,T], Vf) :-
J = 2*Z + 1,
strline1odd([I,J,K,T], [I1,J1,K1,T1]),
J2 = J1 + 1,
body1([I1,J2,K1,T1], Vf).

strline1even([I,J,K,T], [I,J,K,T1]) :- K = 0, J = 2*Z, T1 = T + 1.
strline1odd(V, V).

A first remark is that we have used two intermittent invariants corresponding to the
cases wherej is even or odd. Note that we implement this test above asJ = 2∗Z where
Z is an existential variable, i.e., it does not appear in the head of the rule.

We thus get two versions of the predicatebody1, each invoking a different version
(strline1even andstrline1odd) of the innermost (if) statement. Note that the cre-
ation of these versions both assumed the contextK = 0 because this constraint was
invariant in both loops. Further, each version had a context which stated whetherJ was
even, and thus accurately produced an increment forT.

For this particular example, we in fact obtain, by running the initial goal

?- strline4([, , ,0], [, , ,Tf])

theexactboundTf for any given positive constantn.

5 Executing the Compiled Program with Dynamic Programming

We now describe how we run the CLP program obtained from the compilation of an
underlying program. Recall that a program, say its nesting level ism, is compiled into
CLP program whose rules are of the two forms:

p(i, V, Vf) :- Ψ(V, V1), p(j, V1, Vf).
p(i, V, Vf) :- loop(V, V1), p(j, V1, Vf).

We run such a goal aboutp in the usual way (generating a CLP derivation tree) except
that when we encounter the composite rule such as

p(i, V, Vf) :- loop(V, V1), p(j, V1, Vf).

we replace the embedded call toloop by the result of runningloop(V, V1) in the
current context. That is, we assume by induction, that a goal?- Ψ, loop(V, V1),
whose definition involves straightline predicates for level m, has previously been run.
This results in constraints about the new variablesV1 and any loop invariant. Call these
constraintsΨ1(V,V1). We therefore can replace the rule above

p(i, V, Vf) :- loop(V, V1), p(j, V1, Vf).

by

p(i, V, Vf) :- Ψ1(V, V1), p(j, V1, Vf).

Repeating this process for all composite rules results in a CLP program which contains
only basic rules for the one predicatep. The straightline algorithm now can be used to
obtain the bound of the resource variable.

Consider now theloop predicates. Clearly each is executed at least as often as the
program runs the corresponding loop in the worst case. We nowshow that the number
is in fact proportional to the worst case actual run,

This follows essentially because of adynamic programmingformulation.
Suppose we are executing a goalG = loop([. . .,Xs,. . .,T],[. . .,Tf]). There are

at mostk reductsloop i([. . .,Xs,. . .,T1], [. . .,Tf]) wherek is the number of inter-
mittent invariants for this loop. Suppose each reduct is of the form

T1 = T + αi, step(Xs, Xs1), loop i([. . .,Xs1,. . .,T1], [. . .,Tf]).

where 1≤ i ≤ k. Then clearly the value we seek is given by the recurrence:

time(G) =

max

{α1 + time(G 1)
· · ·
αk + time(G k)

}

if ¬exit(Xs)

0 otherwise

which can be solved in a number of steps proportional to the number of steps thatG
need be unfolded until the exit condition is true.

Note that sometimes it is possible to evaluate the maximum time without having to
unfold the loop. For example, in the recurrence

loop([I, T],[, T]) :- I >= n.
loop([I, T],[, Tf]) :- loop1([I+1, T + α1],[, Tf]).
loop1([I, T],[, Tf]) :- loop([I+1, T + α2], [, Tf]).
loop([I, T],[, Tf]) :- loop([I+1, T + β], [, Tf]).

we can infer that the value of T in executingloop([0, 0],[, T]) is

499∗ (α1+ α2)+ α1 if α1 + α2 > 2∗β
999∗β otherwise

Clearly such closed forms are not always easy to obtain, for example, when the to-
tal number of steps is not immediately known. As an extreme example, we recall the
Collatz program whose closed form is not known.

Theorem 1. Let the given program have a CLP representation P. Let r be themaximum
number of rules in P at a given level. Let A be the algorithm employed for determining
the resource bound for a straightline CLP program of r basic rules with performance
complexity f(r). Let a be the maximum number of intermittent invariants usedin P.
Then, the size of the computation tree explored by P is O(a2∗ f (r)).

We finally comment that for all practical purposes, the valueof a, is to be considered
constant because it is intended to be small.

expint: /* where n, x , and ITER are input (known statically) */
if(x > 1) /* test */ { for (i=1;i<=ITER;i++){ } }
else{

for (i=1;i<=ITER;i++){
if (i != n-1) { /* A */ }
else{ for (j=1;j<=n-1;j++) { ...} /* B */ }}}

fft1: /* where n is input (known statically)*/
if (n < 2) { /* A */ }
else{ xp2 = n;

for(i = 0;i<log((double)n)/log(2.0); i++){/* loop i */
xp = xp2; xp2 /= 2;
for(j = 0; j < xp2; j++){ /* loop j */

for(k = xp; k <= n; k += xp) { /* loop k */}}}
jj = 1;
for(ii = 1; ii <= n-1; ii++){ /* loop ii */
if(ii < jj) { /* B */ }
kk = n/2;
while(kk < jj){ jj -= kk; kk /= 2;} /* loop kk */
jj += kk;}}

Fig. 2. Relevant code forexpint andfft1

6 Experimental Evaluation

In order to demonstrate the efficiency of our method we implemented our prototype
bounds analyzer and performed a number of experiments. In these experiments we used
real benchmarks from different sources. To show also the expressiveness power of our
method, we will illustrate the most relevant pieces of some benchmarks and describe the
main challenges for our analyzer. Our analyzer is implemented in CLP(R) system [11],
and all measurements were performed on a Macbook Pro system with Intel Core Duo
1.83GHz CPU, 2 Gb RAM, and OS X 10.4.11.

For our first experiment we used two benchmarks:expint (Mälardalen benchmark
suite [14]) andfft1 (SNU-RT benchmark suite [21]). The results are shown in Table 1
and the important code is shown in Fig. 2. The columnParameter denotes the maximum
number of iterations that depends on some key parameters. TheValue column contains
the exact length of the longest executable path inferred by our analyzer. The next two
columns,States andTime, show the number of explored nodes during the execution
of the path in the execution tree that gives rise to the longest path, andTime is the
time in milliseconds. The last two columns denote the explored nodes and time also
in milliseconds of our analysis. For the two benchmarks, allthe input variable values
are known at compile time by keeping the context using symbolic execution, hence the
concrete states of the execution and the symbolic states inferred by our analysis were the
same. As consequence, our analysis produced the exact length of the longest executable
path, and more important, in time close to the simulation time. Note that in order to
obtain this accurate result, the problems raised from the loops. Inexpint, the code
sectionB displays a down-sampling since it is executed only once within the outer loop.
On the other hand, the loops infft1 calledloop j andloop k are non-rectangular
loops since they depend on counter variables,xp andxp2, modified in the outer loop
calledloop i. Moreover, the code sectionB also displays a down-sampling because it
is not always executed within the loop calledloop ii. Finally we can observe that a

Analysis Simulation
Benchmark Parameter Value States Time (ms) States Time (ms)

ITER = 100 383 588 7.622 588 5.540
ITER = 200 683 1088 16.637 1088 10.627

expint ITER = 400 1283 2088 46.763 2088 32.978
ITER = 800 2483 4088 161.678 4088 117.332

n = 4 77 130 1.339 130 0.994
fft1 n = 8 352 461 14.466 461 11.562

n = 12 4202 4371 2582.75 4371 2922.98

Table 1.Experimental Results forexpint andfft1

calc_center: /* where image and N are input*/
for(y=0;y<200;y ++){ /* loop y */

for(x= y/2; x< 640 - y/2; x++){ /* loop x */
if(image[x][y]){ /* A */
black_pixel++; } }}

if (! black_pixel){ /* B */ }

Fig. 3. Relevant code forcalc center

closed-form forloop kk may be difficult to find since the lower and upper limits are
modified at each iteration inside the loop.

For our second experiment shown in Table 2 we analyzed the programcalc center
taken from Puschner and Koza [19] and shown partially in Fig.3. This program has
some interesting characteristics:

• The number of times that the code sectionA is executed depends on a variableN
which is unknown at compile time.

• The two loops are non-rectangular loops. The loop calledloop x depends on the
counter variable of the outer loop (loop y).

• The code sectionA is down-sampling since it is known to be executed at most
N+ N

10 (from the problem specification and omitted in this code).
• Finally, A and the code sectionB are mutually exclusive.

Here we want to preserve the mutual exclusivity between sectionsA andB, as well as the
correct number of iterations of both loops. The second problem is solved by maintaining
the exact loop counter values (x andy). A naive solution to the first problem, would
maintain the exact values ofblack pixel. Unfortunately, this solution results in an
exponential blowup of search space. We instead solve this problem using intermittent
invariants. Here we provide the invariantsblack pixel=0 andblack pixel>0, which
abstracts the values ofblack pixel.

The experimental results are shown in Table 2. The parameters are constants used
in the loop bounds. For example, in Fig. 3, the parameters are(200,640), corresponding
to the constants used in the outer and innerfor loops. Similar to previous experiments,
States denote number of nodes andTime denotes running time. In Table 2 we compare
the analysis and simulation results. As can be seen, the states visited in the analysis runs
are constantly roughly four times those of the simulation runs, hence the exponential
blowup is nonexistent. The slower running times of the analysis runs are due to our
suboptimal implementation of memoing mechanism for already-visited states.

Analysis Simulation
Parameter Value States Time (ms) States Time (ms)

(5,16) 173 286 29.432 86 0.617
(10,32) 378 1106 238.544 301 2.993
(20,64) 1193 4366 3122.64 1136 17.610
(40,128) 4443 17366 57463.6 4426 116.606

Table 2.Experimental Results forcalc center

7 Concluding Remarks

We presented a general method for inferring and proving tight bounds on the resource
usage of programs in which termination is guaranteed, and applied this result to the
high-level analysis of Worst-Case Execution Time (WCET). The general method in-
volves the use of intermittent invariants (i.e., each one istrue for some but not all
iterations of a loop) which allow the discrimination of different cases within a loop
improving the accuracy of the overall method but still beingpractical. Since the auto-
matic discovery of these invariants may be unfeasible, our method allows users to define
intermittent invariants in a very flexible way and also checks invariants hold.

The other main contribution of this work is that we propose tounroll the loop to
discover the bound. This is performed when the analysis of its body has been com-
pleted. This unrolling and optimization problem is amenable to dynamic programing,
hence the cost is proportional to the actual running time of the loop and the number
of intermittent invariants employed. In contrast, all prior methods need to discover a
closed form expression for the loop, which is not just impossible in principle, but also
impractical.

Finally, we have evaluated empirically our analysis with well-known benchmarks.
Our method not only runs in good time, but produces accurate (and oftenexact) results.

References

1. On the 3x+1 problem. Available at http://www.ericr.nl/wondrous.
2. P. Altenbernd. On the false path problem in hard real-timeprograms. InIn Proceedings of

the 8th Euromicro Workshop on Real-time Systems, pages 102–107, 1996.
3. M. Rustagi C. A. Healy, M. Sjödin and D. Whalley. Boundingloop iterations for timing

analysis. InRTAS ’98, page 12. IEEE Computer Society, 1998.
4. A. Colin and G. Bernat. Scope-tree: A program representation for symbolic worst-case

execution time analysis. In14th ECRTS, page 50. IEEE Computer Society, 2002.
5. A. Colin and I. Puaut. Worst case execution time analysis for a processor with branch pre-

diction. Real-Time Syst., 18(2-3):249–274, 2000.
6. J. Engblom and A. Ermedahl. Modeling complex flows for worst-case execution time anal-

ysis. Real-Time Systems Symposium, IEEE International, 0:163, 2000.
7. A. Ermedahl and J. Gustafsson. Deriving annotations for tight calculation of execution time.

In 3rd Euro-Par’97, pages 1298–1307. Springer-Verlag, 1997.
8. A. Ermedahl, F. Stappert, and J. Engblom. Clustered calculation of pworst-case execution

times. InCASES ’03, pages 51–62. ACM, 2003.
9. C. A. Healy, R. D. Arnold, F. Mueller, M. G. Harmon, and D. B.Walley. Bounding pipeline

and instruction cache performance.IEEE Trans. Comput., 48(1):53–70, 1999.
10. J. Jaffar and M. J. Maher. Constraint logic programming:A survey. J. LP, 19/20:503–581,

May/July 1994.
11. J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R) language and system.

ACM TOPLAS, 14(3):339–395, 1992.

12. J. Jaffar, A. E. Santosa, and R. Voicu. Efficient memoization for dynamic programming with
ad-hoc constraints. In23rd AAAI, pages 297–303. AAAI Press, 2008.

13. Y. S. Li and S. Malik. Performance analysis of embedded software using implicit path
enumeration.SIGPLAN Not., 30(11):88–98, 1995.

14. Mälardalen WCET research group benchmarks. URLhttp://www.mrtc.mdh.se/pro-
jects/wcet/benchmarks.html, 2006.

15. G. Ottosson and M. Sjodin. Worst case execution time analysis for modern hardware archi-
tectures. InIn: Proc. of ACM SIGPLAN, Workshop on Languages, Compilers and Tools for
Real-Time Systems, pages 47–55, 1997.

16. C. Y. Park. Predicting program execution times by analyzing static and dynamic program
paths.Real-Time Syst., 5(1):31–62, 1993.

17. C. Y. Park and A. C. Shaw. Experiments with a program timing tool based on source-level
timing schema.Computer, 24(5):48–57, 1991.

18. P. Puschner and A. Burns. A review of worst-case execution-time analysis.Journal of Real-
Time Systems, 18(2/3):115–128, 2000.

19. P. Puschner and C. Koza. Calculating the maximum, execution time of real-time programs.
Real-Time Syst., 1(2):159–176, 1989.

20. P.P. Puschner and A. V. Schedl. Computing maximum task execution times.Real-Time Syst.,
13(1):67–91, 1997.

21. SNU real-time benchmarks. URLhttp://archi.snu.ac.kr/realtime/benchmark/.
22. F. Stappert and P. Altenbernd. Complete worst-case execution time analysis of straight-line

hard real-time programs.J. Syst. Archit., 46(4):339–355, 2000.
23. F. Stappert, A. Ermedahl, and J. Engblom. Efficient longest executable path search for pro-

grams with complex flows and pipeline effects. InCASES ’01, pages 132–140. ACM, 2001.
24. E. Vivancos, C. Healy, F. Mueller, and D. Whalley. Parametric timing analysis. InLCTES

’01, pages 88–93. ACM, 2001.
25. R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Fer-

dinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, Jan S., and P. Stenström.
The worst-case execution-time problem—overview of methods and survey of tools.Trans.
on Embedded Computing Sys., 7(3):1–53, 2008.

