A Coinduction Rule for Entailment of Recursively
Defined Properties

JOXAN JAFFAR, ANDREW E. SANTOSA, AND RAZVAN VoOICU

School of Computing
National University of Singapore
Republic of Singapore 117543
{joxan,andrews,razvan }@comp.nus.edu.sg

Abstract. Recursively defined properties are ubiquitous. We presgrdat meth-
od for establishing entailmenj = # of such properties; and # over a set of
common variables. The main contribution is a particularoprole based intu-
itively upon the concept o€oinduction This rule allows the inductive step of
assuming that an entailment holds during the proof the lemtait. In general, the
proof method is based on an unfolding (and no folding) atbarithat reduces
recursive definitions to a point where only constraint sojvis necessary. The
constraint-based proof obligation is then discharged aithilable solvers. The
algorithm executes the proof by a search-based method ehicimatically dis-
covers the opportunity of applying induction instead oftiser having to specify
some induction schema, and which does not require any base ca

1 Introduction

A large category of formal verification problems can be egpeel as proof obligations

of the form G entails #, written G |= H, where G and H are recursively defined
properties. Such problems appear in functional and logiggams, and specification
languages such as JML, and they usually represent verificagiquirements for sys-
tems with infinite, or unbounded number of states, such eanpeterized, or software
systems. For instanc& might represent the semantics of a program, expressed as a
formula in a suitable theory, whereas may express a safety assertion.

Once the proof obligatio; = A is formulated, it may be discharged with the help
of a theorem prover such as Coq [1], HOL [6], or PVS [20]. Whitegeneral, the proof
process may be very complex, these tools provide a high ¢dassistance, automating
parts of the process, and guaranteeing the correctness pfdbf, once it is obtained.
While there is, currently, a sustained research effort td&/automating the process of
discharging proof obligations, this process still regsiiri@ general, a significant level
of manual input. In the case of inductive proofs, for insgribe inductive variable, its
base case, and the induction hypothesis need to be providedatty.

In this paper we present a proof method that establishestaiireent of the form
G = H, where G and # are two recursively defined properties over a set of com-
mon variables. The use of a coinduction principle (whichsioet require a base case),
coupled with the standard operation of unfolding recursigénitions, allows the op-
portunistic discovery of suitable induction hypothesesl, makes our method amenable
to automation. The entire framework is formalized in Caoasitr Logic Programming
(CLP), so that CLP predicates can be used to describe thesiezproperties of inter-
est. Our method is, in fact, centered around an algorithmsemain operation is the

standard unfolding of a CLP goal. The unfolding operatioagplied to both the Ihg
and the rhgH of the entailment. The principle of coinduction allows thigctvery of a
valid induction hypothesis, thus terminating the unfoffprocess. Through the appli-
cation of the coinduction principle, the original proof igjaltion usually reduces to one
that no longer contains recursive predicates. The renmipinof obligation contains
only base constraints, and can be relegated to the undgudginstraint solver.

Let us illustrate this process on a small example. Consitgerdefinition of the
following two recursive predicates

m4(0). everf0).
m4(X +4) ;- m4(X). everiX +2) :- ever{X).

whose domain is the set of non-negative integers. The @it defines the set of
multiples of four, whereas the predicateendefines the set of even numbers. We shall
attempt to prove thanh4(X) | everiX), which in fact states that every multiple of four
is even. We start the proof process by performirapanplete unfoldingn the Ihs goal.
By “complete,” we mean that we use all the clauses whose hetig with m4(X)?.
We note tham4(X) has two possible unfoldings, one leading to the empty gotd wi
the answeiX = 0, and another one leading to the ga@(X'),X’ = X — 4. The two
unfolding operations, applied to the original proof obtiga result in the following
two new proof obligations, both of which need to be dischdrigeorder to prove the
original one.

X =0k evertX) (1)
m4(X'),X" =X —4 |= evertX) (2)

The proof obligation (1) can be easily discharged. Sinceldirfg on the lhs is no
longer possible, we can only unfold on the rhs. We chbdeeunfold with clause
ever{0), which results in a new proof obligation which is triviallyug, since its lhs
and rhs are identical.

For proof obligation (2), before attempting any furtheralding, we note that the
lhs m4(X") of the current proof obligation, and the Ins4(X) of the original proof
obligation, are unifiable (as long as we considén fresh variable), which enables the
application of the coinduction principle. First, we “disen” the induction hypothesis
m4(X’) |= ever{X’), as a variant of the original proof obligation. Then, we usis t
induction hypothesis to replace4(X’) in (2) by ever{X’). This yields the new proof
obligation

everf{X'),X" =X —4 = ever{X) (3)

To discharge (3), we unfold twice on the rhs, usingehier{X 4 2) :- ever{X) clause.
The resulting proof obligation is

everfX'),X' =X —4 = evefX"”), X" = X" -2, X" =X -2 (3)

where variablex” and X" are existentially quantifiéd Using constraint simplifica-
tion, we reduce this proof obligation &ver{X — 4) = ever{X — 4), which is obviously
true.

1 The requirement of a complete unfold on the |hs, and the l&skich requirement on the rhs,
is explained in Section 3.
2 |In Section 3 we handle these variables formally.

At this point, all the proof obligations have been dischdrgad the proof is com-
plete. Informally, we have performed four kinds of operasin(a) left unfolding, (b)
right unfolding, (c) application of coinduction, and (d)traint solving/simplification.
While we shall relegate to Section 3 the argument that aie¢tsteps are correct, we
would like to further emphasize several aspects conceingroof method.

First, our method is amenable to automation, in the form dfr&deterministic al-
gorithm. The state of the proof is given by a proof tree, whosetier has the current
proof obligations, all of which have to be discharged in ordecomplete the proof.
Each proof step applies non-deterministically one of the faperations given above
to one of the current proof obligations. Of these four, treedhd rhs unfolding opera-
tions expand the tree by adding new descendants. In cqritragtoinduction operation
searches the ancestors of the current goal for a matchingf lose is found, then a
suitable induction hypothesis is generated, and appli¢taetths of the current goal, as
shown in the small example given above. The fourth kind ofrafen performs con-
straint simplification/solving, possibly discharging therent proof obligation. As our
examples show, the unfolding process and the applicatidineofoinduction principle
require no manual intervention.

Second, our coinductive proof step is inspired from tabbeyid programming [24].
The intuition behind the correctness of this step is thatesthe unfolding of the lhs is
complete, we are already exploring all the possibilitieSrafing a counterexample, i.e.
a substitutiord for which G0 is true while#8 is false. Whenever we find an ancestor
with lhs G’ which is variant of the Ihg; (or some subgoal thereof) of the current proof
obligation, we can immediately conclude that the currenbpobligation would not
contribute counterexamples that wouldn'’t already be leditom its matching ancestor.
However, for this statement to be indeed true, we need tblestiaa similar matching
between the rhs of the two proof obligations. This condii®expressed by the proof
obligation obtained after the application of the coinduestep.

Finally, we would like to clarify that the use of the teninductionpertains to the
way the proof rules are employed for a proof obligat®m= #, and has no bearing on
the greatestfixed point of the underlying logic prograf. In fact, our proof method,
when applied successfully, proves tliats a subset off wrt. theleastfixpoint of (the
operator associated with) the program. However, as fudlaified in Section 4, the
success of the proof method is modeled as a property of atpdtgmfinite proof tree,
and thuscoinduction rather than induction, needs to be employed to establish it

1.1 Related Work

Variants of our proof method have been applied in more sttisettings of timed
automata verification [10] and reasoning about structurap@rties of programs [12].
In the current paper, we focus on the common techniques ssedlbas hinting towards
greater class of applications.

Among logic-programming-based proof methods, early waikg 3, 14] propose
definite clause inferencandnegation as failure inferencé@NFI) which are similar to
our unfolding rules. These inferences are applied priootctuding a proof of an im-
plication using a form of computational induction. A form stfuctural induction in
a similar framework is employed in [4]. We note that theseopraethods are based
on fitting in the allowable inductive proofs into amduction schemawhich is usually
syntax-based. Mesnard et al. [18] propose a CLP proof mdftiroa system of impli-
cations, whose consequents contain only constraints.tébimique is not completely

general. Craciunescu [3] proposed a method to prove theaguoce of CLP programs
using either induction or coinduction. The notion of cointlon here is different from
ours; they reason about tigeeatestfixpoint of a CLP program, while we reason about
the least.

Among the more automated approaches, [21, 22] used urdtddtfansformation
of logic programs to prove equivalences of goals. [22] presa proof method for
equivalence assertions on parameterized systems. Hsi@n§rivas [7, 8] propose an
inductive proof method for Prolog programs. The main featfrthe proof method is a
semi-automatic generation of induction schema (in theeseéhis objective is similar to
those of Kanamori and Fujita [13] mentioned above). The gaiwan of inductive asser-
tions is by producing the reduct of the goals (unfoldingynii@ation of the unfolding
is implemented by a marking mechanism on the variables. \&irezran input variables
is instantiated during an unfold (in other words, we need &kena decision about its
value), it is marked. In a sense, this is similar to the udsoofiblistin the Boyer-Moore
prover [2]. As is the case with Boyer-Moore prover, the intthrtis structural. Here,
the method requires the user to distinguish a setpit variables to structurally induct
on. In comparison, we employ no induction schema. We detegboint where we ap-
ply the induction hypothesis automatically using constraulbsumption test. In other
words, we discover the induction schema dynamically usidgfinite steps of unfolds.
This approach is more complete and automatable.

The work of Roychoudhury et al. [23] systematizes inducpooofs using tabled
resolution of logic programming. It is essentially basediofolding, delaying upon de-
tection of potential infinite resolution, and finally a fatdi step to conclude similarity.
These serve to extend the tabled resolution engine of XSBddbgic programming
system. Our work generalizes this idea by providing a caigtbased inductive proof
rules based on automated detection of cycles using comistr&ur rules are also based
on the notion of tabling of assertions, which are later reduss induction hypothesis.

Another form of tabling is also employed Frolog Technology Theorem Prover
(PTTP [25]. Here the proof process is basically Prolog’s seaochdfutation with sev-
eral extensions, includingrmodel elimination reductio(ME reductior), which mem-
oes literals, and whenever a new goal which is contradidtweystored literal is found,
we stop because this constitutes a refutation. The part ®PRfat is akin to our coin-
duction is the detection when there is an occurrence of theedigeral in which case,
the system backtracks. Our work departs from PTTP mainhhbyuse of constraints.

Recursive definitions are also encountered in data streictenification area. [17]
presents an algorithm for specification and verification atdstructure using equal-
ity axioms. In [19] user-defined recursive definitions adevaéd to specify “shape”
properties. Proofs are carried out via fold/unfold transfations. As we will exemplify
later, our algorithm can be used to automatically perforaofs of assertions containing
recursive data structure definitions.

Finally, we mention the work in [5], which uses a coinduciivierpretation of logic
programming rules to express properties of infinite or dacdata structures. The term
coinductiveis used here to refer to the greatest fixed point of the prograinand. We
re-emphasize at this point that, in contrast with [5], ou asthe term “coinductive”
refers to the way our proof rules are employed, and bearsrectdielationship to the
greatest fixed point of the logic program.

2 Constraint Logic Programs

We use CLP [9] definitions to represent our verification ctods. To keep our paper
self-contained, we provide a minimal background on the taim logic programming
framework.

An atomis of the formp(f) wherep is a user-defined predicate symbol drectuple
of terms, written in the language of an underlying constraaiver. Aclauseis of the
form A:- W, B where the atonA is theheadof the clause, and the sequence of at@ns
and constraint constitute thébodyof the clause. The constraili is also written in
the language of the underlying constraint solver, whichssuaned to be able to decide
(at least reasonably frequently) whethgris satisfiable or not. In our examples, we
assume an integer and array constraint solver, as desdrébed.

A programis a finite set of clauses. goal has exactly the same format as the body
of a clause. A goal that contains only constraints and no siisrcalledfinal.

A substitutior® simultaneously replaces each variable in a term or consgaito
some expression, and we wrigd to denote the result. Aenamingis a substitution
which maps each variable in the expression into a distindabke. A groundingis
a substitution which maps each integer or array variabke iistintended universe of
discourse: an integer or an array. Whités a constraint, a grounding & results in
true or falsein the usual way.

A grounding® of an atomp(f) is an object of the fornp(f8) having no variables. A
grounding of a goaly = (p(f), W) is a groundind of p(f) whereW8 is true. We write
[G] to denote the set of groundings 6f

Let G = (Ba,---,Bn, W) andP denote a non-final goal and program respectively. Let
R=A- W1,Cq,---,Cy denote a clause iR, written so that none of its variables appear
in G. Let the equatio’ = B be shorthand for the pairwise equation of the corresponding
arguments ofA andB. A reductof G using a claus®, denotededuct G,R), is of the
form

(Bla“WBifvalv' o aCm;Bi+l7' ' 'aanBi = Aa l-P’ qu)
provided the constrai; = AAW A W1 is satisfiable.

A derivation sequender a goalG is a possibly infinite sequence of godlg, G, - --
whereG;,i > 0 is a reduct ofG, ,. If the last goalG, is a final goal, we say that the
derivation issuccessfulA derivation treefor a goal is defined in the obvious way.

Definition 1 (Unfold). Given a program P and a goaf, UNFOLD(G) is {G'|3R€ P:
G' =reduct(G,R)}. []

In the formal treatment below, we shall assume, withoutigsgjenerality, that goals
are written so that atoms contain only distinct variableargsments.

2.1 AnInteger and Array Constraint Language

In this section we provide a short description of constréanguage allowed by the
underlying constraint solver assumed in all our examples.céhsider three kinds of
terms: integer and array terms. Integer terms are constfuntthe usual way, with
one addition: the array element. The latter is defined réalysto be of the formali]
wherea is anarray expressiorandi an integer term. An array expression is either an
array variable or of the fornfa,i, j) wherea is an array expression and are integer
terms. A term is either constructed from an array “segmext’: j } whereais an array
expression and j integer variables.

Partial
Complete Unfold
Unfold S
To Prove:
GIV..VG =
FAN ...V Fhy

Coinduction

Fig. 1: Informal Structure of Proof Process

The meaning of an array expression is simply a map from ingdgéo integers, and

the meaning of an array express@ni= (a,i,) is a map just likea except that/[i] = j.
The meaning of array elements is governed by the classic MicCH 6] axioms:
i=k —(@i,j)k =]

i#k — (ai,j)kl =alk

A constraintis either an integer equality or inequality, an equatiowieen array
expressions. The meaning of a constraint is defined in thvobway.

In what follows, we use constraint to mean either an atomitstraint or a con-
junction of constraints. We shall use the symtpabr W, with or without subscripts, to
denote a constraint.

3 Proof Method for Recursive Assertions

3.1 Overview

In this key section, we consider proof obligations of therfay = # wherevar(#H) C
var(G). The validity of this formula expresses the fact th& succeeds w.r.t. the CLP
program at hand whenevéi® succeeds, for any groundiipf G. They are the central
concept of our proof system, by being expressive enoughptuminteresting proper-
ties of data structures, and yet amenable to automatic progess.

Intuitively, we proceed as follows: unfold completely a finite number of steps in
order to obtain a “frontier” containing the goals, ..., Go. Then unfold#, but this
time not necessarily completely, that is, not necessaktgiaingall the reducts each
time, obtain goalsH, ..., Hy,. This situation is depicted in Figure 1. Then, the proof
holds if

GLV ..V Gy = HNV ...V Hy
or alternatively,G = # V...V Hy forall 1 <i <n. This follows from the fact that
G E GiV...V Gy, (Which is not true in general, but true in the least-modetaetics
of CLP), and the fac# |= A for all j such that 1< j < m. More specifically, but with
some loss of generality, the proof holds if

Viil<i<n3j:1<j<m:G = %
and for this reason, ouroof obligationshall be defined below to be simply a pair of
goals, writtenG = # .

3.2 The Proof Rules

We now present a formal calculus for the proof@f= . To handle the possibly infi-
nite unfoldings ofG and#, we shall depend on the use of a key concepinduction
Proof by coinduction allows us to assume the truth pfeviousobligation. The proof
proceeds by manipulating a setmbof obligationsuntil it finally becomes empty or a
counterexample is found. Formallypeoof obligationis of the formA+ G E H where
the G and# are goals and is a set olassumptiorgoals. The role of proof obligations
is to capture the state of a proof. The Satontains goals whose truth can be assumed
coinductively to discharge the proof obligation at handis®et is implemented in our
algorithm using a table as described in the next section.

Our proof rules are presented in Figure 2. Thesymbol represents the disjoint
union of two sets, and emphasizes the fact that in an expreséithe formAw B, we
have thatAn B = 0. Each rule operates on the (possibly empty) set of proofjabli
tionsT1, by selecting one of its proof obligations and attemptindiszharge it. In this
process, new proof obligations may be produced.

Theleft unfold with new induction hypothegisu+1) (or simply “left unfold”) rule
performs a complete unfold on the lhs of a proof obligatiomdpcing a new set of
proof obligations. The original assertion, while removehi 1, is added as an assump-
tion to every newly produced proof obligation, opening tlo®dto using coinduction
later in the proof.

The ruleright unfold (Ru) performs an unfold operation on the rhs of a proof obli-
gation. In general, the two unfold rules will be systemdlyoaterleaved. The resulting
proof obligations are then discharged either coindudtiegl directly, using the ¢o)
and (cP) rules, respectively.

The rulecoinduction applicatiorfco) transforms an obligation by using an assump-
tion, and thus opens the door to discharging that obligati@the direct proof¢P) rule.
Since assumptions can only be created usingitbe-i) rule, the €0) rule realizes the
coinduction principle. The underlying principle behine tfco) rule is that a “similar”
assertiong’ = ' has been previously encountered in the proof process, anthesl
as true.

Note that this test for coinduction applicability is itseffthe form G |= A . How-
ever, the important point here is that this test can only lbgezhout using constraints,
in the manner prescribed for tla® rule described below. In other words, this test does
not use the definitions of assertion predicates.

Finally, the ruleconstraint proof(cp), when used repeatedly, discharges a proof
obligation by reducing it to a form which contains no asserfpredicates. Note that
one application of this removes one occurrence of a preslfd) appearing in the rhs
of an obligation. Once a proof obligation has no predicateé@rhs, alirect proof (DP)
may be attempted by simply removing any predicates in theesponding lhs.

Given a proof obligationg |= A, a proof shall start witlil = {0+ G = #}, and
proceed by repeatedly applying the rules in Figure 2 to it.

3.3 The Algorithm

We now describe a strategy so as to make the application ofitke automated. Here
we propose systematic interleaving of the left-unfola€1) and right-unfold Ru)
rules, attempting a constraint proof along the way. As CLP loa execution by res-
olution, we can also execute our proof rules, based on anitlgowhich has some
resemblance to tabled resolution.

H&J{A}—g|:}[} UNFOLD(G) =
NuU UL {AU{G A6 ey (G}

Nw{AF G = H}

(Lu+r)

RU) —————— H' € UNFOLD(H)
NU{AF G| A}
(co) N{Ar-G =7} G' = H' € Aand there exists
nu{orHeEs, @ substitutio® s.t. G = G'6.
() No(Ar GAPKR EHAPE) M&{GEH} G 3 holds by

NU{AF G = HAK=Y} (oF) n constraint solving

Fig. 2: Proof Rules

We present our algorithm in pseudocode in Figure 3. Note tthetpresentation
is in the form of a nondeterministic algorithm, and thus eatthe nondeterministic
operatorchooseneeds to be implemented by some form of systematic searde. No
also that when applying coinduction step, we test that s@sertiong’ = ' is stored
in some table.

In Figure 3, by aconstraint proofof a obligation, we mean to repeatedly apply the
cprule in order to remove all occurrences of assertion preéekcen the obligation, in
an obvious way. Then the constraint solver is applied togsalting obligation.

3.4 Correctness

Given a proof obligationg (= 4/, a proof starts witil = {A- G |= #}, and proceeds
by repeatedly applying the rules in Figure 2. The omissioneagjative literals in the
body of the clauses of prograf ensures that it has a uniqleast model denoted

Im(P).

Theorem 1 (Soundness)A proof obligationg = # holds, that is, IniP) — (G = #)
for the given program Rf, starting with the proof obligatio) - G = #, there exists
a sequence of applications of proof rules that results iropabligationsA - G E H'
such that (a)#’ contains only constraints, and (§)’ |= #’ can be discharged by the
constraint solver. []

Proof Outline. The rule Ru) is sound because by the semantics of CLP, whére
UNFOLD(H) then# |= #. Therefore, the proof of the obligatioh- G = # can be
replaced by the proof of the obligatioht- G |= #’ since G |= #' is stronger than
G E H. Similarly, the rule €P) is sound becausg = # AX = ¥ is stronger than the
G A P(R) = HAP(Y).

The rule Cu+) is partially soundin the sense that whesNFOLD(G) = { G4, ..., G},
then provingg = # can be substituted by proving, = #,..., G, = #. This is be-
cause in the least-model semantics of CGRs equivalent tog, V...V G,. However,
whether the addition of; |= #{ to the set of assumed assertigvis sound depends on
the use of the set of assumed assertions in the applicati@odf

REDUCHG = H) returns boolean

e Constraint Proof: ¢pP) + Constraint Solving§r)
Apply a constraint proof t@ = #.
If successfulreturn true, otherwisereturn false
e Memoize(G = H) as an assumption
e Coinduction: €0)
if there is an assumptiaf’ = #’ such that
REDUCHG = G'8) = trueandREDUCE# 8 |= #) = truethen return true.

e Unfold: .
chooséeft or right

case:Left: (LU+1)
choosean atomAin G to reduce
for all reductsg of G usingA:
if REDUCH G |= #) = falsereturn false
return true
case:Right: (Ru)
choosean atomA in # to reduce, obtainingr

return REDUCHG = Gr)

Fig. 3: The Algorithm

Notice that in the rule¢o) we require the proofs of botlj = G'0 and '@ EH
for some substitutio®. These proofs establissubsumptionthat is the implication
(G'EH)— (G). _

Assume that using our method, given a progfamve managed to concludg = H
whereG and#{ are goals possibly containing atoms and it is not the caseiira
can be proved without the application afu(+1) (since otherwise trivial by soundness
of (RU) and (cP)). Assume that in the proof, there are a number of assumedtiass
A1, ...,An used coinductively as induction hypotheses. This meartsrttibe proof of
G E # the left unfold rule (u+1) has been applied at least once (possibly interleaved
with the applications offu) and (CP)) obtaining two kinds of assertions:

1. AssertionsC which are directly proved usingr(), (CP), and constraint solving
(DP).

2. AssertionsB which are proved usingc(0) step using some assumed asserfign
as hypothesis for £ j <n.

We may conclude thaf = # holds. We now outline the proof of this.

First, define aefutationto an assertiorG = A as a successful derivation of one
or more atoms inG whose answe has an instance (ground substituti@guch that
WO A H0 is false. A finite refutation corresponds to a such derivatbfinite length.

A nonexistence of finite refutation means thatP) — (G = #). A derivation of an
atom is obtainable by left unfold ¢ +1)) rule only. Hence a finite refutation of lengkh
implies a correspondinigleft unfold (Lu+1) applications that results in a contradiction.

Due to:

1. the soundness of other rulesu) and (P) and the partial soundness afu+1)
with the fact thatA; for all 1 <i < nis obtained fromG = # by applying these
rules, and

2. all assertion€ are proved byRu), (CP) and constraint solvingoP) alone,

we have:G = #A holds if A holds for all 1<i < n, and this holds iff for ali such that
1<i<n,andforallk > 0:A has no finite refutation of lengtk
We prove inductively:

e Base caseWhenk = 0, for all i such that 1< i < n, A trivially has no finite
refutation of length 0.

e Inductive case:Assume that for all such that K i < n, A; has no finite refutation
of lengthk or less(x), we want to prove that for allsuch that < i < n, A; has no
finite refutation of lengttk+ 1 or less(xx).

Notice again in our assumptions above that assertibase proved by applying
(co) usingA| for some 1< j < n. Because subsumption holds in every application
of (c0), this means that for sudB, A; — B. ().

The proof is by contradiction. Now suppose tliat) is false, that isA; for some

i such that 1< i < n has a finite refutation of lengtk+ 1 or less. But due to our
hypothesigx), A; has no finite refutation of lengtkor less. Therefore it must be
the case thady has a finite refutation of length+ 1.

Again, note that we have appliedy) to A; at least once on the resulting assertions,
possibly interleaved with applications af§) and (CP) obtaining the following two
kinds of assertions:

1. Assertion€ which are proved by applications at) and (CP) and constraint
solving alone.

2. Assertion®3 which are proved byqo) using some\; for 1 < j < nin the set
of assumed assertions as induction hypothesis.

Then in the above set of assertions, either:

1. Some assertion of tyg2is a refutation toA of lengthk+ 1. However, regard-
less of the length, since all such assertiGrere already proved byrQ), (CP),
and constraint solving, this case is not possible.

2. SinceA; has to have a finite refutation of lendth- 1, therefore there has to be
at least one assertion of tyfiethat is reached ik or less unfolds. Therefore,
B has to have a refutation of lengkhor less. Now since subsumptidm x x)
holds, then it should be the case that soRpdor 1 < j < nsuch thatA; — B
also has a finite refutation of lengttor less. But this contradicts our hypothesis
(x) thatA for all 1 <i < nhas no finite refutation of lengthor less. []

We finally mention that the proof rules are reamplete For example, when we have a
program

p(X):- 0<X <3

g(X):- 0<X<2.

g(X):- 1<X<3.
obviously p(X) E q(X) holds, but we cannot prove this using our rules. The reason is
that 0< X < 3 (obtained from the unfold gf(X)) does not imply either & X < 2 or
1 <X < 3 (both obtained by right unfolding(X)). It is possible, however, to introduce
new rules toward achieving completeness. For proving tlowelassertion, we could
introduce a splitting of an assertion. For instance, we npdiy § = # into G, 0= H
and G,—@ E H (@in our example would be, sa}, < 1). However, this is beyond the
scope of this paper.

4 On the Coinduction Rule

Consider again the predicaggenpresented in Section 1. We now demonstrate a sim-
ple application of our rules to prove a property on the pra@icConsider proving the

ever{X) E X =2x?%

X=0EX=2x?% X =X'+2everfX') EX =2x%
Direct proof : . .
. Coinduction
X=X'+2X'=2xZEX=2x?%
Direct proof

Fig. 4: Proof Tree Example

assertiorever{X) = X = 2x?Y, call it A (we denote existentially-quantified variables
with the query symbol “?”). The proof process starts by ajmgythe (u+1) rule un-
folding theever{X) goal, resulting in two new proof obligations, each with thigimal
goalA as its assumption. On the left branch, after unfolding with hase-case clause,
we are left withX = 0 = X = 2x?Y, which can be discharged by direct proof using a
constraint solver. On the right branch of the proof, the ldifg rule produces the proof
obligationever{X’),X = X’ 4+ 2 = X = 2x?Y. Here we apply the coinductioic) rule
usingeveriX) = X = 2x?Y as induction hypothesis, spawning an obligation to prove
X'=2x2Z,X =X +2 X =2x?. This can then be proved using constraint solving.

Let us now recall our example in Section 1. In Section 1 we laggtied (U+1) to
unfold the predicaten4(X) resulting in the two obligations (1) and (2). We appiu]
to perform right unfold on (1). We appl\c@) to (2) obtaining (3). We then applyr()
to (3) twice to establish it.

Our system does not require the user to manually specifyciimu hypothesis
and/or construct induction schema. Instead, any indudtigothesis used is obtained
dynamically during the proof process. Let us now exemplifg toncept by consider-
ing the program

PX) = q(X).
q(X) = a(X).
r(X).

Here we want to provp(X) = r(X). Call thisA;. We first apply (u+1) to the assertion
obtainingq(X) [=r(X). Call this assertiody. At this point, our algorithm tests whether
A; can be used as a induction hypothesis to estaBlisfihis fails, and we again apply
(Lu+) obtaining another assertigk which is equivalent ta®;. Upon obtainingAg,
the set of assumed assertions contain BathndA,. The algorithm now tests whether
any of these can be used in @aq) application. Indeed, we can use the asserfign
which is identical toAz. In this way induction hypotheses are chosen dynamically.

In the preceding examples we have demonstrated the use nflehéco) to con-
clude proofs. Moreover, the last example illustrates thot flaat, in contrast to most
inductive proof methods, our proof process may be succesadn in the absence of a
base case. While the lack of a base case requirement juttidigsialifier “coinductive”
being applied to our proof method, the fact that this termbesen somewhat overused
in the logic programming community warrants further claation.

In our view, induction and coinduction are two flavours of geaeral proof scheme,
which is used to prove properties of objects defined by mearescarsive rules. This
general scheme proves properties of such objects by asgtimaitthe property of inter-

Program: CLP Model:
F(x) < if p(x) thenx s(X,X) :(=X =error.
elseF (F(h(x))) S(X,Xt) =X #£error, p(X) = 1,X; = X.
S(vaf) =X 7& error, p(x) =0, S(h(x),Y),S(Y, Xf)

Fig. 5: Idempotent Function

est already (inductively) holds for the “smaller” objectwhich the definition recurses.
Now, recursive definitions may be interpreted in an indectiv coinductive manner,
and each of these interpretations would lead to the genevaf gcheme being con-
strued as either induction or coinduction.

The crux of our proof method is to automatically generatengiuction hypothesis
for the goal at hand, in an attempt to produce a successflicapipn of the general
proof scheme mentioned above. The method works correcdgpective of whether
the rules defining the properties of interest are inteprietédctively or coinductively.
Since our proof method does not explicitly look for base saaed since it can also
handle the situation where a recursive definition of a priypaould be interpreted
coinductively, we have chosen to use the qualifier “coingdectHowever, this qualifier
bears no direct relationship to the greatest fixed point efltlgic program at hand.
Throughout this paper, our recursive definitions are mezabétinterpreted inductively,
and the meaning of the gogl = A is that whenever a grounding® lies in theleast
fixed point of the program at har] it follows that the grounding{6 is also inlfp(P).
Our proof method will be successful only when this interatieh of a goal holds.

5 Proof Examples

In our driving examples area of program verification, mosthef entailment problems
we have encountered can be proved by our algorithm autoatigtivVe believe they
cannot be automatically discharged by any existing sydiemeethod. In this section,
we present two examples.

5.1 Function Idempotence

Suppose that we have the function in Figure 5 [15] with its Gepresentation. Note
that error represents the return value of the function on divergembiteation. Here
we want to prove idempotence, thatF$x) = F (F(x)), or that both the assertions A)
S(X,Y),s(Y,X¢) = s(X,X¢) and B)s(X, Xs) = s(X,?Y),s(?Y, Xt) holds. The mechan-
ical proof of Assertion A requires coinduction and will beeexplified here. The algo-
rithm first applies (u+1) obtaining the assertions &)error, Xs) = s(error, X;), 2) X #
error, p(X) = L, X =Y,s(Y,Xt) E s(X,Xt), and 3)X # error, p(X) = 0, s(h(X),Z),
S(Z,Y), s(Y,Xs) = s(X, X). Assertions 1 and 2 are proved byr) and ©P), and the
algorithm attempts to applyc©) to Assertion 3 using the ancestor Assertion A as hy-
pothesis.

The application of €0) obtains the obligatiorX = error, p(X) = 0, s(h(X),Y),
s(Y,X¢) = s(X,Xt). This assertion cannot be proved by constraint proof nor lixy-co
duction (since the set of assumed assertions are empty)hanalgorithm proceeds

3 Nevertheless, the complete unfold of the left goal ensurasdorrect base case proofs are
generated whenever the current recursive definition pesvidich base cases.

to proving by unfolding. Here it applies right unfol&) rule obtainingX # error,
p(X) =0, S(h(X),Y), S(Yv Xf) ’: X # error, p(X) =0, S(h(X),’)Z), S(?Z,Xf), which
can be proved directly. Since the application©@bj to Assertion 3 has been successful,
the proof concludes.

5.2 A Pointer Data Structure Example: List Reset

We represent pointers as indices in an array which we cali¢he We write|[p] to refer

to the location referenced by the poinferTo implement a linked list, we shall assume
that a list element is made up of two adjacent heap cells. ,Tloughe list element
referenced byp, the data field igp], and the reference to the next elemenfas- 1].

In the CLP program, given an arral;, which typically denotes the heap, we denote by
H[l] the element referenced by indein the array. We also denote b, 1,J) the array
that is identical taH for all indices, excepk, where the original value is replaced by
The steps for solving constraints containing these cocistiare discussed in [11].

Figure 6 shows a program which “zeroes” all elements of arglirgked list with
headp. We prove that the program produces a nonempty null-tetimgést with zero
values. Note that in Figure 6, is a program variable denoting the current heap. The
predicate takes into consideration the memory model of thgram and expresses the
relationship between the heapbefore the execution of the program, and the hidap
obtained after the program has completed. Thus, the preditla(H,H’,L,R) states
that the heapd’ differs fromH only by having zero elements in the non-empty sublist
fromLtoR.

In Figure 6 we provide dail-recursivedefinition of allz which defines a zeroed
list segment(L,R) as one whose head contains zero, and its tail is, recursitredy
zeroed list segmerfH [L+ 1], R)4. We could have usedsablist-recursivespecification:

a zeroed list segmeriL, R) is defined to be a zeroed list segmébiT) appended by
one extra zero elemel® Clearly the program behaves in consistency with the latter
definition, and not the former. We show that despite this, method automatically
discharges the proof.

Here we want to prove th& = allz(hg, h, po,p) is a loop invariant. Formally,

allz(Ho,H,Py,P),H[P+ 1] > 0 |= allz(Hp, (H,H[P+1],0),Po, H[P+ 1]). (2.1)
For this assertion, constraint proof fails and coinduction) is not applicable due to

an empty set of assumed assertions. The algorithm apptiesifeld (Lu+1) using the
definition ofallz obtaining two new obligations, of which one is:
allz(Ho, H1,Ho[Po+ 1],P),Po > O,H1[P+1] > 0 |=

allz(Ho, ((H1, Po,0), H1[P+1],0), Py, H1 [P+ 1]).
Now the algorithm appliesqo) usingZ.1 as the hypothesis. As required byq), the
algorithm spawns two sub-obligations, one of which proves
a”Z(Ho7 Hq, Ho[Po+ l], P), Py >0, Hl[P+ l] >0 |= a”Z(Ho7 Hq, Ho[Po+ l], P), Hl[P+ l} >0
This is established by eliminating the predicates usiog) @nd applying constraint
solving to the following assertion:
Py >0, Hl[P+ 1] >0 '= Ho=Hg,H1 = Hl,Ho[Po+l] = Ho[P0+1]7P= P,HJ_[P+ 1] > 0.

The second sub-obligation is

allz(Ho, <H1, Hl[P-i- :I.],O)7 Ho[Po+ l], Hl[P-F 1]) ': (Z 3)
allz(Ho, ((H1,Po,0),H1[P+1],0),Po, H1 [P+ 1]). :

(2.2)

4 Note that we do not require that the list is acyclic£ R).

Program: Assertion Predicate:
{h =ho,p = po > 0}

(0) while (p>0) do allz(H,(H,L,0),L,L):- L>0.
bl =0 (1) allz(Hy, (Hz,L,0),L,R) -
p = [p+]_] <2 end <3> L>O,aIIz(H17H2,H1[L+1},R).

)
{3y.allz(ho,h, po,y), hly+1] = 0}

Fig. 6: List Reset

Here again the application of constraint proof and coindacfails, and the algorithm

performs a right unfold using the second clausaltzresulting in

allz(Ho, (H1,H1[P+1],0), Ho[Po + 1], H1 [P+ 1]) |= (Z.4)
allz(Ho, ?Ha, HQ[PQ + 1], Hl[P-i-].])7 <<H:|_7 Po,0), Hl[P—O— 1],0) = (?H2, Py, 0) ’

By an application of ¢P) proof rule, the algorithm removes the predicates and then

solves the following implication by constraint solvingH):

true = Ho = Ho, Ho[Po+ 1] = Ho[Po + 1], (Z 5)
H1[P+1] = H1[P+1], ((H1,Po,0),H1[P+1],0) = ((H1,H1[P+1],0), P, 0). '

6 Conclusion

We presented an automatic proof method which is based ondimjorecursive CLP
definitions of user-specified program properties. The naspéct is a principle of coin-
duction which is used in conjunction with a set of unfold sule order to efficiently
dispense recursive definitions into constraints involiimtggers and arrays. This prin-
ciple is applied opportunistically and automatically oaetynamically generated set of
potential induction hypotheses. As a result, we can nownaatizally discharge many
useful proof obligations which previously could not be tiarged without manual in-
tervention. We finally demonstrated our method, assumiagiie of a straightforward
constraint solver over integers and integer arrays, tonaatically prove two illustrative
examples.

References

1. B. Barras, S. Boutin, C. Cornes, J. Courant, J. FillidfeGiménez, H. Herbelin, G. Huet,
C. M. Noz, C. Murthy, C. Parent, C. Paulin, A.i18g and B. Werner. The Coq proof assistant
reference manual—version v6.1. Technical Report 0203]M\R997.

2. R. S. Boyer and J. S. Moore. Proving theorems about LISEtifurs. J. ACM 22(1):129—
144, 1975.

3. S. Craciunescu. Proving equivalence of CLP programs3iin ICLP, volume 2401 of NCS
Springer, 2002.

4. L. Fribourg. Automatic generation of simplification lerasnfor inductive proofs. IhSLP
1991, pages 103-116. MIT Press, 1991.

5. G. Gupta, A. Bansal, R. Min, L. Simon, and A. Mallya. Cointive logic programming and
its applications. 1r23rd ICLP, volume 4670 oL NCS pages 27-44. Springer, 2007.

6. J. Harrison. HOL light: A tutorial introduction. In M. K.rivas and A. J. Camilleri, editors,
1st FMCAD volume 1166 oL NCS pages 265-269. Springer, 1996.

7. J. Hsiang and M. Srivas. Automatic inductive theorem prowsing PrologTCS 54(1):3—
28, 1987.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. J. Hsiang and M. K. Srivas. A PROLOG framework for devetgpand reasoning about data

types. Inlst TAPSOFT Vol.,2/0lume 186 olLNCS pages 276—293. Springer, 1985.

. J. Jaffar and M. J. Maher. Constraint logic programmingufvey.J. LP, 19/20:503-581,

May/July 1994.

J. Jaffar, A. Santosa, and R. Voicu. A CLP proof methodifoed automata. 125th RTSS
pages 175-186. IEEE Computer Society Press, 2004.

J. Jaffar, A. E. Santosa, and R. Voicu. Recursive aeserfor data structures. Available
from http://www.comp.nus.edu.sg/"joxan/papers/rads.pdf

J. Jaffar, A. E. Santosa, and R. Voicu. Relative safet. IA. Emerson and K. S. Namjoshi,
editors,7th VMCAI volume 3855 oL.NCS pages 282—-297. Springer, 2006.

T. Kanamori and H. Fujita. Formulation of induction farias in verification of Prolog
programs. IrBth CADE volume 230 oLNCS pages 281-299. Springer, 1986.

T. Kanamori and H. Seki. Verification of Prolog programsgg an extension of execution.
In E. Y. Shapiro, editor3rd ICLP, volume 225 oLLNCS pages 475-489. Springer, 1986.
Z.Manna, S. Ness, and J. Vuillemin. Inductive methodpfoving properties of programs.
Comm. ACM16(8):491-502, August 1973.

J. McCarthy. Towards a mathematical science of comipatain C. M. Popplewell, editor,
IFIP Congress 1962North-Holland, 1983.

S. McPeak and G. C. Necula. Data structure specificaiariecal equality axioms. 147th
CAV, volume 3576 oL NCS pages 476—490. Springer, 2005.

F. Mesnard, S. Hoarau, and A. Maillard. CX® for automatically proving program proper-
ties. In F. Baader and K. U. Schulz, editotst FroCoS volume 3 ofApplied Logic Series
Kluwer Academic Publishers, 1996.

H. H. Nguyen, C. David, S. C. Qin, and W. N. Chin. Automatedfication of shape and
size properties via separation logic. In B. Cook and A. Psldeéditors 8th VMCA| volume
4349 ofLNCS Springer, 2007.

S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srii?%/S: combining specifica-
tion, proof checking, and model checking. In R. Alur and THenzinger, editors8th CAV,
volume 1102 oL NCS pages 411-414. Springer, 1996.

A. Pettorossi and M. Proietti. Synthesis and transftionaof logic programs using un-
fold/fold proofs. J. LP, 41(2—3):197-230, 1999.

A. Roychoudhury, K. N. Kumar, C. R. Ramakrishnan, and.|Remakrishnan. An un-
fold/fold transformation framework for definite logic pn@mns. ACM TOPLAS26(3):464—
509, 2004.

A. Roychoudhury, C. R. Ramakrishnan, I. V. Ramakrishaad S. A. Smolka. Tabulation-
based induction proofs with application to automated \e&ifon. In1st TAPD pages 83-88,
April 1998. URL http://pauillac.inria.fr/” clerger/tagaml.

K. Sagonas, T. Swift, D. S. Warren, J. Freire, P. Rao, B, EuJohnson, L. de Castro,
S. Dawson, and M. KiferThe XSB System Version 2.5 Volume 1: Programmer’s Manual
June 2003.

M. E. Stickel. A Prolog technology theorem prover: A nexp@sition and implementation
in prolog. TCS 104(1):109-128, 1992.

