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Abstract
Separation Logic (SL) was a significant advance in program
verification of data structures. It used a “separating” conjoin
operator in data structure specifications to construct heaps
from disjoint subheaps, and a frame rule to very elegantly
realize local reasoning. Consequently, when a program is
verified in SL, the proof is very natural and succinct. In
this paper, we present a new program verification framework
whose first motivation is to maintain the essential advantage
of SL, that of expressing separation and then using fram-
ing to obtain local reasoning. Our framework comprises two
new facets. First, we begin with a new domain of discourse
of explicit subheaps with recursive definitions. The resulting
specification language can describe arbitrary data structures,
and arbitratry sharing therein. This enables a very precise
specification of frames. Second, we perform program ver-
ification by using a strongest postcondition propagation in
symbolic execution, and this provides a basis for automa-
tion. Finally, we present an implementation of our verifier,
and demonstrate automation on a number of representative
programs. In particular, we present the first automatic proof
of a classic graph marking algorithm.

1. Introduction
An important part of reasoning over heap manipulating pro-
grams is specifying properties local to regions of memory.
While traditional Hoare logic augmented with recursively
defined predicates can be used (from as early as 1982 [5,
22]), it was Separation Logic [25, 28] (SL) which made a
significant advance. Two key ideas here are: associating a
predicate with a notion of heap, and composing predicates
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with the notion of separating conjunction of heaps. As a re-
sult, SL has an extremely elegant frame rule which facilitates
the important methodology of local reasoning.

However, there are aspects of SL which could be en-
hanced. In SL, the use of predicates is overloaded: they spec-
ify a logical property of a data structure, and at the same
time, a layout of the current heap (memory).

• A predicate specifying a “large” data structure is com-
posed with specifications of its constituent sub-data
structures only by means of a “separating conjunction”.
This implies that these sub-data structures must have dis-
joint footprints, an obstacle to specifying shared data
structures. (See [14] for a detailed discussion of this.)

• Predicates specify (disjoint parts of) the current heap
only. They do not connect to, e.g. previous or future
heaps. Thus, for example, it is problematic to specify a
summarization of a program as a heap transformer.

• The local proof of a function requires that all heap ac-
cesses are “enclosed” by the footprint of its precondition
(or refer to fresh addresses), and the frame rule does not
accommodate for the distinction between heap reads and
writes. This is in fact stronger than needed, because the
function might perform no heap writes.

• SL does not easily provide some form of “predicate
transformation” [11], which typically means to provide
a mechanism for computing either the weakest pre-
condition or strongest postcondition over loop-free and
function-free program fragments. Instead, SL depends
on a number of custom inference rules whose automation
may not be easy.

In this paper, we begin with an assertion language in which
subheaps may be explicitly defined within predicates [12],
and the effect of separation obtained by specifying that cer-
tain heaps are disjoint. In other words, heaps are first-class
in this language. One main contribution of [12] is to refine
the “overloaded meaning” of the separation conjunction, so
that predicates can be conjoined in the traditional way. In
this paper, we first extend the assertion language of [12] by
removing the implicit “heap reality” of any subheaps appear-
ing in a recursive predicate. Instead, heap reality is explic-
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itly specified by connecting (ghost) subheaps to the distin-
guished heap variableM, which represents the global heap
memory at the current state. We then show how to capture
complex properties about both sharing and separation.

Our verification framework consists of two parts. In the
first part, we deal with the part of a heap that is possibly
changed by a straight-line program fragment. This is han-
dled by a strongest postcondition transform, so that the proof
of a triple {φ} P {ψ} will just require the proof of ψ given
the strongest postcondition of P from φ. The transforma-
tion, inherited from [12], can be easily automated, providing
a basis towards automated verification.

Our contribution lies in the second part of the verifica-
tion framework: to perform compositional reasoning by au-
tomatically framing properties of heap that are definitely un-
changed. Indeed, the main contribution of this paper is a
new frame rule to reclaim the power of local reasoning. Be-
fore proceeding, let us detail why the traditional frame rule
from SL cannot be simply adapted to our new specification
language with explicit heaps. A first reason is explained in
[12]: that with a strongest postcondition approach to pro-
gram verification, the frame rule, suitably translated into
the language of explicit heaps, is simply not valid. In other
words, if {φ} P {ψ} is established because ψ follows from
the strongest postcondition of P executed from φ, it is not
the case that any heap separate from φ remains unchanged
by the execution of P . A second reason is that while the as-
sertion language refers to multiple heaps, only those which
are affected by the program must be isolated. In contrast,
the traditional rule deals with a single (implicit) heap and so
separation refers unambiguously to this heap alone.

Our new frame rule is used by explicitly naming subheaps
in the specifications as part of the frame, in order to ele-
gantly isolate relevant portions of the global heapM. Con-
sequently, a significant distinction is that our frame rule is
concerned only on heap updates, as opposed to all heap ref-
erences as in traditional SL.

More specifically, we firstly facilitate the propagation of
subheap properties from the precondition to the postcondi-
tion, when they are not involved in program heap updates.
This is intuitively the key intention of a frame rule: the prop-
agation of unaffected properties. Secondly and just as im-
portantly, the rule needs also to propagate separation infor-
mation. Toward this end, we introduce a concept of evolu-
tion in a triple: when a collection of subheaps in the pre-
condition evolves to another collection of subheaps in the
postcondition, it follows that separation from the first col-
lection implies separation from the second. Thus while SL
advanced Hoare reasoning with the implicit use of disjoint
heaps, our logic advances SL with the explicit use of arbi-
trary subheaps.

Finally, we give evidence that our verification framework
has a good level of automation. In Section 6, we automati-
cally prove one significant example for the first time: mark-

ing a graph. This example exhibits important relationships
between data structures that have so far not been addressed
by automatic verification: processing recursive data struc-
tures with sharing. We will present an implementation in
Section 7, submitted as supplementary material for this pa-
per, and a demonstration of automatic verification on a num-
ber of representative programs. We demonstrate the phases
of specification, verification condition generation and finally
theorem-proving. We stress here that we shall be using ex-
isting and not custom technology for the theorem-proving.
We finally contend that a new large of applications is now
automatically verifiable.

We conclude this section by mentioning that our frame-
work does not provide for memory safety as an intrinsic
property. We can easily enforce memory safety by, e.g., as-
serting that dereferences (e.g., x->next) and deallocations
(e.g., free(x)), have their arguments (x) pointing to a valid
cell in the current global heap (x ∈ dom(M)). Not enforc-
ing memory safety up front is not a weakness of the frame-
work. It allows us to be flexible enough to perform reason-
ing even when memory safety is not the property of interest.
Furthermore, SL may disapprove of a memory safe program
whose specifications of some functions are not sufficiently
complete. In contrast, our framework can still proceed, but
possibly not by means of local reasoning, for example.

2. Local Reasoning and Related Work
In traditional Hoare logic, an assertion, which does not men-
tion heap variables or pointers, can be framed through a pro-
gram fragment if the program fragment does not modify any
(free) variable in the assertion.

PROPOSITION 1 (Classic Frame Rule).
{φ} P {ψ}

{φ ∧ π} P {ψ ∧ π} Mod(P ) ∩ FV (π) = ∅ (CFR)

where Mod(P ) denotes the variables that P modifies, and
FV (π) denotes the free variables of π. �

{φ} P {ψ}
{φ ∗ π} P {ψ ∗ π} (SFR)

In Separation Logic,
where heaps are of the
main interest, a key step is
that when a program frag-
ment is “enclosed” in some heap, then any formula π whose
“footprint” is separate from this heap can be “framed”
through the program. This notion of separation is indi-
cated by the “separating conjunction” operator “*” in (SFR)
above, which states that the footprints of its two operands
(which are logical predicates) are disjoint. The most im-
portant feature of SL is its frame rule, displayed as (SFR).
There, validity of the triple {φ} P {ψ} entails that all heap
accesses in P , read or write, are confined to the implicit heap
of φ, or to fresh addresses. This provides for truly local rea-
soning, because the proof of P is done without any prior
knowledge about the frame π.
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At this point, note there are two kinds of footprints at
play. One concerns what is associated with the specification
describing some data structure properties, called specifica-
tion footprint; and the other, that is concerned with the heap
updates in the code or simply the code footprint. The key
issue is how to connect these two in the verification pro-
cess, so that framing can take place. As mentioned above,
SL admirably addresses these two footprints, and their con-
nections.

After the development of SL, newer verification frame-
works have generally adopted the method of dynamic frames
[19] (DF), and later, the refinement to implicit dynamic
frames (IDF) [32]. Some prominent verifiers that use
DF/IDF are Vericool [31], Verifast [15], Dafny [20], Chalice
[21] and Viper [1]. A dynamic frame is an expression de-
scribing a set of addresses. This set is intended to enclose the
write footprint of a method1 or code fragment. These works
have the distinct advantage over SL: the code footprint can
be defined more precisely and further, independently of the
specification footprint. (Recall that in SL, the latter is used
for the former.)

On the other hand, the use of dynamic frames requires
additional machinery to prove that the heap updates (by
the code) are indeed enclosed by the appropriate dynamic
frames. (Whereas, in SL, this is ensured by the logic itself
and the accompanied inference rules.) For example, in some
verifiers, e.g., Dafny [20], ghost variables are used to explic-
itly describe the dynamic frame, and the code may be anno-
tated with ghost variable assignments. Correctness then re-
quires that the heap updates are enclosed in the distinguished
ghost variable nominated as the dynamic frame of the code.
A disadvantage is the added verbosity required on the ghost
variable expressions, and the added risk of bugs in matching
these expressions against program variable expressions.

IDF approaches, equipped with a new kind of assertion
called an accessibility predicate, state that heap dereference
expressions (whether in assertions or in method bodies) are
only allowed if a corresponding permission has already been
acquired. This mechanism style allows a method frame to
be calculated implicitly from its precondition. In this regard,
IDF is similar to the our framework because the accessible
addresses can be contrasted with our “enclosing” explicit
subheaps. In particular, our notions of “evolution” and “en-
closure” have been realized previously using the terminol-
ogy “swinging-pivot” and “self-framing” [18].

However there remains a general and challenging prob-
lem that all works using DF/IDF have not addressed: how
to connect the code footprint (or dynamic frame) to the
specification footprint when these footprints are necessar-
ily recursively-defined. For example, it is notoriously known
that many important properties of data structures are in the
form of a reachability property, and thus they are difficult to
reason about (automatically) without using recursive defini-

1 In this context, we use “method” and “function” interchangeably.

tions. It is also known that for a large number of programs
that work on data structures, the set of nodes actually mod-
ified by a function is a subset of what reachable from an
anchor node. Of course such a set is more naturally express-
ible using recursive definitions. Amongst the state-of-the-art
verifiers, only Vericool allows a recursive definition of its
dynamic frame, and it is generally accepted that Vericool is
not an automated system.

We now concretize this discussion with an example, in or-
der to highlight this all-important “connection” issue. Con-
sider the problem of marking a (possibly cyclic) graph, in
Fig. 1. For simplicity, let a graph node have two successor
fields left and right.

struct node {
int mark;
struct node *left, *right; };

void markgraph(struct node *x) {
if (!x || x->mark) return;
x->mark = 1;
markgraph(x->left); markgraph(x->right); }

Figure 1: Mark Graph Example

The top-level precondition is that the graph is unmarked,
and the postcondition is that the graph is fully marked.

Because the function is recursive, clearly its precondition
cannot simply be that the graph is fully unmarked. The re-
quired precondition is rather complicated, and we relegate
the details to section 6. Here it suffices to say that the pre-
condition must state that every encountered marked node is
either previously encountered, or all of its successor nodes
are already marked. The take-away is that this property is not
naturally expressible without using a recursive definition.

Furthermore, to have local reasoning, the first recursive
call must not destroy what is needed as the precondition
of the second call, and the second call should not negate
the effects of the first. In other words, we need to describe:
(1) the write footprint of the first call, (2) the footprint of
the precondition of the second call, (3) the footprint of the
postcondition of the first call, and (4) the write footprint of
the second call. The verification process needs to “connect”
and figure out that (1) and (2) are disjoint and that (3) and
(4) are also disjoint. The take-away here, as in the first point,
is that these footprints are not naturally expressible without
using recursive definitions, and that to date no approaches
have been able to reason about them automatically.

In summary, frame reasoning involves two key steps:

• Propagating the dynamic frame information (code foot-
print) across the code

• Connecting the dynamic frame information to the high-
level specification (specification footprint).
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None of the current works on DF/IDF accommodates these
steps when footprints are recursively defined2. Therefore
they do not accommodate our graph marking example above,
in particular.

3. The Assertion Language
We assume a vanilla imperative programming language with
functions but no loops (which are tacitly compiled into tail-
recursive functions). The following are heap manipulation
statements:3

• sets x to be the value pointed to by y: x = *y;

• sets the value pointed to by x to be y: *x = y;

• points x to a freshly allocated cell: x = malloc(1);

• deallocates the cell pointed to by x: free(x).

The heap is not explicitly mentioned in the program. Instead,
it is dereferenced using the “∗” notation as in the C language.
(Not to be confused with the operator “∗” in SL or our heap
constraint language.)

3.1 Background
Hoare Logic [13] is a formal system for reasoning about
program correctness. Hoare Logic is defined in terms of
axioms over triples of the form {φ} P {ψ}, where φ is the
precondition, ψ is the postcondition, and P is some code
fragment. Both φ and ψ are formulae over the program
variables in P . The meaning of the triple is as follows: for
all program states σ1, σ2 such that σ1 |= φ and executing σ1
through P derives σ2, then σ2 |= ψ. For example, the triple
{x < y} x = x + 1 {x ≤ y}, x and y are integers, is valid.
Note that under this definition, a triple is automatically valid
if P is non-terminating or otherwise has undefined behavior.
This is known as partial correctness.

Separation Logic (SL) [28] is a popular extension of
Hoare Logic [13] for reasoning over heap manipulating
programs. SL extends predicate calculus with new logical
connectives – namely empty heap (emp), singleton heap
(p 7→ v), and separating conjunction (F1∗F2) – such that the
structure of assertions reflects the structure of the underlying
heap. For example, the precondition in the following valid
Separation Logic triple

{x 7→ ∗ y 7→ 2} *x = *y+ 1 {x 7→ 3 ∗ y 7→ 2}

represents a heap comprised of two disjoint singleton heaps,
indicating that both x and y are allocated and that location y
points to the value 2. In the postcondition, x points to value
3, as expected. SL also allows recursively-defined heaps for
reasoning over data structures, such as list and tree. An

2 When however the specification and code footprints are both defined
using quantifiers, these works have demonstrated a good level of automatic
verification.
3 We assume (de)allocation of single heap cells; this can be easily general-
ized, and indeed so in our implementation.

SL triple {φ} P {ψ} additionally guarantees that any state
satisfying φ will not cause a memory access violation in
P . For example, the triple {emp} *x := 1 {x 7→ 1} is
invalid since x is a dangling pointer in a state satisfying the
precondition.

A Constraint Language of Explicit Heaps [12]: We have
a set of Values (e.g. integers) and we define Heaps to
be all finite partial maps between values, i.e., Heaps def

=
(Values ⇀fin Values). There is a special value null (“null”
pointer) and a special heap emp (“empty” heap). Where Vv
and Vh denote the sets of value and heap variables respec-
tively, our heap expressions HE are as follows:

H ::= Vh v ::= Vv HE ::= H | emp | (v 7→ v) |HE ∗HE

An interpretation I maps Vh to Heaps and Vv to Values.
Syntactically, a heap constraint is of the form (HE l HE).
An interpretation I satisfies a heap constraint (HE1 l HE2)
iff I(HE1) = I(HE2) are the same heap, and the separation
properties within HE1 and HE2 hold.

Let dom(H) be the domain of the heap H . As in [12],
heap constraints can be normalized into three basic forms:

H l emp (EMPTY) H l (p 7→ v) (SINGLETON)
H l H1 ∗ H2 (SEPARATION)

where H,H1, H2 ∈ Vh and p, v ∈ Vv . Here (EMPTY) con-
strains H to be the empty heap (i.e., H = ∅ as a set),
(SINGLETON) constrains H to be the singleton heap map-
ping p to v (i.e., H = {(p, v)} as sets), and (SEPARATION)
constraints H to be the heap that is partitioned into two dis-
joint sub-heaps H1 and H2 (i.e., H = H1 ∪H2 as sets and
dom(H1) ∩ dom(H2) = ∅).

We will also use sub-heap relation (H1 v H2), domain
membership (p ∈ dom(H)), and (overloaded) for brevity,
separation relation (H1 ∗ H2). In fact, writing H1 v H2 is
equivalent to H2 l H1 ∗ , p ∈ dom(H) to H l (p 7→
) ∗ , p 6∈ dom(H) to l H ∗ (p 7→ ), and H1 ∗ H2 to
l H1 ∗H2; where the underscore in each instance denotes

a fresh variable.
Finally, we have a recursive constraint. This is an ex-

pression of the form p(h1, · · · , hn, v1, · · · , vm) where p is a
user-defined predicate symbol, the hi ∈ Vh, 0 ≤ i ≤ n and
the vj ∈ Vv, 0 ≤ j ≤ m. Associated with such a predicate
symbol is a recursive definition. We use the framework of
Constraint Logic Programming (CLP) [16] to inherit its syn-
tax, semantics, and its built-in notions of unfolding rules, for
realizing recursive definitions. The semantics of a set of rules
is traditionally known as the “least model” semantics [16].
For brevity, we only informally explain the language. The
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following constitutes a recursive definition of list(h, x),
specifying a skeleton list in the heap h rooted at x.

list(h, x) :- h l emp, x = null.
list(h, x) :- h l (x 7→ y) ∗ h1, list(h1, y).

Note that the comma-separated expressions in the body of
each rule is either value constraint (e.g. x = null), a heap
constraint (e.g. h l emp), or a recursive constraint (e.g.
list(h1, y)). In this paper, our value (i.e. “pure”) con-
straints will either be arithmetic or basic set constraints over
values.

3.2 Program Verification with Explicit Heaps
Hoare Triples: We first define an assertion A as a formula
over Vv , Vh:

A ::= VF | HF | RC | A ∧A | A ∨A

where VF , HF , and RC are value, heap, and recursive
constraints, respectively.

We now connect the interpretation of assertions with the
program semantics. Programs operate over an unbounded
set of program variables VP , which are the value variables.
Thus VP ⊆ Vv . We use one distinguished heap variable
M ∈ Vh to represent the global heap memory. Variables
other than the program variables and M may appear in
assertions; they are existential or ghost variables. A ghost
variable of type heap will be called a subheap.

The subheaps serve two essential and distinct purposes:
(a) to describe subheaps of the global heapM at the current
program point, and (b) to describe some other “existential”
heap. A common instance of (b) is the heap corresponding
to the global heap at some other program point in the past.

We use the terminology “ghost heap” in accordance to
standard practice that subheaps are existential, but in asser-
tions, they can be used to constrain the value of the global
heap. Importantly, as ghost variables, their values cannot be
changed by the program. We will see later that this is im-
portant in practice because (a) predicates in assertions often
need to be defined only using ghost subheaps, and (b) it is
automatic that these predicates can be “framed through” any
program fragment P because P cannot change the value of
a ghost variable.

Before proceeding, we stress that our interpretation of
triples follows Hoare logic: the postcondition holds provided
the start state satisfies the precondition, and there is a termi-
nating execution of the program. In contrast, in SL, a triple
entails that the program is memory-safe.

Note that we shall present rules that define recursive
constraints using fresh variables. Notationally, for heaps, we
shall use the small letter ‘h’ in rules, while using the large
letter H in assertions. Also, we use “,” in assertions as
shorthand for logical conjunction.
Example: see the annotated program and the definition of
inc list in Fig. 2. The program increments all the data
values in an acyclic list by 1.

struct node {
int data;
struct node *next;

};

{ list(H, x), H vM }
y = x;
while (y) {

y->data += 1;
y = y->next;

}
{ inc list(H1,H, x), H1 vM }

inc list(h1, h2, x) :-
h1 l emp, h2 l emp, x = null.

inc list(h1, h2, x) :-
h1 l (x 7→ (d+ 1, next)) ∗ h′1,
h2 l (x 7→ (d, next)) ∗ h′2,
inc list(h1′, h′2, next).

Figure 2: Incrementing data values in an acyclic list.

As before, list(H, x) describes a heap H which houses
an acyclic list rooted at x. The constraint H v M states
that it resembles a part of the global heap. The other recur-
sive constraint inc list(H1,H, x) similarly defines that x
is the head of a list resides in the heap H1. It has another
argument, the ghost heap H, which also appears in the pre-
condition. This, importantly, allows us to consider the triple
as a summary, relating values in the precondition and post-
condition (using the ghost variable as an anchor value). In
this case, we are stating that the final list elements are one
bigger than the corresponding initial elements. Further, we
are also stating that all the links (the next pointers) are not
modified.

4. Symbolic Execution with Explicit Heaps
Symbolic execution of a program uses symbolic values as in-
puts, and can be used for program verification in a standard
way. We start with a precondition. The output of symbolic
execution on a program path is a formula representing the
symbolic state obtained at the end of a path, or the strongest
postcondition of the precondition. For a loop-free program
with no function calls, symbolic execution facilitates verifi-
cation by considering a disjunction of all such path postcon-
ditions, which must then imply the desired postcondition.
With function calls (or loops), to achieve modular verifica-
tion, we need a frame rule.

We now describe how to obtain a the strongest postcondi-
tion transform as in [12]. It suffices to consider only the four
heap-manipulating primitives.

PROPOSITION 2 (Strongest Postcondition). In the follow-
ing Hoare-triples, the postcondition shown is the strongest
postcondition of the primitive heap operation with respect to
a precondition φ.

{ φ } x = malloc(1) { alloc(φ, x) } (Heap allocation)
{ φ } free(x) { free(φ, x) } (Heap deallocation)
{ φ } x = ∗y { access(φ, y, x) } (Heap access)
{ φ } ∗x = y { assign(φ, x, y) } (Heap assignment)

where the auxiliary macros alloc, free, access, and assign
expand as follows:
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alloc(φ, x)
def
= M l (x 7→ v) ∗ H ∧ φ[H/M, v1/x]

free(φ, x)
def
= H l (x 7→ v) ∗M∧ φ[H/M]

access(φ, y, x)
def
= M l (y 7→ x) ∗ H ∧ φ[v/x]

assign(φ, x, y)
def
= M l (x 7→ y) ∗ H1∧
H l (x 7→ v) ∗ H1 ∧ φ[H/M]

whereH andH1 are fresh heap variables, and v and v1 are
fresh value variables. The notation φ[x/y] means formula φ
with variable x substituted for y. �

{ H99 lM }
t1 = *x;

{ M l (x 7→ t1) ∗ H1, H99 lM }
*x = t1 + 1;

{ M l (x 7→ t1 + 1) ∗ H1, H2 l (x 7→ t1) ∗ H1,

H2 l (x 7→ t1) ∗ H1, H99 l H2 }
⇓ // (simplification)

{ M l (x 7→ t1 + 1) ∗ H1, H99 l (x 7→ t1) ∗ H1 }
t2 = *x;

{ M l (x 7→ t2) ∗ H3, M l (x 7→ t1 + 1) ∗ H1,

H99 l (x 7→ t1) ∗ H1 }
*x = t2 - 1;

{ M l (x 7→ t2 − 1) ∗ H4, H5 l (x 7→ v) ∗ H4,

H5 l (x 7→ t2) ∗ H3, H5 l (x 7→ t1 + 1) ∗ H1,

H99 l (x 7→ t1) ∗ H1 }

Figure 3: Demonstrating Symbolic Execution

We will demonstrate the usefulness (and partly the correct-
ness) of Proposition 2 with a simple example. Consider:

{H99 lM} *x += 1; *x -= 1; {H99 lM}

In other words, the heap is unchanged after an increment
and then a decrement. We rewrite the program so that only
one heap operation is performed per program statement; in
Fig. 3 we show the rewritten program fragment together
with the propagation of the formulas. (For brevity, we also
perform a simplification step.) It is then easy to show that
the final formula implies H99 l M, by first establishing
that H1 l H3 l H4 and v = t2 = t1 + 1. This example
provides a program summary that the heap is the same before
and after execution.

5. The Frame Rule
Recall the classic frame rule (CFR) from Section 2 where
from {φ} P {ψ} we may infer {φ ∧ π} P {ψ ∧ π} with
the side condition that P does not modify any free variable
in π. In our current setting where P now may contain heap
references, this frame rule in fact still can be used if π
only contains free heap variables that are ghost. However,
because the global heap memory can in general be changed
by P , what cannot be framed through with this rule, is the
property that a ghost variableH is consistent with the global
heap memoryM, i.e., H vM. We call such a property the
“heap reality” ofH.

In Separation Logic, where heaps are of the main interest,
a key step is that when a program fragment is “enclosed” in
some heap, then any formula π whose “footprint” is separate
from this heap can be framed through the program. Recall
the SL frame rule (SFR) from Section 2 wherein the premise
{φ} P {ψ} ensures that the implicit heap arising from the
formula φ captures all the heap accesses, read or write, in the
program fragment P . Therefore {φ ∗ π} P {ψ ∗ π} naturally
follows.

In our setting of explicit heaps, the frame rule, suitably
translated into this language, is simply not valid (without
some additional machinery ensuring enclosure). The concept
of enclosure is to have an explicit subheap (or a collection of
subheaps) which contains the program heap updates. These
updates are defined to be the cells that the program writes to,
or deallocates. This is because the property H vM, where
H is a ghost variable, is falsified just in case the program
has written to or deallocated some cell inM whose address
is also in dom(H). Thus, the heap reality of H is lost. Note
that malloc changesM, but it does not affect cells that are
already inM.

DEFINITION 1 (Heap Update). Given an address value v, a
heap update to location v is defined as a statement that either
writes to or deallocates the location v. �

Before formalizing our notion of “enclosure”, however, we
first need a concept of heap “evolution”. Let us use the
notation H̃ to denote the union

⋃
iHi of a collection of

subheaps H1, · · · ,Hn, n ≥ 2. Thus for example, H̃ v M
simply abbreviatesH1 vM∧ · · · ∧ Hn vM.

DEFINITION 2 (Evolution). Given a valid triple {φ}P {ψ},
we say that a collection H̃ in φ, where φ |= H̃ v M, evolves
to a collection H̃′ in ψ, where ψ |= H̃′ v M, if for each
model I of φ, executing P from I will result in I ′, such that
for any (address) value v, v ∈ (dom(I(M)) \ dom(I(H̃)))
implies v 6∈ dom(I ′(H̃′)).

We shall use the notation {φ} P {ψ} EVOLVE(H̃, H̃′)
to denote such evolution. �

Intuitively, {φ} P {ψ}  EVOLVE(H̃, H̃′) means that the
largest H̃′ can be is H̃ plus any new cells allocated by P , and
minus any that are freed by P . Note also that because the
triple is valid, I ′ will be a model of ψ. One important usage
of the evolution concept is as follows: any heapHi such that
Hi ∗ H̃ andHi vM at the point of the precondition φ (i.e.,
before P is executed), Hi will be separate from H̃′ at the
point of the postcondition (i.e., after P is executed).
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Consider the struct node defined in Section 3 and the
triple shown below.

{ list(H1, x), H1 vM }
z = malloc(sizeof(struct node));
z->next = x;

{ list(H′1, z), H′1 vM }

We say that H′1 is an evolution of H1, or EVOLVE(H1,H′1),
notationally. Now assume that the triple represents only a
local proof (i.e., we are also interested in other parts ofM).
How should we compose this local triple to obtain a new
triple? Formally, we have the following:

{φ} P {ψ} EVOLVE(H̃, H̃′)
{φ ∧ H̃ ∗ H0 ∧ H0 vM} P {ψ ∧ H̃′ ∗ H0}

(EV)

THEOREM 1 (Propagation of Separation). The rule (EV) is
correct. �

PROOF SKETCH 1. Let I be a model of φ that is also a
model of H̃ ∗ H0 ∧ H0 vM. Let I ′ be the result of execut-
ing P from I. For each address v ∈ dom(I ′(H0)), because
H0 is a ghost variable, i.e., its domain is not affected by ex-
ecuting P , we also have v ∈ dom(I(H0)). It follows that
v ∈ (dom(I(M)) \ dom(I(H̃))). Directly from the defi-
nition of evolution, we deduce v 6∈ dom(I ′(H̃′)) must hold.
As a result, I ′ also satisfies H̃′ ∗ H0. �

We are now ready to describe our notion of enclosure. We
wish to describe, given a program P and a heap collection
H̃ in a precondition description φ, that all heap updates
(heap assignments or deallocations) in P , are confined to an
evolution of H̃. The following definition, intuitively, is about
one aspect of memory-safety: the heap updates are safe.

DEFINITION 3 (Enclose). Suppose we have a valid triple
T = {φ} P { }, H̃ appears in φ, and that φ |= H̃ v M. We
say H̃ encloses all heap updates of P if for any model I of φ
and for any execution path of P of the form P1; s;P2 where s
is a heap update to a location v, it follows that there exists H̃′
s.t. {φ} P1 { }  EVOLVE(H̃, H̃′) and v ∈ dom(I ′(H̃′))
hold, where I ′ is the result of executing P1 from I.

We shall use the notation T  ENCLOSE(H̃) to denote
that H̃ encloses all the updates of P wrt. T . �

We now can introduce our frame rule. It is in fact all about
“preserving the heap reality”. Recall that a recursive con-
straint, which satisfies the standard side condition and of
which the heap variables are all ghost (and this is a com-
mon situation), remains true from precondition to postcon-
dition. What may no longer hold in the postcondition is the
heap reality of some H0. That is, H0 v M may hold at the
precondition, but no longer so at the postcondition. In other
words, given local reasoning for a code fragment P and the
fact thatH0 vM holds before executing P , how would we
preserve this heap reality, without the need to reconsider the

code fragment P ? Our answer is the following Hoare-style
rule, our new frame rule:

{φ} P {ψ} ENCLOSE(H̃)
{φ ∧ H̃ ∗ H0 ∧ H0 vM} P {ψ ∧ H0 vM}

(FR)

THEOREM 2 (Frame Rule). The rule (FR) is correct. �

PROOF SKETCH 2. We prove by contradiction. Assume it is
not the case, meaning that there is model I of φ that is also
a model of H̃ ∗ H0 ∧ H0 v M and I ′ is the result of
executing P from I, but I ′ does not satisfy H0 v M. Thus
there must be a cell (v 7→ ) that belongs to I ′(H0) but
not I ′(M). Because I(H0) v I(M), the fragment P must
have updated the location v. Therefore, there must be an
execution path of P which is of the form P1; s;P2, where
s is a heap update to the location v. Let I be the result of
executing P1 from I. By the definition of enclosure, assume
{φ} P1 { } EVOLVE(H̃, H̃′) and v ∈ dom(I(H̃′)) hold.
By (EV) rule, we have I satisfies H̃′ ∗ H0. Since H0 is a
ghost variable, its domain is not affected by executing P1,
i.e., v ∈ dom(I(H̃0)) holds. This is a contradiction. �

Let us demonstrate the use of the two theorems on a very
simple example. Consider the triple:

{((x 7→ ) ∗ H) vM} *x = 1; {((x 7→ 1) ∗ H) vM}

We could follow the symbolic execution rules presented in
Section 4 and also be able to prove this triple. But, for the
sake of discussion, we consider local reasoning over triple
T :

{(x 7→ ) vM} ∗ x = 1; {(x 7→ 1) vM} ,

which holds trivially. Also, we can clearly see that both T  
EVOLVE((x 7→ ), (x 7→ 1)) and T  ENCLOSE((x 7→ ))
hold. Applying the rule (EV), we deduce that (x 7→ 1) ∗ H
holds after executing the code fragment. Furthermore, ap-
plying the frame rule, rule (FR), we deduce that H v M
remains true, i.e., the heap reality ofH is preserved. Putting
the pieces together, we can establish the truth of the original
triple by making use of the two theorems.

Recall that we use traditional conjunction, as opposed to
separating conjunction in SL. We thus emphasize that all the
rules presented above (CFR, EV and FR in particular) can be
used in combination because in our framework: {φ} P {ψ1}
and {φ} P {ψ2} imply {φ} P {ψ1 ∧ ψ2}.

Our frame rules vs. SL’s frame rule: We now elaborate
the connection of our two rules (EV) and (FR) with the
traditional frame rule in Separation Logic (SL). First, why
do we have two rules while SL has one, as introduced in the
beginning of this section? The reason is that SL, succinctly,
captures two important properties: that

• π can be added to precondition φ and it remains true in
the postcondition;
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[MALLOC]

φ |= H̃ v M ψ |= H̃′ vM
ψ |= dom(H̃′) ⊆ dom(H̃) ∪ {x}

{φ} x = malloc(1) {ψ} evolve(H̃, H̃′)
[FREE]

φ |= H̃ v M ψ |= H̃′ vM
ψ |= dom(H̃′) ⊆ dom(H̃) \ {x}
{φ} free(x) {ψ} evolve(H̃, H̃′)

[OTHER−STATEMENTS]

φ |= H̃ v M ψ |= H̃′ vM
ψ |= dom(H̃′) ⊆ dom(H̃)
{φ} s {ψ} evolve(H̃, H̃′)

[SEQ−COMPOSITION]

{φ} P {ψ} evolve(H̃, H̃′)
{ψ} Q {γ} evolve(H̃′, H̃′′)
{φ} P ;Q {γ} evolve(H̃, H̃′′)

[CALL]

[{φ} f() {ψ} evolve(H̃, H̃′)] ∈ Specs φ′ |= φ

{φ′} call f() { } evolve(H̃, H̃′)
[COMPOSITION]

{φ} P {ψ} evolve(H̃1, H̃′1)
{φ} P {ψ} enclose(H̃) φ |= H̃ ∗ H̃2 ∧ H̃2 vM

{φ} P {ψ} evolve(H̃1 ∪ H̃2, H̃′1 ∪ H̃2)

Figure 4: Hoare-style Rules for Evolution. OTHER-

STATEMENTS applies to statement s not of the kind covered by
the rules above.

• π retains its separateness, from precondition φ to post-
condition ψ.

The second property is important for successive uses of the
frame rules. Our rule (FR) above only provides for the first
property. We accommodate the second property with the
other rule (EV), i.e., the “propagation of separation” rule.

The two concepts of evolution and enclosure in fact ex-
ist in SL, implicitly. Given the triple T = {φ} P {ψ}, as-
sume that H is the heap housing the precondition φ and
H′ is the heap housing the postcondition ψ. In SL, the
frame rule also requires that T  EVOLVE(H,H′) and that
T  ENCLOSE(H). In short, this means that whenever the
traditional frame rule in SL4 is applicable, our frame rules
are also applicable without any additional complexity.

However, in general our assertion language allows for
multiple subheaps, which entails more expressive power, but
at the cost that we no longer can resort to the above default.
For this paper, we require the specifications to also nominate
the subheaps participating in the evolution and/or enclosure
relations. Such relations are stated under the keyword frame,
following the typical requires and ensures keywords. We
demonstrate this in Section 6 when presenting our driving
example.

4 We assume an SL fragment without magic wands.

[HEAP−ASSIGN]

φ |= H̃ v M x ∈ dom(H̃)
{φ} *x = y { } enclose(H̃)

[FREE]

φ |= H̃ v M x ∈ dom(H̃)
{φ} free(x) { } enclose(H̃)

[OTHER−STATEMENTS]

φ |= H̃ v M
{φ} s { } enclose(H̃)

[SEQ−COMPOSITION]

{φ} P {ψ} evolve(H̃, H̃′)
{φ} P {ψ} enclose(H̃) {ψ} Q {γ} enclose(H̃′)

{φ} P ;Q {γ} enclose(H̃)
[CALL]

[{φ} f() {ψ} enclose(H̃)] ∈ Specs
φ′ |= φ ∧ H̃ vM
{φ′} call f() { } enclose(H̃)

[COMPOSITION]

{φ} P {ψ} enclose(H̃) φ |= H̃′ vM
{φ} P {ψ} enclose(H̃ ∪ H̃′)

Figure 5: Hoare-style Rules for Enclosure. OTHER-

STATEMENTS applies to statement s not of the kind covered by
the rules above.

Proving the Evolution and Enclosure relations. The next
question of interest is how the evolution and enclosure rela-
tions are practically checked. For evolution, we use the rules
in Fig. 4. In the rule [CALL],

[{φ} f() {ψ} EVOLVE(H̃, H̃′)] ∈ Specs

means that we have nominated EVOLVE(H̃, H̃′) the spec-
ifications of function f. Similarly for enclosure relation,
which can be effectively checked using the rules presented
in Fig. 5. Checking evolution and enclosure relations is also
performed modularly. Specifically, at call sites, we make use
of the rule [CALL] and then achieve compositional reasoning
with the rule [COMPOSITION].

We note that other frameworks (e.g., Separation Logic,
Implicit Dynamic Frames) would need a similar mechanism
to ensure such “compliance”. However, our rules are tailored
more towards the flavor of symbolic execution. For example,
in a typical implementation, to prove EVOLVE(H̃, H̃′) for a
symbolic path, at any point in the path we would track the
largest possible subheap H such that EVOLVE(H̃,H). In the
end, the remaining obligation is to prove that H v H̃′. For
the same reason, our implementation will not suffer from any
noticeable degree of non-determinism when dealing with the
[SEQ−COMPOSITION] rules in Figures 4 and 5.

We finally conclude this section with two Lemmas about
the correctness of the rules presented in Figures 4 and 5. The
proofs of the two lemmas follow similar (but more tedious)
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mgraph(h, x, tin) :- h l emp, x = null.
mgraph(h, x, tin) :- (x 7→ (1, , )) v tin, h l emp.
mgraph(h, x, tin) :- hx l (x 7→ (1, l, r)), tl l hx ∗ tin,

mgraph(hl, l, tl), tr l hl ∗ tl,
mgraph(hr, r, tr), h l hx ∗ hl ∗ hr, h ∗ tin.

pmg(h, x, tin, tout) :- h l emp, x = null, tout l tin.
pmg(h, x, tin, tout) :- (x 7→ (1, , )) v tin, h l emp,

tout l tin.
pmg(h, x, tin, tout) :- hx l (x 7→ (1, l, r)),

tl l hx ∗ tin, mgraph(hl, l, tl),
tr l hl ∗ tl, mgraph(hr, r, tr),
tout l hr ∗ tr, h l hx ∗ hl ∗ hr, h ∗ tin.

pmg(h, x, tin, tout) :- hx l (x 7→ (0, l, r)),
tinl l (x 7→ (1, l, r)) ∗ tin, pmg(hl, l, t

in
l , t

in
r ),

pmg(hr, r, t
in
r , t

out), h l hx ∗ hl ∗ hr, h ∗ tin.

Figure 6: Definitions of mgraph and pmg

steps as in proving our two main theorems. For brevity, we
omit the details.

LEMMA 1 (Evolution). Given a valid triple T = {φ}P {ψ}
where φ |= H̃ and ψ |= H̃′, T  EVOLVE(H̃, H̃′) holds if
it follows from the rules in Fig. 4. �

LEMMA 2 (Enclose). Given a valid triple T = {φ} P { }
where φ |= H̃, T  ENCLOSE(H̃) holds if it follows from
the rules in Fig. 5. �

6. A Breakthrough Example
Reconsider the graph marking example, whose program was
presented earlier in Fig. 1. Now, initially the graph is un-
marked, and we want to prove that at the end, the graph
is fully marked. The definition of mgraph in Fig. 6 simply
states that a graph is fully marked. A node is marked if its
mark field is 1; otherwise if the value is 0. The parameter tin

is of heap type, representing the “history” that includes all
the visited nodes — starting off from a root node of interest
and an empty history. The usage of a “history” is critical in
defining a possibly cyclic graph.

There are some subtle but critical points that makes the
example extremely challenging. First, note that despite the
need for a history in the specification, the program itself does
not implement any such notion. But without some form of
history, how does the program ensure termination? The an-
swer is, intuitively, that it uses the mark field for termination.
Thus one of the central difficulties example is in fact to make
a connection between a node’s history and its mark.

A second subtlety is this. Though it is obvious that the
postcondition must be a fully marked graph, what is the pre-
condition? Clearly the program cannot (fully) mark an ar-
bitrary input graph (e.g. it immediately terminates upon en-
countering a marked node). It is also easy to see that the
function should allow an input graph that is “mark successor
closed”, i.e. any successor node of a marked node is itself
already marked. This concept covers both fully unmarked

graphs as well as fully marked graphs. However, this intu-
itively appealing condition is, surprisingly, too strong.

0 

1 2 
l r 

l 

Figure 7: A Cyclic Graph

Now consider a sim-
ple cyclic graph in Fig. 7,
assuming that initially all
nodes are unmarked and
we start the markgraph

function with the root
node 0. We proceed by
first marking 0. We then
proceed with the first re-
cursive call and mark the
node 1. Then from 1, we go back to 0, which has already
been marked. But at 0 now, the graph is no longer “marked
successor closed”, because while 0 has been marked, one of
its successors, 2, has not yet been marked.

We can see that the actual precondition is somewhat com-
plicated, because it also acts an invariant. Before discussing
the precondition, called “properly (partially) marked graph”
or pmg predicate in Fig. 6, let us now dissect the markgraph
function more carefully.

There are indeed four scenarios. (1) The function termi-
nates upon seeing a null pointer. The function also terminates
upon encountering a marked node. For this there are two pos-
sibilities: (2) the current node has been encountered before
(in the history); or (3) the subgraph rooted at the current node
had already been fully marked (modulo the history). Finally,
when encountering an unmarked node (4), the function first
marks the node, then invokes two recursive calls to deal with
the left and right subgraphs. This last scenario poses a tech-
nical challenge, concerning separation of the two recursive
calls, so that a frame rule can be used to protect the effects
of the first call from the that of the second. In actual fact, the
second call can refer to a portion of the heap modified by
the first call. The important point however is the second call
does not write to this subheap.

The four rules in our definition of pmg(h, x, tin, tout) cor-
respond to the four scenarios identified above. We address
the technical challenges by having: (a) h encloses the write
footprint of the code while precisely excludes the nodes that
had been visited in the history; (b) tin captures the history,
i.e. nodes visited starting from the root node to the current
node x; and importantly, (c) tout captures the output history,
which would be the set of visited nodes right after the func-
tion markgraph finishes processing the subgraph rooted at
x. The use of tout resembles a form of “continuation pass-
ing”.

The importance of tout can be understood by investigat-
ing the 4th scenario identified above. Encountering the node
x that is unmarked, the function first marks it before recur-
sively processing the left subgraph and then the right sub-
graph. What then should be used as the histories for these
recursive calls? The history used for the first call can be eas-
ily constructed by conjoining the history of the call to x with
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the updated node x (the mark field has been set). However,
the actual history used for the second call very much depends
on the shape of the original graph. We choose to construct
tout recursively, thus the output history of the first recursive
call can be conveniently used as the input history for the sec-
ond call. The 4th rule in the definition of pmg closely follows
these intuitions.

Before proceeding, we contrast here our use of the pred-
icate pmg with the way predicates are used in SL. In SL, a
predicate describes (a part of) the current heap; in pmg, we
simultaneously describe three heaps corresponding to differ-
ent stages of computation.

In Fig. 8 we show the specification of the function
markgraph and the proof for the most interesting case: x
is not null and its mark field has not been marked. In the
precondition, H, the first component of the definition of
pmg, appropriately encloses the write footprints of the func-
tion. It is thus easy to derive, ENCLOSE(H). Proving that
EVOLVE(H,H′) is also standard, thus we will not elaborate
on this. Instead, let us focus the discussion on how the frame
rules are used.

The assertion after step 1 is obtained by unfolding the
definition of pmg using the fourth rule and instantiating the
values of l and r. Note that this unfolding is triggered since
the footprint of x is touched. (Using the other rules will lead
to a conflict with the guard assume(x && x->m != 1).) At
the recursive call mark(l) (point 3), we need to prove that
the assertion after program point 2 implies the precondition
of the function markgraph. In this context, the precondition

is: pmg(Hl, l, tin
l
, tout

l
), Hl vM, tin

l vM . Such a

proof can be achieved simply by matching Hl with Hl, tin
l

with tinl , and toutl with tinr .
The assertion after this call (step 3) is then obtained

by application of framing. First we use the specification to
replace the first occurrence of pmg by mgraph. What we
would like to focus on here is the shaded heap formula. First,
applying rule (FR), we frame Hr ∗ tinl vM through the
step 3 because the heaps Hr and tinl lie outside the updates
of the recursive call markgraph(l); note that Hl v M,
however, no longer holds and is removed. Second,H evolves
into H′, so a heap’s separation from H before the step was
propagated into its separation from H′ after the step, shown
as the application of rule (EV).

This explanation is easily adapted for the call at program
point 4. Finally, the postcondition is proved by unfolding
mgraph(H′, x, tin) using the third rule, followed by appro-
priate variable matching.

In our graph marking example, our “invariant” precondi-
tion involves the predicate pmg while the final postcondition
involves the predicate mgraph. The fact that pmg resembles
the code is coincidental but unsurprising, since it needs to
describe the subheaps relevant to the two recursive calls. One
might argue that the top-level specification mgraph is con-

trived so as to be similar to pmg. One could notice that the
former definition is “left-askew”, as the “history” used for
the right subgraph is computed by conjoining the footprint
and the history of the left subgraph If instead we had used
a “right-askew” definition, the final entailment may become
very hard to prove. In the end, this paper is ultimately about
automation, and not about how we can hide implementation
details and use highly declarative specifications.

Remark: There are two published proofs which deserve
some mention in comparison, even though they are not deal-
ing with recursive predicates. An important one is in [23]
which considered the same graph marking algorithm. The
critical difference is that their method precondition does not
require that the input graph to be “properly marked”. This
means that the final graph might not be completely marked.
Therefore, their postcondition cannot imply that the final
graph is completely marked. The crucial point here is that
the proof in [23] does not prove the same thing as we do. As
an aside, the proof is not about local reasoning; it does not
use framing at all. Indeed, the specification even refers to
addresses outside its code footprint. The dynamic frame of
the method, and those of its sub-methods, are all the same:
it represents the one global graph.

The second published proof [20] is about the Schorr-
Waite algorithm. However, the program considered is com-
pletely different: it comprises a single non-recursive func-
tion and so it has just one dynamic frame. Hence the proof
is not concerned about the two technical points we are so
concerned with: that the input graph is “properly marked”,
allowing for a mark-successor-closed graph, and the intricate
frame reasoning when dealing with two successive calls.

7. A Prototype Implementation
We implemented a prototype in CLP(R) [17], submitted as
supplementary material for this paper. We used an Intel 2.3
GHz machine running Linux (Ubuntu 14.04.3 LTS), with
4GB memory. Results appear in Table 1.

• We assume that function specifications are given, and
loops are compiled into tail-recursive functions5.

• For each function, we prove one symbolic path at a time.
A program is first converted into transitions of three types
according to statement types: (a) those which access/ma-
nipulate only the stack memory, (b) heap-manipulating
statements identified in Section 3, and (c) function calls.
For (a), standard symbolic execution is assumed to be
well-understood. For (b), i.e. basic heap-manipulating
statements, symbolic execution rules presented in Propo-
sition 2 are used.

• At function calls, the frame rules in Section 5 are em-
ployed to achieve compositional reasoning.

5 For example, we manually translate the example in Fig. 2 to a recursive
function, used later as a benchmark program increment in Table 1.
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requires: pmg(H, x, tin, tout), H vM, tin vM
ensures: mgraph(H′, x, tin), H′ vM, tout l tin ∗ H′,
frame: enclose(H), evolve(H,H′)
void markgraph(struct node *x) {
{ pmg(H, x, tin, tout), H vM, tin vM }
1 assume(x && x->mark != 1); l = x->left; r = x->right;
{ Hx l (x 7→ (0, l, r)), tinl l (x 7→ (1, l, r)) ∗ tin, pmg(Hl, l, t

in
l , t

in
r ), pmg(Hr, r, t

in
r , t

out),
H l Hx ∗ Hl ∗ Hr, H ∗ tin, H vM, tin vM }

2 x->mark = 1;
{ pmg(Hl, l, t

in
l , t

in
r ), tinl l (x 7→ (1, l, r)) ∗ tin, Hl ∗ Hr ∗ tinl vM, pmg(Hr, r, t

in
r , t

out) }
3 markgraph(l);
{ mgraph(H′l, l, tinl ), H′l vM, tinr l t

in
l ∗ H′l, // postcondition

tinl l (x 7→ (1, l, r)) ∗ tin, pmg(Hr, r, t
in
r , t

out), // (CFR)
H′l ∗ Hr ∗ tinl , // (EV)

Hr ∗ tinl vM } // (FR)
4 markgraph(r);
{ mgraph(H′l, l, tinl ), tinr l t

in
l ∗ H′l, tinl l (x 7→ (1, l, r)) ∗ tin, // (CFR)

mgraph(H′r, r, tinr ), H′r vM, tout l tinr ∗ H′r, // postcondition

H′r ∗ H′l ∗ tinl , // (EV)

H′l vM, tinl vM } // (FR)
}

Figure 8: Mark Graph Example

The rules in Fig. 4 and Fig. 5 are incorporated into our ver-
ification framework and work in tandem with our symbolic
execution and frame rules.

The remaining task is to discharge proofs of entailments
between recursive definitions at call sites and at the end of
a function. To demonstrate full automation, our prototype
adapted an entailment check procedure from [8, 27]. There
they use a general strategy of unfolding a predicate in both
the premise and conclusion until the entailment becomes
obvious; [9] describes this strategy as “unfold-and-match”
(U+M) and we will follow this terminology. In particular:

• We unfold a recursive constraint on a pointer x when its
“footprint” (e.g., x->next) is touched by the code [27].
This step is performed during symbolic execution.

• At a call site or the end of a function, we deal with
obligations of the formL |= R, performing a sequence of
left unfolds (unfolding L) and/or right unfolds (unfolding
R) until the proof obligation is simple enough such that a
“proof by matching” is successful. At this point, recursive
predicates are treated as uninterpreted. After dealing with
with the heap constraints, an SMT solver – Z3 [10] – can
be employed to discharge the obligation.

Note that our entailment check procedure does not employ
any user-defined lemmas or axioms. Neither does it involve
newer technology such as automatic induction [9]. The point
here is that our automation is not obtained from a custom
theorem-proving method.

Benchmark Description. To demonstrate the applicability
of our framework, other than our breakthrough example and

examples presented throughout this paper, we have also se-
lected a number of example programs from the GRASSHOP-
PER system [26]. As sanity checks, we also introduce a num-
ber of buggy variants (prefixed by *buggy-) which, as ex-
pected, our prototype will fail to verify.

Our benchmarks are in four categories:
• heap manipulations. The properties to be proved do not
involve recursive constraints.
• singly-linked lists. The properties (collectively) involve
reasoning about the shape, data, and size of a list.
• trees. Programs here traverse a binary and binary search
tree. We also have a distinguished example isocopy which
has not been verified before in as general a manner.
• The last group is about our driving example: graph mark-
ing, and some buggy variants. The purpose here is simply to
present some performance metrics.

Proving isomorphic trees. Consider the benchmark isocopy,
which is about the classic problem of copying a tree. This
program has been previously used by [4] to demonstrate
symbolic execution with Separation Logic (SL). However,
[4] simply proves that the new tree is separate from the orig-
inal one; Here we prove a more challenging property, that
the copy, also a tree, is isomorphic to the original tree. Spec-
ifying such property is easy using our framework of explicit
heaps, as we can simultaneously describe different heaps
corresponding to different stages of computation.

On buggy examples. We have deliberately injected a num-
ber of different bugs into originally safe programs. To
name a few: wrongly specified “enclosure” heap (*buggy-
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Table 1. Benchmarking Our Prototype Implementation. #
VCs denotes the number of entailment checks; # Z3 calls
denotes the number of calls to Z3.

Group Program T (s) # VCs # Z3 calls

ex1 (Fig. 3) 0.2 1 11
simple *buggy-ex1 0.2 1 11

other examples 0.3 4 (total) 11
append 0.9 3 86
copy 8.4 3 70
filter 2.0 5 91
increment 0.7 3 60
insert 0.4 1 19

sll insert-end 2.1 3 74
length 0.1 3 25
*buggy-length 0.2 3 34
remove 0.1 2 17
traverse 0.1 1 10
zero 0.9 3 60
bst-search 1.0 6 87

tree isocopy 12.9 4 74
*buggy-isocopy 0.1 0 10
traverse 0.5 4 38
markgraph 6.8 6 174

graph *buggy-mark1 33.7 1 260
*buggy-mark2 11.9 3 148

isocopy), buggy recursive definitions (*buggy-mark2), buggy
stack manipulating statements (*buggy-length), and buggy
heap-manipulating statements (*buggy-mark1). For these
cases, the performance of our verifier can diverge signifi-
cantly. For most examples, we fail and terminate quickly.
Notably, however, for the case of *buggy-mark1, our en-
tailment check procedure exhausts its options without being
able to find a successful proof.

8. Further Related Work and Discussion
It is possible, but very difficult, to reason in Hoare logic
about programs with pointers; [5, 22] explore this direction.
The resulting proofs are inelegant and remain too low-level
to be widely applicable, let alone being automated.

Separation Logic (SL) [25, 28] was a significant advance
with local reasoning via a frame rule, influencing modern
verification tools. For example, [3, 7, 15] implement SL-
based symbolic execution, as described in [4]. But there was
a problem in accommodating data structures with sharing.

Bornat et al. [6] present a pioneering SL-based approach
for reasoning about data structures with intrinsic sharing.
The attempt results in “dauntingly subtle” [6] definitions and
verifications. Thus it is unclear how to automate such proofs.

Explicit naming of heaps naturally emerged as extensions
of SL [12]. Reynolds [29] conjectured that referring explic-
itly to the current heap in specifications would allow bet-
ter handles on data structures with sharing. One major ad-

vance of this paper over [12] is in providing a proof method
for propagating and reasoning about recursive definitions.
More specifically, we now considered entailments between
such definitions, whereas [12] only considered simple safety
properties, which can be translated to the satisfiability prob-
lem restricted to non-recursive definitions. But more impor-
tantly, it is this current paper that fully realizes Reynolds’
conjecture by connecting the explicit subheaps to the global
heap (M) with the concept of heap reality and formalizing
the concepts of “evolution” and “enclosure”. This leads to a
new frame rule, and consequently enables local reasoning.

1 
2 

3 

ℓ𝓁 𝑟 

Figure 9: mark DAG

Next consider [14] which
addressed sharing (but not
automation). Recall the
mark function, but now con-
sider its application on a
DAG, Fig. 9. The “ramify”
rule in [14] would isolate the
shaded heap portion 1 and
prove that the portion 1 has
all been marked. With the help of the magic wand, this seems
general. Its application, however, is counter-intuitive and
hard to automate, because the portion 1 is artificial: it does
not correspond to the actual traversal of the code.

The work [24] shows that by choosing less straightfor-
ward definitions of heaps and of heap union in Coq, we can
obtain effective reasoning with abstract heap variables, and
hence support full separation logic without resulting in ex-
cessive proof obligations. As a result, proofs of a number of
simple but realistic programs have been successfully mech-
anized. Similarly, the work [30], which described a mecha-
nized proof of a concurrent in-place spanning tree construc-
tion algorithm, bears resemblance to our graph marking ex-
ample. This is because they traverse via two recursive calls
(but they are unconcerned about their relative order). There-
fore this work does address the challenge of dealing with the
interaction of two recursive calls. Both these works [24, 30]
do not address the automation of local reasoning.

We had earlier carefully discussed Separation Logic (SL)
and Dynamic Frames (DF). Here we briefly mention some
recent work on Region Logic, see e.g. [2]. This work is
related to DF: it is essentially a form of Hoare logic for
object-based programs. A region, like a dynamic frame, is
an expression to describe the footprint of a function.

Limitations: We finally remark about the intrinsic limita-
tions of “proof by framing”. Consider the following exam-
ple: a modification of the markgraph example, but instead
working on DAGs.

void countpath(struct node *x) {
if (!x) return;
struct node *l = x->left, *r = x->right;
x->mark = x->mark + 1;
countpath(l); countpath(r);

}
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This program, intuitively, counts the number of “paths” from
the root to each node in the DAG. It cannot be verified us-
ing our frame rule(s), simply because the sets of cells modi-
fied by left and right recursive calls overlap: what established
by the first cannot be framed over the subsequent fragment.
However, in this case, it is questionable whether “local rea-
soning” with framing is the way to proceed. (It does not
mean that we cannot prove such program using a manual
or a non-compositional method.)

9. Conclusion
We presented a verification framework where the key do-
main of discourse was that of recursive definitions over ex-
plicit subheaps. As a specification language, it is very ex-
pressive for complex data structures and frames. We pre-
sented a set of rules for verification, with emphasis on a
frame rule. This rule allows us to enjoy the primary benefit
of SL, local reasoning. We finally presented an implemen-
tation and demonstrated it over a number of representative
programs. To wrap things up, we presented the first auto-
mated proof a classic graph marking algorithm.
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