
Incrementally Precise Program Analysis

Duc-Hiep Chu
National University of Singapore

hiepcd@comp.nus.edu.sg

Joxan Jaffar
National University of Singapore

joxan@comp.nus.edu.sg

Vijayaraghavan Murali
National University of Singapore

m.vijay@comp.nus.edu.sg

Abstract
Program analysis has been so far dominated by Abstract Interpre-
tation (AI), owing to its scalability. AI is typically path-insensitive,
thus the obtained level of accuracy could be arbitrarily low. Re-
cently, there have been works on path-sensitive program analysis,
applied to domains where accuracy is critical. However, they suffer
from the path explosion problem and are not scalable in general.
In this paper, we present a general framework for program analysis
incrementally increases accuracy as it iterates.

We start with a formulation of analysis which is both a lower-
bound as well as upper-bound analysis of the program’s behavior.
This duality allows for a specification of precision in the overall
analysis. We then define an abstract representation of the program
which we can iteratively refine. The iterations allows for early ter-
mination when a user-definable level of precision in the analysis
has been extracted. The critical performance factors are (a) the in-
crementality of the refinement step where results from previous it-
erations are persistent for future iterations, (b) reuse of analysis
from subproblems that have precise analysis, and most importantly,
(c) a concept of domination which allows a lower-bound analysis
to prune away subproblems. Finally, we demonstrate the frame-
work with real programs on a backward counting analysis and a
forward data flow analysis. We show that in many cases, our iter-
ative method is in fact superior to algorithms designed to run con-
tinuously till an exact analysis is found.

1. Introduction
Program analysis has been so far dominated by some form of
Abstract Interpretation (AI) where abstract program properties are
propagated through abstract transitions induced by the program.
AI implementations are typically path-insensitive, and often, only
one description of the analysis is maintained for each program
point. While an AI algorithm is generally efficient and scalable, its
precision could be arbitrarily low. Perhaps more importantly, the
level of precision is unknown.

At the other extreme, one could consider a path-sensitive al-
gorithm using symbolic execution which, for programs with only
finite symbolic paths, is exact. While there has progress in the scal-
ability of path-sensitive algorithms [5, 13, 15] exploiting the con-
cepts of interpolation and reuse, these may not always scale. In

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright held by Owner/Author. Publication Rights Licensed
to ACM.

Copyright c© ACM [to be supplied]. . . $15.00
DOI: http://dx.doi.org/10.1145/(to come)

a realistic setting where a budget, typically in terms of memory or
time, is limited, depending on such a completely accurate algorithm
could result in no result at all.

The main contribution of this paper is a general method to com-
bine these two extreme approaches by starting with an efficiently
obtained but potentially imprecise analysis, then refining the prob-
lem, and then iterating. Termination occurs when (a) we have a
resource budget exhaustion, where the limited resource is typically
memory and/or time, or (b) when the precision is known to be suffi-
ciently precise, a condition that is user-definable, in which case we
have “early termination”.

A basic requirement for the refinement process is convergence,
i.e.. that there is a final iteration which produces an exact analysis.
This implies that each iteration, while not guaranteed to produce
more precision than the previous iteration, nevertheless produces
useful information that monotonically reduces the complexity of
the remaining analysis problem.

There are two additional requirements, which are crucial for
scalability, for the iterative refinement step:

• INCREMENTAL PERFORMANCE
The results of the present iteration should be persistent, i.e.:
they can be (re-)used in the next iteration, without re-computation.
In particular, no path which has been analyzed is ever analyzed
again.

• INCREASED PRECISION
The choice of the refinement for the next iteration should be
goal-directed to be more likely to achieve early termination.

We begin with a traditional formulation of program analysis de-
fined over an “abstract domain” [9]. The domain provides an anal-
ysis formula for a set of abstract states that overapproximate the
set of concrete states that are really reachable. Thus an analysis is
sound, applying to all states. We shall further specify our analysis
as lower bound and upper bound, and there is an intuitive notion of
precision when comparing analyses, and therefore also the notion
of an exact analysis. Overwhelmingly, example of analyses come
from numerical bounds of variables, or from inclusion bounds for
sets of variables, where the notion of lower and upper bounds is
very clear. In the end, we seek an iterative analysis which mono-
tonically decreases the gaps between the lower and upper bound
formulas so that we can have a useful analysis after any number of
iterations. More importantly, by defining a notion of “sufficiently
close”, we have a flexible and rigorous way of obtaining “early ter-
mination”.

The conceptual core of our framework is centered on the sym-
bolic execution tree (SET) of a program. While this tree is often too
big to compute explicitly, we instead compute a smaller hybrid SET
(HSET) which is a SET but where some subtrees may be replaced
AI nodes; such a node is, intuitively, an analysis of the subtree it
replaces that is efficiently obtained. More specifically, an AI node

contains two things: (a) a lower1 and upper bound analysis σl and
σu, and (b) a collection of potential witness paths, which is a subset
of paths that the AI represents which is sufficient to give rise to σl

and σu. This collection is usually small in size. Now these potential
witness paths, because they are obtained using abstract interpreta-
tion, may not be “real” witnesses because (i) one of them may not
be feasible in the SET, or (ii) they collectively do not realize an
upper bound analysis in the SET. Apart from the AI nodes, every
other node N in a HSET also has an analysis: if N is a terminal
node, then its analysis is simply that arising from the one symbolic
execution path this node represents. If however N has two succes-
sors, then it inherits an analysis as a “join” of the two successor
analyses in a straightforward way.

Thus a HSET always provides an analysis of the program (via
its root node representing all the symbolic execution paths). What
we seek, however, is that this analysis is precise, and this can only
happen when there are no more AI nodes in the way. In order
to achieve this, we need to be able to identify certain subtrees in
the HSET whose analysis is redundant, and then prune them from
further consideration.

Toward this end, we now introduce the most important concept
of this paper, domination.

if a node N1 has a lower-bound analysis and a node N2

has an upper-bound analysis such that the lower bound is
greater or equal to the upper bound, thenN1 dominatesN2.

This essentially means that the entire subtree N2 can pruned be-
cause the analysis of N2 is now known to be superfluous.

A starting point for our program analysis is a HSET comprising
of a single AI node representing an abstract analysis of the entire
program. The iterative step, applied to a general HSET, is to apply
a refinement strategy to choose a particular AI node in this HSET
to refine into a hybrid (sub-)tree. This in general increases its
precision of the resulting HSET.

We now walk through the HSET refinement process on T ,
whose base case is when T constrains no AI nodes, in which case
its root node will indicate an exact analysis. In the general case, we
now need to choose one AI node in T to refine, that is, to replace it
with a HSET which, hopefully, will contain a more precise analyses
than the AI node. The following choice, in conjunction with the use
of the potential witness paths, is what makes our algorithm goal-
directed:

choose an AI node N which is (a) not dominated, and (b)
has a maximal upper bound.

In other words, do not choose an AI node N which, upon the
refinement of a different AI node, could lead to the domination of
N .

See Figure 1(a) depicting a HSET where the leftmost AI node
@ with upper bound σ0 is refined into the subtree labelled with the
upper-bound analysis σ in the second tree in Figure 1(b). Note that
this new subtree contains two AI nodes with upper bounds σ1 and
σ3. Note also that the subtree T2 does not contain any AI-nodes,
and that σ2 is a lower-bound analysis.

We now detail this refinement. For simplicity, assume that the
analysis of the original AI node marked σ0 contains one potential
witness path p. We then construct the subtree by first constructing
the edges and nodes as a symbolic path p. As each edge and
destination node is constructed from a branching source node, we
also construct a new edge and destination node corresponding to the
alternative of the branch. For this second destination node, which
is not in the path p, we now construct a new AI node. At the end
of this process, we would have constructed the subtree which has a

1 Typically the lower bound is not used in abstract analysis.

Figure 1: The Refinement Step

“spine” corresponding to the path p, and along the spine, we have
constructed a number of AI nodes (two, in this example).

See Figure 1(b) and once again focus on the subtree labelled
σ, and where the spine is the path to σ2. There are two possible
benefits of this refinement step. One is that this sub-HSET σ is more
precise than the original analysis σ0 because the join of σ1, σ2 and
σ3 is more precise than σ0. Another benefit is when σ2, which is a
lower-bound analysis, can be used to dominate any other analysis.
For example, if the lower bound of σ2 not smaller than the upper
bound of σ4, then the entire subtree at σ4 can be pruned from
further consideration.

We remark that in the refinement step, each of the newly gen-
erated AI nodes require an (abstract) analysis, and although these
analyses are efficient, there is the issue that the number of analyses
could be as long as the path p. However, an important feature is
that in the several invocations of abstract analysis performed here
over the several AI nodes, the analysis of each of these is often pro-
duces the the same results, and hence can be cached and need not
be redone. We will argue and demonstrate this important feature in
detail later.

We now outline three key reasons for the scalability of our
method.

SCENARIO 1 (INFEASIBILITY):
By exposing the spine, we are extending the path constraint that
is subject to satisfiability testing, and therefore increasing the like-
lihood of discovering an infeasible path. In this scenario, we ex-
ploit the situation where one of the successors of the node being
refined is unsatisfiable. This means that an entire subtree of sym-
bolic paths, which previously has been included in the AI node N ,
now has been removed.

SCENARIO 2 (REUSE):
Here we use a computed exact analysis of one subtree to derive
an exact analysis of another subtree. Suppose we have an exact
analysis σ for a subtree T rooted at N . In this scenario, we exploit
σ to compute another exact analysis σ′ for another (yet unexplored)
node associated with the same program point as N . In general, the
witness condition for such a reuse (and here we are talking about
real and not potential witnesses), as well as the precise definition
of the mapping from σ to σ′, is quite involved because it depends
on the kind of analysis in question. But in specific instances, this is
easily done. We thus omit a full description here but instead refer
to [5, 13, 15], and use an example of reuse in Section 2.

SCENARIO 3 (DOMINATION):
Here we exploit the situation when we have computed a nontrivial
lower-bound analysis, say for node N . Now we can in fact prune

all subtrees in the entire HSET which are dominated by N . Note
here that domination does not require that the two entities involved
represent the same program point, in contrast to reusing. In other
words, any subtree can dominate any other. Another difference
between reuse and domination is that both parties involved in a
reuse contribute an analysis; it is just that we have a quick way to
compute one of them from the other. Domination however means
that we can simply ignore one of the two parties.

In summary for these scenarios, the general idea is that during
the process of refinement, the effects of infeasible paths, reuse,
and domination serve to produce more lower-bound analyses, and
these, in turn, produce further opportunities for more reuse and
domination.

Finally, we mention that we do not explicitly consider un-
bounded loops in this paper. We assume that the symbolic execution
of loops always terminates. Dealing with unbounded loops then is
relegated to standard approaches such as using loop invariants.

The rest of this paper is organized as follows. In Section 6 we
demonstrate the framework on two kinds of analyses. The first is
(high-level) Worst-Case Execution Time (WCET) analysis. This is
an example of a backward analysis. The second example analy-
sis is a forward data flow analysis (such as that used to discover
tainted variables). In running several realistic examples, we show
that the incremental iterations do indeed produce precision gains
progressively. Importantly, in some examples, our algorithm termi-
nates (i.e.. producing an exact analysis) faster than the best custom
algorithms that are designed to pursue an exact analysis in one iter-
ation.

2. An Example
Consider here a trivial class of programs which contain only as-
signment statements of the form tick += κ where κ is a positive
number, and consider only non-nested if-then-else statements with
unspecified guards bi which do not depend on the variable tick.
The example analysis is an abstraction of the well-known worts-
case execution time (WCET) analysis, and in our simple setting,
the analysis formulas are simply upper bounds on tick, and the final
analysis it is to determine the upper bound of tick at the end.

Consider the program and its SET in Figure 2. Assuming that
any combination of the unspecified guards is satisfiable, that is, that
B1∧B2∧B3 is satisfiable, whereBi is either bi or ¬bi, 1 ≤ i ≤ 3,
it is easy to see that the WCET is 6, obtained from the leftmost
path. Before we proceed, note that in the general case where not all
combinations of guards are satisfiable, and remaining within our
trivial programming language, the problem to find the WCET is
NP-complete [13].

Before we start our analysis we will first demonstrate a use of
reuse. Assume that ¬b1 ∧ b2 ∧ b3 is satisfiable, and that we already
have an exact analysis, tick = 3 of the right subtree marked 〈2’〉 in
Figure 2. We now can produce an exact analysis for the left subtree
marked 〈2〉 without having to traverse it. To do this, we take the
longest path in the right subtree which gave rise to the analysis,
i.e.. the witness path, and this is the leftmost path under 〈2’〉. Call
this path p1. We now replay this path in the left subtree, getting the
leftmost path starting from the root. Call this path p2. Now the idea
is that the length p2 is computed from the length of p1, which is 3.
However, since the prefix of p1 from the root to node 〈2’〉, which
increments tick by zero, differs from the prefix of p2 from the root
to node 〈2〉, which increments tick by 3, we must adjust for this and
now declare that the exact analysis of node 〈2〉 is tick = 6. In other
words, we assumed that the longest increment of tick from node
〈2〉 downwards is the same as that from node 〈2’〉, which is 3. But
since the prefix of node 〈2〉 is 3 more than the prefix of node 〈2’〉,
we add a further 3 to obtain the final value of 6.

〈0〉 tick = 0
〈1〉 if (b1) tick += 3
〈2〉 if (b2) tick += 2
〈3〉 if (b3) tick += 1

Figure 2: Example Program and its Symbolic Execution tree

There are two further points to note about reuse in general.

• Suppose b1 ∧ b2 ∧ b3 (corresponding to the leftmost path in
the left subtree) is unsatisfiable. We can still perform reuse,
i.e. declare that the analysis of node 〈2〉 is 6, but this will
be imprecise. To prevent this imprecision, one needs to check
that the path under node 〈2〉 that corresponds to the witness is
feasible.

• Now suppose ¬b1 ∧ b2 ∧ b3 (corresponding to the leftmost path
in the right subtree) is unsatisfiable but b1∧b2∧b3 (correspond-
ing to the leftmost path in the left subtree) is satisfiable. Now
it is unsound to reuse the exact analysis of node 〈2’〉 (which
now is different from 3) in the analysis of node 〈2〉. In previous
implementations of reuse, e.g.: [5, 13, 15], the exact analysis
would be accompanied by an interpolant which would ensure
that the reuse can take place i.e.. that the path under the subtree
to which reuse is being considered is feasible. In a setting more
general than the WCET example in this section, we would fur-
ther need to check that the subtree to which reuse is considered
satisfies not just one or more feasible witness paths, but that the
optimality of these witness paths carries over from the source
analysis.

We now proceed to analyze the nodes in the tree, i.e.. to provide
a lower and upper bound for tickin the set of paths indicated by each
node. For example, an upper-bound analysis for the left subtree in
Figure 2, labelled 〈2〉, is tick ≤ 6. This subtree also can have a
lower-bound analysis of any nonnegative number less than or equal
to 6; for example, if we knew that the path proceeding to the left
successor of 〈3’〉 were feasible, then we could record down that
4 ≤ tick is a lower bound. If on the other hand we did not care to
check the feasibility of any path going through 〈2〉, then we could
quickly estimate that 3 is a lower bound (by choosing only right
branches). Note that there may not actually be a real execution path
resulting in tick = 3. Note also that spurious lower bounds, if their
values are too low, are not very useful.

See Figure 3 where we start with a single AI node at T1 rep-
resenting an (abstract) analysis of the program starting at the be-
ginning. We could have used traditional abstract interpretation (AI)
which over-approximates the set of paths in the SET in order to
limit consideration to a small number of abstract states (typically,
one state per program point). Thus AI analyzers are typically very
efficient. We then quickly, because the analyzer is path-insensitive,
determine a (trivial) lower bound of 0 and an upper bound of 6.

Figure 3: Detailed Refinement Step

Furthermore, the analyzer indicates that the leftmost path is a po-
tential witness path, i.e.. if it were feasible, then it would indicate
the true WCET. In Figure 3, we show only upper bounds, except in
one instance in the final tree where we show one lower bound at the
node 〈3’〉.

Next we refine the single AI node T1 into the HSET T2 which
now contains new nodes, amongst them two AI nodes at 〈2’〉 and
〈3’〉. Using abstract interpretation, note that former has an upper
bound of 3, while the latter has an upper bound of 4. We assume
that the constraint b1∧b2 is unsatisfiable, and so the leftmost path in
Figure 2 is in fact infeasible (at just before program point 〈3〉). Now
since node 〈3’〉 has a bound 4, this is inherited by the parent node
〈2〉. Finally, the root node 〈1〉 inherits the larger of the bounds of
its successors, which are 3 and 4, and so we obtain a final bound of
4. Now since T2 contains AI nodes which contribute to this answer,
this analysis is not confirmed to be exact.

Finally we deal with the two remaining AI nodes in T2, and
choose one of them to refine. We choose the node 〈3’〉 over 〈2’〉
because its upper bound is higher. The intuition is this: if we instead
chose to refine the AI node with the smaller bound, the other AI
node will still need to refined in the future. If, as we will show
next, we choose the AI node 〈3’〉 with the higher bound, there is a
chance that the remaining AI can be dominated. We now obtain T3

by refining this AI node.
This refinement produced two successors, and by assuming that

the constraint b1 ∧ ¬b2 ∧ b3 is unsatisfiable, we have that the left
subtree of node 〈3’〉 is an infeasible path. The right subtree is a
terminal node, and so for the first time, we can declare that, since
both subtrees of 〈3’〉 have no AI-nodes, that 〈3’〉 has a lower bound
(and in fact also upper bound) of 3. The most interesting step now
can be taken: that analysis here dominates the analysis at the one
remaining AI node at 〈2’〉. Note that the set of paths represented
by this node is nearly half of all the paths. By pruning away this
subtree, we now have that the entire tree has no more AI nodes,
and we can now declare that the root node has an exact analysis of
3.

3. Preliminaries
Syntax. We restrict our presentation to a simple imperative pro-
gramming language where all basic operations are either assign-
ments or assume operations, and the domain of all variables are
integers. The set of all program variables is denoted by Vars. An
assignment x := e corresponds to assign the evaluation of the ex-
pression e to the variable x. In the assume operator, assume(c), if
the boolean expression c evaluates to true, then the program contin-
ues, otherwise it halts. The set of operations is denoted by Ops. We
then model a program by a transition system. A transition system is
a quadruple 〈S, I,−→, O〉 where S is the set of states and I ⊆ S
is the set of initial states. −→⊆ S × S × Ops is the transition
relation that relates a state to its (possible) successors executing
operations. This transition relation models the operations that are
executed when control flows from one program location to another.
We shall use `

op−−→ `′ to denote a transition relation from ` ∈ S
to `′ ∈ S executing the operation op ∈ Ops. Finally, O ⊆ S is the
set of final states.

Abstract Interpretation and Symbolic Execution. An abstract
domainA is defined as a lattice structure [v,⊥,t,u,>], wherev
is the partial order relationship, t and u are the least upper bound
and greatest lower bound operators, and ⊥ and > are the bottom
and top elements of the lattice respectively. A may also consider
widening ∇ and narrowing 4 operators. We assume A is Galois-
connected [8] with the powerset lattice of state sets, and the use of
α and γ for the abstraction and concretization maps for this Galois
connection.

A symbolic state v is defined usually as a triple 〈`, s,Π〉. The
symbol ` ∈ S corresponds to the current program location. We use
special symbols for initial location, `start ∈ I , and final location,
`end ∈ O. The symbolic store s is a function from program variables
to terms over input symbolic variables. The evaluation JcKs of a
constraint expression c in a store s is defined as: JvKs = s(v)
(if v is a variable), JnKs = n (if n is an integer), Je op e′Ks =
JeKs op Je′Ks (where e, e′ are expressions and op is a relational or
arithmetic operator). Π is called path condition and it is a first-order
formula over the symbolic inputs and it accumulates constraints
which the inputs must satisfy in order for an execution to follow
the particular corresponding path. The set of first-order formulas
and symbolic states are denoted by FO and SymStates, respectively.

For all purposes of this paper, we do not consider arbitrary
symbolic states, but only those generated during our symbolic
execution. Hence, we abuse notation to (re)define a symbolic state
v as the quadruple 〈`, s,Π, π〉, where the additional parameter π
is a sequence of program transitions that were taken during SE in
order to reach v.

Given a transition system 〈S, I,−→, O〉 and a state v ≡
〈`, s,Π, π〉 ∈ SymStates, the symbolic execution of `

op−−→ `′

returns another symbolic state v′ defined as:

SYMSTEP(v, `
op−−→ `′) ≡ v′ , 〈`′, s,Π ∧ JcKs, π′〉 if op ≡ assume(c) and Π ∧ JcKs

is satisfiable
〈`′, s[x 7→ JeKs],Π, π′〉 if op ≡ x := e

(1)

where π′ , π · ` op−−→ `′. Note that Eq. (1) queries a theorem
prover for satisfiability checking on the path condition. We assume
the theorem prover is sound but not necessarily complete. That is,
the theorem prover must say a formula is unsatisfiable only if it
is indeed so. Given a symbolic state v ≡ 〈`, s,Π, π〉 we define
JvK : SymStates→ FO as the formula (

∧
v ∈ Vars JvKs)∧Π where

Vars is the set of program variables.
A symbolic path v0 · v1 · ... · vn is a sequence of symbolic

states such that ∀i • 1 ≤ i ≤ n the state vi is a successor of

vi−1. A symbolic state v′ ≡ 〈`′, ·, ·, ·〉 is a successor of another
v ≡ 〈`, ·, ·, ·〉 if there exists a transition relation `

op−−→ `′.
A path v0 · v1 · ... · vn is feasible if vn ≡ 〈`, s,Π, ·〉 such
that JΠKs is satisfiable. If ` ∈ O and vn is feasible then vn
is called terminal state, denoted TERMINAL(vn). Otherwise, if
JΠKs is unsatisfiable the path is called infeasible and vn is called
an infeasible state, denoted INFEASIBLE(vn). If there exists a
feasible path v0 ·v1 ·...·vn then we say vk (0 ≤ k ≤ n) is reachable
from v0 in k steps. We say v′ is reachable from v if it is reachable
from v in some number of steps. A symbolic execution tree contains
all the execution paths explored during the symbolic execution
of a transition system by triggering Eq. (1). The nodes represent
symbolic states and the arcs represent transitions between states.
Finally, we assume the existence a function θA which extracts an
analysis, i.e., an element of the abstract domain A, given a path π.

An invocation of abstract interpretation (AI) at a symbolic state
v constructs an AI graph rooted at v. It performs the standard
fixpoint computation on A and returns an upper bound analysis U
and a possible lower bound analysis L of the set of paths through
v. Formally, if E is assumed to be the desired exact analysis of the
set of paths, then L v E v U (we do not explicitly compute E but
infer it when the bounds coincide).

Of course, being abstract, it need not consider the feasibility of
individual paths and can analyze an over-approximation of them. In
addition, we also assume that it produces potential witness paths2

denoted as ω – a set of paths from which the upper bound analysis
U is derived. In general this can be all paths in the AI graph, but
often it is just a subset, since not all paths in an AI graph contribute
to its analysis. Computing these witness paths is straightforward
but tedious, so we do not detail it here. Briefly when AI executes,
it can “mark” certain edges in the graph that are sufficient to pro-
duce the analysis of the entire graph. The witness paths can then
be obtained by traversing marked edges from the root to a terminal
node. In summary, we assume the existence of a procedure AB-
STRACTINTERPRETATION which when invoked with a symbolic
state v returns a triple 〈L,U , ω〉.

Interpolation. Given a pair of first order logic formulas A and B
such that A∧B is false, an interpolant [10] is another formula Ψ
such that (a) A |= Ψ, (b) Ψ∧B is false, and (c) Ψ is formed using
common variables of A and B. An interpolant removes irrelevant
information in A that is not needed to maintain the unsatisfiability
of A ∧B.

Interpolation has been prominently used to reduce state space
blowup in program verification [14, 19], analysis [5, 15] and test-
ing [17]. Here we will use it for a similar purpose – to merge, or
subsume, symbolic states and avoid redundant exploration. During
symbolic execution, our algorithm will annotate certain states with
an interpolant, which can be used to prune other symbolic trees, as
follows.

Given a current symbolic state v ≡ 〈`, s, ·, π〉 and an already
explored symbolic state at the same program point v′ ≡ 〈`, ·, ·, π′〉
annotated with the interpolant Ψ, we say v′ subsumes v, denoted
as SUBSUMES(v′, v) if (a) JvKs |= Ψ and (b) c(π) vc c(π

′),
where c(π) is some contextual information extracted from π that
monotonically determines the final analysis at v.

The first condition ensures that the symbolic paths through v
are a subset of the symbolic paths through v′, and the second
condition ensures that these paths have already been explored with
a more general (in terms of the lattice of the context, possibly
different from A) context c(π′). Therefore, by exploring v one
cannot obtain more precise analysis than that has been already
obtained by exploring v′, and hence v can be subsumed.

2 We say “potential” as they may not be real feasible paths.

We note that subsumption is a special form of reuse that has
been briefly discussed in the early Sections. While reuse (with in-
terpolation) has been presented and exploited for different analysis
problems [5, 15], formulating this concept for a general analysis
framework is rather involved. For simplicity, we thus omit the de-
tail.

Efficient interpolation algorithms exist for quantifier-free frag-
ments of theories such as linear real/integer arithmetic, uninter-
preted functions, pointers and arrays, and bitvectors (e.g., see [6]
for details) where interpolants can be extracted from the refutation
proof in linear time on the size of the proof.

4. Algorithm
Our incremental analysis algorithm, whose pseudocode is shown
in Fig. 4, can be expressed as one that starts with an abstract
interpretation (AI) graph representing an abstract analysis of the
program, and gradually refines the graph using symbolic execution
(SE) until the desired level of analysis precision is obtained. During
SE, a forward traversal collects path constraints and checks for path
feasibility, and a backtracking phase annotates each state v with
the following information: 〈L,U , ω,Ψ〉, representing the lower
bound and upper bound analyses for the set of paths through v,
the potential witness paths for the upper bound analysis, and the
interpolant at v, respectively.

With this annotation, we now define our all important domina-
tion condition.

DEFINITION 1 (Domination). A symbolic state v annotated with
〈L,U , ω,Ψ〉 is dominated by a symbolic state v′ annotated with
〈L′,U ′, ω′,Ψ′〉 if U v L′. We also say that v′ dominates v,
denoted as DOMINATES(v′, v).

In other words, if a symbolic state produces an upper bound
analysis that is already contained (lattice-wise) in the lower bound
analysis of another state, it is considered dominated. Particularly,
there is no use trying to refine it to reduce its upper bound analysis.
Note that a state can dominate itself if its lower and upper bounds
are the same (i.e., it has an exact analysis).

The main procedure, INCREMENTALANALYSIS, accepts the
program P as a transition system, which we assume is a global
variable to all procedures. In line 1, the initial state is created with
`start as the program point, an empty store, the path condition true,
and the empty sequence. In line 2 the initial AI graph is gener-
ated by calling ABSTRACTINTERPRETATION with the initial state.
This would return a possible lower bound, an upper bound and the
potential witness paths ω for the upper bound.

Lines 3-9 define the main refinement loop. First, the set of sym-
bolic states that root non-dominated AI graphs is collected in R.
Any state in R now represents a potential AI graph to refine. A
heuristic is then applied to select one state from R to refine in
this iteration. Several meaningful heuristics can be applied here de-
pending on the analysis being performed. In the case of WCET, the
natural choice is to pick the AI graph that produces the maximum
upper bound. In other analyses, if possible, a “difference” metric
can be defined to measure the amount of (non) domination, and the
AI graph in R with maximum difference can be chosen (see Sec-
tion 5 for an example for taint analysis).

Once the state v representing the AI graph to refine is chosen,
its current annotation is then removed (line 7) and the procedure
REFINEUNFOLD is called along with the witness paths for its upper
bound analysis ω. When REFINEUNFOLD returns it would have an-
notated v with new, possibly tighter, upper and lower bounds which
are then propagated back to its ancestors by the procedure PROP-
AGATEBACK. This process continues until the loop terminates by
means of a BoundsHeuristic, which is user-defined.

INCREMENTALANALYSIS (P)
1: v := 〈`start, ∅, true, ·〉
2: 〈L,U , ω〉 := ABSTRACTINTERPRETATION (v)
3: do
4: R := {v | @ v′ s.t. DOMINATES(v′, v)}
5: v := RefinementHeuristic (R)
6: let v be annotated with 〈L,U , ω,Ψ〉
7: remove v annotation and REFINEUNFOLD(v, ω)
8: PROPAGATEBACK(v)
9: until BoundsHeuristic

PROPAGATEBACK (v′ ≡ 〈`, s,Π, π〉)
1: if ` ≡ `start then return
2: let v′ be the successor of some v
3: 〈L,U , ω,Ψ〉:= 〈⊥,⊥, ∅, true〉
4: foreach successor v′′ of v do
5: let v′′ be annotated with 〈L′′,U ′′, ω′′,Ψ′′〉
6: 〈L,U , ω〉:= 〈L′′ t L, U ′′ t U , ω′′ ∪ ω〉
7: Ψ := Ψ ∧ ŵlp (Ψ

′′
, op)

8: endfor
9: replace v annotation with 〈L,U , ω,Ψ〉
10: PROPAGATEBACK(v)

REFINEUNFOLD (v ≡ 〈`, s,Π, π〉, ωv)
1: if INFEASIBLE (v) then
2: 〈L,U , ω,Ψ〉:= 〈⊥,⊥, ∅, false〉
3: else if TERMINAL (v) then
4: 〈L,U , ω,Ψ〉:= 〈θA(π), θA(π), ∅, true〉
5: spine done := true
6: else if ∃ v′ ≡ 〈`, s, ·, π′〉 annotated with 〈L,U , ω,Ψ〉 s.t.
7: SUBSUMES (v′, v) then spine done := true
8: else if spine done then
9: 〈L,U , ω〉 := ABSTRACTINTERPRETATION(v), Ψ := true
10: else
11: 〈L,U , ω,Ψ〉:= 〈⊥,⊥, ∅, true〉
12: foreach transition `

op−−→ `′ ∈ P do
13: v′ := SYMSTEP(v, `

op−−→ `′)

14: if ` op−−→ `′ ∈ ωv then spine done := false endif
15: REFINEUNFOLD (v′, ωv)

16: let v′ be annotated with 〈L′,U ′, ω′,Ψ′〉
17: 〈L,U , ω〉:= 〈L′ t L, U ′ t U , ω′ ∪ ω〉
18: Ψ := Ψ ∧ ŵlp (Ψ

′
, op)

19: endfor
20: endif
21: if L ≡ U then annotate v with 〈L,U , ∅,Ψ〉
22: else annotate v with 〈L,U , ω, false〉
23: endif

Figure 4: Algorithm for incrementally precise analysis

A straightforward BoundsHeuristic check is ∀v.∃v′ s.t. DOMINATES(v′, v),
i.e., there are no non-dominated symbolic states. This forces the al-
gorithm to terminate only when the final analysis is exact. However,
a WCET analyzer could be content if, say, the difference between
upper and lower bounds is less than 5%, in which case the heuris-
tic can check if ∀v annotated with 〈·,U , ·, ·〉.∃v′ annotated with
〈L′, ·, ·, ·〉 s.t. (U − L′)/U ≤ 0.05. A taint analyzer may only
care about flow of taint to a particular subset of variables S, so the
heuristic can check if ∀v annotated with 〈·,U , ·, ·〉, S * U , or ∃v
annotated with 〈L, ·, ·, ·〉 s.t. S ⊆ L, in order to ensure no-flow or
flow of taint to the variables in S respectively.

REFINEUNFOLD is our main refinement procedure that accepts
the current symbolic state v and the set of potential witness paths
to refine ωv . It is a recursive procedure that refines an AI graph by
symbolically unfolding the paths in ωv . There are four bases of this
procedure:

• (Lines 1-2) If v is an infeasible state, then it sets the lower and
upper bounds to⊥, the set of witness paths for the upper bound
to ∅, and the interpolant Ψ to false to denote the infeasibility.

• (Lines 3-5) If v is a terminal state, then this signifies an exact
analysis. Hence both the lower and upper bounds are set to
θA(π) – the analysis extracted from this single path. A minor
optimization is that witness paths for this analysis can be set to ∅
because we will never refine an exact analysis in future. Finally,
the interpolant is set to true. In addition, we set a (global)
variable spine done to true to signify that a spine (witness path)
has been exercised fully, and can begin constructing AI nodes
along the branches from this path later.

• (Lines 6-7) If v is subsumed by another state v′, it simply sets
spine done to true. Implicitly, the lower and upper bounds, the
witness paths and interpolant for v are copied over from v′.

• (Lines 8-9) If spine done is true, i.e., a spine has been explored
already and we are exploring other branches from it, then it
constructs an AI graph at v by calling ABSTRACTINTERPRE-

TATION. This would return a lower bound, upper bound and the
witness paths for the upper bound. The interpolant is then set to
true, as there is no infeasibility to capture in the constructed AI
graph.

If the four bases fail, REFINEUNFOLD symbolically executes the
current state v (lines 10-20). It first initializes the lower and upper
bounds, the witness paths, and interpolant to ⊥, ∅ and true respec-
tively, which will be modified after the recursive call. Then, for
each transition from the current program point ` to `′, it does the
following (lines 12-19). It constructs the next symbolic state v′ ap-
plying SYMSTEP on v, and recursively calls itself. As a minor
technicality, if the transition is part of a witness path that is being
refined (line 14), it sets spine done to false before making the call.
If this is not done, the fourth base case would simply construct an
AI graph along a witness path, defeating the purpose of refinement.

Upon returning from the recursive call, v′ would have been
annotated with some lower and upper bounds, witness paths, and
interpolant. From this, the same information for v is computed
by joining it with the existing information at v (line 17). That
is, the analysis of the set of paths through v is computed as the
(lattice) join of the analysis of each individual path. The inter-
polant deserves some special treatment due to its back propaga-
tion. From the interpolant Ψ

′
at v′, the interpolant at v is com-

puted by conjoining the current interpolant Ψ with ŵlp(Ψ
′
, op) —

the weakest liberal precondition [11] of Ψ
′

w.r.t. the transition op.
ŵlp : FO× Ops→ FO ideally returns the weakest formula on the
current state such that the execution of op results in Ψ

′
. In practice

we approximate the wlp by making a linear number of calls to a
theorem prover, using techniques outlined in [14], which usually
results in a formula stronger than the wlp.

Finally, once either a base case or the recursive case is executed,
REFINEUNFOLD annotates (lines 21-23) the current state with the
information defined by one of the cases. An important check is
made here: if the lower and upper bounds are the same, then we
have an exact analysis at v. Therefore, the witness paths can be set

to ∅ since we will never refine an exact analysis. But most impor-
tantly, if the check failed, then the bounds do not coincide, and the
analysis is imprecise. A state with an imprecise analysis should not
subsume any other state. Hence we change the interpolant to false
before annotating v so that for all states v′′, SUBSUMES(v, v′′)
would fail. A subtle corollary of this is that the first three base cases
assign the same lower and upper bounds at v, and the fourth base
case most likely assigns them differently. The recursive case is then
dependent on the the bounds of the successors of v.

The final procedure PROPAGATEBACK simply propagates the
annotation at a given state v′ to its ancestors upto the root of
the entire tree at `start. In line 2, it obtains the parent state v,
and in lines 3-8 it performs the backward propagation from all
successors of v, in exactly the same way as lines 11,16-18 of
REFINEUNFOLD. For brevity, we provide its pseudocode but omit
a detailed description.

The whole algorithm is guaranteed to terminate provided
ABSTRACTINTERPRETATION terminates (see discussion on Un-
bounded Loops below). In case the algorithm is interrupted and
forced to terminate, the current lower bound and upper bound can
be extracted straightforwardly from the symbolic states and pre-
sented to the user, making this an “any-time terminate” algorithm.

Discussion on Loops
Unbounded Loops pose a technical problem as they make the
symbolic execution tree infinite, thereby making REFINEUNFOLD
non-terminating. The only hope to get termination is by using an
abstraction such as a loop invariant. We employ invariant gener-
ation techniques outlined in [14, 15]. Particularly we assume that
program points are labeled with invariants inferred from external
means such as AI with octagon or polyhedral domains [22], and
a function getassrt which, given a program point ` and symbolic
store s, returns an assertion in the form of a FOL formula, renamed
using s, that holds at `. Note that when ` is a loop header, getassrt
will return a loop invariant. Then, we modify SYMSTEP by adding
a new case as follows:

SYMSTEP(v, `
op−−→ `′) , invariant(〈`′, s,Π〉, ` → `n) if `

is the header for a loop from ` to `n

where invariant(〈`, s,Π, π〉, `→ `n) ,
let s′ := Havoc(s,Modifies(`→ `n))

Π := getassrt(`, s′) ∧Π
in 〈`, s′,Π, π〉

Havoc(s, V ars) , ∀v ∈ V ars • s[v 7→ z] where z is a fresh
variable (implicitly ∃-quantified).
Modifies(` → . . . → `n) takes a sequence of transitions and
returns the set of variables that may be modified during its symbolic
execution.

Intuitively, invariant clears the symbolic store of all variables
modified in the loop (using the Havoc function) and then strength-
ens the path condition Π of the symbolic state with the invariants
from the abstract interpreter. Finally, REFINEUNFOLD is modified
so that if it detects a cycle at `, it simply stops unfolding and re-
turns, as ` has already been explored with the loop invariant. Note
that abstraction using loop invariants entails a possible loss of anal-
ysis precision, but this is a general problem outside the scope of
this paper.

5. Implementation
We implemented the incremental analysis algorithm in Fig. 4 on
the TRACER framework for symbolic execution, using the same in-
terpolation method and theory solver presented in [16]. We instan-

tiated our algorithm for (1) a backward WCET analysis and (2) a
forward taint (data-flow) analysis.

5.1 WCET Analysis
For backward WCET analysis, the abstract domain A is defined
as [≤, 0,t,u,∞], with the lattice being the non-negative inte-
gers, θ1 t θ2 , max(θ1, θ2). The pre-operation, defined as
p̂re(θv′ , op) , θv′ + len(op), adds the length of the transition
op to the post-state analysis to obtain the current-state analysis.

We implemented the heuristics in Fig. 4 as follows. Refine-
mentHeuristic is quite straightforward as the abstract domain A
imposes a total order on its elements. Hence we simply pick for re-
finement the AI graph that produced the maximum upper bound
WCET, with ties being resolved non-deterministically. Bound-
sHeuristic implements the following check: ∀v.∃v′s.t.DOMINATES(v′, v),
i.e., all symbolic states are dominated by another, possibly the
same, state. This makes the algorithm terminate only when the
final WCET is exact.

5.2 Taint Analysis
For forward taint analysis,A is defined as [⊆, ∅,∪,∩, V], with the
lattice being the powerset of V , the set of all program variables. In
the literature, there are various definitions of how taint information
is to be propagated, and we follow the one in [21], which considers
both both explicit and implicit tainting. Explicit taint occurs when
there is a direct data-flow from a tainted variable, say t, to another
variable x (e.g., through an assignment x=t+r). Implicit taint oc-
curs when there is an equality check on a tainted variable, such
as if(t==x), which intuitively makes the other argument x also
tainted, as one can observe its value to find the value of t. There-
fore the post-operation is defined as follows:

p̂ost(θv, op) ,

θv ∪ {x} if op ≡ x := e and ∃t ∈ θv

that occurs in e
θv ∪ {x} if op ≡ assume(x==e) and

∃t ∈ θv that occurs in e
θv otherwise

(2)

Typically, the source of taint greatly affects the propagated
taint information. We chose a realistic and objective model for
our experiments, where all variables whose values are obtained
from outside the program were tainted. This includes all extern
variables, user input, environment variables etc. This models the
execution of the program in an “untrusted” environment, a common
scenario in realistic taint analyses.

We now discuss how the heuristics were implemented here. For
RefinementHeuristic, unlike WCET, the abstract domain A does
not impose a total order since two variable sets may be incompa-
rable. Therefore we defined a notion of “difference” in domina-
tion as follows. First, we compute the lattice join (t) of all lower
bound taint sets in, say, a set LB . Then, for each v that roots an
AI graph annotated with 〈L,U , ω,Ψ〉, we compute the difference
set δv ≡ U \ LB . We then pick the AI graph at v that pro-
duces the maximal value of |δv |. That is, we pick the AI graph
that causes a maximum difference in the cardinality of tainted vari-
able sets compared to the collective lower bound. Ties, when two
sets produce the same difference in cardinality, are resolved non-
deterministically. For instance, if two AI graphs, at v and v′, pro-
duced the taint sets {a, b, c} and {a, c, d}, and the collective lower
bound LB is {a, b}, then we pick v′ to refine, as it produces the
maximal difference {c, d} as opposed to just {c} from v. Finally,
BoundsHeuristic implements the same check as for WCET analy-
sis, which ensures that the taint information is exact when the algo-
rithm terminates.

Benchmark LOC AI-based SE [5] Incremental
WCET WCET Time Mem WCETU WCETL Time Mem

cdaudio 1288 167 154 27 s 212 MB 154 154 12 s 47 MB
diskperf 1255 446 * * * 411 411 230 s 400 MB
floppy 1524 243 216 19 s 136 MB 216 216 14 s 38 MB
ssh 2213 107 59 17 s 39 MB 59 59 17 s 51 MB
nsichneu 3370 1551 * * * 1431 483 * *
tcas 235 249 * * * 244 207 * *
statemate 1187 433 * * * 431 319 * *

Table 1. WCET Analysis results for AI based, SE based, and our incremental algorithm. A * represents a timeout of 5 minutes.

Benchmark # V AI-based SE [15] Incremental
TV # TV Time Mem #TVU #TVL Time Mem

cdaudio 330 318 318 45 s 528 MB 318 318 9 s 125 MB
diskperf 185 166 166 45 s 359 MB 166 166 1 s 17 MB
floppy 197 179 179 9 s 140 MB 179 179 1 s 22 MB
ssh 63 57 53 1 s 8 MB 53 53 1 s 8 MB
nsichneu 22 16 16 4 s 24 MB 16 16 2 s 11 MB
tcas 41 29 29 1 s 8 MB 29 29 1 s 2 MB
statemate 119 96 # # # 96 96 2 s 39 MB

Table 2. Taint Analysis results. # TV measures the number of tainted variables. A # is an out of memory within the timeout.

6. Experimental Evaluation
We used as benchmarks sequential C programs from a varied
pool – three device drivers cdaudio, diskperf, floppy from the
ntdrivers-simplified category and SSH Client protocol from the
ssh-simplified category of SV-COMP 2014 [2], an air traffic colli-
sion avoidance system tcas, and two programs from the Mälardalen
WCET benchmark [18] statemate and nsichneu. We removed the
safety properties from the SV-COMP benchmarks as we are not
concerned with their verification. All experiments are carried out
on an Intel 2.3 Ghz machine with 2GB memory, and a timeout of 5
minutes considering our nominal benchmark size.

In both WCET and taint analysis, we compare our incremental
algorithm with two adversaries: abstract interpretation (AI) on one
hand, and state-of-the-art SE based algorithms on the other. For
WCET analysis, we chose the algorithm presented in [5]. For taint
analysis, we modified the algorithm in [15] to propagate forward
taint information instead of slice information. These algorithms
are highly path-sensitive, designed to produce exact analysis, and
employ aggressive pruning techniques such as interpolation and
reuse to achieve scalability.

In both experiments, we present the following statistics for each
benchmark: (a) the final analysis produced by the AI-based, SE-
based, and our incremental algorithm with upper (U) and lower
(L) bounds (b) the time taken and (c) the total memory usage as
given by the underlying TRACER system. We do not show the time
and memory for the AI based algorithm as they are quite negligi-
ble compared to that of the other two algorithms (for instance, it
typically terminates in less than 1 second).

6.1 WCET Analysis
Table 1 shows the results of running WCET analysis on our bench-
marks. As it can be seen, the AI based algorithm produces an anal-
ysis quickly for all programs but it is in fact not precise. So the only
hope to produce an exact analysis is if the SE based algorithm ter-
minates. However the latter fails to terminate on several programs
by timing out, leaving no useful analysis information.

On the other hand, our incremental algorithm is able to accom-
plish two things. It either terminates well before the SE algorithm,
as in the first four programs, thus producing the same exact anal-
ysis as SE but using much less budget (time and memory), or it
produces a more precise range for the analysis using tighter up-

0

50

100

150

200

250

7 9 11 13 15

W
C

E
T

Time (s)

Upper

Lower

Figure 5: Progressive Upper and Lower bounds over time for
floppy

per and lower bounds, as in the last three programs. For instance,
in nsichneu, a well-known program in the WCET community that
is notoriously hard to analyze, AI produced the imprecise WCET
1551 whereas SE and our incremental algorithm ran out of budget.
However we were able to reduce the WCET (i.e., our upper bound)
to 1431 before dying. Moreover, we provided a lower bound of 483
to quantify the precision of our analysis. That is, we are able to
provide a range for the WCET to exist, whereas AI is only able to
provide an imprecise upper bound for it.

To observe how the upper and lower bounds incrementally con-
verge in our algorithm, we take a closer look the floppy bench-
mark that best exposes this phenomenon. Fig. 5 shows the pro-
gressive upper and lower bound WCET of this program over time.
The monotonicity can be clearly seen – the lower bound always
increases and the upper bound always decreases. Any point the al-
gorithm is terminated, the bounds can be reported to the user. Ob-
serve that the difference between the bounds reduces to less than
20% in just over 8 seconds, and when they coincide we get the
exact analysis at around 14 seconds. We noted that similar trends
were exhibited among other benchmarks as well.

6.2 Taint Analysis
Table 2 shows the results of taint analysis on our benchmarks. The
column # V shows the total number of variables in the program,
and the columns labelled # TV shows the number of tainted
variables. Of course, the analysis considers variable sets, but we
show only the cardinality for presentation.

Unlike WCET analysis, we see that the analysis produced by AI
in fact turns out to be exact in most cases, except ssh. This might
be because our formulation of taint analysis propagates “similar”
taint information across all paths, and so AI does not lose much
precision due to its lack of detection of infeasible paths or merg-
ing. However, the important point is that AI cannot systematically
guarantee or quantify the precision of its analysis.

On the other hand, the SE based algorithm is indeed able to
terminate on most benchmarks and provide an exact analysis. But
as it can be seen it consumes a much larger budget (time and
memory) than our incremental algorithm to do so. Moreover, in
statemate, it is unable to terminate within the memory bounds and
produce any exact analysis.

7. Related Work
Quantitative analysis, where executions are given a quality mea-
sure, covers a wide range of important applications such as for
WCET; see [20, 24] for survey), power consumption [23], perfor-
mance testing [1], to name a few. Such analyses are well-suited
for “anytime algorithms” [3]. which generate imprecise answers
quickly, and then iteratively produce better solutions. The recent
work [4] proposed both state-based and segment-based abstraction
schemes, coupled with algorithms for counterexample-guided ab-
straction refinement (CEGAR) extended for quantitative properties.
The refinement strategy here is based on an extremal counterexam-
ple trace, called the ext-trace. (In our paper, we called it the po-
tential witness path.) The reason for choosing an extremal trace is,
obviously, because a refinement which does not eliminate this trace
would not improve the analysis.

Our choice of refinement step shares this motivation [4], by
choosing, in some sense, in terms of likelihood of improvement.
But there are significant differences:

• Our approach is not limited to a quantitative property, as we
have demonstrated with a taint analysis.

• Our approach uses both lower and upper bound analyses, thus
providing a precision measure for a more flexible terminating
condition.

• Our work possesses incremental performance. The results of
the present iteration are be persistent, and can be (re-)used in
the next iteration. In particular, paths are never analyzed twice.
The fundamental reason for this is that we operate using sym-
bolic execution, which is some sense the best abstract domain,
and refine the Control Flow Graph (CFGs) with appropriate
splitting. In contrast, [4] refine the abstract domain, thus affect-
ing both CFGs and the quantitative properties (e.g. timing over
abstract caches) at the end of each iteration. In other words, the
relationship of our work to [4] is like Abstract Conflict Driven
Clause Learning (ACDCL) [12] to traditional CEGAR [7]. We
quote: “ACDCL never changes the domain, and this immutabil-
ity is crucial for efficiency (over CEGAR), because the im-
plementations of the abstract domain and transformers can be
highly optimized” [12].

• We have a concept of domination which leads to effective prun-
ing. This is used in conjunction with a refinement strategy
which chooses to refine an abstract node that is not just un-
dominated, but one that remains un-dominated no matter which
other choice of abstract node is made.

8. Concluding Remarks
We presented an analysis framework whose algorithm starts with
an efficienly obtained but not necessarily precise analysis, and then
iterately refines the problem in order to get more precision. A first
feature is that a sound analysis is obtained after any number of it-
erations, with increasing precision, and exact precision is obtained
eventually. A second feature is that our analysis comprises both
lower and upper bounds and so the final reported analysis comes
with some certification of precision. A third feature is that the algo-
rithm is equipped with, due to having both lower and upper bounds,
a concept of domination whcih can prune the search space. A fourth
feature is that the algorithm is both incremental and goal-directed
in its refinement process, and therefore pruning is, arguably, often
effective. Finally, our realistic benchmarks, on two complementary
kinds (backward and forward) of analyses, show that our algorithm
outperforms in almost all respects. On examples for which a non-
iterative exact analyzer can terminate within a budget, our algo-
rithm almost always utilises less memory and time. For examples
that no known exact analyzer can terminate within that budget, our
algorithm not only produces a more accurate analysis than an ab-
stract analysis, but it does so with a precision certification. In short,
unless an uncertified abstract analysis is deemed acceptable, our
algorithm has been evaluated to be always superior than the state-
of-the-art.

References
[1] A. Banerjee, S. Chattopadhyay, and A. Roychoudhury. Static analysis

driven cache performance testing. In RTSS, pages 319–329, 2013.
[2] D. Beyer. Third competition on software verification. In TACAS, 2014.
[3] M. Boddy. Anytime problem solving using dynamic programming. In

AAAI, pages 738–743, 1991.
[4] P. Cerny, T. A. Henzinger, and A. Radhakrishna. Quantitative abstrac-

tion refinement. In POPL, pages 115–128, 2013.
[5] D. H. Chu and J. Jaffar. Symbolic simulation on complicated loops for

wcet path analysis. In EMSOFT, 2011.
[6] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient interpolant gener-

ation in satisfiability modulo theories. In TACAS’08, pages 397–412,
2008.

[7] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
CounterrExample-Guided Abstraction Refinement. In CAV, 2000.

[8] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis. In POPL, 1977.

[9] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In 6th POPL, pages 269–282. ACM Press, 1979.

[10] W. Craig. Three uses of Herbrand-Gentzen theorem in relating model
theory and proof theory. Journal of Symbolic Computation, 22, 1955.

[11] E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM, 1975.

[12] V. D’Silva, L. Haller, and D. Kroening. Abstract conflict driven
learning. In POPL, pages 143–154, 2013.

[13] J. Jaffar, A. E. Santosa, and R. Voicu. Efficient memoization for
dynamic programming with ad-hoc constraints. In AAAI, 2008.

[14] J. Jaffar, A. E. Santosa, and R. Voicu. An interpolation method for
CLP traversal. In 15th CP, LNCS 5732, 2009.

[15] J. Jaffar, V. Murali, J. Navas, and A. Santosa. Path sensitive backward
analysis. In SAS, 2012.

[16] J. Jaffar, V. Murali, J. Navas, and A. Santosa. TRACER: A symbolic
execution engine for verification. In 24th CAV, 2012.

[17] J. Jaffar, V. Murali, and J. Navas. Boosting Concolic Testing via
Interpolation. In FSE, 2013.

[18] Mälardalen. Mälardalen WCET research group benchmarks. URL
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html,
2006.

[19] K. L. McMillan. Lazy annotation for program testing and verification.
In CAV, 2010.

[20] P. Puschner and A. Burns. A review of worst-case execution-time
analysis. Journal of Real-Time Systems, 2000.

[21] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted
to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In S&P, pages 317–331, 2010.

[22] S. Seo, H. Yang, and K. Yi. Automatic construction of hoare proofs
from abstract interpretation results. In APLAS, pages 230–245, 2003.

[23] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded soft-
ware: A first step towards software power minimization. In ICCAD,
pages 384–390, 1994.

[24] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The worst-case
execution-time problem—overview of methods and survey of tools.
Trans. on Embedded Computing Sys., 2008.

