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Abstract
In quantitative program analysis, values are assigned to ex-
ecution traces to represent a quality measure. Such analyses
cover important applications, e.g. resource usage. Examin-
ing all traces is well known to be intractable and therefore
traditional algorithms reason over an over-approximated set.
Typically, inaccuracy arises due to inclusion of infeasible
paths in this set. Thus path-sensitivity is one cure. How-
ever, there is another reason for the inaccuracy: that the cost
model, i.e., the way in which the analysis of each trace is
quantified, is dynamic. That is, the cost of a trace is de-
pendent on the context in which the trace is executed. Thus
the goal of accurate analysis, already challenged by path-
sensitivity, is now further challenged by context-sensitivity.

In this paper, we address the problem of quantitative anal-
ysis defined over a dynamic cost model. Our algorithm is
an “anytime” algorithm: it generates an answer quickly, but
if the analysis resource budget allows, it progressively pro-
duces better solutions via refinement iterations. The result
of each iteration remains sound, but importantly, must con-
verge to an exact analysis when given an unlimited resource
budget. In order to be scalable, our algorithm is designed to
be incremental. We finally give evidence that a new level of
practicality is achieved by an evaluation on a realistic collec-
tion of benchmarks.

1. Introduction
In a qualitative analysis of programs, such as testing, model
checking and verification, we assign to every execution trace
of a program a Boolean value: accept or reject. In contrast, in
quantitative analysis, each trace is assigned a quantity value
or cost, and the analysis estimates the collection of such val-
ues into an overall quantity measure. Ideally one would like
to compute an optimal quantity measure in a given budget.
Quantitative analysis covers a wide range of important appli-
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cations such as Worst-Case Execution Time (WCET) analy-
sis (see [22, 26] for surveys), power consumption [25], per-
formance testing [1], to name a few. Another class of ap-
plications involves detecting and quantifying the amount of
information leakage. For example, this can be attempted via
some form of data flow analysis.

Quantitative program analysis has been so far dominated
by some form of Abstract Interpretation (AI) where ab-
stract properties are propagated through transitions induced
by the program. (In WCET analysis, [24] proposes an ef-
ficient cache domain while interval abstraction is used in
[21].) Typical AI implementations are efficient and scalable;
however, their precision could be arbitrarily low, and perhaps
more importantly, the level of (im)precision is unknown.

Thus there is a great need to sometimes go beyond an ef-
ficient implementation of AI. Now a principal reason for the
efficiency of AI is that it has little consideration for path-
sensitivity, due to its abstract reasoning. Path sensitivity, on
the other hand, faces the challenge of the path explosion
problem. In fact, we can focus on a sub-problem of this gen-
eral problem: how to make sure certain infeasible paths do
not distort the analysis result. Addressing this sub-problem
are many works that refine the process of AI, perhaps the
most notable are the CEGAR [10] based approaches which
refine the abstract domain after having identified a so-called
“counterexample” path as a possible cause for distortion.

Dealing with path-sensitivity is, however, only half the
story. Another important cause of inaccuracy in analysis is
due to the fact the cost model, that is, the way in which the
analysis of each trace is quantified, is dynamic. More specif-
ically, this means that the quantitative measure of a trace is
dependent on the context in which the trace is executed. Thus
the goal of accurate analysis, already challenged by path-
sensitivity, is now further challenged by context-sensitivity.

In summary, current analysis algorithms are inaccurate
for two main reasons: they include traces without consider-
ation of feasibility, and also include traces without consider-
ation of optimality.

The class of analysis problems which employ a dynamic
cost model is significant. We have mentioned two examples
above. The first is the class of resource analysis over low-
level programs. Here the dynamism arises from the underly-
ing micro-architecture, with the cache as the prominent ex-
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ample. To see that the cost model is in fact dynamic is easy:
running a trace starting from a different initial cache config-
urations may clearly end up with different results (for tim-
ing, or energy usage). A different class is that of “forward”
analyses where the cost of a trace is intimately dependent
on a prefix. Forward data flow analysis is an example, and
this kind of analysis is clearly similar to many others, e.g.,
points-to analysis.

In this paper we present an algorithm for accurate quan-
titative analyses over a dynamic cost model that that makes
the best use of a given budget. The algorithm is based on
abstract symbolic execution, exploring the symbolic execu-
tion space while performing judicious abstraction in order to
achieve scalability. Its main loop iterations perform refine-
ment to the previous level of abstraction, so as to enhance
the accuracy of the analysis. Its has two key features: (a) It
answers quickly in one iteration with a sound analysis, and
successive iterations can only improve the analysis. There-
fore it is an “anytime” algorithm [5]. More importantly, if
the analysis resource budget is sufficiently large, then it con-
verges in the sense that it eventually produces an exact anal-
ysis. In other words, our algorithm is progressive. (b) It can
compare its latest answer, using a lower bound on the quality
of the analysis, with a worst case estimate of any other pos-
sible answer, i.e., an upper bound. Therefore we also have
the important practical feature “early termination” when the
current answer is deemed good enough.

The main technical challenge we address is, as usual,
scalability. Each iteration, in its quest for more accuracy,
embodies more detail and thus, the level of detail grows
exponentially. Therefore, we have designed our algorithm to
be incremental. This means that we require:

• a persistent and compact representation of the analysis
on each iteration, and

• an ability to reuse (parts of) the analysis of previous
iterations as we refine.

We achieve this by having an effective pruning of the search
space by using an established technique of reuse facilitated
by the computation of interpolants and witness paths, and
maintaining lower and upper bounds on parts of the sub-
space, and thus branch-and-bound pruning is applicable.

Finally, In Section 5 we demonstrate our algorithm on
the most prominent of quantitative analysis: WCET. With re-
alistic benchmarks, we show that the incremental iterations
indeed produce precision gains progressively, and the final
analysis is always more precise than that obtained through
AI. Importantly, in many benchmarks, our algorithm termi-
nates (i.e., producing an exact analysis) faster than the best
custom algorithms that are designed to pursue an exact anal-
ysis in one iteration. Our experiments also show that our
method can analyze programs that are known to be partic-
ularly hard to analyze in the WCET community.

2. Overview and Examples
The conceptual core of our algorithm is centered on the sym-
bolic execution tree (SET) of a program – a tree representing
all possible symbolic paths. Before proceeding, we first clar-
ify that in order to deal with a finite SET, we do not deal with
unbounded loops. This is because we are performing a quan-
titative analysis, and in such an analysis, it is standard that
there is an priori bounds on loops. If we did not have this re-
striction, the analysis problem becomes parametric, and this
is outside the scope of this paper. For bounded loops, the
general approach we use is to statically unroll them.

In our setting, each (full) symbolic path in the theoretical
SET is interpreted using the most precise abstract domain
available. Consequently, from the SET the “exact” analysis
can be extracted. The SET is often too big to compute ex-
plicitly, we instead compute a smaller hybrid SET (HSET),
a SET where some subtrees of symbolic paths may be re-
placed by AI nodes. Each node in a HSET is adorned with
an analysis, which we shall call its upper bound. Now an AI
node is, intuitively, an over-approximation of the analysis
of the subtree it replaces but is efficiently obtained through
abstract interpretation using some coarse abstract domain.
Though an AI node is conceptually a single leaf node in our
HSET, we assume that as a by-product of its (abstract) anal-
ysis, an AI node carries with it an extremal path which dis-
plays the optimal analysis value over all paths from the root
to this AI node. (Note again that since the analysis here per-
formed with abstraction, it is not necessary that the extremal
path is feasible nor optimal.) Finally, if the subtree of a non
AI node does not contain any AI node, then its upper bound
will be exact. At this point, we say this bound is also the
lower bound of the (analysis of the) subtree.

The main idea then is to define a refinement of a HSET,
and this means to choose an AI node to refine into a HSET,
leaving all other nodes unchanged. Having chosen this node,
we then use its extremal path in order generate a symbolic
execution path or “spine” eminating from the node. Along
this path, we construct new AI nodes along each branch
deviating from the spine, and thus finally get a new HSET to
replace the chosen AI node. Clearly the new HSET exhibits
more information because the spine exhbits exact symbolic
execution, and further, each new AI node deviating from the
spine has a context emerging from exact symbolic execution
propagated along the spine up to the deviation point. Finally,
how do we choose an AI node? In the base case where the
tree constains no AI nodes, its root node will indicate an
exact analysis. In the general case, we now need to choose
one AI node in the tree to refine, that is, to replace it with a
HSET which, hopefully, will contain a more precise analyses
than the AI node itself. The following choice, in conjunction
with the use of the potential witness paths, is what makes our
algorithm goal-directed: choose an AI node N which is has
a maximal upper bound. (Not choosing this node means that
its analysis will eventually have to be refined later anyway.)
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Figure 1: The Refinement Step

2.1 An Abstract Example
We now walk through the HSET refinement process on an
abstract example, in Figure 1(a). The leftmost AI node @
with upper bound σ0 is refined into the subtree labelled with
the upper-bound analysis σ in the second tree in Figure 1(b).
Note that this new subtree contains two AI nodes with upper
bounds σ1 and σ3. Note also that the subtree T2 does not
contain any AI-nodes, and so σ2 is also an exact analysis.
We now detail this refinement.

Next consider the AI node labelled σ0 in the first tree.
Though this is a single node, we assume that the AI algo-
rithm that gave rise to its analysis σ0 also gave information
about its extremal path, say p. Suppose this path, when ex-
panded out from that single node, would go through the sub-
tree T2 indicated in the second tree. We then construct the
subtree starting from σ0 by first constructing the edges and
nodes as a symbolic path p. As each edge and destination
node is constructed from a branching source node, we also
construct a new edge and destination node corresponding
to the alternative of the branch. For this second destination
node, which is not in the path p, we now construct a new AI
node. At the end of this process, we would have constructed
the subtree which has a spine corresponding to the path p,
and along the spine, we have constructed a number of AI
nodes (two, in this example, labelled σ1 and σ3).

See Figure Figure 1(b) and once again focus on the sub-
tree labelled σ, and where the spine is some path that in-
cludes σ2. There are two possible benefits of this refinement
step. One is that this sub-HSET σ is more precise than the
original analysis σ0 because the join of σ1, σ2 and σ3 is more
precise than σ0. Another benefit is when σ2, which is an ex-
act analysis, can be used to dominate any other analysis. For
example, if the upper bound of σ4 is less than the analysis of
σ2, then the entire subtree at σ4 can be pruned from further
consideration.

We remark here in the refinement step, each of the newly
generated AI nodes require an (abstract) analysis, and al-
though these analyses are efficient, there is the issue that the
number of analyses could be as long as the path p. However,
an important feature is that in the several invocations of ab-

〈0〉 tick = 0
〈1〉 if (b1) tick+= 3
〈2〉 if (b2) tick+= 2
〈3〉 if (b3) tick+= 1

Figure 2: Example Program and its Symbolic Execution tree

stract analysis performed here over the several AI nodes, and
because the employed abstract domain is coarse, the analysis
of each of these is often produces the the same results, and
hence can be cached and need not be redone. We will argue
and demonstrate this important feature in detail later.

2.2 A Motivating Example: Feasibility
Consider the program and its SET in Figure 2 and the WCET
problem at hand is to determine the upper bound of tick.
Assuming that any boolean combination of the unspecified
guards bi is satisfiable. Then clearly the WCET is 6, obtained
from the leftmost path.

To demonstrate reuse, assume that ¬b1 ∧ b2 ∧ b3 is satis-
fiable, and that we already have an exact analysis, tick = 3
of the right subtree marked 〈2’〉. We now can produce an ex-
act analysis for the left subtree marked 〈2〉 without having to
traverse it. To do this, we take the longest path in the right
subtree which gave rise to the analysis, i.e., the witness path,
and this is the leftmost path under 〈2’〉. Call this path p1. We
now replay this path in the left subtree, getting the leftmost
path starting from the root. Call this path p2. Now the idea
is that the analysis of p2 is computed from the analysis of
p1, which is 3. However, since the prefix of p1 from the root
to node 〈2’〉, which increments tick by zero, differs from the
prefix of p2 from the root to node 〈2〉, which increments tick
by 3, we must adjust for this and now declare that the exact
analysis of node 〈2〉 is tick = 6. In other words, we assumed
that the longest increment of tick from node 〈2〉 downwards
is the same as that from node 〈2’〉, which is 3. But since the
prefix of node 〈2〉 is 3 more than the prefix of node 〈2’〉, we
add a further 3 to obtain the final value 6.

There are two further points to note about reuse.

• If b1 ∧ b2 ∧ b3 (ie. the leftmost path) were unsatisfiable,
reuse is in fact still sound, when we declare that the
analysis of node 〈2〉 is 6. But may be imprecise. To
prevent imprecision, we check that the path under node
〈2〉 that corresponds to the “witness” is feasible.
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Figure 3: Detailed Refinement Step

• Now suppose ¬b1∧b2∧b3 (leftmost path in the right sub-
tree) is unsatisfiable but b1 ∧ b2 ∧ b3 (leftmost path in the
left subtree) is satisfiable. Now it is unsound to reuse the
exact analysis of node 〈2’〉 (which now is different from
3) in the analysis of node 〈2〉. In previous implementa-
tions of reuse, e.g.: [8, 15, 17], the exact analysis would
be accompanied by an interpolant which would ensure
that the reuse can soundly take place.

Our algorithm provides bounds for tick in each node. For
example, an upper-bound analysis for the left subtree in
Figure 2, labelled 〈2〉, is tick ≤ 6. This subtree also can have
a lower-bound analysis of a nonnegative number less than or
equal to 6; We also can have a lower bound. for example, if
the path proceeding to the left successor of 〈3’〉was feasible,
4 ≤ tick would be a lower bound. If however we did not
care to check the feasibility of any path going through 〈2〉,
then we could quickly estimate that 3 is a lower bound (by
choosing only rightmost branches that do not add to tick).
Note that there may not actually be a real execution path
resulting in tick = 3. Note also that lower bounds whose
values are too low (e.g., 0 ≤ tick) are not very useful.

We now proceed to analyze the program incrementally.
See Figure 3 where “@” denotes an AI node, the l and u
superscripts denote lower and upper bounds respectively,
and the Tis represent the HSET we construct in each iter-
ation. We start with a single AI node at T1 representing an
(abstract) analysis of the program starting at the beginning.
We could have used traditional abstract interpretation (AI)
which over-approximates the set of paths in the SET in or-
der to limit consideration to a small number of abstract states
(typically, one state per program point). Thus AI analyzers
are typically very efficient. We then quickly, because the an-
alyzer is path-insensitive, determine a (trivial) lower bound
of 0 and an upper bound of 6. Furthermore, the analyzer in-
dicates that the leftmost path is a witness path, i.e., if it were

feasible, then it would indicate the true WCET. In Figure 3,
we show only upper bounds when the lower bound is trivial.

Next we refine the single AI node T1 into the HSET
T2 which now contains new nodes, amongst them two AI
nodes at 〈2’〉 and 〈3’〉. Using abstract interpretation, note
that former has an upper bound of 3, while the latter has an
upper bound of 4. We assume that the constraint b1 ∧ b2 is
unsatisfiable, and so the leftmost path in Figure 2 is in fact
infeasible (at just before program point 〈3〉). Now since node
〈3’〉 has a bound 4, this is inherited by the parent node 〈2〉.
Finally, the root node 〈1〉 inherits the larger of the bounds
of its successors, which are 3 and 4, and so we obtain a
final bound of 4. Now since T2 contains AI nodes which
contribute to this answer, this analysis is not confirmed to be
exact.

Finally we deal with the two remaining AI nodes in T2,
and choose one of them to refine. We choose the node 〈3’〉
over 〈2’〉 because its upper bound is higher. The intuition
is this: if we instead chose to refine the AI node with the
smaller bound, the other AI node will still need to refined
in the future. If, as we will show next, we choose the AI
node 〈3’〉 with the higher bound, there is a chance that the
remaining AI node can be dominated. We now obtain T3 by
refining this AI node.

This refinement produced two successors, and by assum-
ing that the constraint b1 ∧¬b2 ∧ b3 is unsatisfiable, we have
that the left subtree of node 〈3’〉 is an infeasible path. The
right subtree is a terminal node, and so for the first time,
we can declare that, since both subtrees of 〈3’〉 have no AI-
nodes, 〈3’〉 has a lower bound1 of 3. The most interesting
step now can be taken: the analysis here dominates the anal-
ysis at the one remaining AI node at 〈2’〉. Note that the set of
paths represented by 〈2’〉 is nearly half of all the paths. By
pruning away this subtree, we now have that the entire tree
has no more AI nodes, and we can now declare that the root
node has an exact analysis of 3.

2.3 A Motivating Example: Optimality
We now consider an example with a dynamic cost model. In
particular, consider WCET analysis of the program, whose
Control Flow Graph (CFG) is shown in Fig. 4(a). Each node
– rectangular box – represents a basic block. In the basic
blocks, 〈1〉, 〈2〉, . . . 〈10〉 denote the program points. While
the timings of basic blocks 〈1〉, 〈4〉, 〈7〉, 〈10〉 are always 0,
other basic blocks are abstracted by the static timing of
the instructions in cycles, denoted by a non-negative integer
(placed above each node, in red), and a sequence of memory
accesses mi, of which the timing depends on the cache
configuration at the time of access. (In the beginning the
cache is empty.)

For simplicity, we assume: (1) direct-mapped cache; (2)
m1 and m2 map to the same cache location, i.e., they con-
flict; (3) a cache miss costs 10 cycles, while a cache hit costs

1 In fact the upper bound of 〈3’〉 is also 3, i.e., it has an exact analysis
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Figure 4: Example: WCET Analysis with Cache. The list of pair in (b) is just to simplify the presentation.

0. Given the setting, it is clear that the timing of a single sym-
bolic path can be precisely determined. Thus if we exhaus-
tively enumerate the symbolic execution tree, exact analysis
can be achieved. However, such approach is prohibitive in
practice.

We now assume that the base Abstract Interpretation (AI)
used is the must-analysis abstract cache proposed by [24].
To distinguish our approach from a large body of work in
program verification, we assume that all the symbolic paths
in the program are feasible. In other words, simply refining
on the (in)feasibility of paths will not improve the analysis
precision.
Phase 1: we start by invoking AI at 〈1〉. Note that cache
merging is perform at every join point. While we can deter-
mine precisely that the accesses in 〈2〉, likewise the access in
〈3〉, are all misses, the merge at 〈4〉 keeps neitherm1 norm2

in the must-cache. Similarly, we can determine the accesses
in 〈5〉 and 〈6〉 as all misses. However, going through either
〈5〉 or 〈6〉, both paths end up with m2 in the cache, thus the
merge at 〈7〉 keeps m2. Following up, the access to m1 at
〈8〉 is a miss, while the access to m2 at 〈9〉 is a hit.

In summary, the AI algorithm can give us an analysis for
each program point, summarizing the estimate of the WCET

from that point to the end of the program:
(〈10〉, 0), (〈9〉, 20), (〈8〉, 25), (〈7〉, 25), (〈6〉, 49),
(〈5〉, 50), (〈4〉, 50), (〈3〉, 85), (〈2〉,80), (〈1〉, 85),

where (B,T) means that T is the estimated worst-case timing
from B to the end of the program. In other words, invoking
AI at 〈1〉, we achieve the analysis of 85 (= 35 + 25 + 25),
and the extremal trace witnessing that analysis is:

〈1〉 → 〈3〉 → 〈4〉 → 〈5〉 → 〈7〉 → 〈8〉 → 〈10〉.
Phase 2: At the end of phase 1, our HSET contains only one
abstract node as in Fig. 4(b). We denote abstract nodes using

dashed boxes. Every node in our HSET, when applicable,
will be annotated with 3 pieces of information:

1. the current estimate of the WCET from the node to the
end of the program – on the left, in green color;

2. the aggregated lower bound analysis of all the paths
through this node – on the right and below; and

3. the aggregated upper bound analysis of all the paths pass-
ing through this node – on the right and above;

We proceed refining by first building a “spine” targeting the
extremal trace identified in the previous phase. This (first)
spine is shown as the left most path in Fig. 4(b). Note that
at the end of the path, the analysis of 〈10〉 is exact, but
the access m2 at 〈5〉 has now resolved to be a hit (instead
of a miss), the annotation at 〈10〉 is therefore 0, [75]l, [75]u

as shown. Similarly, the annotation at 〈8〉 is 25, [75]l, [75]u.
Note that the execution time of each block has been updated
in Fig. 4(b) considering the context in which it is executed.

Now, we need to deal with analysis of the sibling node, at
program point 〈9〉. However, it is easy to see that if we use
the coarse estimate returned from the previous phase for 〈9〉,
domination happens, because the upper bound analysis of all
paths going through that node is just 70 (= 35 + 15 + 20).
Correspondingly, the annotation for this node is 20,−, [70]u.

Propagating back, we see that along the spine, the anal-
ysis at 〈7〉 and 〈5〉 are now exact. We now consider the sib-
ling of 〈5〉, which is 〈6〉. Using the coarse estimate for 〈6〉
from the previous phase, domination does not happen (be-
cause 35 + 49 > 75). We do not invoke a new AI analysis
from here, but proceed until the next join point. There are
two reasons:

• reuse of an exact analysis might be possible, as we will
see soon. In this case, we achieve precise analysis for the
node, while also avoid a call to the base AI analysis.
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• we can propagate information precisely till the join point
(this is cheap), so that the call to AI might return better
analysis than what has been achieved in the previous
phases.

So we proceed to the node 〈7〉′ in the figure. Note that at 〈7〉′
we share the same cache context encountered before in 〈7〉,
i.e., m2 is present in the cache. Also note that since there
are no infeasible paths, the interpolant [8] stored at 〈7〉 is
simply true. Thus we can trivially reuse the exact analysis
of 〈7〉 at 〈7〉′. The annotation at 〈7〉′ is then 25, [84]l, [84]u.
The annotations for 〈6〉, 〈4〉, 〈3〉 can be computed from this
by propagating it back.

Fast forwarding, for 〈2〉, using the previous estimate,
domination happens, we then end up with the “exact” anal-
ysis for the whole program, as the annotation of 〈1〉 is
84, [84]l, [84]u.

2.4 Discussion on Scalability
We have already mentioned our algorithm is “anytime”, and
further that it is progressive and consequently, the algorithm
converges in the sense that it eventually produces an exact
analysis. The main reason for this that an execution path
is never be considered twice and so the search space is
monotonically strictly decreasing. But of course this is not
enough to attain scalability.

As mentioned above, for scalability, it is critical an algo-
rithm which performs iterations that are progressively more
expensive to be incremental. That is, the work done in pre-
vious iterations must be both (a) persistent and compact, (b)
directly useful to mitigate the cost of the next iteration. We
now overview how our algorithm addresses these criteria by
some form of pruning of the search space.

REUSE OF ABSTRACT ANALYSES:
In the refinement of a node v to produce a spine path of
length n, we generally produce n−1 new AI nodes attached
to the spine. However, it is typical in AI implementations
(which was used on the node v) to have computed analysis
for all program points that are reachable from v’s program
point (via the CFG), and not just for that of the root v.
Therefore much of the analyses required for the new AI
nodes are typically already at hand.

REUSE OF EXACT ANALYSES:
Here we use a computed exact analysis of one subtree to
derive an exact analysis of another subtree. Suppose we
have an exact analysis E for a subtree rooted at v. In this
scenario, we exploit E to compute another exact analysis E′

for another (yet unexplored) node associated with the same
program point as v. In general, the witness condition for such
a reuse (here we are talking about real witnesses for the exact
analysis), as well as the precise definition of the mapping
from E to E′, is quite involved because it depends on the
kind of analysis in question. But in specific instances, this is
easily done. We thus omit a full description here but instead

refer to [8, 15, 17], and use an example of reuse in Section
2.

DOMINATION:
Suppose we have a nontrivial lower-bound analysis, say for
node v. Now we can in fact prune all subtrees which are
dominated by v. Note that domination does not require that
the two entities involved represent the same program point,
in contrast to reusing. In other words, any node/subtree can
dominate any other. Another difference between reuse and
domination is that both parties involved in a reuse contribute
an analysis; it is just that we have a quick way to compute
one of them from the other. Domination however means that
we can simply ignore the dominated party.

In the end, during the refinement process, the effects of
reuse and domination serve to prune the search space, while
the increasing level of exact analyses of subspaces. This
produces more lower-bound analyses, and these, in turn,
produce better upper bounds, and this in turn, creates further
opportunities for reuse and domination. This cycle of mutual
benefits is the key to the scalability of our algorithm.

3. Hybrid Symbolic Execution with
Interpolation

Here we provide the formalities required for our algorithm.
In particular, we cover the needed aspects of symbolic ex-
ecution, abstract interpretation and interpolation. We also
highlight some important assumptions.

Syntax. We restrict our presentation to a simple imperative
programming language where all basic operations are ei-
ther assignments or assume operations, and the domain of
all variables is the integers. The set of all program variables
is denoted by Vars. An assignment x := e corresponds to as-
signing the evaluation of the expression e to the variable x.
In the assume operator, assume(c), if the boolean expression
c evaluates to true, then the program continues, otherwise
it halts. The set of operations is denoted by Ops. We then
model a program by a transition system. A transition sys-
tem is a quadruple 〈Σ, `start,−→, O〉 where Σ is the set of
program points and `start ∈ Σ is the unique initial program
point.−→⊆ Σ×Σ×Ops is the transition relation that relates
a state to its (possible) successors executing operations. This
transition relation models the operations that are executed
when control flows from one program point to another. We
shall use `

op−−→ `′ to denote a transition relation from ` ∈ Σ
to `′ ∈ Σ executing the operation op ∈ Ops. Finally, O ⊆ Σ
is the set of terminal program points.

Symbolic Execution (SE). A symbolic state v is usually de-
fined as a triple 〈`, s,Π〉. The symbol ` ∈ Σ corresponds to
the current program point. The symbolic store s is a func-
tion from program variables to terms over input symbolic
variables. The evaluation JcKs of a constraint expression c
in a store s is defined as: JxKs = s(x) (if x is a variable),
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JnKs = n (if n is an integer), Je op e′Ks = JeKs op Je′Ks
(where e, e′ are expressions and op is a relational or arith-
metic operator). Π is called path condition and it is a first-
order formula over the symbolic inputs and it accumulates
constraints which the inputs must satisfy in order for an exe-
cution to follow the particular corresponding path. The set of
first-order formulas and symbolic states are denoted by FO
and SymStates, respectively.

For all purposes of this paper, we do not consider arbi-
trary symbolic states, but only those generated during our
symbolic execution. For technical reasons, we require a sym-
bolic state to be aware of how it is reached in the symbolic
execution tree. Hence, we abuse notation to (re)define a sym-
bolic state as follows.

DEFINITION 1 (Symbolic State). A symbolic state v is a
quadruple 〈`, s,Π, π〉, where `, s, Π are as before while the
additional parameter π is a sequence of program transitions
that were taken during Symbolic Execution in order to reach
v. �

DEFINITION 2 (Transition Step). Given a transition system
〈Σ, `start,−→, O〉 and a state v ≡ 〈`, s,Π, π〉 ∈ SymStates,
the symbolic execution of `

op−−→ `′ returns another symbolic
state v′ defined as:

SYMSTEP(v, `
op−−→ `′) ≡ v′ ,〈`

′, s,Π ∧ JcKs, π′〉 if op ≡ assume(c) and Π ∧ JcKs
is satisfiable

〈`′, s[x 7→ JeKs],Π, π′〉 if op ≡ x := e
(1)

where π′ , π · ` op−−→ `′. We call v′ a successor of v. �

Note that Eq. (1) queries a theorem prover for satisfia-
bility checking on the path condition. In practice, we as-
sume the theorem prover is sound but not necessarily com-
plete. That is, the theorem prover must say a formula is un-
satisfiable only if it is indeed so. Given a symbolic state
v ≡ 〈`, s,Π, π〉 we define JvK : SymStates→ FO as the for-
mula (

∧
v ∈ Vars JvKs)∧Π where Vars is the set of program

variables. Such projection step is performed by eliminating
existentially all auxiliary variables that are not in Vars. As a
convention, we use ◦ in a tuple to denote a value that we are
not interested in.

A symbolic path v0 · v1 · ... · vn is a sequence of symbolic
states such that ∀i • 1 ≤ i ≤ n the state vi is a successor of
vi−1. A path v0 ·v1 ·...·vn is feasible if vn ≡ 〈`, s,Π, ◦〉 such
that JΠKs is satisfiable. If ` ∈ O and vn is feasible then vn is
called terminal state, denoted TERMINAL(vn). Otherwise,
if JΠKs is unsatisfiable the path is called infeasible and vn
is called an infeasible state, denoted INFEASIBLE(vn). If
there exists a feasible path v0 · v1 · ... · vn then we say vk
(0 ≤ k ≤ n) is reachable from v0 in k steps. We say v′ is
reachable from v if it is reachable from v in some number of
steps. A symbolic execution tree contains all the execution
paths explored during the symbolic execution of a transition

system by triggering Eq. (1). The nodes represent symbolic
states and the arcs represent transitions between states.

ASSUMPTION 1. Given a terminal state v ≡ 〈`, s,Π, π〉, we
assume the existence of a function θ which extracts from π
an “exact” analysis θ(π). �

This exactness is a theoretical concept that helps us quan-
tify the precision of our incremental analysis against a fully
path- and context-sensitive algorithm. We note that such al-
gorithms do exist for loop-free programs, but they often do
not work in the setting of realistic memory/timing budget.

Abstract Interpretation (AI). An invocation of AI at a
symbolic state v constructs an AI node at v, using an abstract
domain A, which is assumed to be a lattice. This step starts
by making use of the abstraction function α to map the
current symbolic state v to an abstract value, i.e., computing
α(v), then performing a standard AI computation overA and
the input CFG.

ASSUMPTION 2. We expect an invocation of AI would nec-
essarily return an upper bound analysis U , i.e., a safe over-
approximation, of the set of paths through v. In addition, we
also assume that it produces witness paths denoted as ω –
a set of paths from which the upper bound analysis U is
derived. �

For WCET analysis, ω contains only one path. But for
general analyses, ω often is just a small subset of all the
paths going through v, since not all paths contribute to the
returned analysis U .

ASSUMPTION 3. We assume the analysis values also form
a lattice structure R, or [S,v,⊥,t,u,>], where S is the
set of analysis values, v is the partial order relationship, t
and u are the least upper bound and greatest lower bound
operators, and ⊥ and > are the bottom and top elements
of the lattice respectively. We assume that t is precise so
that exact analyses over different paths can be combined
precisely, yielding an exact analysis over the collection of
paths. �

Note that unlike the abstract domainA to run AI,R does
not concern (partially) the (in-)feasibility of the program
paths. While A is typically designed to be coarse enough
so that an invocation of AI is fast, R is designed with pre-
cision in mind. In practice, this does not hamper the overall
scalability of our algorithm, since operations on the analy-
sis values defined by R are performed only a small number
of times, bounded by the number of nodes in the HSET. (In
other words, this assumption does not add any extra com-
plexity to our algorithm.)

To simplify the presentation of the hybrid symbolic exe-
cution tree (HSET), we also assume that an invocation of AI
also returns a lower bound analysisL. In practice, one can al-
ways make use of a trivial lower bound, e.g.,⊥. Let E be the
desired exact analysis of the set of paths, then L v E v U
(we do not explicitly compute E but infer it when L and U
coincide).
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It now should be clear that under our notion of exactness
and the above assumptions, the analysis for each terminal
symbolic state v ≡ 〈`, s,Π, π〉 is exact. Its lower bound and
upper bound coincide at θ(π).

We comment here that computing the witness paths is
straightforward but tedious, so we do not detail it here. Typ-
ically an AI algorithm operates over a CFG. During its exe-
cution, it can “mark” certain edges in the CFG that are suffi-
cient to produce the analysis of the target AI node where the
analysis is invoked. The witness paths can then be obtained
by traversing marked edges from the target AI node to a ter-
minal node (of the CFG). One can also follow [6] to get not
only the upper bound analysis, but also the extremal path(s)
from an abstract computation (within an iteration). In sum-
mary, it is reasonable to assume the existence of a procedure
ABSTRACTINTERPRETATION which when invoked with a
symbolic state v returns a triple 〈L,U , ω〉.

Interpolation. Given a pair of first order logic formulas A
andB such thatA∧B is false, an interpolant [11] is another
formula Ψ such that (a) A |= Ψ, (b) Ψ ∧ B is false, and
(c) Ψ is formed using common variables of A and B. An
interpolant removes irrelevant information in A that is not
needed to maintain the unsatisfiability of A ∧B.

Interpolation has been prominently used to reduce state
space blowup in both program verification [16, 20] and pro-
gram analysis [8, 17]. Here we will use it for a similar pur-
pose – to merge, or subsume, symbolic states and avoid re-
dundant exploration. During symbolic execution, our algo-
rithm will annotate certain states with an interpolant, which
can be used to prune other symbolic trees.follows.

DEFINITION 3 (Subsumption). Given a current symbolic
state v ≡ 〈`, s, ◦, ◦〉 and an already explored symbolic
state at the same program point v′ ≡ 〈`, ◦, ◦, ◦〉 annotated
with the interpolant Ψ, we say v′ subsumes v, denoted as
SUBSUMES(v′, v) if (a) JvKs |= Ψ and (b) α(v) v α(v′).

The first condition ensures that the symbolic paths through
v are a subset of the symbolic paths through v′, and the sec-
ond condition ensures that the HSET at v′ has already been
explored with a more general context α(v′). Therefore, by
exploring v one cannot obtain a more precise analysis than
that has been already obtained by exploring v′, and hence v
can be subsumed.

We note that subsumption is a special form of reuse that
has been briefly discussed in the early Sections. While reuse
(with interpolation) has been exploited for different analysis
problems [8, 17], formulating this concept for a general
analysis framework is rather involved. For simplicity, we
thus omit the detail.

To conclude this Section, we comment that efficient in-
terpolation algorithms do exist for quantifier-free fragments
of theories such as linear real/integer arithmetic, uninter-
preted functions, pointers and arrays, and bitvectors (e.g.,

see [9] for details) where interpolants can be extracted from
the refutation proof in linear time on the size of the proof.

4. Algorithm
Our incremental analysis algorithm, whose pseudocode is
shown in Fig. 5, can be expressed as one that starts with
an abstract interpretation (AI) node representing an abstract
analysis of the whole program, and gradually refines the
HSET using symbolic execution (SE) until the desired level
of analysis precision is obtained. Since each node in the
HSET corresponds to a symbolic state v, we will call it node
v for short. During SE, a forward traversal collects path con-
straints and checks for path feasibility, and a backtracking
phase annotates each node v in the HSET with the following
information: 〈L,U , ω,Ψ〉, representing the lower bound and
upper bound analyses for the set of paths through v, the wit-
ness paths for the upper bound analysis, and the interpolant
at v, respectively.

With this annotation, we now define our all important
domination condition.

DEFINITION 4 (Domination). A node v annotated with
〈L,U , ω,Ψ〉 is dominated by a node v′ annotated with
〈L′,U ′, ω′,Ψ′〉 if U v L′. We also say that v′ dominates
v, denoted as DOMINATES(v′, v). �

In other words, if a symbolic state produces an upper
bound analysis that is already contained (lattice-wise) in
the lower bound analysis of another state, it is considered
dominated. Particularly, there is no use trying to refine it
to reduce its upper bound analysis. Note that a node can
dominate itself if its lower and upper bounds are the same
(i.e., it has an exact analysis). Obviously a node with an exact
analysis does not need to be refined further.

The main procedure, INCREMENTALANALYSIS, accepts
the program P as a transition system, which we assume is
a global variable to all procedures. In line 1, the initial state
is created with `start as the program point, an empty store,
the path condition true, and the empty sequence. In line 2
the initial HSET containing a single AI node is generated by
calling ABSTRACTINTERPRETATION with the initial state.
This would return a possible lower bound, an upper bound
and the witness paths ω for the upper bound.

Lines 3-10 define the main refinement loop. Our choice
of AI node to refine, in conjunction with building the spine
targeting the witness paths, is what makes our algorithm
goal-directed:

choose an AI node which is (a) not dominated, and
(b) has a maximal upper bound.

In the algorithm, first the set non-dominated AI nodes in
the current HSET is collected in R. Choosing a node with
maximal upper bound analysis, in the case of WCET, is
easy because the analysis values range over positive integers.
In other analyses, if possible, a “difference” metric can be
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INCREMENTALANALYSIS (P )
1: v := 〈`start, ∅, true, ◦〉
2: 〈L,U , ω〉 := ABSTRACTINTERPRETATION (v)
3: do
4: R := {v | @ v′ s.t. DOMINATES(v′, v)}
5: v := RefinementHeuristic (R)
6: let 〈L,U , ω,Ψ〉 be the annotation at v
7: select a witness path σv from ω
8: spine done := false; REFINEUNFOLD(v, σv)
9: PROPAGATEBACK(v)
10: until BoundsHeuristic

PROPAGATEBACK (v′ ≡ 〈`, ◦, ◦, ◦〉)
11: if ` ≡ `start then return
12: let v be the predecessor of v′

13: 〈L,U , ω,Ψ〉:= 〈⊥,⊥, ∅, true〉
14: foreach successor v′′ of v wrt. the transition `

op−−→ `′′

15: let 〈L′′,U ′′, ω′′,Ψ′′〉 be the annotation at v′′
16: 〈L,U , ω〉 := COMBINE(〈L,U , ω〉, 〈L′′,U ′′, ω′′〉)
17: Ψ := Ψ ∧ ŵlp (Ψ

′′
, op)

18: endfor
19: replace v’s annotation with 〈L,U , ω,Ψ〉
20: PROPAGATEBACK(v)

COMBINE (〈L1,U1, ω1〉, 〈L2,U2, ω2〉)
21: L := L1 t L2

22: if U1 v U2 then ω := ω2

23: else if U2 v U1 then ω := ω1

24: else ω := ω1 ∪ ω2

25: U := U1 t U2
26: return 〈L,U , ω〉

REFINEUNFOLD (v ≡ 〈`, ◦, ◦, π〉, σv)
27: if INFEASIBLE (v) then
28: 〈L,U , ω,Ψ〉:= 〈⊥,⊥, ∅, false〉; spine done := true;
29: else if TERMINAL (v) then
30: 〈L,U , ω,Ψ〉:= 〈θ(π), θ(π), ∅, true〉; spine done := true
31: else if (∃ v′ ≡ 〈`, ◦, ◦, ◦〉 s.t. v′ is annotated 〈L′,U ′, ω′,Ψ′〉

and SUBSUMES (v′, v)) then
32: 〈L,U , ω,Ψ〉 := 〈L′,U ′, ω′,Ψ′〉; spine done := true
33: else if spine done then
34: 〈L,U , ω〉 := ABSTRACTINTERPRETATION(v); Ψ := true
35: else
36: 〈L,U , ω,Ψ〉:= 〈⊥,⊥, ∅, true〉
37: select a transition s.t. `

op−−→ `′ ∈ σv
// There is only one such transition

38: v′ := SYMSTEP(v, `
op−−→ `′)

39: REFINEUNFOLD (v′, σv) // Target refinement towards σv
40: let 〈L′,U ′, ω′,Ψ′〉 be the annotation of v′
41: 〈L,U , ω〉 := COMBINE(〈L,U , ω〉, 〈L′,U ′, ω′〉)
42: Ψ := Ψ ∧ ŵlp (Ψ

′
, op)

43: foreach transition s.t. `
op−−→ `′ ∈ P and `

op−−→ `′ 6∈ σv
44: v′ := SYMSTEP(v, `

op−−→ `′)
45: REFINEUNFOLD (v′, σv) // An AI node will be built
46: let 〈L′,U ′, ω′,Ψ′〉 be the annotation of v′
47: 〈L,U , ω〉 := COMBINE(〈L,U , ω〉, 〈L′,U ′, ω′〉)
48: Ψ := Ψ ∧ ŵlp (Ψ

′
, op)

49: endfor
50: endif
51: remove the annotation of v
52: if L ≡ U then annotate v with 〈L,U , ∅,Ψ〉
53: else annotate v with 〈L,U , ω, false〉
54: endif

Figure 5: Algorithm for Incrementally Precise Analysis

defined to even measure the amount of (non) domination,
and the AI node inRwith maximal difference can be chosen.

Remark: Before continuing with the description of the al-
gorithm, let us comment on the properties of our choice of
refinement. Let N be an AI node which is (a) not domi-
nated, and (b) has a maximal upper bound among other non-
dominated AI nodes. Refining any other node, say M , will
increase M ’s lower bound of decrease M ’s upper bound.
However, (1) N will never become dominated, and (2) the
overall analysis will not be improved. We note further that
while (2) relies on the assumption that the analysis values
constitute a lattice, (1) holds even when we relax that as-
sumption, allowing the analysis values to only be a semi-
lattice. (End of Remark.)

Once the AI node v is chosen for refinement, the proce-
dure REFINEUNFOLD is called along with the witness paths
for its upper bound analysis ω. When REFINEUNFOLD re-
turns it would have annotated v with new, possibly tighter,
upper and lower bounds which are then propagated back
to its ancestors by the procedure PROPAGATEBACK. This

process continues until the loop terminates by means of a
BoundsHeuristic, which is user-defined.

A straightforward BoundsHeuristic check is to check if
there are no non-dominated symbolic states. This forces
the algorithm to terminate only when an exact analysis is
derived. However, a WCET analyzer could be content if,
say, the difference between upper and lower bounds is less
than 5%, in which case the heuristic can check if the root of
the HSET (the initial state) is annotated with 〈L,U , ◦, ◦〉 s.t.
(U − L)/U ≤ 0.05.

REFINEUNFOLD is our main refinement procedure that
accepts the current node v and the set of witness paths
ωv . It is a recursive procedure that refines an AI node by
symbolically unfolding the paths in ωv , with the hope of
either confirming or refuting the current analysis of the node.
There are four bases of this procedure:

• (Lines 27-28) If v is an infeasible state, then it sets the
lower and upper bounds to ⊥, the set of witness paths for
the upper bound to ∅, and the interpolant Ψ to false to
denote the infeasibility.
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• (Lines 29-30) If v is a terminal state, then an exact anal-
ysis for this symbolic path is achieved. Hence both the
lower and upper bounds are set to θ(π) – the analysis ex-
tracted from this single path. The witness paths for this
analysis can be set to ∅ because we will never refine an
exact analysis in future. Finally, the interpolant is set to
true. In addition, we set a (global) variable spine done to
true to signify that a spine (witness path) has been ex-
ercised fully, and can begin constructing AI nodes along
the branches from this path later.

• (Lines 31-32) If v is subsumed by another state v′, it
simply sets spine done to true. Implicitly, the lower and
upper bounds, the witness paths and interpolant for v are
copied over from v′.

• (Lines 33-34) If spine done is true, i.e., a spine has been
explored already and we are exploring other branches
from it, then it constructs an AI node at v by calling
ABSTRACTINTERPRETATION. This would return a lower
bound, upper bound and the witness paths for the upper
bound. The interpolant is then set to true, as there is no
infeasibility to capture in the constructed AI node.

If the four bases fail, REFINEUNFOLD proceeds to the suc-
cessors of v (lines 35-50). It first initializes the lower and
upper bounds, the witness paths, and interpolant to ⊥, ∅ and
true respectively, which will be modified. Then we target the
refinement to either confirm or refute the given witness path
σv (lines 37-42). This is done by following the witness, ap-
plying SYMSTEP on v to construct the next symbolic state
v′. Then REFINEUNFOLD is called recursively. For each re-
maining transition, which is not part of the witness path,
the algorithm proceeds similarly (lines 43-49). But note that,
now a spine has been constructed, indicated by spine done
being set to true, a number of AI nodes will be computed
along the spine. We further comment that a typical AI algo-
rithm, when invoked, will follow the input CFG and compute
an analysis for each program point, not just for the point of
invocation. Thus the number of AI invocations while seem-
ingly overwhelming, can indeed be optimized by a simple
caching mechanism. In our implementation of our practical
applications in Section 5, this is never an issue.

We now detail on how the analysis answer and the in-
terpolant are aggregated. Upon returning from the recursive
call, v′ would have been annotated with some lower and up-
per bounds, witness paths, and interpolant. From this, the
same information for v is computed by joining it with the
existing information at v (line 47) using the straightforward
COMBINE procedure. That is, the analysis of the set of paths
through v is computed as the (lattice) join of the analysis
of each individual path. The interpolant deserves some spe-
cial treatment due to its back propagation. From the inter-
polant Ψ

′
at v′, the interpolant at v is computed by conjoin-

ing the current interpolant Ψ with ŵlp(Ψ
′
, op) — the weak-

est liberal precondition [12] of Ψ
′

w.r.t. the transition op.

ŵlp : FO × Ops→ FO ideally returns the weakest formula
on the current state such that the execution of op results in
Ψ
′
. In practice we approximate the ŵlp by making a lin-

ear number of calls to a theorem prover, using techniques
outlined in [16], which usually results in a formula stronger
than ŵlp.

Finally, once either a base case or the recursive case
is executed, REFINEUNFOLD annotates (lines 52-54) the
current state with the information defined by one of the
cases. An important check is made here: if the lower and
upper bounds are the same, then we have an exact analysis
at v. Therefore, the witness paths can be set to ∅ since we
will never refine an exact analysis. But most importantly,
if the check failed, then the bounds do not coincide, and
the analysis is imprecise. A state with an imprecise analysis
should not subsume any other state. Hence we change the
interpolant to false before annotating v so that for all states
v′′, SUBSUMES(v, v′′) would fail. A subtle corollary of this
is that the first three base cases assign the same lower and
upper bounds at v, and the fourth base case (AI) usually
assigns them different values. The recursive case is then
dependent on the the bounds of the successors of v.

The final procedure PROPAGATEBACK simply propa-
gates the annotation at a given state v′ to its ancestors upto
the root of the entire tree at `start. In line 12, it obtains the
parent state v, and in lines 13-18 it performs the backward
propagation from all successors of v, in exactly the same
way as lines 36,46-48 of REFINEUNFOLD. For brevity, we
provide its pseudocode but omit a detailed description.

The whole algorithm is guaranteed to terminate provided
ABSTRACTINTERPRETATION terminates (see discussion on
unbounded loops below). In case the algorithm is interrupted
and forced to terminate, the current lower bound and upper
bound can be extracted easily from the symbolic states and
presented to the user, making this an “anytime algorithm”.

5. Experimental Evaluation
We implemented the incremental analysis algorithm in Fig. 5
on the TRACER framework for symbolic execution, us-
ing the same interpolation method and theory solver pre-
sented in [8]. We instantiated our algorithm for a back-
ward WCET analysis. The analysis values form the lattice
R1 ≡ [N,≤, 0,t,u,∞], with N is the set of non-negative
integers, and A1 t A2 , max(A1, A2). The abstract do-
main A used for our AI component is the domain of inter-
vals, which is well-known for its efficiency.

We implemented the heuristics in Fig. 5 as follows.
RefinementHeuristic is quite straightforward as the lattice
[N,≤, 0,t,u,∞] imposes a total order on its elements.
Hence we simply pick for refinement the AI node that pro-
duced the maximum2 upper bound WCET, with ties being re-

2 A maximum always exists.
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solved non-deterministically. BoundsHeuristic implements
the following check:

∀ v ∃ v′ s.t. DOMINATES(v′, v),

that is, every symbolic state is dominated by another state,
possibly by itself if it produces an exact analysis. This makes
the algorithm terminate only when the final WCET is exact.

We used a simple model of an “instruction cache”. It is a
direct-mapped cache of size 4KB. Each cache set can hold
32 instructions. It takes 1 unit of time to execute a program
statement, and the cache miss penalty is 128 units of time.

We used as benchmarks sequential C programs from a
varied pool – three device drivers cdaudio, diskperf, floppy
from the ntdrivers-simplified category and SSH Client proto-
col from the ssh-simplified category of SV-COMP 2014 [2],
an air traffic collision avoidance system tcas, and two pro-
grams from the Mälardalen WCET benchmark [19] statem-
ate and nsichneu. We removed the safety properties from the
SV-COMP benchmarks as we are not concerned with their
verification. All experiments are carried out on an Intel 2.3
Ghz machine with 2GB memory, with a timeout of 5 min-
utes, considering our nominal benchmark size.

We compared our incremental algorithm with two adver-
saries: abstract interpretation (AI) on one hand, and a state-
of-the-art SE based algorithm [8] on the other. We present
the following statistics, in Table 1, for each benchmark: (a)
the final analysis produced by the AI-based, SE-based, and
our incremental algorithm with upper (U) and lower (L)
bounds (b) the time taken, (c) the total memory usage as
given by the underlying TRACER system, and finally (d) col-
lation of the previous columns into a imprecision improve-
ment % IMP. This is defined as the percentage of (A− I)/I
where A and I are the AI-based and incremental analyses
respectively. We do not show the time and memory for the
AI based algorithm as they are quite negligible compared
to those of the other two algorithms. For instance, it always
terminates in less than 1 second.

The AI based algorithm produces an analysis quickly for
all programs as mentioned above, but it is in fact not precise.
As we will see, there is at least a 10% precision improvement
in most benchmarks, and an alarming 300% in nsichneu,
a well-known program in the WCET community that is
particularly known to be hard to analyze. So the only hope
to produce an exact analysis is if the SE based algorithm
terminates. However this fails to terminate by either timing
out or running out of memory for four out of our seven
benchmarks, leaving behind no useful analysis information.

On the other hand, our incremental algorithm is able
to provide useful information. In the first five benchmarks
where it terminated within the budget, it of course produced
an exact analysis, but in most cases, it used much less than
the allocated budget. For the remaining two benchmarks,
our algorithm produced a more precise range for the analysis
via tighter upper and lower bounds. For instance, in nsich-
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Figure 6: Progressive Upper and Lower bounds over time
for diskperf

neu, AI produced the imprecise WCET 206788 and the SE-
based algorithm ran out of budget. However our algorithm
was able to produce the exact WCET of 52430 in less than
half the budget. Furthermore, it used only a quarter of the
memory as did SE. This seems to be a common trend across
all our benchmarks (with the exception of ssh).

We do admit here that the improvement WCET our algo-
rithm had produced was small in the two benchmarks where
termination was abruptly enforced. (But, importantly, it was
not zero.) Given the good performance of our algorithm on
all the other benchmarks where our algorithm did termi-
nate, we will speculate here that these two (nonterminating)
benchmarks may be unfortunate outliers.

Finally, to observe how the upper and lower bounds in-
crementally converge in our algorithm, we take a closer look
the diskperf benchmark that best exposes this phenomenon.
Fig. 6 shows the progressive upper and lower bound WCET
of this program over time. The monotonicity can be clearly
seen – the lower bound always increases and the upper
bound always decreases. At any point the algorithm is termi-
nated, the bounds can be reported to the user. Observe that
the difference between the bounds reduces to less than 20%
in just over 15 seconds, and when they coincide we get the
exact analysis at around 230 seconds. We noted that similar
trends were exhibited among other benchmarks as well.

6. Related Work
The most related work is [6] which introduced the original
problem of quantitative analysis over a dynamic cost model.
They were the first to discuss the concept of refinement in
order to eliminate spurious analysis arising from both the
infeasibility of a path, as well as the in-optimality of the
machine state. Their main loop iterations perform abstrac-
tion refinement in the style of the CEGAR [10] framework.
The refinement strategy here is based on the notion of an
extremal counterexample trace at each step, with an aim to
eliminate this trace from further consideration. Our choice of
refinement step shares this motivation, by choosing, in some
sense, to refine the trace that maximizes the likelihood of
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Benchmark LOC AI-based Full SE [8] Incremental % Imp
WCET WCET Time Mem WCETU WCETL Time Mem

cdaudio 1288 10663 9370 28 s 212 MB 9370 9370 14 s 56 MB 13.8%
diskperf 1255 33598 ∞ ∞ 2 GB 29723 29723 231 s 400 MB 13.0%
floppy 1524 16627 13784 19 s 136 MB 13784 13784 15 s 44 MB 20.1%
ssh 2213 12394 6075 17 s 39 MB 6075 6075 17 s 51 MB 104%
nsichneu 2540 206788 ∞ ∞ 522 MB 52430 52430 156 s 133 MB 294%
tcas 235 29305 ∞ ∞ 1.4 GB 28788 23887 ∞ 432 MB 2%
statemate 1187 31281 ∞ 285 s ∞ 31151 18623 ∞ 767 MB 0.5%

Table 1. WCET Analysis results for AI based, SE based, and our incremental algorithm. An∞ represents a timeout or out-
of-memory.

improvement in the analysis result. The key technical differ-
ence between this work and ours is that this work refines the
abstract domain, while we refine the transition system.

More specifically, we iteratively refine the Control Flow
Graph (CFG) with appropriate splitting. The relationship of
our refinement step to [6]’s is akin to that of Abstract Con-
flict Driven Clause Learning (ACDCL) [13] to traditional
CEGAR in the context of program verification. A direct
tradeoff is that we need to maintain a data structure called the
hybrid symbolic execution tree (HSET). But the gain is po-
tentially significant; we quote: “ACDCL never changes the
domain, and this immutability is crucial for efficiency (over
CEGAR), because the implementations of the abstract do-
main and transformers can be highly optimized” [13].

In the end, the algorithm of [6] is not incremental, and
does not scale to the level of our benchmarks. The exam-
ples evaluated in [6] are very small and can solved easily
and exactly by pre-existing algorithms such as symbolic ex-
ecution. The reason for this is partly due to the nature of
CEGAR whereby is it unclear how to “cache” the results of
the analysis from previous iterations, let alone in a compact
form. (In verification as opposed to analysis, we can cache
the known safe states.) Consequently, the algorithm of [6]
is not progressive: it is possible in principle to be consider-
ing the same execution path in a nonterminating sequence of
refinement.

The work [7] applies the concept segment-based abstrac-
tion in [6] for high-level WCET analysis. Consequently, not
only have they reached a certain level of scalability, but also
their approach can be embedded effectively into the standard
Implicit Path Enumeration Technique (IPET) [18]. However,
note importantly that in high-level WCET analysis, as op-
posed to overall WCET analysis, the timing of each basic
block has been abstracted to the worst-case timing of the
block, returned by some prior low-level analysis. Thus the
problem no longer concerns a dynamic cost model. In other
words, scalability is achieved partly by ignoring the issue of
context-sensitivity raised by a dynamic cost model.

Another work related to ours is [4] from the BLAST [3]
line of work, which dynamically adjusts the precision of the
analysis. It carries an explicit analysis and an abstract anal-
ysis in the form of predicates. Then, depending on the accu-
mulated results, for instance when the number of explicitly

tracked values of a particular variable reaches a limit, the
abstract domain is refined by adding a predicate and the ex-
plicit analysis is abstracted by turning it off for that variable.
Our work does share a similarity with [4] in using both the
exact and abstract results during analysis.

The most important difference is that their work is applied
on reachability problems such as model checking and verifi-
cation that are qualitative analyses, whereas we target quan-
titative analyses with dynamic cost model. We have demon-
strated clearly that for the problem domains of interest, fea-
sibility refinement alone is not enough.

Finally, we mention other related works, which share
similar motivations as our work. Many customized abstract
interpreters have been injected with some form of path-
sensitivity to enhance the precision of the analysis results. A
notable example is [23]. There have also been work on path-
sensitive algorithms (under SMT setting) equipped with ab-
stract interpretation in order to prune (a potentially infinite
number of) paths [14]. However, our framework differs sig-
nificantly in the way the spines are interactively constructed.
On one hand, we quickly refute spurious analysis from pre-
vious iteration while computing realistic lower bounds to
exploit the new concept of domination for pruning. On the
other hand, we can reach early termination when the spines
confirm previously computed upper bound analyses are in-
deed precise.

7. Concluding Remarks
We presented an algorithm for quantitative analysis defined
over a dynamic cost model. The algorithm is anytime be-
cause it produces a sound analysis after every iteration of its
refinement step, and is progressive because it eventually ter-
minates with an exact analysis. Another feature is that the
algorithm computes a lower and upper bound analysis thus
paving the way for early termination, useful when the anal-
ysis is considered good enough according to a preset level.
Finally, we show that the algorithm is incremental because
it maintains a compact representation throughout the refine-
ment steps, and each new refinement step is usually greatly
assisted by the representation. We used a well-recognized
benchmark from the WCET community to show that we can
execute challenging examples.
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