
Trace Generalization via Loop Compression
Joxan Jaffar∗ and Vijayaraghavan Murali†

National University of Singapore
∗joxan@comp.nus.edu.sg
† m.vijay@comp.nus.edu.sg

Abstract—We present a new method to generalize execution
traces by compressing loop iterations in them using loop invari-
ants. The invariants discovered are “safe” such that the resulting
compressed trace also satisfies certain target properties which
the original trace satisfied (e.g., an assertion at the end). This
results in a concise trace that captures the semantics of the
original trace w.r.t. the target but without needing to unroll
the loops fully. A central feature is the use of a canonical
loop invariant discovery algorithm which preserves all atomic
formulas in the representation of a symbolic state which can be
shown to be invariant. If this fails to provide a safe invariant,
then the algorithm dynamically unrolls the loop and attempts
the discovery at the next iteration, where it is more likely to
succeed as the loop stabilizes towards an invariant. We show
using realistic benchmarks that the end result, a generalization
of the original trace, is significantly more succinct.

I. INTRODUCTION

The analysis of execution traces has become an integral part
of software engineering. A brief look at the past decade shows
a large number of tools and techniques that were developed to
reason about execution traces. Dynamic Symbolic Execution
(DSE) [15], [33], [6], [5], [23] executes the program both
concretely and symbolically, analyzes the resulting trace and
generates inputs to execute the next trace that deviates slightly
from the current one. Several fault localization techniques
analyze error traces in particular to identify suspicious state-
ments that may be the cause for the error. For instance,
explain [16], [17] uses “distance metrics” to find another
execution trace that is as close as possible to the failed trace,
and uses the differences to explain the error. DARWIN [29],
[30] tries to generate an alternate input that fails in a similar
way as the given error trace, aligns them and generates a bug
report from the differences. Delta debugging [9], [36], [37]
extrapolates between failing and successful test cases to find
similar execution traces.

A central theme in these techniques, as emphasized in-
formally in the text, is to analyze an execution trace and
explore its “neighborhood” of traces, formalized in [34]. In
other words, their goal is to analyze a particular trace by
generalizing it to a set of traces that exhibit similar behavior.
In this paper, we propose a representation for such generalized
execution traces that exhibit similar behavior, and a method
to obtain the representation by compressing loop iterations in
the trace using invariants. Consider as a motivating example
the program below.

Running this program with input n=100 would produce
a trace that assigns i and j to 0, iterates through the loop

n=read() // assume non-negative
i=j=0
while (i != n) do

i=i+1
j=j+2

done
TARGET: {j ≥ n}

100 times, in the end assigning i and j to 100 and 200
respectively, thus implying the TARGET1 that j ≥ n. In this
contrived example though, any trace that executes the loop any
number of times will imply the target in a similar way. We
propose to capture this using the following generalized trace:

i=j=0 INV: {j ≥ i}
INV: {j ≥ i} −−−−−−−−−−−−−−→ i=i+1
i == n j=j+2
TARGET: {j ≥ n} INV: {j ≥ i}

On the left is the actual generalized trace. It explains that
initially the trace assigned i and j to 0. Then, on reaching the
loop the invariant that j ≥ i held at the loop header at every
iteration, and eventually the exit condition i==n was taken.
These two pieces of information logically entail that j≥n, the
target. Note that this generalized trace is actually a collection
of traces that imply the target after executing, in this case, 0
or more number of loop iterations.

In general, loops provide a natural and intuitive way to
define similarity between traces. That is, two traces can be
considered similar if they imply the same target at the end
but just differ in the number of times they executed a loop.
This occurs quite often in practice. For instance, a bug may
be caused due to an input of size 100, which executed a loop
100 times. If the same bug is caused by an input of size 5,
which executed the same loop 5 times, intuitively, they can be
considered similar. A debugging programmer would indeed try
to search for such a “similar” input that reproduces the bug.

Our generalized trace groups together such traces using a
loop invariant. As a result, it exhibits semantically similar
behavior as the original trace but without unrolling the loops
fully. The most important benefit, as we show experimentally
in Section VI, is that the generalized trace is much more
concise than the original, and is therefore easier to analyze
or comprehend. For this reason, we refer to the generalized
trace as a “compressed trace”. To motivate the application of
a such a compressed trace, consider two scenarios.

1In general the target can be any formula that is implied by the trace. For
an error trace, the target would be the negation of the violated assertion.

Scenario 1: A DSE search procedure is invoked on the above
program, beginning with the (random) input n=100. To exe-
cute the next path, DSE would negate one of the 100 branches
along this path and solve for the next input. Unfortunately,
the unbounded loop (i.e., a loop whose iteration count is
dependent on a non-deterministic input) makes the symbolic
execution tree infinite, causing DSE to never terminate as it
keeps exploring deeper and deeper iterations. However, the
corresponding compressed trace in this case does not contain
any loop iteration, but simply an invariant. In other words,
there are no branches to negate, and so providing this to DSE
instead can make it terminate. Of course, the DSE process has
to be tweaked to understand compressed traces. For instance,
the “branch” i==n is to be ignored as it is the exit condition
of an already compressed loop.

Scenario 2: A programmer is trying to debug the program
with the error trace obtained from n=100 (assume the target
is an error). To understand the trace the programmer needs
to go through the 100 iterations. Note that techniques such
as dynamic slicing [25] do not help, as no statement would
be sliced away. The compressed trace on the other hand, is
much easier to comprehend due to its succinctness and the
loop invariant, which captures very closely the intuition that
a human would have when analyzing the trace.

On the surface, this technique of compressing traces with
loop invariants may sound quite simple. However, a number
of challenges arise when delving deep into it:

A. What kind of invariants do we need to discover?
In the above example, all the following formulas are invariants
for the loop: i ≥ 0, 0 ≤ j ≤ 2n, true (trivially an invariant
for any loop), etc. But not all invariants can be used for this
purpose – the invariant used in the compressed trace needs
to imply the target in the end, similar to the original trace.
Only if it does so, in which case we call it a “safe invariant”,
we can claim the compressed trace is a generalization of the
original trace. For instance, the invariant 0 ≤ j ≤ 2n is not
safe because combined with the loop’s exit condition i==n,
it does not imply the target j ≥ n. Thus, discovering safe
invariants is not trivial and is a primary challenge.

B. What if we are unable to discover a safe invariant?
In the above example, the invariant j ≥ i conveniently
happened to be safe. But in many cases, a safe invariant could
be very hard to discover. In our experiments in Section VI,
we noticed several state-of-the-art invariant generators unable
to find a safe invariant for our benchmarks. Thus, we need
measures to handle such cases when the discovered invariant
turns out to be unsafe. In our method, we dynamically unroll
the loop and attempt the invariant discovery at the next itera-
tion. This is a reasonable measure in practice as many loops
converge towards an invariant as they iterate. For instance,
loops typically either keep increasing or decreasing values of
variables, and after a few unrolls we can discover lower or
upper bounds on those variables, forming an invariant.

C. Are the discovered invariants relevant to the target?
When discovering invariants, we have the choice to aim for
stronger or weaker invariants (logically). Weaker invariants are
less likely to be safe because they abstract more information
about the loop. Stronger invariants may carry too much
information about the loop, many of which may be irrelevant
to the target, making the generalization too specific. For
instance, in the above example, j ≥ i∧ n = 100 is a stronger
invariant than just j ≥ i but in fact, n = 100 is not needed to
imply the target. Our method provides a fine balance between
the two – first, we aim to discover strongest invariants in
order to increase the likelihood of being safe, and once we
reach the target along the trace, we generalize (weaken) the
discovered invariants, removing information from them that
were not really needed to imply the target.

D. Is there a proof of validity for our invariants?
The fact that the discovered formulas are indeed invariants
comes from the soundness of our algorithm. However, in case
this is challenged, we can provide a proof of invariance in
the form of a Hoare-proof [19] consisting of Hoare-triples
annotated at each statement in the loop. In the above example,
to check if j ≥ i is indeed invariant, we can provide a Hoare-
proof as shown on the right of the compressed trace. Starting
with the “pre-condition” j ≥ i, executing the statements in the
loop body results in the “post-condition” j ≥ i again, thus the
formula is invariant. This proof can be checked easily using
automated proof assistants such as Coq [2]. If the proof fails,
a bug in the implementation of our algorithm is detected.

The paper is organized as follows. Section II explains the
basic idea of our algorithm with examples, Section III looks at
some related work, Section IV establishes formal background
for our method, Section V presents the main algorithm, and
Section VI demonstrates our experimental evaluation.

II. OVERVIEW

Consider a more sophisticated example, the benchmark
program for_bounded_loop1.c, taken from the Software
Verification Competition 2013 (SV-COMP13) [4].

`1 x=0, y=0, err=0 /* assume n > 0 */
`2 for (i=0; i < n; i++) do
`3 x = x-y
`4 if (x != 0) err = 1 else skip
`5 y = read() /* assume read does not return a 0 */
`6 x = x+y
`7 if (x == 0) err = 1 else skip

done
`8 TARGET: {x 6= 0, err 6= 1}

Assume that the program is executed with input n=10 and
y, read at `5, is never input as 0. This will produce a trace that
iterates through the loop 10 times, and exits with x being non-
zero and err being 0, implying the target {x 6= 0, err 6= 1}.

Our method performs symbolic execution on the trace,
collecting the constraints into a symbolic state at each location.
For instance, the symbolic state at `2 would be the set of
constraints {x = 0, y = 0, err = 0, i = 0}. When a loop

is encountered, it attempts to discover an invariant. While
technically any invariant generation algorithm can be used in
this step, we describe a specific one suitable to our overall
method. Briefly, we symbolically execute every path in the
loop exercised by the trace, and delete individual constraints
from the loop header’s symbolic state that do not still hold
at the end of each path. The whole process is repeated
till no deletions are made, at which point the remaining
constraints form the loop invariant. We call this technique
basic individually invariant discovery (BIID).

BIID works well with our unrolling mechanism because the
symbolic state at the loop header is very likely to change
after unrolling, at which point BIID checks for invariance
considering the changes in the new state. This is important,
as unrolling may expose constraints that were not originally
invariant before but are indeed invariant from now on. Hence
it is a “basic” requirement to check if individual constraints in
the new symbolic state are now invariant. More sophisticated
methods may consider disjunctions of constraints, linear re-
lationships between variables, user-provided predicates, etc.,
which may result in better (stronger) invariants. Although
these techniques are admitted in our algorithm, we found
that in practice BIID is fast and yet smart enough to capture
safe invariants. Note that BIID is dependent on the internal
representation of a symbolic state in choosing the “candidate”
invariant constraints. For instance, the symbolic states {v =
5, w = v} and {v = 5, w = 5} are semantically equivalent,
but BIID may return different invariants if, for e.g., {w = v} is
not invariant in the loop but {w = 5} is. This depends on the
implementation of the underlying symbolic execution engine.

Coming back to the example, let us see how BIID finds an
invariant at `2. Since both x and y are zero at `2, x=x-y
makes no change to the state, so we reach `4 with the state
{x = 0, y = 0, err = 0, i = 0}. This makes the branch
condition false, so we continue along the path to read y, which
we assume is non-zero. Since y is now non-zero and x is
zero, executing x=x+y at `6 results in the state {x = y, y 6=
0, err = 0, i = 0} at `7. This makes the branch condition
false, and we reach the looping point `2 again with the state
{x = y, y 6= 0, err = 0, i = 1}.

Recall that the initial symbolic state at `2 was {x = 0, y =
0, err = 0, i = 0}. From this, BIID deletes constraints that do
not still hold. x = 0 and y = 0 are deleted because both x
and y have now become non-zero. Similarly, i = 0 is deleted
because it has been incremented to 1. Hence, we get the new
state {err = 0} at `2. Since some deletions were made, we
repeat this process again with the new state, but it can be seen
that without constraints on x and y, the branches at `4 and
`7 can also be evaluated to true, and so err = 0 cannot be
invariant. Hence we delete it to get the invariant true, which
fails to imply the target {x 6= 0, err 6= 1} (i.e., it is unsafe).

This triggers our failsafe that basically discards the above
work, unrolls the loop and attempts the same process at the
next iteration. It is as though we roll back in time and do not
invoke BIID, because we now know that it will fail. Thus, we
follow the trace till the end of the first iteration, executing

the statements from `2 to `7 and then reaching `2 this time
with the state {x = y, y 6= 0, err = 0, i = 1}. Now, we
trigger BIID again with this state. Since x and y are equal,
x=x-y at `3 results in the state {x = 0, y 6= 0, err =
0, i = 1} at `4. This makes the branch condition at `4 false,
so we read y (non-zero) at `5, which makes no change to
the state. Therefore the statement x=x+y produces the state
{x = y, y 6= 0, err = 0, i = 1} at `7, which makes the branch
condition false. Thus we reach the loop header `2 with the
state {x = y, y 6= 0, err = 0, i = 2} after incrementing i.

Comparing this with the original state {x = y, y 6= 0, err =
0, i = 1} at `2, BIID would only delete the constraint i = 1
to end up with the invariant {x = y, y 6= 0, err = 0}. This is
a safe invariant because combined with the rest of the trace
after the loop, it implies the target {x 6= 0, err 6= 1}. Thus
our method compresses the remaining 9 iterations of the loop.
The final compressed trace returned is shown below:

`1 x=0, y=0, err=0
`2 i=0, i < n
`3 x = x-y
`4 x == 0, skip
`5 y = read(), y != 0
`6 x = x+y
`7 x != 0, skip
`2 INV: {x = y, y 6= 0, err = 0}
`2 i ≥ n
`8 TARGET: {x 6= 0, err 6= 1}

This compressed trace is a collection of similar traces that
imply the target after executing at least one loop iteration. Note
that we were unable to discover a safe invariant initially but
were able to after one unroll. One may be tempted to replace
{x = y, y 6= 0} with {x 6= 0}, as the target is only on x.
However {x 6= 0} by itself is not an invariant for the loop.

A. Compressing Traces with Nested Loops

Nested loops pose important technical challenges to our
method because when attempting invariant discovery for the
outer loop, we may encounter another inner loop. Consider
the program in Fig. 1. There are two nested loops, the outer
running i from 0 to 10 and the inner running j from i to 10
every iteration. The inner loop assigns x to 1 or -1, depending
on the value of j. A final loop outside the nest adds x to y
(initialized to 0), and the target is that y is non-negative. This
of course mandates that the value of x is non-negative. When
the program is executed, it would produce a trace containing
65 loop iterations. For demonstration, assume that we are al-
lowed to slacken [22] constraints in this example, i.e., consider
a constraint {v = w} as the conjunction {v ≤ w, v ≥ w} so
that BIID has more candidates to test for invariance.

Our algorithm would follow the trace till `2 when it en-
counters the loop with the state {i = 0}. At `2 we would
invoke BIID and encounter the inner loop at `4 with the state
{i = 0, x = 0, j = i}. Now, it is required for us to find an
invariant for the inner loop in order to proceed symbolically
executing the rest of the outer loop’s body. That is, we cannot

`1 i=0
`2 while (i < 10) do
`3 x=0, j=i
`4 while(j < 10) do
`5 if (j ≥ 1) x=1 else x= -1
`6 j=j+1

done
`7 i=i+1

done
`8 for (y=0,k=0; k < 10; k++) do
`9 y=y+x

done
`10 TARGET: {y ≥ 0}

Fig. 1. Example with nested loops

`1 i=0
`2 i < 10
`3 x=0, j=i
`4 INV: {i = 0}
`4 j ≥ 10
`7 i=i+1
`2 i < 10
`3 x=0, j=i
`4 INV: {i = 1, j ≥ i, x ≥ 0}
`4 j ≥ 10
`7 i=i+1
`2 INV: {i ≥ 1, x ≥ 0}
`2 i ≥ 10
`8 y=0, k=0
`8 INV: {i ≥ 1, x ≥ 0, y ≥ 0, k ≥ 0}
`8 k ≥ 10
`10 TARGET: {y ≥ 0}

Fig. 2. Compressed trace for the program in Fig. 1

unroll the inner loop during the process of discovering an
invariant for the outer loop, because in general, this can lead to
unbounded unrolling. For instance, if the inner loop’s iteration
count depended on a variable whose constraints were deleted
by BIID during the outer loop’s invariant discovery, unrolling
the inner loop may not terminate. Thus, unrolling a loop is
only allowed when we are not already within a BIID attempt.

BIID would discover the inner loop invariant {i = 0, j ≥ i}
given the state at `4, but we cannot say anything about x as
it may be 1 or -1. Thus the state at `7 is {i = 0, j ≥ i}, and
after executing i=i+1, we reach `2 with the state {i = 1}.
We dropped the constraint {j ≥ i} as i has been incremented.
Comparing this with the original state {i = 0} at `2, BIID
would produce {i ≥ 0} as the outer loop invariant. Now, to
check if an invariant is safe, we symbolically execute the rest
of the trace after the loop starting with the invariant as the
symbolic state. If the target is implied at the end, the invariant
is safe, otherwise it is not. In this case, the rest of the trace
contains 10 iterations of the loop at `8. Symbolically executing
it with {i ≥ 0} would not imply {y ≥ 0}, because the invariant
did not capture any constraint on x, which is added to y.

Our failsafe mechanism now unrolls the outer loop’s first
iteration, as though it was placed outside the loop in the
program. Now, we would again reach `4 with the state

{i = 0, x = 0, j = i}, and discover the invariant {i = 0}.
Note that we now discovered an invariant only for the inner
loop at `4, and so the rest of the trace would contain the
remaining 9 outer loop iterations. This would finally assign
x to 1 and cause y to be incremented, implying the target.
Hence, {i = 0} is indeed a safe invariant for the inner loop.
Thus, even though BIID was unable to discover an invariant
for the outer loop immediately, it unrolled its first iteration
and managed to compress the inner loop in that iteration with
the invariant {i = 0}.

Next, we follow the trace executing i=i+1, and reach the
second iteration of the outer loop at `2 with the state {i = 1}.
Note what happens this time, when we again trigger BIID at
`2. We reach `4 with the state {i = 1, x = 0, j = i}. As
before, j is indeed incremented in the loop, but the symbolic
state guarantees that it will always be greater than or equal
to 1. This makes the “else” branch at `5 an infeasible path,
which ensures that x would never be assigned -1. Therefore,
this time we discover the invariant {i = 1, j ≥ i, x ≥ 0} for
the inner loop (we could not have deduced this the first time
because the state at `4 was {i = 0, x = 0, j = i}, which
does not make the “else” branch infeasible). Now, executing
i=i+1, we reach `2 with the state {i = 2, x ≥ 0}. Now, we
can discover the outer loop invariant {i ≥ 1, x ≥ 0} for its
remaining iterations. This is a safe invariant, as executing the
rest of the trace with this state will imply the target {y ≥ 0}.

Thus, the compressed trace (Fig. 2) would contain 2 itera-
tions of the outer loop, both of which contain a compression
of the inner loop with the invariants {i = 0} and {i = 1, j ≥
i, x ≥ 0} respectively, followed by a compression of the outer
loop with the invariant {i ≥ 1, x ≥ 0}. It can be seen that
symbolically executing the third loop at `8 with this state, BIID
can discover the (safe) invariant {i ≥ 1, x ≥ 0, y ≥ 0, k ≥ 0},
and compress it without any unrolling.

Now, our invariant generalization proceeds as follows. It
computes the weakest precondition (WP) along the com-
pressed trace starting from the target. At loop headers, it
attempts to weaken the discovered invariant as long as the
post-condition is still implied. For instance, the weakest pre-
condition of the trace in Fig. 2 at `8 is {y ≥ 0}. Now, it deletes
constraints from the invariant {i ≥ 1, x ≥ 0, y ≥ 0, k ≥ 0}
as long as the resulting formula is still invariant and implies
{y ≥ 0}. This way, it can delete {i ≥ 1} and {k ≥ 0} as the
resulting invariant {x ≥ 0, y ≥ 0} implies {y ≥ 0}. However
it cannot delete {x ≥ 0} because without it, {y ≥ 0} cannot
be invariant, and hence cannot imply the post-condition. Thus,
it ends up with the now generalized invariant {x ≥ 0, y ≥ 0}
at `8. The WP of this formula is then passed up along the
trace, and the process repeats till the top is reached. Branch
statements in the trace are ignored during WP propagation, as
they have all been evaluated to true.

III. RELATED WORK

The works that try to compress traces by removing irrel-
evant information are most closely related to ours. Dynamic

slicing [25] is the traditionally used technique that uses de-
pendency information to remove statements from the trace
not contributing to the target. Some enhancements to the
pruning power of dynamic slicing were proposed in [38],
[39], [40]. However, compared to loop invariants, dependency
information is limited in its ability to compress loop iterations.
In Fig. 1, dynamic slicing cannot remove any iteration, as the
target variable y is either data- or control-dependent on every
program statement.

Recently, more intelligent methods to find irrelevant state-
ments in the trace were proposed in [11], [7], using “error
invariants”. These are abstractions of the program state at
each point that, combined with the rest of the trace, will
imply the target. If the error invariant at two points is the
same, the code between them is deemed irrelevant. The most
important difference with our work is that “error invariants”
are not guaranteed to be loop invariants even at looping
points, whereas the whole purpose of our paper is to find loop
invariants. This difference is because fundamentally, [11], [7]
consider the trace simply as a sequence of transitions and are
agnostic about loops.

Other related work include those that generate loop invari-
ants, but may not be concerned with compressing execution
traces. For instance, [3] uses a template-based invariant gen-
eration technique [10] to refine counter-example paths in the
context of CEGAR [8]. Contrary to execution traces that termi-
nate, CEGAR systems generate abstract counter-examples, and
so [3] does not unroll loops, for it may go into non-termination.
As a result, in case a safe invariant could not be found, [3]
simply tries a different template, whereas we unroll the loop,
dynamically exposing more constraints for invariance. Other
works that discover invariants using program analysis such
as [18], [24] do not guarantee to find a safe invariant. In our
experiments, we used the tools in [18] and [26] to generate
invariants for some of our benchmarks, only to find that they
did not return safe invariants.

Daikon [12] discovers “likely invariants” by instrumenting
the program with predicates, executing test cases and checking
which predicates are not falsified upto some sufficient degree
of tests. The main difference with our work is that we strive to
produce safe invariants, whereas [12] only attempts to produce
predicates that are “likely” to be invariants. Having said that,
their technique can still be utilized in our method to discover
more sophisticated invariants, for instance, by providing BIID
with likely predicates inferred by their method to test for in-
variance. Another related work [14] presents several heuristics
for computing invariants by mutating postconditions of loops.
However their method performs no unrolling of loops in case
the invariant was found to be unsafe.

There are numerous other works [31], [13], [35], [27],
[32] that discover invariants through static/dynamic analysis,
testing, constraint solving, heuristics, etc. Invariant discovery
is a heavily studied area for decades and so it is formidable to
compare extensively with every technique proposed. However,
we make it clear that in our paper, any invariant discovery
method can be applied, i.e., our proposed BIID method can

be augmented with any amount of sophistication to make our
trace compression algorithm better. The main contribution of
this paper is not BIID itself, but an algorithm to utilize an
invariant discovery technique such as BIID to compress and
generalize traces, along with a novel backup mechanism if
the invariant fails, and provide a proof of invariance.

Finally, our work is inspired from [20], which performs full
symbolic execution of the program in the context of program
verification. It however does not handle traces, and therefore
has no way of checking if an invariant is safe until it discovers
invariants for all loops in the program. Then, if the target is not
implied, it needs a “refinement step” (similar to CEGAR) to find
the unsafe invariant. Moreover, since it performs unbounded
symbolic execution on the program, it does not guarantee
to terminate. Nevertheless, our work can be considered an
adaptation of [20] for traces.

IV. BACKGROUND

Syntax. To simplify the formalism, we restrict our presenta-
tion to a simple imperative programming language where all
basic operations are either assignments or assume operations,
and the domain of all variables are integers. The set of all
program variables is denoted by Vars. An assignment x := e
corresponds to assign the evaluation of the expression e to
the variable x. In the assume operator, assume(c), if the
boolean expression c evaluates to true, then the program
continues, otherwise it halts. The set of operations is denoted
by Ops. We then model a program by a transition system. A
transition system P is defined by the tuple 〈Σ,−→〉 where
Σ is the set of program locations, and −→⊆ Σ × Σ × Ops
is the transition relation that relates a program location to
its (possible) successors executing operations. This transition
relation models the operations that are executed when control
flows from one program location to another. We shall use
`

op−−→ `′ to denote a transition relation from ` ∈ Σ to `′ ∈ Σ
executing the operation op ∈ Ops.

Symbolic Execution. A symbolic state σ is a tuple 〈`, C〉. The
symbol ` ∈ Σ corresponds to the current program location
(with special symbols for initial location, `start, and final loca-
tion, `end). C is a set of constraints on the program variables at
the location `, which is to be interpreted as a conjuncted first-
order logic formula (e.g., C = {x > 5, y < 3} is interpreted as
the formula x > 5∧y < 3) that must be satisfied for symbolic
execution to follow the particular corresponding path. The set
of first-order formulas and symbolic states are denoted by FOL
and SymStates, respectively.

Given a transition system 〈Σ,−→〉 and a state σ ≡ 〈`, C〉 ∈
SymStates, the symbolic execution of `

op−−→ `′ returns another
symbolic state defined as:

SYMSTEP(σ, `
op−−→ `′) ,

〈`′, C ∪ {c}〉 if op ≡ assume(c) where c is c
with proper renaming

〈`′, C ∪ {xk = e}〉 if op ≡ x := e where xk is fresh
and e is e with proper renaming

(1)

Note that while adding the constraint to C, we rename each
variable in the constraint to its latest version in C. For
assignments, we create a fresh variable on the left hand side.
This intuitively mimics a Static Single Assignment (SSA)
based symbolic execution of the transition `

op−−→ `′.
Given a symbolic state σ ≡ 〈`, C〉 we define the evaluation

of σ, represented as JσK : SymStates → FOL as the projection
of the constraints in C onto the set of program variables Vars.
The projection is performed by eliminating existentially all
auxiliary variables that are not in Vars. Intuitively JσK is an
FOL formula only on the latest versions of variables in C, and
is equisatisfiable with C.

A symbolic path π ≡ σ0·σ1·...·σn is a sequence of symbolic
states such that ∀i • 1 ≤ i ≤ n the state σi is a successor of
σi−1. A symbolic state σ′ ≡ 〈`′, ·〉 is a successor of another
σ ≡ 〈`, ·〉 if there exists a transition relation `

op−−→ `′. A path
π ≡ σ0 ·σ1 · ... ·σn is feasible if σn ≡ 〈`, C〉 such that JσnK is
satisfiable. Note that this needs a query to a theorem prover for
satisfiability checking on the resulting formula. We assume the
theorem prover is sound but not necessarily complete. That is,
the theorem prover must say a formula is unsatisfiable only
if it is indeed so. If JσnK is unsatisfiable the path is called
infeasible and σn is called an infeasible state.

A symbolic execution tree contains all the execution paths
explored during the symbolic execution of a transition system
by triggering Eq. (1). The nodes represent symbolic states and
the edges represent transitions between states.

Trace. A trace T is a sequence of transitions `start
op1−−→ `1 ·

`1
op2−−→ `2 · · · `n−1

opn−−→ `end such that each `i+1 is a
successor of `i, and is obtained by executing the program
P with certain inputs. W.l.o.g, we assume that the inputs
have been encoded as assignments in the trace itself. Abusing
notation, we say “σ is the symbolic state at ` along the trace”
if symbolic execution, starting with the state σstart ≡ 〈`start, ∅〉
at the beginning of the trace, results in the state σ at ` (if ` is
within a loop, there may be multiple symbolic states at `, in
which case we would make unambiguous the state that we are
referring to). Again w.l.o.g, we assume that a target property
(e.g., an assertion) is provided at `end that is implied by T .
We interpret this property as a FOL formula φ on the program
variables. Formally, if σend is the symbolic state at `end along
the trace T , then JσendK |= φ.

A compressed trace Tc is a sequence of transitions where
some programs points are annotated with loop invariants.
Formally, Tc is a sequence `start

op1−−→ `1 · `1
op2−−→ `2 · · ·

`m−1
opm−−→ `end where there may exist transitions

`loop
I ,S−−−→ `loop where `loop is a looping point, I is a FOL

formula representing the loop invariant, and S is the symbolic
execution tree which stands as a proof of invariance of I,
should the programmer wish to check that I is indeed an
invariant. An important property of Tc is that the invariants
are safe. That is, if σ′end is the symbolic state at `end along
Tc, then JσendK |= Jσ′endK |= φ. Moreover, the length of Tc is
at most the length of T (i.e., m ≤ n) as a result of looping
points being compressed using invariants.

COMPRESSTRACE(T , P , φ)
1: σ := 〈`start, ∅〉 and t := 1
2: while t 6= tend do
3: let T [t] := `

op−−→ `′

4: if ` is a loop from T [t] to T [texit] then
5: 〈σ′,S〉 := LOOPINV BIID(σ, P)
6: if (CHECKSAFEINV(σ′, T , texit, φ)) then
7: t := texit + 1

8: Tc := Tc · `
Jσ′K,S
−−−−−→ `

9: σ := 〈`exit, C′〉 where C′ is the constraint list
of σ′ and `exit is the loop exit point

10: continue
11: endif
12: endif
13: Tc := Tc · `

op−−→ `′

14: σ:= SYMSTEP(σ, `
op−−→ `′) and t := t + 1

15: done
16: return GENERALIZE(Tc, P , φ)

CHECKSAFEINV(σ, T , texit, φ)
17: for t = texit to tend do
18: let T [t] ≡ ` op−−→ `′

19: σ := SYMSTEP(σ, `
op−−→ `′)

20: done
21: if JσK |= φ then return true else return false

Fig. 3. Loop Compression with Invariants

V. ALGORITHM

We now present our algorithm in two phases. In the first
phase, we perform forward symbolic execution along the trace
to compute inductive invariants to compress the loops. Here
we attempt to discover the strongest possible invariants and
also build the SE tree for each invariant discovered. In the
second phase, we generalize the invariants in the compressed
trace using backward weakest-precondition computation.

A. Loop compression with invariants

Our main algorithm consists of the procedures shown in
Fig. 3. The main procedure, COMPRESSTRACE, takes as
inputs the trace T , program P and the target φ, and returns
a compressed trace Tc as defined in Section IV. It models the
trace T as an array using the variable t as the index variable,
and tend its length. It starts by initializing σ, representing the
current symbolic state, to 〈`start, ∅〉 and t to 1. In line 2, a loop
runs till the end of the trace is reached (i.e., till t becomes
tend), doing the following in each iteration. Assuming that the
current transition along the trace is from ` to `′, it checks
if ` is the starting point of a loop. If so, then let the loop’s
iterations in T run from the current trace index t to, say, texit.
That is, T [t] is the transition from ` to the loop body and
T [texit] is the transition from ` to the loop’s exit.

Now the algorithm attempts to discover an invariant for this
loop in the program by calling the procedure LOOPINV BIID

with the current symbolic state σ and the program P (line 5).
In principle, this procedure can implement any algorithm that
generates a loop invariant, for example [3], [10], [26]. We
only require the procedure to return a tuple 〈σ′,S〉 where σ′

is an invariant state at ` (i.e., JσK |= Jσ′K and Jσ′K is an
invariant) and S is the SE tree, the proof that Jσ′K is indeed
invariant through the loop at `. In this paper, this procedure
will implement the BIID technique, which is one particular
way of discovering invariants using symbolic execution (SE)
and using the SE tree as the proof tree for invariance.

Now that σ′ is an invariant at `, the algorithm then checks
whether it is a safe invariant. The idea is to symbolically
execute the trace after the loop with the discovered invariant
as the state and to check if the target is implied at the end.
This is done by calling CHECKSAFEINV at line 6 with the
invariant state σ′, the trace T and texit, the index of the loop’s
exit transition along T , and the target φ. CHECKSAFEINV
basically implements the symbolic execution along the trace
starting at texit till tend (lines 17-20), and checks whether the
symbolic state at tend implies φ (line 21).

If the check passed, then σ′ represents a safe invariant,
meaning the loop has been compressed. Therefore we can
continue with our method along the rest of the trace after the
loop. Recall that texit was the index in T for the loop’s exit
transition. Hence, in line 7, the algorithm assigns the trace
index variable t to texit+1. In the next line, it records the
safe invariant in the compressed trace Tc by adding to it the

(looping) transition `
Jσ′K,S
−−−−−→ `, where Jσ′K is the invariant,

and S is the proof for its invariance. Finally, the state σ is
updated to 〈`exit, C′〉 to signify that symbolic execution should
continue from the loop’s exit point `exit with the constraint list
C′ that carries the invariant’s (σ′) state.

If the check at line 6 failed, it means the invariant turned out
to be unsafe, in which case our algorithm discards the work
done, and unrolls the loop by simply following the trace T .
It adds the current transition from ` to `′ to the compressed
trace Tc (line 13), and symbolically executes the current state
σ with the current transition to get the next state (line 14).
These steps simulate unrolling the loop along the trace T , until
a loop header is reached again at line 4. The entire process
continues until the end of the trace T is reached, at which
point it calls GENERALIZE to generalize the invariants in Tc.

Basic Individually Invariant Discovery (BIID). We now
present our particular method to discover invariants and their
respective proofs when calling LOOPINV BIID. At a high
level, our method follows paths in the transition system P
starting at the given loop header, and at the end of each path π
that reaches the looping point again (making a cycle), it deletes
individual constraints at the loop header that do not still hold
at the end of π. The process is repeated until no deletions
are made, i.e., until a fix-point is reached. This entails that
the constraints left undeleted at the loop header still hold at
the end of every path through the loop, in other words, being
invariant through the loop. The SE tree generated at fix-point
provides the proof of invariance. This method provides a fine

LOOPINV BIID(σ, P)
1: do
2: σ′′ := σ and π := ∅ and S := ∅
3: 〈σ,S〉 := LOOPINV (σ, P , π, S)
4: until σ′′ == σ
5: return 〈σ,S〉

LOOPINV(σ≡ 〈`, C〉, P , π, S)
6: if ∃ σh ≡ 〈`, ·〉 ∈ π then
7: REMOVENONINV(σh, σ)
8: S := S ∪ {π} and return 〈σ,S〉
9: foreach `

op−−→ `′ ∈ P do
10: σ′:= SYMSTEP(σ, `

op−−→ `′)
11: if Jσ′K is unsat then continue
12: 〈·,S ′〉 := LOOPINV (σ′, P , π · σ, S)
13: S := S ∪ S ′
14: done
15: return 〈σ,S〉

REMOVENONINV (σh ≡ 〈`, C〉, σ)
16: let JσhK be c1 ∧ c2 ∧ . . . ∧ cn
17: foreach ci in JσhK do
18: if JσK 6|= ci then C := C \{ci}
19: done

Fig. 4. Basic Individually Invariant Discovery

balance between getting the strongest invariants and efficiency.
LOOPINV BIID (Fig. 4) is a wrapper procedure that imple-

ments the fix-point computation (lines 1-4) on the symbolic
state σ. It initializes π to ∅ (the empty sequence) and S to
∅, where π will be used by another procedure to represent the
current symbolic path, and S will eventually represent the SE
tree from which the proof that JσK is an invariant is extracted.
It then calls the procedure LOOPINV passing the state σ and
these initialized variables. This process is repeated until fix-
point is reached (line 4).

LOOPINV is a recursive procedure that explores all paths
in the loop from the current state σ. In lines 9-13, for each
transition from ` in the program P , it first obtains the next state
σ′ by performing a symbolic step from σ. Then, if σ′ is not an
infeasible state, it recursively calls itself with σ′, appending
σ to the current path π to signify that it has been reached.
The symbolic tree returned, corresponding to the execution of
σ′, is stored in S ′ which is then combined together with S
(line 13). In lines 6-8, it checks if a cyclic looping point has
been reached (i.e., the current program point ` has already
been visited along the path π). If so, it removes constraints
from the loop header that were not invariant through π, by
calling REMOVENONINV with σh, the symbolic state at the
loop header. Then, since the end of the path has been reached,
it adds π to the symbolic tree S and returns (line 8).

REMOVENONINV is a straightforward procedure. It first
obtains the list of constraints at σh in evaluated form by
applying JσhK (line 16). Then, for each constraint ci it checks
if ci still holds at the end of the path by checking if JσK

entails ci. If not, ci is deleted from the list of constraints
at σh (lines 17-19). At the highest level LOOPINV BIID
repeatedly calls LOOPINV until no more deletions are made at
the loop header. Once fix-point is reached (line 4), σ becomes
an invariant state at the loop header. It is then returned along
with S which serves as the proof that σ is indeed invariant.

There are two important remarks about our algorithm:
(A) Path-explosion. In general, there can be an exponential
number of paths within a loop, making BIID intractable. This
“path-explosion” problem in symbolic execution is tackled
using interpolation [22], [28], [23]. The basic idea is to avoid
the redundant exploration of a state σ at a program point
` if it is equivalent to another state σ′ at ` (JσK = Jσ′K).
Interpolation increases the likelihood of this by discarding
irrelevant information when comparing σ and σ′. That is,
when σ′ was explored, interpolation would remove certain
constraints from it such that even if JσK |= Jσ′K (a weaker
condition), σ can be considered equivalent to σ′, and need
not be explored. Although interpolation itself is orthogonal to
this paper, it is an important optimization without which BIID
cannot scale. We tacitly assume that if interpolation is used to
build the symbolic tree, there is an “oracle” that may remove
constraints from symbolic states and instructs our algorithm
when a symbolic state need not be redundantly explored.

(B) Proof of invariance. For each invariant that we discov-
ered, we can also produce a proof of invariance in the form of a
Hoare-proof [19] extracted from the loop’s SE tree S. Roughly,
during symbolic execution, if a state with constraints C1 leads
to a state with constraints C2 executing a statement op, we
can form the Hoare-triple {C1} op {C2}. Axiomatic triples
can then be composed using standard Hoare-logic rules [19]
to form the entire proof. The process is straightforward but
tedious, and is not in scope of this paper. The purpose of this
proof is it can be provided to an automatic proof assistant such
as Coq [2] to ensure the validity of our invariants, if required.

B. Invariant Generalization

The invariants discovered in the previous phase are guaranteed
to be safe, but may be logically too strong. The idea in
this phase is to perform a (backward) weakest precondition
computation along the compressed trace starting from the
target, and to weaken the invariants as long as the weakest
precondition is implied. This algorithm is shown in Fig. 5.

The GENERALIZE procedure takes as input the compressed
trace Tc along with the target φ and the program. It begins
by initializing the “post-condition” variable Ψ to φ at line 1.
Then, starting at tcend (the end of Tc) and going backwards, it
does the following at each step. If the current transition is not
an annotated loop invariant, it computes the weakest liberal
precondition (ŵlp) of Ψ along the transition op (lines 3-4).
The wlp is defined as the weakest formula on the pre-state
such that if the execution of op terminates, it results in the
post-state Ψ. In practice, it can be approximated by making a
linear number of calls to a theorem prover, as shown in [22].

GENERALIZE(Tc, P , φ)
1: Ψ := φ
2: for tc := tcend to 1 do
3: if Tc [tc] ≡ `1

op−−→ `2 then
4: Ψ := ŵlp (Ψ, op)

5: else if Tc [tc] ≡ ` I ,S−−−→ ` then
6: I ′:= ∇ (I,Ψ)
7: σ′:= 〈`, I ′〉
8: if LOOPINV BIID (σ′, P) returns 〈σ′′,S ′〉

s.t. σ′′ = σ′ then

9: Tc [tc] := `
I ′

,S ′

−−−−→ `
10: Ψ := I ′
11: else Ψ := I

done
12: return Tc

Fig. 5. Invariant Generalization using Weakest Precondition

If the current transition is a loop invariant (line 5) I,S at
`, it first computes a widening of I w.r.t. the post-condition
Ψ. The widening operator ∇ returns a formula I ′ such that
I |= I ′ |= Ψ, i.e., I ′ is weaker than I but still strong enough
to imply the post-condition. However, we need to check if I ′
is still invariant through the loop. This is done in lines 7-8 by
calling LOOPINV BIID and checking whether it returns the
same invariant state σ′ at the loop header. If so, then line 9
replaces the current invariant in Tc with the new annotation
I ′,S ′ where S ′ is the symbolic tree generated for I ′ by
LOOPINV BIID (note that S ′ can be different from S because
it is the SE tree for a different, weaker, invariant). Finally,
line 10 sets I ′ to be the post-condition to be propagated back.

If the weakened formula I ′ is not invariant, the algorithm
makes no change to the existing annotation and just propagates
I backward (line 11). Once the beginning of the trace is
reached, the algorithm returns Tc – the compressed trace
containing now generalized invariants with SE trees as proofs.

THEOREM 1 [TERMINATION]. Given an execution trace
T ≡ t1 · t2 · · · tn where each ti is a transition `i

op−−→ `j ,
COMPRESSTRACE will terminate and return a compressed
trace Tc ≡ t1 · t2 · · · tm where each ti is either a transition

or an invariant annotation `loop
I ,S−−−→ `loop, such that m ≤ n.

This follows directly from the fact that we replace loop iter-
ations with invariants, thus reducing the number of transitions.
Termination is guaranteed since our unrolling is bounded by
the (finite) number of loop iterations in the execution trace.

VI. EXPERIMENTAL EVALUATION

We implemented our algorithm on the TRACER [21] frame-
work for symbolic execution and evaluated it on several
medium-sized benchmarks from the software verification com-
petition SV-COMP’13 [4]. The programs are all unsafe, and
in order to work with a meaningful trace, we invoked Directed
Automated Random Testing (DART) [15], [5], commonly

Benchmark Trace length %C #U #HT Time
Orig. Com.

SSH client 462 95 80% 6 47 289s
SSH server 346 13 96% 0 91 94s
tokenring 885 218 75% 2(2) 66 161s
cdaudio 1434 121 92% 0 15 128s
floppy 398 83 80% 1 4 2s

TABLE I
TRACE STATISTICS FOR OUR EXPERIMENTS. %C: PERCENTAGE

COMPRESSION, #U: NUMBER OF UNROLLS UNTIL COMPRESSION WAS
ACHIEVED (INNER LOOP UNROLLS, IF ANY), #HT: NUMBER OF

HOARE-TRIPLES FOR THE PROOF OF INVARIANCE

known as concolic testing, to obtain inputs that violate the
safety property. Typically, the inputs control the outcome of
non-deterministic branch statements in the program. In all
cases, we encoded the inputs into the program, and set our
target for the resulting “error trace” to be the negation of
the violated property. To make the experimentation easier
we applied static slicing provided by Frama-C [1] to remove
statically irrelevant statements. All experiments were run on
an Intel 2.3Ghz system with 2GB memory. We first tabulate
the results in Table I, and explain each benchmark in detail.

A. SSH Client (s3_clnt_1_false.cil.c)

Our first example is a buggy SSH client program from the
ssh-simplified suite. We provide an abstract overview of the
benchmark. It consists of a big loop that reads the current state
variable s and performs some action, then setting s to the next
state. In certain states, a flag variable is checked to be of
some value, and if so, is incremented. In a particular state S,
if flag was found to be 4, the error variable err is set to
1, and flag is not modified thereafter. The safety property
is that err should be 0 in the end (i.e., flag should not
be 4 when s is S), which of course is violated by the given
input. We set the target to the negation of the safety property,
namely, {err = 1}. On running the code with buggy inputs,
the trace iterated through the loop 40 times, executing a total
of 462 transitions, and implied the target.

It is noteworthy that dynamic slicing was unable to remove
any iteration as a whole, as the state s changes in each iteration
and the loop’s exit is control-dependent on s. To compare with
other invariant discovery methods, we computed invariants
using (1) the polyhedra abstract domain of APRON [24] and (2)
the INVGEN [18] tool. Both of them returned unsafe invariants
such as {flag≥0}. This shows that safe invariants cannot often
be computed easily, and there is a need for our unrolling
mechanism to compute safe invariants in practice.

Our algorithm initially only discovered the unsafe invariant
true. Upto five unrolls, it only kept discovering unsafe invari-
ants. However, after the 6th unroll, the trace reached the state
S, checked if flag was 4, and set err to 1. At this point, our
algorithm discovered the safe invariant {err=1, flag=4}, that
implies the target {err = 1}. Note that flag = 4 is needed to
preserve the invariance of err = 1. This is a practical example
of a loop converging towards stronger invariants as it iterates,
culminating in a safe invariant.

Ultimately, the trace was reduced from 462 transitions to 95
transitions (80% compression). Our algorithm also discovered

3 invariants on a few other variables in the program, but the
generalization phase deleted them as they were irrelevant to the
target. The proof for the invariant contained 47 Hoare-triples.
The process took 289s to complete.

B. SSH Server (s3_srvr_6_false.cil.c)

Our next benchmark is a buggy SSH server program from
the ssh-simplified suite. The structure of this program is
similar to SSH Client, in that a main loop iterates using a
state variable s until it reaches a particular value. Here, two
safety properties are present: one outside (before) the loop
and one inside. As before the target is {err = 1}. On running
the buggy inputs, the trace executed the loop 14 times before
implying the target, for a total of 346 transitions.

On invoking our algorithm, we reached the loop header with
the symbolic state that included {err = 1} because in this
program, the safety property that was before the loop was itself
violated. On symbolically exploring the loop, we concluded
that even though the other safety property modifies err in
the loop, this constraint on err remains invariant. Thus, we
were able to compress the loop even without any unrolling.
The resulting compressed trace contained only 13 transitions,
and 91 triples were generated as proof of invariance. We also
discovered 20 other invariants which were removed by the
generalization phase. The entire process took 94s to complete.

C. Tokenring (token_ring01_unsafe.c)

Our third benchmark is a buggy token ring algorithm from
the loops suite. It consists of two functions master and
transmit, and in the main function, a loop calls these two
functions in each iteration non-deterministically. This loop is
nested within another loop that keeps running the inner loop a
given number of times. In a certain instance of the inner loop,
when the two functions are called in a particular sequence,
an error is triggered in master. The inputs controlled the
number of iterations of both loops, and determined the specific
combination of calls that triggers the error. The inputs directed
the trace to execute 5 iterations of the outer loop, and for each
of those, 6 iterations of the inner loop – a total of 30 iterations
with 885 transitions. We were unable to invoke APRON and
INVGEN for this and the following two benchmarks, as their
C front-end did not support programs with function calls.

Our algorithm was unable to find a safe invariant for the
outer loop immediately. It had to unroll the outer loop twice –
however, in the first iteration, it managed to compress the inner
loop immediately, and in the second iteration, it unrolled the
inner loop twice and compressed it. This benchmark exhibited
a remarkable feature of our method in practice – even if we
are unable to compress an outer loop iteration, we can unroll
it and still compress the inner loop in that iteration.

Ultimately, the trace was reduced to just 2 outer loop
iterations, each containing a compression of the inner loop,
and finally a compression of the outer loop. The number of
transitions was reduced from 885 to 218 (75% compression).
Importantly, this compressed trace shows that the particular
sequence of calls that triggers the error happened only in the

Bench Bound Trace length %C #U Time
-mark Orig. Compr.

4 342 121 65% 0 97s
cdaudio 8 498 121 75% 0 99s

16 810 121 85% 0 106s
32 1434 121 92% 0 128s

4 146 83 43% 1 2s
floppy 8 182 83 54% 1 2s

16 254 83 67% 1 2s
32 398 83 80% 1 2s

TABLE II
TREND WITH VARYING LOOP BOUNDS FOR cdaudio AND floppy

second outer loop iteration. This is quite valuable information
to a programmer as they can quickly focus debugging efforts
on that part, rather than checking which iteration caused the
error. Finally, 66 triples were generated for the proof of
invariance. The entire process took 161s to complete.

D. cdaudio (cdaudio_simpl1_unsafe.cil.c)

Our fourth benchmark is the buggy version of the driver
“cdaudio” from the ntdrivers-simplified suite. It consists of 15
safety properties of which exactly 1 is violated. The generated
inputs violate this property after going through the (only) loop
in the program. We noticed that the loop has an arbitrary
bound, i.e., the bound is simply the number of attempts made
to start the CD-device, set to 4 by default. Once the device is
started, signified by a status variable, the loop exits.

Within the loop, there exist statements modifying variables
that appear in other safety properties in the program. However,
the validity of other properties is not affected because of two
reasons: (1) the properties capture the relationship between
the variables and not the actual value (e.g., {s = NP}, where
s is set to NP in the loop) and (2) given the incoming context
to the loop, many statements that modify these variables are
along infeasible paths. Executing the program with the default
bound of 4, the trace ran through 342 statements. On invoking
our algorithm, we were able to compress all 4 iterations of
the loop with safe invariants that either captured sufficient
exact relationships between the variables (e.g., {s=NP}) or
their values which are sufficient to establish the relationship
(e.g., {s=1,NP=1}). The trace was reduced to 121 statements,
and 15 triples were produced for the proof of invariance.

Since the bound is arbitrary, we tried to increase it in order
to see a trend of our compression method. In Table II, the
row cdaudio shows the statistics for bounds 4, 8, 16 and
32 for the loop. We used these bounds to observe the trend
for an exponentially increasing loop bound. In all cases our
compression resulted in the trace being 121 transitions long.
That is, even if the loop bound is increased, we were able
to compress it using the same invariant without additional
unrolling. In all cases, 15 triples were generated as before. As
it can be seen, the amount of compression approaches more
than 90% as the number of iterations increases. Moreover, the
timing is not affected drastically, as we were able to finish in
about 2 mins in all cases. The slight increase in timing is due
to the CHECKSAFEINV procedure that has to run along the
now longer trace to check if a discovered invariant is safe.

E. floppy (floppy_simpl3_unsafe.cil.c)

Our final benchmark is another buggy driver “floppy” from
the ntdrivers-simplified suite. This program has 20 safety
properties out of which exactly 1 is violated. A loop in the
program, among other things, assigns either 0 or a negative
value, say N , to a variable ntStatus non-deterministically.
If ntStatus is assigned 0, or the loop’s bound is exhausted,
the loop exits. If it is never assigned 0, its value N is passed
across many functions to a variable status, which is checked
to be equal to 259. If the check fails, the error is triggered.
The generated buggy inputs execute a trace that always assigns
ntStatus to N , making the check fail.

We set our target to be {status = N}. We again noted
that the loop bound is arbitrary, and in fact, not even specified
in the program. Due to lack of a “default” bound, we simply
used the loop bounds from cdaudio, i.e., 4, 8, 16 and 32.
When our algorithm was invoked on the trace, we were unable
to discover a safe invariant right away, as the loop destroys
the initial value of ntStatus (i.e., 0) by setting it to N
thereby preventing our invariant to capture any constraint
on ntStatus. After one unroll however, we were able to
capture the constraint {ntStatus = N} which is now invariant
through the loop. This turned out to be a safe invariant,
compressing the remaining iterations of the loop.

As before, we show in Table II the compression trend for
this benchmark. We obtained traces of sizes 146 to 398 by
varying the bounds. In all cases however, we were able to
compress the trace to 83 transitions after 1 unroll. The amount
of compression varies between 43% to 80% depending on
the bound. In all cases, 4 triples were generated for the proof
of invariance. We were able to compress the trace quickly
within 2 secs, as the invariant discovered caused many paths
to become infeasible, making SE terminate fast.

In summary, we have shown that our algorithm can achieve
significant compression (75-96%) of execution traces in prac-
tice. We conclude this section by pointing out an important
observation – for all our benchmarks, the discovered invariants
did not bound the loop iterations. For example, in “cdaudio”,
the invariant {s=1,NP=1} does not bound any variable con-
trolling the number of loop iterations. This means that the
compression resulted in the error trace being generalized to a
potentially infinite number of traces that cause the error in a
similar way. An important benefit of this generalization is that
a DSE search procedure can be instructed to, in one go, avoid
exploring all these similar buggy paths and instead be directed
towards other paths, thus increasing its path coverage.

While this paper focused on producing the actual general-
ized trace, its many such applications are left as our future
work. We believe that in general, the kind of generalization
achieved by loop invariants—and we emphasize that ours
are safe invariants obtained after sufficient unrolling—does
provide a very powerful form of ”interpolation” for third-
party applications, most of which are based on aggregating
information from individual traces.

REFERENCES

[1] Frama-C Software Analyzers. http://frama-c.com/.
[2] B. Barras, S. Boutin, C. Cornes, J. Courant, J. Filliatre, E. Giménez,

H. Herbelin, G. Huet, C. M. Noz, C. Murthy, C. Parent, C. Paulin,
A. Saı̈bi, and B. Werner. The Coq proof assistant reference manual—
version v6.1. Technical Report 0203, INRIA, 1997.

[3] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path
Invariants. In PLDI’07.

[4] Dirk Beyer. Second competition on software verification. In TACAS,
2013.

[5] J. Burnim and K. Sen. Heuristics for Scalable Dynamic Test Generation.
In ASE, pages 443–446, 2008.

[6] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems
Programs. In OSDI, pages 209–224, 2008.

[7] Jurgen Christ, Ermis Ermis, Martin Schaf, and Thomas Wies. Flow-
sensitive fault localization. VMCAI, 2013.

[8] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. CounterExample-
Guided Abstraction Refinement. In CAV’00.

[9] H. Cleve and A. Zeller. Locating causes of program failures. In Pro-
ceedings of the 27th International Conference on Software Engineering,
ICSE ’05, pages 342–351, 2005.

[10] Michael Colon, Sriram Sankaranarayanan, and Henry Sipma. Linear
invariant generation using non-linear constraint solving. In CAV, 2003.

[11] Ermis Ermis, Martin Schaf, and Thomas Wies. Error invariants. FM,
2012.

[12] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
Discovering Likely Program Invariants to Support Program Evolution.
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 27:213–224,
2001.

[13] Michael D. Ernst, Adam Czeisler, William G. Griswold, and David
Notkin. Quickly detecting relevant program invariants. ICSE 2000,
2000.

[14] Carlo Alberto Furia and Bertrand Meyer. Inferring loop invariants using
postconditions. In Fields of Logic and Computation, 2010.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated
Random Testing. In PLDI, pages 213–223, 2005.

[16] A. Groce. Error Explanation with Distance Metrics. In TACAS, pages
108–122, 2004.

[17] A. Groce and W. Visser. What Went Wrong: Explaining Counterex-
amples. In In SPIN Workshop on Model Checking of Software, pages
121–135, 2003.

[18] Ashutosh Gupta and Andrey Rybalchenko. InvGen: An Efficient
Invariant Generator. In CAV, 2009.

[19] C. A. R. Hoare. An axiomatic basis for computer programming. Comm.
ACM, 1969.

[20] J. Jaffar, , J.A. Navas, and A. Santosa. Unbounded Symbolic Execution
for Program Verification. In RV 2011, pages 396–411, 2011.

[21] J. Jaffar, V. Murali, J.A. Navas, and A. Santosa. TRACER: A Symbolic
Execution Tool for Verification. In CAV 2012, pages 758–766, 2012.

[22] J. Jaffar, A. E. Santosa, and R. Voicu. An interpolation method for CLP
traversal. In CP, 09.

[23] Joxan Jaffar, Vijayaraghavan Murali, and Jorge Navas. Boosting Con-
colic Testing via Interpolation. In FSE, 2013.

[24] Bertrand Jeannet and Antoine Mine. Apron: A Library of Numerical
Abstract Domains for Static Analysis. In CAV, 2009.

[25] B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett.,
29(3):155–163, 1988.

[26] G. Lalire, M. Argoud, and B. Jeannet. The Interproc Analyzer.
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc, 2009.

[27] Mengjun Li. A practical loop invariant generation approach based on
random testing, constraint solving and verification. ICFEM’12, 2012.

[28] K. L. McMillan. Lazy annotation for program testing and verification.
In T. Touili, B. Cook, and P. Jackson, editors, 22nd CAV, volume 6174
of LNCS, pages 104–118. Springer, 2010.

[29] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani.
DARWIN: An Approach for Debugging Evolving Programs. ESEC/FSE,
2009.

[30] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani.
DARWIN: An Approach for Debugging Evolving Programs. ACM
Trans. Softw. Eng. Methodol., 2012.

[31] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Non-
linear loop invariant generation using Gröbner bases. POPL ’04, 2004.

[32] Peter H. Schmitt and Benjamin Weiß. Inferring invariants by symbolic
execution. In Proceedings, 4th International Verification Workshop
(VERIFY’07), 2007.

[33] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine
for C. In ESEC/FSE, pages 263–272, 2005.

[34] Natasha Sharygina and Doron Peled. A combined testing and verification
approach for software reliability. FM, 2001.

[35] Jamie Stark and Andrew Ireland. Invariant discovery via failed proof
attempts. In Logic-Based Program Synthesis and Transformation, 1999.

[36] Andreas Zeller. Isolating cause-effect chains from computer programs.
In FSE ’02, pages 1–10, 2002.

[37] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Trans. Softw. Eng., 2002.

[38] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Pruning dynamic
slices with confidence. PLDI, 2006.

[39] Xiangyu Zhang and Rajiv Gupta. Cost effective dynamic program
slicing. PLDI, 2004.

[40] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Precise dynamic
slicing algorithms. ICSE, 2003.

