A Symbolic Execution Method for Bounds Analysis

JOXAN JAFFAR, ANDREW E. SANTOSA, D.H. CHU AND JORGE NAVAS

Department of Computer Science
National University of Singapore
Republic of Singapore 117543
{j oxan, andr ews, chuduchi , navas }@onp. nus. edu. sg

Abstract. Given a program whose loops are bounded, we address theprobl
estimating the upper bound of a variable which is monotdiyitacreasing, and
its typical application in annotating a program so that lesuanalysis produces
an estimate of the worst-case resource usage. The metheehped is a system-
atic enumeration of symbolic states of the program. The Ibpietwofold: first,
we useintermittent invariantseach being a property that is true of some but not
all iterations of a loop. This allows for the discriminatiohanalyses of different
iterations while still providing an abstraction so that &malysis can be practical.
Second, we compute the bound estimate by simulating thevtoehat the loop
using adynamic programming@lgorithm, relieving us from discovering a closed
form expression for the loop. The analysis time of a loop,chlieasons aboatl
inputs, is then proportional to the actual running time & kbop, ononeinput.
The method compared formally with prior work, and evaluagetpirically on
benchmark programs.

1 Introduction

Predicting upper bounds on the resource usage is neededfiotliat constraints are
not violated in hard real-time systems. The most importasburce is often the exe-
cution time of a program. Unfortunately, the problem of mnifeg upper bounds on the
execution time of a program is undecidable. Instead, sosteicions are forced to
guarantee the program to be analyzed always terminates.dévéo estimate the exe-
cution time is still of huge complexity [22]. Since all pdsi& input value combinations
must be considered, the number of possible program pattesises exponentially with
the number of control flow branches. Therefore, testingyxadtatable paths is unfeasi-
ble when dealing with larger applications.

Worst-Case Execution Tim®/CET) analysis aims to provide the worst possible
execution time of a program used in a system and it is usuatfppmed at two different
levels [18]. Thelow-leve| which is done at the object code, provides the execution
time of basic blocks considering the effects of hardwarellé¥atures such as cache,
pipelining, branch prediction, etc. [9, 5]. On the other thatne high-levelanalysis is
performed at the source code and it focuses on charactgpoissible execution paths.
A big advantage of performing the high level analysis in aasafe step is that the
hardware model can be replaced independently of the resteaobl, making a tool
much easier to retarget [23].

A main issue in WCET analysis is to avoid pessimism (ovemeiion) in timing
evaluation by providingight bounds. One part of the overestimation is due to the pres-
ence of some hardware features that affect the executiandinmstructions. On the



other hand, to achieve a tight estimation we need informadlmout the program be-
havior such as infeasible paths and maximum number of l@vptibns [4] which are
often provided by users. The design of an accurate and paa@¥fCET analysis should
consider at least the following features:

1. Input Data dependent the WCET of a piece of code depends on the value of its
input variables, where we would like to consider all possiatecutions efficiently,
for example, in the following program, wheads an input array:

it (ali][j] '=0) {...} else {...}

2. Non-rectangular loops the maximum number of iterations of an inner loop de-
pends on the iteration number of an outer loop. For example:

for (i=0; i < Nj; i+t){ for (j=0; j <i; j++) {...}}

Here we would like to express the WCET of the inner loop as atfan of some
variables (e.qgl,) defined in the scope of the outer loop.

3. Mutually exclusive paths the execution of a piece of code forbids the execution
of another piece of code. The following example [2], we wantatke into account
that the paths (a,c) and (b,d) are mutually exclusive:

if (E<O0){ condition =0; x = E + 45;} /* a */
else{ condition = 1; x = -E} [* b */
if (condition) result =x/ vy; [* ¢ */
else result =vy; [*d */

4. Down-sampling code the execution of one part of the body of a loop is executed
less often than the rest of the body. For example, in theviatig code we would
like to consider the WCET of the inner if-statement only ance

for (i=0; i <N i+:){ if (i ==4) {...}}

5. Closed-form is not always possiblethe WCET analysis can produce symbolic
expressions which are solved (closed-form) by using a#fghelfComputational
Algebraic System&AS. However, to obtain a closed-form can be unrealistic [24].
As an example, consider the well-known Collatz problemg(akslled X+ 1 prob-
lem) written as a program, which total correctness is yeetpioven (see e.g., [1]
and its references):

for( ; n!=1;) {if (n%2==0) n=n/2; elsen=3n+1; }

Furthermore, WCET estimates must be aafe i.e., guaranteed not to underesti-
mate the execution time, in order to be valid for use in haad-tiene systems. There-
fore, the correctness depends not only on the results ofdhmpatations, but also on
the time at which the result is provided. To be able to guaetite correctness, we also
need a proof of the WCET estimate [4, 7, 16].

1.1 Summary of Contributions

In this paper, we present a general method for inferring aogipg tight bounds on
the resource usage of programs in which termination is gueea, and applied this
result to the high-level analysis of Worst-Case Executionel(WCET). We start with
a universally used basic methodology of not unrolling lodps to treat a loop in a
sequence of statements as just one statement to be andlyzeder to be safe, the



loop body must be analyzed not with the current context, kith @ loop invariant,
obtained by a simple invariant discovery method appliethéodurrent context.

The first innovation is to allow specializations of this ldagariants inintermittent
invariants i.e. each one is true for some but not all iterations of a lddys allows for
the discrimination of different cases within a loop impmyithe accuracy of the overall
method but still being practical. Since the automatic discy of these invariants is in
general infeasible, our method depends on manual intéorefr this purpose. Even
so, we believe the methodology is intuitive and easy to usenghat the programmer
knows about the essential properties that give rise toréiffiebounds in the loop body.

The second innovation is, in contrast to the general appro&@nalyzing a loop
by only analyzing its body, is in fact to unroll the loop andabver the bound. This is
performed at a different stage in the analysis, at the timenithe analysis of its body
has been completewhat is crucial here is that this unrolling and optimizatproblem
is amenable talynamic programingThus the cost is proportional to the actual running
time of the loop and the number of intermittent invariantgpeyed. In contrast, all
prior methods need to discover a closed form expressiothéloop, which is not just
impossible in principle, but also impractical.

We finally show, using standard benchmarks, that our metbbdmly runs in good
time, but produces accurate (and ofttac) results.

1.2 Related Work

High level WCET analysis has been the subject of much rekeard substantial
progress has been made in the area (see [18,25] for survey&C&T). There are
three main categories of high level analysis methods pexposliteraturetree-based
path-basedandIPET (Implicit Path Enumeration Technigue

e In tree-based approach [19,17, 16, 2,5], the WCET is geeiiay a bottom-up
traversal of a tree, generally corresponding to the cofitel graph or syntax tree
of the program, using rules defined for each type of compouogram statement
(if-statements, function calls, loops, etc).

e In path-based approach [3,9, 22, 23], the WCET estimatenergéed by calcu-
lating times for different paths in a program and searchorgtlie path with the
longest execution time. The key feature is that possibleuti@n paths are explic-
itly represented which may be valuable information for thegpammer, e.g. for
debugging purposes.

e INIPET[13, 20, 15, 6, 8], the program flow is modeled usinghanietic constraints.
Each basic block and program flow edge in the program is giviemea variable
(tentity) and a count variablegntity), and the goal is to maximize thg centitiesXi * ti
subject to constraints expressing the structure of therprogand possible flows.
The result is the worst-case count for each node and edge.

The tree and path-based approaches have problems with ffommiation stretching
across loop-nesting levels [8]. Moreover, tree-based aukstlitannot capture depen-
dencies across statements since the computations arewdbal a single program
statement [23]. In purely IPET methods the computationsiiite are not better than
the results of a tree-based method [2]. However, complexsfloan be expressed us-
ing user-definable constraints [6, 8] but the computati@aahplexity of solving the
resulting problem is potentially exponential, since thegsam is completely unrolled
and all flow information is lifted to a global level. Moreoyéhe correctness of those
constraints is not verified and the WCET may be untight or sepunsafe.



To the best of our knowledge our method is the first boundsy/aisathat can prove
upper bounds of the longest executable path of a prograneiprsence of complex
features such as input data dependencies, non-rectatoppar down-sampling code,
and mutually-exclusive paths even when a closed-form carf@mbtained by tradi-
tional CAS.

2 Preliminaries

We will use the formalism of Constraint Logic Programmind i [10] in this paper.

We consider integer and array terms. Integer terms arercmtstl in the usual way,
with one addition: the array element. The latter is definedrgively to be of the form
ali] wherea is anarray expressiorandi an integer term. An array expression is either
an array variable or of the forfa, i, j) whereais an array expression and are integer
terms. Aconstraintis either an integer equality or inequality, an equationveein array
expressions. The meaning of a constraint is defined in thevobway.

In what follows, we use constraint to mean either an atomitstaint or a con-
junction of constraints. We shall use the symipadr W, with or without subscripts, to
denote a constraint.

An atomis of the formp(f) wherepis a user-defined predicate symbol dreckuple
of terms, written in the language of an underlying constraoiver. Arule is of the
form A: - W, B where the atonf\ is theheadof the rule, and the sequence of atoBs
and constrain® constitute thdodyof the rule. The constraif¥ is also written in the
language of the underlying constraint solver, which is ag=ilito be able to decide (at
least reasonably frequently) whettis satisfiable or not. In our examples, we assume
an integer and array constraint solver, as described below.

A programis a finite set of rules. Ayoalhas exactly the same format as the body of
arule.

A substitution® simultaneously replaces each variable in a term or consgaito
some expression, and we wrid to denote the result. Aenamingis a substitution
which maps each variable in the expression into a distingabke. A groundingis
a substitution which maps each integer or array variabk iistintended universe of
discourse: an integer or an array. Whités a constraint, a grounding & results in
true or falsein the usual way.

A groundingb of an atomp(f) is an object of the fornp(f6) having no variables. A
grounding of a goat; = (p(f), W) is a groundind of p(f) whereWo is true. We write
[¢] to denote the set of groundings @f We say that a goaj subsumeanother goal
G if [6]2[6"]-

Letg = (By,---,Bn, W) andP denote a non-final goal and program respectively. Let
R=A-W¥1,Cy,---,Cydenote arule i, written so that none of its variables appear in
G . Let the equatior\ = B be shorthand for the pairwise equation of the corresponding
arguments ofA andB. A reductof g using a ruleR, denotedreduct g ,R), is of the
form

(817 ) Biflvclv e aCma Bi+17 ) an Bi - Aa LIJa Lpl)
provided the constrai; = AAW A W is satisfiable.

A derivation sequender a goalg  is a possibly infinite sequence of goglg, G ;- -
whereg;,i > 0 is a reduct ofg;_,. If the last goalg , is a final goal, we say that the
derivation issuccessfulA derivation treefor a goal is defined in the obvious way.
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p(17 [A727I7‘()]7[A727|7T])
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A21,T]) bodyq([A,2,2,2).[A.2,1,T])
A2l <=2,.. A[1]>MJW2W

bodyq([A,2,3,2], bodyq([A,2,3,3], bodyq([A,2,3,3), bodyq([A,2,3,4],
|

A2,1,T]) 2,1,T]) HA,Z, ,TD)

bodyq([A,2,4,3], body.q({A,2,4,4], body.q([A,2,4,4], body.q([A,2,4,5],
[A,2,4,3]) [A2,1,4]) A2,1,4 [A2,1,5)

A2 <=2T1=T+2I1=1+1

body.q([A, 2,
Al >2,...

s 1y

body.q([A 2,4,4], body.q([A,2,4,5], body.q([A2,4,5], body.q([A,2.4,6],
(A2,4,4) [A,2,4,5) [A,2,4,5) [A,2,4,6])

Fig. 1. Execution tree foP- p(0, [_ . _0], [ ._T]), n=4

Definition 1 (Abstract Computation Tree). An abstract computation trés defined
just like a derivation tree except that a node, represenéirgpal G, may be replaced
by another node representing another ggdlwhereg’ subsumes . ]

Our concern in this paper is essentially to compute an atistamputation tree
which represents all the concrete traces of the underlyiogram being modeled. Es-
timating the bound of one distinguished variable can thefopmed by traversing the
tree.

2.1 Representing Programs as CLP Programs

In general, we shall represent a program as a transitioersysxpressed formally in
the CLP notation. This process is straightforward, and sail®mit the details of the
representation in general. Instead, we will use an example:

0y if (n>999) b=1elseb=2
(1y for (i =1; i <n; i++) if (a[i] >b) t =t +1elset =t +2

where the variable of interestisNote that for this special variable, thesource vari-
able the only operation allowed upon it is an increment of a camistand further, the
variable is not used in any other way. The CLP representéion

p(0, [ABI1,T], V) :- n>0999, Bl =1, p(1, [ABLI, T, V.

(

p(0, [ABI,T], V) :- n<=999, BL =2 p(l [ABLI,T, V).
p(l, [A,B,|,T], V) ot q([A,B,|,T], V)

q([AB 1,7, V) :- 11 =1, body q([AB 11T, V).

body_q(V, V) :- | >=n.

[T, V) :- All] >B T1 =T+, 1 =1+1, body_q([AB 11T, V)
B 1,T], V) :- All] <=B, TL =T+2, 11 =1+1, body_q([ABI11T1], V)



wherenis a constant. Note that the predicateepresents transitions at olesel in this
case 2, while the predicatg which represents the loop, is at level 1. The first argument
of p andq represent the program point, the second a list of varialepesenting the
program state before the transition, and the third is alsst @ variables but it repre-
sents the program statetatmination The constraint31 = T+1 andTl = T+2 shall
be called theesource constraints

We call a rule for a predicate of leveh+ 1 which involves a predicate of level
m(sucha(1l, [AB I, T, V) :- q([AB1,T], V) above)aompositeule. All
other rules arbasic

We call predicates such asstraightline predicatesfor they describe the transi-
tions between a sequence of program statements, and weegit@tes such agloop
predicates It is important to note that in a derivation sequence, a tlidd defines a
straightline predicate can be employadnost once

We finally display in Fig. 1 a computation tree for this exaedbrn = 4. Note
that the tree size is exponentialinand clearly the bound for the resource variable
is 6 in the cas@ = 4. Therefore, a naive traversal of this tree, i.e., unrgltime loop, is
clearly impractical. Note also that intuitively, we couldve determined this answer in
three steps by considering only the transitions that inera by 2.

3 Analysis of Straight-Lines

The main focus of this paper is method for analyzing loopsweéier, it requires an
algorithm for determining the WCET of straight-line progra In fact, the loop method
is intertwinedwith the straight-line algorithm.

We first assume the existence of a basic straight-line ahlganivhich can work on a
transition system of level 1, i.e., there are no loops. @adl algorithmA(1). For exam-
ple, we could employ an abstract interpreter in order to géoaefully small) closed
tree, and simply read off the maximum bound from the treehSuisasic algorithm, in
conjunction with our method for loops in the next sectiomiuoes a general algorithm
A(m) for straight-lines, as follows.

Suppose the underlying program is represented by a tramsigistem of levein+ 1
for somem > 1. We now process the transitions at lewel 1 in a sequence according
the basic algorithnA\(1). Upon encountering a composite rule

p(K, VvV, Vf) :- q(0, V, V1), p(KL, Vi1, Vf).

where the predicatgis at levelm, we now apply the loop algorithm in the next section
in order to obtain a CLP program for the predichtep. Note that the loop algorithm
is being called fothis particularencounter of the loop transition. We now replace the
above rule with

p(K, V, Vf) :- loop(V, V1), p(Kl, Vi1, Vf).

If we now can replace the predicateop(V, V1) with a constraint, we have a transition
system at only one level (with the only predicpjeAlgorithm A(1) can now be applied
on the final transition system. We explain this process da@gnent in more detail in
Section 5.

In what follows, let the procedugenstrline(i, ¥, S,®) produce the CLP program
strline.i/ 2! as described below.

1 The notatiorp/ 2 emphasizes that the predicatéakes 2 arguments.



Input: a “name’i, a start contex, an end contex® and straight-line prograr@
Output:

o if {W}S{®d} holds, then a CLP prograstrline.i (V, Vf)
which correctly returns the WCET tinTe € Vs when the goal 2%, strline_i (V,
Vf) is run. (The valud is generallyfunctionally dependern ¥.)

e otherwise, no CLP program is generated.

In summary for this section, we assume an overall straigletdlgorithm scheme
for determining the bound. Though this algorithm is not theus of this paper, it is
important for accuracy because it has the potential of deteng which paths through
the computation tree corresponding to a straightline assipte. In our examples, we
shall use a naive algorithm which generates the full contfmutaree (and we pick the
“longest path” from here). In practice, a more advancedrélym may be needed. An
example is the interpolation-based algorithm describgdi2h

4 Analysis of a Loop

Recall that to analyze a loop by extrapolating an analysissdfody requires that the
body analysis takes place in the context of a loop invarighe key idea here is that
we use, instead, a (small) numberiofermittent invariantseach of which is a true
property of the state just befosemebut notall invocations of the loop body.

The definition of intermittent invariants is essentiallymal, because it serves to
partition the loop iterations into important cases. Foiypale use a collection of for-
mulas (whose free variables are the program variabigs)- -, 4m, for somem> 1, to
represent these invariants.

Let L stand for the loop

for (init(Xs); step(Xs); exit(Xs)) S

The procedurgenloop(¥, L) generates a CLP progrdmop_i / 2 as described below.
Before presenting it, we require a few definitions:

e step(V, V1):
is an abstraction of the transition relation of S. This isdpresent that part of the
loop body which executes a well-founded order in order taenkop termination.
A typical step is the increment of a counter variable wheesgtkit condition is that
the counter exceeds a given bound. Note that, in general,aosmall part of the
body is needed to be considered in order to be assured ofiation.

e initial context is\W:
Clearly we cannot analyze the loop body under an arbitranyeca such asV. In-
stead, we requirelaop invariant Toward this end, defin®’ to be a generalization
of W so that{W}S{W} holds. There is a crucial exceptio#: retains the resource
constraints There is a simple implementation of this generalizatiompdy delete
from W each individual constraint that may be changed inside tbe lmdy. (This
process is therefore a form lifhtweightinvariant discovery.)

e intermittent invariants
The idea here is to allow discrimination into a small numbfecases of abstract
statesq1,---,4m that precede the loop body. We call these states interrhitien
variants because they are invariant only some of the time,aansuch, they can



be thought as partitions of a (true) loop invariant.4eti € {1,---,m} denote the
subset of intermittent invariants that are entaileddhyNote that there must be at
least one suchy;. Suppose the set of sucls .

We can now present the procedgenloop(W, L). Note that though we use the specific
predicate namdsop andbody below,freshnames are used each time the procedure is
invoked.

wite rule: loop(V, Vi) :- init(V, V1), bodyloop(Vl, Vf).
wite rule: bodyloop(V, V) :- exit(V).

et neno table be enpty

for each ieZXZ run gen_l oop(i)

gen_l oop(i) {
meno i

foreach (1<j<m) {
genstrline( j, WAz, S, WA4))
wite rule:
body(V, Vf) :-
ai(V),
strlinej(V, V1),
step(V1, V2),
body(V2, Vf)
if (jis not menoed) gen_l oop(j) }}

Note that above we have, for simplicity, considered all sals€ j < m for each case
i. Clearly we only need to consider thogdor which the straightline code from the
abstractiom; to 4 j is possible (and this is tested in procedgeg.strline).

Consider the example progran

for (i =1; 1 <=n; i+4)

f j =1 ] <=1, j+)
if (k ==0)
if (] %2 =0) t++

Calling the procedurgenstrline(4,true,S,truedn this results in:

striined([l,J,K T}, Vf) :- K=0, strline3([I,J,K T], Vf).
striine3(V, Vf) :- loop2(V, Vf).

loop2(V, V1) :- Ve=[11,J,KT], I1
body2([1,J3,K T, [I,J,KT) :- |
body2([1,J,K T, Vf) :-
striine2([1,3,K T, [I1,31,KL T1]),
12 =11 +1,
body2([12,J1, KL, T1], V).

—A X

1, body2(V2, V1).
n.

Vo

strline2(V, Vf) :- loopl(V, Vf).



loopl(V, V1) :- V2=[I,J1,KT], J1 =
body1([I,J,K T, [I,J,KT]) - J >
body1([I,J,K T], Vf) :-

1, bodyl(V2, V1).
l.

J = 2*Z,
strlineleven([!l,J,K T], [11,J1,KL, T1]),
J2 = J1 + 1,

body1([11,J2, K1, T1], Vf).
body1([I,J,K T], Vf) :-

J =27 + 1,
strlinelodd([I,J,K T], [I1,J1,KL, T1]),
J2 = J1 + 1,

body1([11,J2, KL, T1], V).

strlineleven([!,J,KT], [I,J,KTL) :- K=0, J =2%Z T1 =T+ 1.
strlinelodd(V, V).

A first remark is that we have used two intermittent invasaobrresponding to the
cases wher¢is even or odd. Note that we implement this test abovk-a® « Z where
Z is an existential variable, i.e., it does not appear in tredhd the rule.

We thus get two versions of the predicately1, each invoking a different version
(strlineleven andstrlinelodd) of the innermost (if) statement. Note that the cre-
ation of these versions both assumed the cortext 0 because this constraint was
invariantin both loops. Further, each version had a context whiclkedtahethed was
even, and thus accurately produced an increment for

For this particular example, we in fact obtain, by running ithitial goal

?- strlined([-, - .0], [-- - Tf])

theexactboundTf for any given positive constant

5 Executing the Compiled Program with Dynamic Programming

We now describe how we run the CLP program obtained from tinepdation of an
underlying program. Recall that a program, say its nesgrgllism, is compiled into
CLP program whose rules are of the two forms:

p(i, V, Vf) - WV, V1), p(j, Vi, V).
p(i, V, Vf) :- loop(V, V1), p(j, Vi, Vf).

We run such a goal aboptin the usual way (generating a CLP derivation tree) except
that when we encounter the composite rule such as

p(i, V, Vf) :- loop(V, V1), p(j, Vi, Vf).

we replace the embedded callltoop by theresult of runningl oop(V, V1) in the
current context. That is, we assume by induction, that a @oa¥%, [oop(V, V1),
whose definition involves straightline predicates for lawehas previously been run.
This results in constraints about the new variabeand any loop invariant. Call these
constraintsV1(V,V1). We therefore can replace the rule above

p(i, V, Vf) :- loop(V, V1), p(j, Vi, Vf).
by



p(i, V, VE) :- Wi(V, V1), p(j, VI, V).

Repeating this process for all composite rules results ihR @ogram which contains
only basic rules for the one predicateThe straightline algorithm now can be used to
obtain the bound of the resource variable.

Consider now théoop predicates. Clearly each is executed at least as often as the
program runs the corresponding loop in the worst case. Weshow that the number
is in fact proportional to the worst case actual run,

This follows essentially because oflgnamic programmingprmulation.

Suppose we are executing a ggak= 1 oop([ ..., Xs, ..., T],[..., Tf]). There are
at mostk reductd oop_i (..., Xs, ..., T1], [..., Tf]) wherekis the number of inter-
mittent invariants for this loop. Suppose each reduct ihefform

T1 =T + aj, step(Xs, Xs1), loop.i([...,Xs1,...,T1], [...,Tf]).

where 1< i < k. Then clearly the value we seek is given by the recurrence:

ap+time(g,)

. ) maxq --- if —exit(Xs)
time(g) = {Gk—i—time(Gk)}
0 otherwise

which can be solved in a number of steps proportional to thebar of steps thag
need be unfolded until the exit condition is true.

Note that sometimes it is possible to evaluate the maximona tiithout having to
unfold the loop. For example, in the recurrence

loop([I, T],[- T]) :- 1 >=n.

loop([Il, T],[- Tf]) :- loopd([I+1, T + aa],[- Tf]).

[oopd([I, T],[- Tf]) :- loop([I+1, T + az], [. Tf]).

loop([Il, T],[- Tf]) :- loop([I+1, T+ B], [ Tf]).
we can infer that the value of T in executihgop([0, 0],[_, T]) is

499x (C(l—l-dz)—i—dl if ar+a2>2x«f3
999« 3 otherwise

Clearly such closed forms are not always easy to obtain,Xamgle, when the to-
tal number of steps is not immediately known. As an extrenaargle, we recall the
Collatz program whose closed form is not known.

Theorem 1. Let the given program have a CLP representation P. Let r berthgimum
number of rules in P at a given level. Let A be the algorithmleygd for determining
the resource bound for a straightline CLP program of r basites with performance
complexity fr). Let a be the maximum number of intermittent invariants useé
Then, the size of the computation tree explored by P& ©f (r)). []

We finally comment that for all practical purposes, the vali@ is to be considered
constant because it is intended to be small.



expint: /* where n, x , and ITER are input (known statically) */
if(x >1) /* test */ { for (i=l;i<=ITERi++){ } }
el sef
for (i=1;i<=lTERi++){
if (i '=n-1) { I* A*l}
else{ for (j=Ll;j<=n-L1:j++) { ...} /* B* 1}}
fftl: /* where nis input (known statically)*/
if (n<2) {/*A*}
el se{ xp2 =
for(i 0;i<log((double)n)/log(2.0); i++){/* loop i */
Xp = Xp2; xp2 /=2,

=]

for(j =0; j < xp2; j++){ [* loop j */
for(k = xp; k <= n; k += xp) { [* loop k */}}}
i =15
for(ii =1; ii <=n-1; ii++){ [* loop ii */
if(ii <jj) {/*B * }
kk = n/2;
while(kk <jj){ jj -= kk; kk /=2;} /* 1oop kk */
[P += kk;}}

Fig. 2. Relevant code foexpi nt andfft 1

6 Experimental Evaluation

In order to demonstrate the efficiency of our method we impglet®d our prototype
bounds analyzer and performed a number of experimentsesetixperiments we used
real benchmarks from different sources. To show also theessjfveness power of our
method, we will illustrate the most relevant pieces of soeedhmarks and describe the
main challenges for our analyzer. Our analyzer is impleexint CLP& ) system [11],
and all measurements were performed on a Macbook Pro sysitbninéel Core Duo
1.83GHz CPU, 2 Gb RAM, and OS X 10.4.11.

For our first experiment we used two benchmaekgi nt (Malardalen benchmark
suite [14]) and ft 1 (SNU-RT benchmark suite [21]). The results are shown in&4bl
and the important code is shown in Fig. 2. The colurarameter denotes the maximum
number of iterations that depends on some key parametegd/alite column contains
the exact length of the longest executable path inferredusyanalyzer. The next two
columns,States and Time, show the number of explored nodes during the execution
of the path in the execution tree that gives rise to the longath, andTime is the
time in milliseconds. The last two columns denote the exgqdarodes and time also
in milliseconds of our analysis. For the two benchmarkstredlinput variable values
are known at compile time by keeping the context using symlexiecution, hence the
concrete states of the execution and the symbolic stateséafby our analysis were the
same. As consequence, our analysis produced the exadi lefrtge longest executable
path, and more important, in time close to the simulatioretiikote that in order to
obtain this accurate result, the problems raised from tbhedolnexpint, the code
sectionB displays a down-sampling since it is executed only onceimitie outer loop.
On the other hand, the loops it 1 calledl oop j andl oop k are non-rectangular
loops since they depend on counter variabt@sandxp2, modified in the outer loop
called! oop i . Moreover, the code sectidhalso displays a down-sampling because it
is not always executed within the loop calleabp ii . Finally we can observe that a



Analysis Simulation
Benchmark| Parameter |Value|States|[Time (ms)|States][Time (ms)

ITER=100 383 | 588 | 7.622 | 588 | 5.540

| TER=200 683|1088| 16.637 | 1088| 10.627

expint || TER=400 1283| 2088| 46.763 | 2088| 32.978

| TER= 800 2483| 4088 | 161.678| 4088| 117.332
n=4 77 1 130 | 1.339 | 130 | 0.994

fftl n=38 352 | 461 | 14.466 | 461 | 11.562

n=12 |4202| 4371| 2582.75| 4371| 2922.98

Table 1. Experimental Results faxpi nt andfft 1

cal c_center: /* where imge and N are input*/
for(y=0;y<200;y ++){ [* loopy */
for(x=yl2; x< 640 - y/2; x++){ /* loop x */
i f(image[x] [y]){ = A
bl ack_pixel ++; }  }}
if (! black pixel){ [* B */}

Fig. 3. Relevant code fotal c_cent er

closed-form for oop kk may be difficult to find since the lower and upper limits are
modified at each iteration inside the loop.

For our second experiment shown in Table 2 we analyzed tlgggmwal c_cent er
taken from Puschner and Koza [19] and shown partially in BigThis program has
some interesting characteristics:

e The number of times that the code sectis executed depends on a variable
which is unknown at compile time.

e The two loops are non-rectangular loops. The loop cdlp x depends on the
counter variable of the outer loopdop ).

e The code sectior is down-sampling since it is known to be executed at most
N+ ﬂo (from the problem specification and omitted in this code).

° Finahy, A and the code sectidhare mutually exclusive.

Here we want to preserve the mutual exclusivity betweenmet andB, as well as the
correct number of iterations of both loops. The second gmlh$ solved by maintaining
the exact loop counter values &ndy). A naive solution to the first problem, would
maintain the exact values of ack_pi xel . Unfortunately, this solution results in an
exponential blowup of search space. We instead solve tbislgm using intermittent
invariants. Here we provide the invariabtsack _pi xel =0 andbl ack_pi xel >0, which
abstracts the values bfack_pi xel .

The experimental results are shown in Table 2. The paramaterconstants used
in the loop bounds. For example, in Fig. 3, the parameter@8@ 640), corresponding
to the constants used in the outer and irfrierloops. Similar to previous experiments,
States denote number of nodes amaine denotes running time. In Table 2 we compare
the analysis and simulation results. As can be seen, thesstigited in the analysis runs
are constantly roughly four times those of the simulatiomstthence the exponential
blowup is nonexistent. The slower running times of the asialyuns are due to our
suboptimal implementation of memoing mechanism for alyeadited states.



Analysis Simulation
Parameter|Value|States|Time (ms)|States|[Time (ms)

(5,16) | 173] 286 | 29.432 | 86 0.617
(10,32) | 378 | 1106 238.544| 301 | 2.993
(20,64) |1193| 4366| 3122.64| 1136| 17.610
(40,128)|4443|17366 57463.6| 4426| 116.606

Table 2. Experimental Results faral c_cent er
7 Concluding Remarks

We presented a general method for inferring and proving tiglunds on the resource
usage of programs in which termination is guaranteed, aptleapthis result to the

high-level analysis of Worst-Case Execution Time (WCETheTgeneral method in-
volves the use of intermittent invariants (i.e., each on&us for some but not all

iterations of a loop) which allow the discrimination of @ifent cases within a loop
improving the accuracy of the overall method but still beprgctical. Since the auto-
matic discovery of these invariants may be unfeasible, athod allows users to define
intermittent invariants in a very flexible way and also cheitivariants hold.

The other main contribution of this work is that we proposeitooll the loop to
discover the bound. This is performed when the analysissolbdtdy has been com-
pleted. This unrolling and optimization problem is ameeatiol dynamic programing,
hence the cost is proportional to the actual running timehefloop and the number
of intermittent invariants employed. In contrast, all prinethods need to discover a
closed form expression for the loop, which is not just imfiadssn principle, but also
impractical.

Finally, we have evaluated empirically our analysis witHlvwk@own benchmarks.
Our method not only runs in good time, but produces accueate ¢fterexac) results.
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