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Abstract
Control Flow Graph (CFG) is a compact representation of all
executable paths of a program and it is central to most program
analyses. Unfortunately, the direct use of a CFG has two major
sources of imprecision: (a) the existence of infeasible paths, and
(b) the merging of states along incoming edges of a control-flow
merge. Addressing these two problems is the path-sensitivity issue,
and it is a folklore that path-sensitive analyses are more accurate.

In this paper, we present a method to systematically restructure
a CFG in order to encode path-sensitivity into it. The path-sensitive
CFG is generated from the symbolic execution tree by (a) removing
infeasible paths, and (b) duplicating subgraphs when it is likely to
produce more accurate results by the underlying analyzer. We use
constraint solving to test path infeasibility. To produce a graph of
manageable size, we systematically generalize the state associated
with a tree node while preserving its reason of infeasibility. This
increases the likelihood of subsuming other nodes. If a node is
subsumed then it is merged together with its subsumer. Otherwise,
our method splits the subsumer and the subsumed nodes. The above
transformation is done offline and independent to the analysis. We
finally present experimental data on real benchmarks that shows the
efficiency and effectiveness of the approach.

1. Introduction
Static analysis using abstract interpretation [7] is an efficient and
elegant way of extracting information about all possible executions
of a program. It has been successfully used in compilers to decide
whether some optimizations or transformations are applicable, for
finding or explaining bugs, and also for proving the absence of
bugs.

Given the program’s Control Flow Graph (CFG) and a prop-
erty of interest P , a simple way to perform abstract interpretation
consists of applying the abstract transfer function TP on each node
that represents basic blocks in the CFG. In presence of loops or
recursive calls, a fixpoint computation and/or widening is needed.
The main advantage of abstract interpretation is efficiency which is
achieved by eliminating irrelevant details to the property of interest.
Due to these efficiency reasons, abstract interpretation-based pro-
gram analyses that use directly CFGs often incur in two kind of loss
of accuracy: (1) consideration of infeasible paths, and (2) merg-
ing of different abstract states along incoming edges of a control-
flow merge. Although these over-approximations are often precise
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enough for reasoning about the property, it is well understood that
they may make unable compiler optimizations or arising false pos-
itives in the case of testing or verification.
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Figure 1. Transformation and analysis pipeline.

In this paper, we present a systematic and yet practical symbolic
execution-based method to restructure the original program’s CFG
to alleviate those sources of imprecision by eliminating infeasible
paths and by splitting explicitly merging points in case a loss of
precision was possible during the abstract join operator. The result
of this transformation is a CFG:

• encoded with path-sensitivity which might make an arbitrary
path-insensitive program analysis more precise

• independent to the analysis, and thus, it can be built offline, and

• at the expense of a reasonable increase in the size with respect
to the original CFG.

We say systematic here to mean that infeasibility is systematically
checked, but within two fundamental limitations. First, loops are
analyzed with a certain loop-invariant generated automatically by
the algorithm in order to make finite the symbolic execution pro-
cess. Secondly, we tacitly assume that infeasibility testing is re-
ally only applicable to predicates for which a reasonable theorem-
prover exists. In this paper, we assume a theorem-prover that deals
with linear arithmetic formulas over integer variables and array el-
ements.

Our framework is informally schematized in Fig. 1. It is com-
posed of a front-end compiler which takes the C program and pro-
duces its corresponding CFG. Next, our proposed transformation
will build a path-sensitive CFG whose semantics preserves the se-
mantics of the original CFG. Then, a back-end decompiler pro-
duces a new C program from the transformed CFG. Finally, we
feed this path-sensitive C program into arbitrary off-the-shelf pro-
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int x,y;
int *ptr;
〈1〉 assume(x <= 0)
〈2〉 if(x>0)
〈3〉 ptr = &y;

else
〈4〉 ptr = &x;
〈m〉 ...

int x;
int *ptr;
〈1〉 assume(x <= 0)
〈4〉 ptr = &x;
〈m〉 ...
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Figure 2. Deletion of Infeasible Paths

gram analyses such as pointer analyses, slicers, bound analyzers,
etc in the hope of obtaining more accurate results.

Our transformation component (dashed box in Fig. 1) restruc-
tures the original CFG as follows. It generates a symbolic execution
tree where each path of the tree is a succession of nodes associated
with each program point of the original CFG. Moreover, each node
contains a conjunction of formulas Ψ≡ ψ1∧ . . .∧ψi, symbolically
representing a set of states. The edges contain the statements de-
scribed in the CFG. Therefore, ψ1, . . . ,ψi are constraints generated
from each statement in the path from the root to the node i. A main
feature of this tree is that multiple paths may contain the same set of
program points but with a different set of states, i.e. different con-
texts. Then, our method terminates each path Ψ whenever we are
at the endpoint, or when Ψ is unsatisfiable (i.e., infeasible path). In
either case, the algorithm records certain information about Ψ and
backtracks to the next path.

A key observation is that multiple contexts allow us to transform
the original CFG in two ways but still preserving the original
semantics without any assumption about the property of interest:

1. Excluding all detected infeasible paths from the symbolic exe-
cution tree.

2. Splitting explicitly those merging points each time they are
visited under a new context.

The potential benefits from transformation 1 are quite obvious. The
elimination of spurious paths may eliminate some imprecision in
the execution of program analyses. Consider the code snippet in
Fig. 2(a) and its corresponding CFG in Fig. 2(b). Our symbolic
traversal explained so far will detect that the edge 2→ 3 is infeasi-
ble since the constraints x ≤ 0∧ x > 0 are unsatisfiable. Then, the
edge and all its successors up to next merging point 〈m〉 can be
safely removed. The resulting CFG is shown in Fig. 2(c). Finally,
our framework generates another C program shown in Fig. 2(d) as
the original but without the infeasible path and eliminating the re-
dundant check of the edge 2→ 4. Then, assume we would like to
run an Andersen-like pointer analysis on the program in Fig 2(a).
The analysis will report that ptr,&x, and &y may point to the same
memory location. However, the same analysis on the transformed
program cannot infer that ptr and &y are aliased producing a more
accurate result.

On the other hand, if transformation 2 is applicable then it
means that there exists at least one symbolic execution which
is possible in one context but not in another. If both contexts

int x,y;
〈1〉 if (x>0)
〈2〉 y = 0;
〈3〉 if (y>0)
〈4〉 x = y;

else
〈5〉 x = 2;
〈m〉 ...

int x,y;
〈1〉 if (x>0)
〈2〉 y = 0;
〈5〉 x = 2;
〈m〉 ...

else
〈3’〉 if (y>0)
〈4’〉 x = y;

else
〈5’〉 x = 2;
〈m’〉 ...
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Figure 3. Node Splitting

were merged then some imprecision might arise. Consider now the
contrived program in Fig. 3(a). A depth-first symbolic traversal on
the CFG in Fig. 3(b) will infer first the edge 3→ 4 is infeasible
(i.e., x > 0∧ y = 0∧ y > 0 unsatisfiable). More importantly, since
the node 3 is traversed twice we can split it into two nodes 3 and 3′
and make a copy of all its successors up to next merging point as
illustrated in Fig. 3(c). Finally, we can again obtain a C transformed
program that behaves as the original in Fig. 3(d). Now, suppose
a backward slicer on program point 〈5〉 and variable x. On the
original program, the slicer will not able to delete any statement.
However, the same slicer and same criteria on the transformed
program will able to slice away the statement y=0 at program point
〈2〉.

Notice that even if transformations 1 and 2 are applied exhaus-
tively it does not necessarily imply that the accuracy of the under-
lying program analysis will be improved. Nevertheless, our experi-
mental evaluation in Sec. 6 supports that these two transformations
are quite effective in practice and the accuracy of the target program
analyses can be significantly improved.

Unfortunately, a simple enumeration of all contexts is exponen-
tial. Therefore, the idea of breaking up nodes each time a new con-
text is encountered is not plausible.

The main contribution of this paper is to make practical these
two program transformations by using the well-known concept
of interpolation [8]. Essentially, during the symbolic execution
process explained above we weaken or generalize the formula Ψ

associated to a path as long as we preserve its unsatisfiability. For
instance, assume that the path is infeasible. Then, an interpolant is a
formula Ψ such that Ψ⇒Ψ and Ψ⇒ false. This generalization, Ψ,
reduces the likelihood of considering other paths with a less general
context since new contexts that still imply the generalized state will
be subsumed. The key advantage is that the traversal can be stopped
and it avoids performing redundant infeasibility detection and node
splitting. On the other hand, if the path is feasible then its most
general interpolant can be trivially computed (i.e., true) since there
is no infeasibility to preserve. To operate at any level in the tree,
the algorithm must propagate during the backtracking process the
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interpolants computed by the children states to ancestors. It is worth
mentioning then that our method interpolates trees rather than just
a path. Hence, the use of interpolants is twofold:

• reduction of the search space by generalizing the states associ-
ated with already visited subtrees in the hope that other subtrees
with a less general state will be subsumed. This optimization
avoids fully enumeration of all contexts.

• consequently, there is no need of applying the node splitting
transformation on the subsumed subtrees. This optimization
avoids a naive duplication of all nodes with multiple contexts
which would produce an exponential size of the transformed
CFG.

More specifically, our mechanism to split nodes can be now de-
scribed as follows. Consider a program point k already visited
whose interpolant is Ψ1 for a context c1. If k is again visited un-
der a different context c2 associated with the formula Ψ2 and the
entailment Ψ2 ⇒ Ψ1 holds there is no need to split nodes. Other-
wise, we have found a merge node with two different contexts c1
and c2 which do not share the same pattern of infeasible paths. That
is, the context c2 contains at least one feasible path which was in-
feasible under context c1. In this case, our algorithm will produce
a new copy (new node in the CFG) of k and hence, the merge point
is split. Thus, our technique either will subsume paths with a less
general context in order to avoid full enumeration and unnecessary
splitting of nodes or if the path cannot be subsumed then it is a
good indicator that we should make a copy of the node where the
subsumption did not take place. This is the core of our approach
to be scalable and be able to build an effective path-sensitive CFG
independent from the property of interest.

The use of subsumption to avoid traversal is sound in the sense
that the semantics of a subsumed subtree is a subset of the seman-
tics of the original interpolated subtree. Therefore, the exclusion
of the subsumed subtrees does not affect the correctness of the
program analysis at hand. That is, the underlying program anal-
ysis cannot produce incorrect results. However, the opposite does
not necessarily hold. That is, the subsumer subtree may contain far
more paths than the subtree with a less general context.

The consequence is that it is possible that our technique cannot
produce a more precise CFG even in cases where a customized
path-sensitive analysis might produce a more precise result on the
original CFG. It is important to understand that our approach aims
at assisting program analyses to produce better results. However,
and more importantly, it is clearly not our objective to compete
directly with those analyses.

Organization. The rest of this paper is organized as follows.
Section 2 describes the most relevant works to our approach. In
Section 3 we provide an informal overview of our approach show-
ing several examples, and in Section 4 we introduce relevant con-
cepts and definitions required for the rest of the paper. Section 5
presents our interpolation-based algorithm which takes a rule-based
transition system describing a CFG and produces another transition
system encoded with path-sensitivity. Section 6 shows the effec-
tiveness and practicality of our approach with a set of C real bench-
marks and several off-the-shelf program analyses, and finally, Sec-
tion 7 concludes.

2. Related Work
The significance of infeasible paths is well understood in many
software engineering fields. Since the general problem of detect-
ing infeasible paths is undecidable [25], most approaches attempt
to solve this problem focused on a particular analysis and/or per-
forming an unsystematic checking of infeasible paths.

For instance, Bodik et al. [3–5] describe several dataflow anal-
yses improved by detecting infeasible paths through branch corre-
lation. Suhendra et al. [23] present an improved WCET analysis by
eliminating infeasible paths detected using conflict sets. Gutzmann
et al. [11] present a path-sensitive points-to analysis but the sen-
sitivity is limited to eliminate paths that are infeasible for all con-
texts. In all these cases, the detection of infeasible paths is partial.
Moreover, it might not be straightforward to adapt those analyses
in order to provide path-sensitivity to an arbitrary program analysis
like ours. Snelting et al. [20] describe a backward slicer that re-
fines a sliced program by eliminating dependencies between nodes
that are defined on non-executable paths. They use interval analy-
sis and BDDs to overcome the potential combinatorial explosion.
Recently, another approach using pattern recognition [19] has been
presented. Infeasible paths are partially detected by searching for
common code patterns.

In Fischer et al. [10] authors use the path-sensitiveness inher-
ent in CEGAR (CounterExample Guided Abstration Refinement) to
improve precision of dataflow analyses. The fundamental differ-
ence is that CEGAR needs a target in order to find counterexamples.
However, in many program analyses such as points-to, dependen-
cies, etc. the information has to be inferred at any program point
and hence, there is no a particular target. Therefore, the approach
is limited to verification and not general analysis.

The closest work to ours has been recently presented in [24].
Here, Thakur and Govindarajan propose a method to build a path-
sensitive CFG, but there are two essential differences with our ap-
proach: the path-sensitiveness is partial (e.g., based on computing
conflict sets), and more importantly, they need to first run a partic-
ular dataflow analysis to find out if a merging point is to be split or
not, therefore it is dependent on target analysis.

Finally, the interpolation symbolic-execution method employed
in this paper has been similarly applied on a search tree of a CLP
goal in pursuit of a target property in [17], and also focused on
a finite domain for an optimization problem in [16]. In this paper,
there are two major differences. Firstly, we generalize the proof tree
produced implicitly in [17] to a graph which constitutes our path-
sensitive CFG. Secondly, and more importantly, we generalize the
application beyond verification.

3. The Basic Idea
We illustrate the principles underlying our method which make it
possible to transform the original C program in Fig. 4(a) into the C
program in Fig. 5(b), and enhance the likelihood that subtrees with
less general state can be avoided, making our approach practical.

The naı̈ve symbolic execution of the original program is shown
in Fig. 4(b). The representation is a directed graph, with nodes
labeled as program points and edges between two locations la-
beled by the instruction that executes when control moves from the
source to the destination. On the other hand, infeasible transitions
are represented with a (red) cross on the corresponding edge. In
Fig. 5(a), we show a smaller symbolic execution tree computed by
our method that potentially avoids the exponential behavior of the
naı̈ve approach even though it detects infeasible paths and splits
nodes in order to finally produce a C program that increases the
accuracy of analyses.

Interpolation-based Symbolic Execution. Let us focus on Fig. 5(a).
Our symbolic execution-based method starts traversing the graph
in a depth-first manner, 〈0〉-〈1〉-〈3〉-〈4〉-〈5〉 reaching the node 6:1
with the formula Ψ6:1 ≡ p > 0∧ z = 2∧ x > 0∧ y = 0∧ y > 0.
Since the formula is unsatisfiable, we have found an infeasible
path. Thus, our algorithm stops traversing the path and generates
an interpolant. Given two formulas Ψ and Φ, an interpolant is a
formula Ψ whose variables are variables of both Ψ and Φ, and Ψ
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int p,x,y,z;

〈0〉 if (p>0)

〈1〉 z = 2;

else
〈2〉 z = 3;

〈3〉 if (x>0)

〈4〉 y = 0;

〈5〉 if (y>0)

〈6〉 x = y;

else
〈7〉 x = 2;

〈m〉 ...
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Figure 4. A Program and Its Naı̈ve Symbolic Tree

⇒ Ψ and Ψ⇒ Φ. Here, we want to find a formula Ψ6:1 such that
Ψ6:1 ⇒ Ψ6:1 and Ψ6:1 ⇒ false. Here, the only possible interpolant
is false. Since 6:1 is infeasible, the algorithm backtracks to 5:1
(which has the formula Ψ5:1 ≡ p > 0∧ z = 2∧x > 0∧y = 0) while
generating another interpolant Ψ

1
5:1 for 5:1 such that Ψ5:1 ⇒ Ψ

1
5:1

and Ψ
1
5:1 ⇒ (y > 0⇒ Ψ6:1). A suitable choice for Ψ

1
5:1 is y ≤ 0

which is exactly the weakest liberal precondition (wlp) [9] of the
guard y > 0 wrt . the postcondition Ψ6:1 ≡ false. We note that the
wlp is the most general interpolant possible. Ideally, the weaker the
interpolant the better as more nodes can be subsumed by a weaker
condition potentially resulting in a smaller graph. In practice, how-
ever, for efficiency we adopt a less general interpolant (e.g., the
constraint deletion or slackening technique in [17]).

Next the algorithm reaches the terminal node m:1 through the
prefix path 〈0〉-〈1〉-〈3〉-〈4〉-〈5〉-〈7〉, and with formula Ψm:1 being
the conjunction of constraints along the path. Again, the algorithm
produces an interpolant. The interpolant Ψm:1 here satisfies Ψm:1⇒
Ψm:1 and Ψm:1 ⇒ true. A suitable formula for Ψm:1 here is true,
since as mentioned above, the weaker the interpolant the better.
By again interpolating (computing the wlp) through the path we
obtain the interpolants Ψ7:1 ≡ true and Ψ

2
5:1 ≡ true, respectively at

nodes 7:1 and 5:1. The final abstraction of 5:1 is the conjunction
Ψ

1
5:1 ∧Ψ

2
5:1, hereby named Ψ5:1, which is y ≤ 0. We note here

that the objective of applying conjunction is to ensure that all the
infeasibilities found in the subtree of the node are preserved. In
our example, the only infeasibility found is the one at 6:1. Any
execution satisfying Ψ5:1 does not visit 6:1.

Propagating the interpolant backward from 5:1 to 4:1 results
in Ψ4:1 ≡ true, as Ψ4:1 satisfies (y = 0⇒ Ψ5:1), which is true.
Continuing we obtain true as Ψ

1
3:1, the first candidate abstraction at

3:1.
The first opportunity to subsume a subtree appears during the

traversal of the path 〈0〉-〈1〉-〈3〉-〈5〉, as the program points of 5:2
and 5:1 are the same. The formula Ψ5:2 is p > 0∧ z = 2∧ x ≤ 0.
Then, our algorithm tests if Ψ5:2 ⇒ Ψ5:1. Unfortunately, the en-
tailment does not hold. Therefore, our algorithm must traverse the
subtree of 5:2. In our example, as is often the case, this traversal
is necessary as at 5:2, there exists a path with suffix 〈5〉-〈6〉-〈m〉
which does not exist in 5:1. From this path, an analysis might dis-
cover new information. Moreover, this a good indicator for splitting
the node 〈5〉 into two copies: 5:1 and 5:2 in our path-sensitive CFG.

Nevertheless, there are nodes below 5:2 which can be sub-
sumed. We denote subsumed trees by (green) dotted edges and the
label “subsumed”. Here we elaborate the subsumption of the node
labeled with B. When B is visited, node 7:1 with the same program
point is already memoed with Ψ7:1 ≡ true as its abstracted sym-
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〈0〉 if (p>0)

〈1〉 z = 2;

else
〈2〉 z = 3;

〈3〉 if (x>0)

〈4〉 y = 0;

〈7〉 x = 2;

〈m〉 ...
else

〈5〉 if (y>0)

〈6〉 x = y;

else
〈7〉 x = 2;

〈m’〉 ...

(a) (b)

Figure 5. Interpolation-Based Execution Tree of Program in
Fig. 4(a) and Output C Program

bolic state. Here ΨB (the conjunction of the constraints along the
path to B) satisfies true and B is therefore subsumed by 7:1. Here
B inherits the abstracted symbolic state of 7:1, which is true. In our
path-sensitive CFG, subsumed nodes are joined (i.e., no split) with
the subsumer, and therefore B also inherits the identifier 7:1. The
state of A is similarly abstracted to true due to subsumption by m:1.

Both the candidate abstractions Ψ
1
5:2 and Ψ

2
5:2 propagated from

the children of 5:2 are true, and therefore the abstracted state at
5:2 is Ψ5:2 ≡ true. Propagating this interpolant backward results in
second candidate abstraction at 3:1 be Ψ

2
3:1 ≡ true and therefore

Ψ3:1 ≡ Ψ
1
3:1∧Ψ

2
3:1 ≡ true.

We next discuss C, reached through the prefix path 〈0〉-〈2〉-〈3〉.
The formula ΨC ≡ p ≤ 0∧ z = 3. Since ΨC entails Ψ3:1 (i.e., C
is subsumed by 3:1), we do not need to traverse its subtree. Such
subsumptions potentially result in exponentially smaller graph wrt
the original symbolic execution tree.

Loops. We explain now how our interpolation-based symbolic ex-
ecution method handles loops. Here it abstracts the state at the
looping point with a loop invariant that is computed on-the-fly in a
lightweight manner. Consider the looping program in Fig. 6(a) and
our symbolic execution tree in Fig. 6(b). When node A is reached,
we attempt to compute a set of abstractions of the state at node 1:1
that are invariant for the looping path 〈0〉-〈1〉-〈2〉-〈3〉-〈5〉-〈1〉. We
note that the original formula at 1:1 is Ψ1:1 ≡ i = 0 ∧ b = 0 ∧ c = 0
∧ d = 1. Among the atomic constraints, our algorithm attempts to
find a subset of constraints that are individually invariant through
the cycle 〈1〉-〈2〉-〈3〉-〈5〉-〈1〉. For example, i = 0 is not individu-
ally invariant, as the value of the variable i at A is 1, while d = 1
is individually invariant, as the value of d is 1 at A. The sought af-
ter set is therefore {c = 0,d = 1}, named S1:1. When interpreted
as conjunction, any subset of this set is invariant through the cy-
cle from 1:1 to A. The strongest invariant here is c = 0∧ d = 1.
We then stop the traversal at A and compute interpolants backward
given c = 0∧d = 1 at A.

We next traverse the else branch of the if conditional after
applying the invariant computed to generalize Ψ1:1 in this traversal.
The branch is satisfiable under this abstraction, and we reach B with
the formula ΨB ≡ c = 0∧ d = 1∧ i < 10∧ a≥ 0∧ c′ = 1∧ i′ = i+1
(here we denote different variable versions using primes). As the
value of c is 1 at B, among the elements of S1:1, only d = 1 is
invariant through this path. Therefore the loop invariant computed
for this path is d = 1. This step clarifies the use of individually
invariant constraints: the set S1:1 includes only constraints that even
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〈0〉int i=0, a, b=0,

c=0, d=1;

〈1〉while (i<10) {
〈2〉 if (a<0)

〈3〉 b=1;

else
〈4〉 c=1;

〈5〉 i++; }
〈6〉

1

0
i=0, b=0,
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m

1

2

3 4

5 5

1

subsumed

subsumed

i<10

i>=10

a<0
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1:1

m:1

4:1

A

(a) (b)

Figure 6. Loop Program and Its Interpolation-Based Execution
Graph

if any removed, the remaining constraints are still invariant through
the first cycle. In this way, at B we are sure that d = 1 is invariant
through both cycles in the loop, and since there are no more cycles,
d = 1 is the loop invariant. We then backtrack and exit the loop
reaching m:1 with the formula Ψm:1 ≡ d = 1∧ i≥ 10.

Note that we always prioritize analyzing the loop body to ob-
tain an invariant before executing the exit path. This requires an
assumption that the program loops are structured, that is, each loop
has only one entry and one exit point.

Building a Path-Sensitive CFG. Our algorithm, in general, pro-
duces a graph due to the existence of ancestor-descendant sub-
sumptions (i.e., loops). The path-sensitive CFG can be produced
in a straightforward manner from the interpolation-based symbolic
execution graph by: eliminating infeasible nodes (e.g., node 6:1 in
Fig. 5(a)), joining subsumed nodes to their subsumer nodes (e.g., A,
B, and C in Fig. 5(a)), and finally, splitting nodes where subsump-
tion did not hold (e.g., 5:1 and 5:2 in Fig. 5(a)). As post-processing,
given any if-then-else statement in the original program with one of
the branches always infeasible in our symbolic execution tree, we
can replace the statement with just the body of the branch eliminat-
ing the redundant test.

Finally, for convenience, it may be desirable to produce a final
C program from our path-sensitive CFG. We implemented such
a translation for our experiments in Sec. 6. In this paper, we do
not detail this translation as it is straightforward. The resulting C
program for our example is shown in Fig. 5(b).

4. Preliminaries
We model a C program as a Control Flow Graph (CFG) and use
the framework of Constraint Logic Programming (CLP) [14] to
formalize a Control Flow Graph as a set of CLP rules. We then
provide the operational semantics of a CLP program as the process
of constructing a derivation tree.

The universe of discourse is a set of terms, integers, and arrays
of integers. A constraint is written using a language of functions
and relations.

An atom is of the form p(t̃) where p is a user-defined predicate
symbol and the t̃ a tuple of terms.

A rule is of the form A:-B̃,φ where the atom A is the head of
the rule, and the sequence of atoms B̃ and the constraint φ constitute
the body of the rule. A goal G has exactly the same format as the
body of a rule.

A substitution simultaneously replaces each variable in a term
or constraint into some expression. We specify a substitution by the
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p(0, p,x,y,z) :- p(1, p,x,y,z), p > 0.

p(0, p,x,y,z) :- p(2, p,x,y,z), p≤ 0.

p(1, p,x,y,z) :- p(3, p,x,y,z′),z′ = 2.

p(2, p,x,y,z) :- p(3, p,x,y,z′),z′ = 3.

p(3, p,x,y,z) :- p(4, p,x,y,z),x > 0.

p(3, p,x,y,z) :- p(5, p,x,y,z),x≤ 0.

p(4, p,x,y,z) :- p(5, p,x,y′,z),y′ = 0.

p(5, p,x,y,z) :- p(6, p,x,y,z),y > 0.

p(5, p,x,y,z) :- p(7, p,x,y,z),y≤ 0.

p(6, p,x,y,z) :- p(m, p,x′,y,z),x′ = y.
p(7, p,x,y,z) :- p(m, p,x′,y,z),x′ = 2.

(a) (b)

Figure 7. CFG and CLP Model for Program in Fig. 4(a)

notation [Ẽ/X̃ ], where X̃ is a sequence X1, . . . ,Xn of variables and
Ẽ a list E1, . . . ,En of expressions, such that Xi is replaced by Ei for
all 1≤ i≤ n. Given a substitution θ, we write as Eθ the application
of the substitution to an expression E. A renaming is a substitution
which maps variables into variables. A grounding is a substitution
which maps each variable into a value in its domain.

Given a goal G ≡ p(k, X̃),Ψ(X̃), [[G ]] is the set of the ground-
ings θ of the primary variables X̃ such that ∃̃Ψ(X̃)θ holds. We
say that a goal G ≡ p(k, X̃),Ψ(X̃) subsumes another goal G ≡
p(k′, X̃ ′),Ψ(X̃ ′) if k = k′ and [[G ]]⊇ [[G ]]. Equivalently, we say that
G is a generalization of G . We write G1 ≡ G2 if G1 and G2 are
generalizations of each other. We say that a sequence is subsumed
if its last goal is subsumed by another goal in the sequence.

Let G ≡ (B1, · · · ,Bn,φ) and P denote a goal and program re-
spectively. Let R≡ A:-C1, · · · ,Cm,φ1 denote a rule in P, written so
that none of its variables appear in G . Let A = B, where A and B
are atoms, be shorthand for equations between their corresponding
arguments. A reduct of G using R is of the form

(B1, · · · ,Bi−1,C1, · · · ,Cm,Bi+1, · · · ,Bn,Bi = A∧φ∧φ1) (1)

provided Bi = A.
A derivation sequence or path is a possibly infinite sequence

of goals G0,G1, · · · where G i, i > 0 is a reduct of G i−1. Given a
sequence τ defined to be G0,G1, . . . ,Gn, then cons(τ) is all the
constraints of the goal Gn. We say that a sequence is feasible if
cons(τ) is satisfiable, and infeasible otherwise.

A ground derivation sequence is obtained from a derivation
sequence by instantiating all of its variables into the domain of
discourse in such a way that the constraints are evaluated to true.

DEFINITION 1 (Ground Traces). Let TRACES(P , G) be the set of
all ground derivation sequences of the program P using the initial
goal G .

A derivation tree for a goal, G , has as branches all derivation
sequences emanating from G . We say a derivation tree is closed if
all its leaf goals are either successful, infeasible, or subsumed by
some other goal in the tree. A goal G ≡ p(k, X̃),Ψ(X̃) is called
looping if it is derived from another goal with the same k (called its
looping parent) through one or more reduction steps.

We now formalize a Control Flow Graph (CFG) as a CLP
program. Hence, here and in the rest of the paper, CFG and CLP
program are synonymous. We define a CFG in a slightly different
way than usual1. A CFG can be described as a pair (N ,E) where
N is the set of nodes and E is the set of edges. A node denotes

1 In a textbook definition of a CFG, nodes represent basic blocks and edges
are used to represent jumps in the control flow.
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p(0, p,x,y,z) :- p(1, p,x,y,z), p > 0.

p(0, p,x,y,z) :- p(2, p,x,y,z), p≤ 0.

p(1, p,x,y,z) :- p(3, p,x,y,z′),z′ = 2.

p(2, p,x,y,z) :- p(3′, p,x,y,z′),z′ = 3.

p(3, p,x,y,z) :- p(4, p,x,y,z),x > 0.

p(3, p,x,y,z) :- p(5′, p,x,y,z),x≤ 0.

p(4, p,x,y,z) :- p(5, p,x,y′,z),y′ = 0.

p(5, p,x,y,z) :- p(7, p,x,y,z),y≤ 0.

p(7, p,x,y,z) :- p(m, p,x′,y,z),x′ = 2.

p(5′, p,x,y,z) :- p(6, p,x,y,z),y > 0.

p(5′, p,x,y,z) :- p(7′, p,x,y,z),y≤ 0.

p(6, p,x,y,z) :- p(m′, p,x′,y,z),x′ = y.
p(3′, p,x,y,z) :- p(3, p,x,y,z).
p(7′, p,x,y,z) :- p(7, p,x,y,z).
p(m′, p,x,y,z) :- p(m, p,x,y,z).

Figure 8. Path-Sensitive Version of CLP Program in Fig. 7(b)

program points and edges denote both sequence of straight-line
statements and jump conditions in the control flow. Our notion of
CFG has as usual two designated blocks: entry and exit.

The translation from a CFG to CLP is straightforward. Let
G = (N ,E) be a graph, and let e ≡ (pci,pc j) ∈ E be an edge
such that pci,pc j ∈ N and e is labeled with the statement or
jump condition χ(X̃ , X̃ ′) where X̃ and X̃ ′ represent the state of
the program variables before and after the execution, respectively.
Then an equivalent CLP rule is defined as follows:

p(pci, X̃) :- p(pc j, X̃ ′),χ(X̃ , X̃ ′).

An example of a CFG and its respective CLP program is given,
respectively, in Fig. 7(a) and Fig. 7(b) for the C fragment described
in Fig. 4(a). The details of how to generally perform a compilation
of an underlying C program into CLP are beyond the scope of this
paper. We refer readers to [17] and its references for more details.
In this paper, we assume a sound compiler from C to CLP rules.

5. Algorithm
In this section, we present an algorithm which takes a program rep-
resented as a set CLP rules P (as program in Fig. 7(b)) and pro-
duces another CLP program P ′ (as program in Fig. 8). P ′ preserves
all execution traces of P , and is obtained from the execution tree
by:

1. excluding all detected infeasible paths, and

2. explicitly splitting merging points in P if further execution
differs wrt infeasible paths.

Symbolic states are goals of the form 〈pc : k, X̃ ,Ψ(X̃)〉where pc
is a program point and k is a context identifier. We reserve pcinit and
pcend to denote the initial and the last program points, respectively.
X̃ is a list of variables representing the variables of the underlying
program, and Ψ(X̃) is a sequence of constraints.

We define the function OutP (G) to obtain the reducts of G in
one symbolic step in program P using Eq. 1,Sec. 4. We denote by
Out+P (G) the set:

{G ′ | cons(G ′) is satisfiable ∧G ′ = OutP (G)}

Similarly, we denote by Out−P (G) the set:

{G ′ | cons(G ′) is unsatisfiable ∧G ′ = OutP (G)}

In essence, Out+P (G) (Out−P (G)) is the set of reducts of G such that,
using the same rules, the reduction of OutP (G) is feasible (infea-
sible). In the algorithm, we prioritize recursive call with the argu-
ments in Out+P (G) over Out−P (G) to use the abstraction produced
by traversing Out+P (G) that may make Out−P (G) feasible. Execut-
ing infeasible transition earlier may result in less general abstrac-
tion and therefore less subsumption.

The algorithm described in Fig. 9 maintains globally a memo
table MT that stores goals (states) of the form 〈pc : k, X̃ ,Ψ(X̃)〉
where Ψ(X̃) is an interpolant that generalizes the state at program

pc. It also maintains a set of edges E that induces the path-sensitive
graph produced by the algorithm. Initially, MT and E are empty.

The procedure SymbolicExec, in Fig. 9, takes as inputs an initial
state and an empty table called CT . The purpose of CT is to record
all potential looping parents of a given program point. The basis of
SymbolicExec is to run P symbolically starting with the initial goal
and calculating constraints on the program variable values, while
subsuming unnecessary subtrees to avoid exponential explosion.
For convenience, we define the procedure in a recursive manner. At
any node with state G , the procedure performs one symbolic step
by triggering all applicable rules, G ′, and calling itself recursively
in Line 18. Moreover, an edge from G to G ′ is added into the graph
(Line 17). Since, the main purpose is to attempt subsumption at
any node, each recursive call must return the child’s interpolant,
Ψ
′(X̃ ′). Note that SymbolicExec returns a pair rather than only the

child’s interpolant. The second component is the set of generalized
states of looping parents (in general there are multiple states due
to cascading loops), which is to be used to generalize the symbolic
traversal of sibling paths. We detail the explanation later in this
section.

The symbolic execution on P terminates normally due to three
different reasons.

In the first, SUCCESS, the execution reaches the end of the
path, pcend . Since the path is satisfiable the interpolant can be fully
generalized to true due to the lack of infeasibility.

The next case, SUBSUMED, searches for an entry in MT such
that the current state, Ψ(X̃) entails the interpolant associated to the
entry, Ψ(X̃). If the entailment holds, there is no need to continue
with the execution. This is the core step to make our symbolic exe-
cution method practical. Since the set of states at the program point
pc : k is a subset of the states stored previously at pc : kS, the al-
gorithm can ensure that the subsumed node cannot derive a sym-
bolic path which was not traversed already under the context kS.
On the other hand, it is worth mentioning that the subsumption test
is more likely to hold because the algorithm does not store sim-
ply the state ΨS(X̃) at pc : kS. Instead, it stores a generalization
of it, the interpolant Ψ(X̃), which increases significantly the likeli-
hood of subsumption. Furthermore, E must be updated by adding a
sibling-to-sibling edge from the current state pc : k to the subsumer
pc : kS.

INFEASIBLE is triggered when the constraints along the path
are unsatisfiable. To simplify the discussion, we assume a theorem
prover that decides, say, the theory of linear arithmetic formulas
over integer variables and array elements. Here, the execution also
stops and returns the formula false as interpolant.

Another key operation of the algorithm is how to propagate back
the interpolants from the descendants to their ancestors. The parent
G receives all interpolants returned by its children G ′ through the
recursive calls to SymbolicExec (Line 18). The idea is to compute
a formula Ψ(X̃) that generalizes Ψ(X̃) and still preserves the path
infeasibility. Ideally, we would like to compute the weakest pre-
condition wrt the constraints attached to the transition at hand and
the interpolant provided by the descendants. In practice, we can
derive Ψ(X̃) efficiently (in polynomial time) using a less general
interpolant provided by the greedy constraint deletion and slack-
ening techniques in [17]. The function INTERP, used in Line 19,
will compute the interpolant. The final interpolant for G will be the
conjunction, also in Line 19, of all interpolants inferred for each
G ′.

The above procedure needs to deal with loops in order to make
the symbolic execution process finite resulting in finite graph. Our
algorithm builds on-the-fly a loop invariant for each loop before vis-
iting the transitions corresponding to the exit condition of the loop.
For a given loop, we compute a path-based loop invariant in order
to force parent-child subsumption. Since we would like to detect
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ProgramTransform(P )
INPUT : program P expressed as CLP rules
OUTPUT: program P ′ expressed as CLP rules
// MT : global memo table for performing subsumption
// CT : table for identifying looping parents
// E : global set of edges (graph)
MT ← /0, CT ← /0, E ← /0

SymbolicExec(P ,〈pcinit : 1, X̃ , true〉,CT )
P ′ ← GenPathSensProg(P ,E)

SymbolicExec(P ,G ,CT )
1: switch(G : 〈pc : k, X̃ ,Ψ(X̃)〉)
SUCCESS
2: case pc = pcend :
3: return 〈true,⊥〉
SUBSUMED

4: case ∃ 〈pc : kS, X̃ ,Ψ(X̃)〉 ∈ MT and Ψ(X̃)⇒Ψ(X̃):
5: E ← E ∪ {(pc : k→ pc : kS)}
6: return 〈Ψ(X̃),⊥〉
INFEASIBLE
7: case Ψ(X̃) is unsatisfiable:
8: return 〈false,⊥〉
LOOPING
9: case ∃ GP ≡ 〈pc : kP, X̃P,ΨP(X̃P)〉 ∈ CT :
10: Φ(X̃)← INVARIANT(ΨP(X̃P),Ψ(X̃))
11: E ← E ∪ {(pc : k→ pc : kP)}
12: return 〈Φ(X̃),〈pc : kP, X̃P,Φ(X̃P)〉〉
RECURSIVE
13: default:
14: Ψ(X̃)← true
15: Gc← G
16: foreach G ′ ≡ 〈pc′ : k′, X̃ ′,Ψ(X̃)〉 in Out+P (Gc),Out−P (Gc) do
17: E ← E ∪ {(pc : k→ pc ′ : k′)}
18: 〈Ψ′(X̃ ′),GP〉 ← SymbolicExec(P ,G ′,CT ∪{G})
19: Ψ(X̃)←Ψ(X̃)∧ INTERP(G ′,Ψ′(X̃ ′))
20: if (GP 6=⊥) then Gc← APPLYINVARIANT(Gc,GP)
21: MT ← MT ∪ {〈pc : k, X̃ ,Ψ(X̃)〉}
22: if (GP = 〈pc : kP, , 〉∧ kP 6= k) then return 〈Ψ(X̃),GP〉
23: else return 〈Ψ(X̃),⊥〉

Figure 9. Algorithm

as many infeasible path as possible, the algorithm attempts to de-
rive the strongest loop invariant possible. For correctness, our sym-
bolic traversal must consider all paths under a global loop invariant.
By ”global” we mean here the final abstraction after all path-based
loop invariants were computed. Therefore, SymbolicExec must re-
turn also each path-based loop invariant (in second component)
which will weaken the state for further paths. More importantly,
after a loop is analyzed the algorithm ensures that no feasible path
(inside or outside the loop) considering the generalized state given
by the loop invariant is detected as infeasible.

The LOOPING case forces parent-child subsumption to make
the analysis of loops finite. Assume GP ≡ 〈pc : kP, X̃P,ΨP(X̃P)〉 is
a looping ancestor of G ≡ 〈pc : k, X̃ ,Ψ(X̃)〉 where G was derived
from GP via multiple reduction steps. Note the formula Ψ(X̃) is of
the form ΨP(X̃P)∧Ψ′(X̃ ′) and X̃ ≡ X̃P . X̃ ′ where Ψ′(X̃ ′) is the for-
mula that contains all constraints collected through the loop path.
Then the procedure INVARIANT derives, using a theorem prover,
those constraints at pc : kP which remain invariant through the path.
The constraints are obtained from the set of atomic constraints in
∃var(ΨP)− X̃P : ΨP (projection of ΨP onto the variables X̃P, which

GenPathSensProg(P , E)
INPUT : the original CLP program P and a set of edges E
OUTPUT: program P ′ expressed as CLP rules

1: P ′← /0

2: foreach (pc1 : k1,pc2 : k2) ∈ E do
3: r← getCLPRule(P ,pc1,pc2)
4: pca← genUniquePC(pc1 : k1)
5: pcb← genUniquePC(pc2 : k2)
6: if r is a guard and |OutgoingE (pc1 : k1)| ≤ 1
7: P ′← P ′∪{genEmptyCLPRule(r,pca,pcb)}
8: else
9: P ′← P ′∪{genCLPRule(r,pca,pcb)}
10:return P ′

Figure 10. Algorithm (Continuation)

still is a correct symbolic description of the program state, as for all
groundings θP of X̃P, (∃var(ΨP)−X̃P : ΨP)θP is valid if and only if
ΨPθP is satisfiable). Name this set Spc : kP . We remove from Spc : kP

any constraint ϕ such that ϕ∧Ψ′(X̃ ′) 6⇒ ϕ[X̃/X̃P]. The remaining
constraints are individually invariant through this path.

The next step is to propagate the computed path-based loop in-
variants to further paths in order to make sure all paths were consid-
ered under the global loop invariant. Notice that the recursive call
to SymbolicExec in Line 18 possibly also returns a weakened state,
GP of a looping ancestor, in case the path contains a loop. At Line
20 we update Gc to take into account this generalization. More
specifically, Gc is of the form 〈pc : k, X̃ ,Ψc(X̃P)∧Φc(X̃P, X̃)〉,
while GP is of the form 〈pc : k, X̃P,ΨP(X̃P)〉. APPLYINVARIANT re-
places Ψc(X̃P) in Gc with the more general ΨP(X̃P) of GP, and
the resulting state is assigned to Gc. This results in weakening of
reducts in Line 16, which may wake up a new transition which was
infeasible previously but now under the weaker condition Gc is
feasible.

The algorithm finally records the interpolated state Ψ(X̃) in
Line 21. In Lines 22 and 23 we simply return that interpolant. As
for the loop invariant, we simply propagate the abstraction infor-
mation GP (Line 22), unless the current state is looping and is ab-
stracted by a descendant, in which case we remove the abstraction
(Line 23) as it has no effect on ancestors.

So far, we have presented the procedure SymbolicExec which
is the core of our program transformation. This procedure runs P
symbolically using interpolation and subsumption while building a
set of edges E . The last step is to return a CLP program from E
and this done by procedure GenPathSensProg in Fig. 10.

The final transformation is quite straightforward. We assume a
function getCLPRule which given the original CLP program P and
a pair of program counters pc1,pc2, it returns the CLP rule that
matches with the program counters (without loss of generality, we
assume that the rule is unique):

p(pc1, X̃) :- p(pc2, X̃ ′),χ(X̃ , X̃ ′).

We assume also a function genUniquePC that maps program coun-
ters and context identifiers to a new set of program counters. The set
of counters returned by the function is disjoint from the input set.
Finally, genCLPRule and genEmptyCLPRule generate a new CLP
rule given the new program counters and the rest of information
given by the original rule. The function genEmptyCLPRule is de-
fined as genCLPRule but without attaching the original constraints
χ(X̃ , X̃ ′) to the new rule. That is, genEmptyCLPRule is similar to
nop operation.

The purpose of using genEmptyCLPRule is to avoid redundant
statements in the transformed program. Given an edge, associated
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with a jump condition, if the number of its outgoing edges is at most
one (i.e., it is always feasible) (Line 6) then the test is redundant and
hence, we can use genEmptyCLPRule rather than genCLPRule.

We now state the correctness of our transformation, in that
the new CLP program is, in the sense of program executions,
equivalent to the original.

THEOREM 1 (Equivalence). Let P be a CLP program and G be an
initial goal as defined in Sec. 4. Let P ′ be another program returned
by ProgramTransform(P ) in algorithm described in Fig. 9 and 10.
Then,

TRACES(P , G) ≡ TRACES(P ′, G)

Limitations. In this paper, we assume structured programs. By do-
ing so, Out+P can prioritize those feasible transitions which corre-
spond to the entry of the loop against the exit transitions. Other-
wise, we may analyze paths out of the loop without having com-
puted yet its loop invariant. The limitation of structured programs
is not fundamental but simplifies considerably the description of
our algorithm. We consider the analysis of unstructured programs
as an interesting future work.

Furthermore, the algorithm described in Fig. 9 does not com-
pute summaries for functions, and hence, all functions calls will
be inlined. As a direct consequence, our path-sensitive CLP pro-
gram will not contain function calls (only main function). It is well
understood that inlining functions may generate programs expo-
nentially bigger than the originals thought this potential limitation
did not arise in our experiments. We consider the computation of
summaries an orthogonal issue and also interesting future work.

6. Experimental Evaluation
It is folklore that path-sensitiveness produces more accurate analy-
ses, and so performing analysis using our path-sensitive CFG gen-
erally produces better results as compared with using the traditional
CFG. Thus the primary evaluation of this section is to show the size
increase of the path-sensitive CFG over the original. We claim that
this increase is manageable, especially when the intended analyzer
is path-insensitive and, typically, very fast (i.e., almost linear time).

We then demonstrate the path-sensitive CFG in action using
two different path-insensitive analyzers, one of them a well-known
commercial tool. We did this by decompiling the path-sensitive
CFG back into C, and then running the analyzers. The purpose
here is to demonstrate that added accuracy can be obtained using
existing off-the-shelf analyzers.

These two experiments serve to demonstrate practical enhance-
ment of analysis accuracy. However, there is a different potential
benefit of using our path-sensitive CFG: it can produce speedup
for analyzers that are already (at least partially) path-sensitive. To
demonstrate this, in our final experiment, we ran the program veri-
fication tool BLAST (here considering verification as a special case
of analysis).

Throughout the experiments, we implemented our program
transformation for C programs by modeling the heap as an array.
Alias analysis is then used to partition updates and reads into alias
classes where each class is modeled by a different array. We use
the CLP(R ) [15] system and its native constraint solver, and ex-
tend it for reasoning about arrays in order to check the satisfiability
of formulas and computing interpolants. Function calls are inlined
and external functions are modeled as having no side effects and
returning an unknown value.

Our tool performs the full pipeline explained in Fig. 1, Sec. 1.
That is, it takes a C program and translates it into its corresponding
CLP program. Then, the algorithm described in Sec. 5 is applied in
order to obtain another CLP program codified with path-sensitive

information. The next step is to produce its equivalent C program.
We omit the details since it is straightforward. Finally, we ran
several off-the-shelf analyzers to produce our experiments.

We used as benchmarks several device driver examples previ-
ously used as software model checking benchmarks [12]: cdaudio,
diskperf, floppy, kbfiltr, serial, and tcas. In addition,
we also consider other three real programs: statemate from
the Mälardalen WCET group [18]; mpeg from [1]; and finally,
susan thin from [2].

Original CFG Path-Sensitive CFG
Program LOC R Mem R Mem Time Inc
cdaudio 8921 1385 4.3 5759 17.9 7.7 4.2
diskperf 6024 660 1.1 3100 4.8 7.2 4.3
floppy 8579 1381 3.9 2922 8.2 5.1 2.1
kbfiltr 4930 557 0.5 1337 2.1 1.5 4.2
mpeg 1773 822 0.9 1581 1.7 3.9 1.8
serial 10380 3867 10.1 53389 138.1 212.2 13.6
statemate 1276 800 10.3 25054 324.1 37.5 31.4
susan thin 2371 608 1.1 902 1.7 4.1 1.45
tcas 405 193 0.6 2432 7.2 3.7 12

Table 1. Size Increase and Timing on Intel 3.2Gz 2Gb

First, we demonstrate that our algorithm can produce a path-
sensitive CFG of a manageable size in a reasonable amount of time
for several real programs. The results are summarized in Table 1.
The second column LOC represents the number of lines of codes
excluding comments of the C original program. In the next two
columns, labeled as Original CFG, we show the number of rules
of the resulting CLP program (third column R) and the size of the
CLP program in megabytes (fourth column Mem). Our translation
from C to CLP collapses sequence of assignments into a single CLP
rule. This is the reason of the lack of correlation between LOC and
R. The same measures are shown for the path-sensitive CFG. The
column Time represents the time in seconds spent by the algorithm
to produce the path-sensitive CFG. Note that we do not include the
timing for compiling/decompiling from/to C since those numbers
are negligible. Finally, the column Inc shows the size increase of
the path-sensitive CFG.

In summary, the size increases of the path-sensitive CLP pro-
grams are quite reasonable in most of the benchmark examples.
The program statemate deserves special attention as its path-
sensitive version is around 30 times bigger than the original. The
reason is that statemate is automatically generated code by the
STAtechart Real-time-Code generator STARC. The program has a
large amount of infeasible paths resulting in inability to extensively
generalize nodes in the execution tree resulting in less subsump-
tion. Even so, the transformed program is still manageable and it is
produced within a reasonable amount of time.

Program TOrig TPath-sens Red
cdaudio 394 374 5%
diskperf 537 388 27%
floppy 548 404 26%
mpeg 350 257 26%
serial 8990 7051 22%
statemate 293 263 11%
susan thin 5025 3001 40%
tcas 96 91 5%
Average 20.25%

Table 2. Accuracy Gains for WCET Analysis

Next we demonstrate the path-sensitive CFG in action using
two different path-insensitive analyses and report their results. For
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both cases, we use the C original program and the path-sensitive
C version obtained by decompiling its corresponding CFG. Since
both analyses are quite fast due to their path-insensitive nature, the
running times are insignificant (less than few seconds), and hence,
not displayed.

The first analysis is a simplified version of Worst-Case Execu-
tion Time (WCET) analysis. WCET analysis aims to compute the
worst possible execution time of a program and it is usually per-
formed at two different levels. Low-level, which is done on binary
code, provides the execution time of basic blocks considering the
effects of hardware level features such as cache, pipelining, branch
prediction, etc. High-level analysis is often performed on source
code, and it focuses on characterizing all possible executable paths.

We consider high-level WCET an useful representative analysis
to illustrate the potential accuracy gains of our transformation since
the main objective is to exclude infeasible paths. For this purpose,
we implement a path-insensitive path-based algorithm à la [21, 22]
with a simple timing model: the program is instrumented with a
dedicated timing variable which is incremented after the execution
of each statement. As usual, upon encountering a loop, it computes
separately the WCET of the loop body and multiplies that value with
a given number of loop iterations. In real WCET tools the number
of loop iterations can sometimes be computed automatically. For
simplicity, here we assume one iteration per loop.

We ran our prototype and the results are shown in Table 2.
The column TOrig expresses the value of the dedicated timing
variable after running the prototype on the C original program.
Column TPath-Sens represents the same information but using
the transformed C program. The smaller, the better. The column
Red shows the percentage of reduction in the value of the timing
variable if the path-sensitive program is used. Finally, we report a
considerable reduction of 20.25% in average for the set of programs
selected.

The program susan thin shows the highest accuracy improve-
ment (40%). Here, some input values are fixed and then the evalua-
tion of many if statements depend on those values. Therefore, there
are many infeasible paths. This is good example because the size
increase of the path-sensitive CFG is very small wrt to the original
(1.45 only of increase, Table 1), but accuracy gains are huge.

For the second analysis we use a popular commercial analyzer,
CodeSurfer [6], which can perform program backward slicing. This
technique aims at identifying the parts of a program that potentially
affect the values of specified variables at some program point.

To increase the validity of our study, we choose several realistic
slicing criteria and report the average of them. By ”realistic” we
mean potential slicing criteria used in practice. The results are
shown in Table 3. The column ReductOrig reflects the percentage of
lines sliced away by CodeSurfer on the original program. Similarly,
column ReductPath-Sens expresses the same measure but using the
transformed C program. Column Improv shows the percentage of
improvement if the path-sensitive C program is used. In this case,
the improvement average is around 21%.

Program ReductOrig ReductPath-Sens Improv
cdaudio 50% 59% 9%
diskperf 53% 67% 14%
floppy 55% 66% 11%
kbfiltr 52% 60% 8%
mpeg 38% 69% 31%
statemate 15% 52% 37%
tcas 18% 56% 38%
Average 21%

Table 3. Accuracy Gains for Slicing Using CodeSurfer

A different potential benefit of our program transformation
could be to produce speedup in other path-sensitive program analy-
ses. This class of analyses needs often to deal with infeasible paths
in order to obtain path-sensitiveness on their own. Therefore, the
efficiency gains of using our CFG come from the fact that part
of the false path detection phase and the computation of its inter-
polants (if any), which is an expensive task, can be precomputed by
our method. Of course, since the spectrum of path-sensitive analy-
ses is very broad and the goal of our method is to build a control
flow graph offline, those gains will not always pay off.

To elaborate we focus on the verification tool BLAST [13],
which implements the CounterExample-Guided Abstraction Re-
finement (CEGAR), a successful technique for proving safety in
large programs. CEGAR methods start with a very coarse abstrac-
tion of the program and if the abstract model violates the safety
condition, then the abstraction is refined using the counterexample
found. Therefore, the core idea of abstraction refinement is to use
the most general abstraction first, and refine later. This causes the
exploration of infeasible paths which is already well understood as
an important drawback.

We believe our method might mitigate those limitations in cer-
tain programs where the exploration of infeasible paths may cause
problems. We ran the BLAST tool on both the original tcas pro-
gram and its path-sensitive version. The tcas program is an imple-
mentation of a traffic collision avoidance system, a real-life safety-
critical embedded system. The program is instrumented with ten
safety conditions, of which five are violated. Table 4 illustrates the
impact on performance using the path-sensitive version. The sec-
ond and third columns show the number of predicates considered
(BLAST uses predicate abstraction) and time in seconds spent by
BLAST taking the original version of tcas. The fourth and fifth
columns are also the number of predicates and time in seconds but
this time using as input the path-sensitive version of tcas gener-
ated by our algorithm. The sixth column S illustrates the speedup
of using the path-sensitive version.

Original Path-sensitive
Program P T P T S
tcas-1a-safe 38 27.8 12 4.0 6.9
tcas-1b-safe 34 28.9 14 4.5 6.4
tcas-2a-safe 39 22.8 11 3.6 6.3
tcas-3b-safe 15 4.4 12 3.6 1.2
tcas-5a-safe 34 18.1 10 3.4 5.3
tcas-2b-unsafe 39 39.3 6 0.9 43.6
tcas-3a-unsafe 16 5.5 2 0.4 13.7
tcas-4a-unsafe 20 4.2 2 0.3 14
tcas-4b-unsafe 24 7.5 4 0.4 18.7
tcas-5b-unsafe 28 12.9 6 0.74 17.4

Table 4. Speedup for the Verification Tool BLAST on Intel 1.33Gz
2Gb

Although most speedups are significant, the numbers that attract
more attention are related to the unsafe conditions. The explanation
to that is simple. Our path-sensitive program contains fewer infea-
sible paths that lead BLAST directly to the real error. However, if
BLAST is run on the original program, the tools needs to explore
those infeasible paths, refine more often (increasing the number of
predicates), and hence, spent more time to find the error.

7. Conclusions
We developed a program transformation which takes the CFG of a
program and restructures it in order to encode path-sensitivity into
the CFG. One of the major features is that the transformation is
done without any knowledge of the property of interest. Hence, our
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transformation can be used, in principle, to enhance the accuracy
of any CFG-based analysis.

Our method executes symbolically the CFG eliminating infeasi-
ble paths from it and duplicating subgraphs when it is likely to pro-
duce more precise results by the underlying analysis. We employ
interpolation to make practical the symbolic execution and produce
a path-sensitive CFG of manageable size. We also provide an ex-
tensive evaluation of our method using a set of real programs that
shows our method can handle non-trivial programs and still pro-
duce significant accuracy gains.
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