
An Interpolation Method for CLP Traversal

Joxan Jaffar, Andrew E. Santosa, and Răzvan Voicu
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Abstract. We consider the problem of exploring the search tree of a CLP goal in
pursuit of a target property. Essential to such a process is amethod of tabling to
prevent duplicate exploration. Typically, only actually traversed goals are mem-
oed in the table. In this paper we present a method where, uponthe successful
traversal of a subgoal, ageneralizationof the subgoal is memoed. This enlarges
the record of already traversed goals, thus providing more pruning in the subse-
quent search process. The key feature is that the abstraction computed is guaran-
teed not to give rise to a spurious path that might violate thetarget property.

A driving application area is the use of CLP to model the behavior of other
programs. We demonstrate the performance of our method on a benchmark of
program verfication problems.

1 Introduction

In this paper we present a general method for optimizing the traversal of general search
trees. The gist of the method is backward-learning: proceeding in a depth-first manner,
it discovers aninterpolantfrom the completed exploration of a subtree. The interpolant
describes properties of a more general subtree which, importantly, preserves the essence
of the original subtree with respect to atarget property. We show via experiments that
often, the generalized tree is considerably more general than the original, and therefore
its representation is considerably smaller.

Our method was originally crafted as a means to optimize the exploration of states
in computation trees, which are used as a representation of program behaviour in pro-
gram analysis and verification. Such a representation can besymbolic in that a sin-
gle node represents not one but a possibly infinite set of concrete program states or
traces. The importance of a computation tree stems from the fact that it can represent a
proof of some property of the program. Building such a tree in fact is an instance of a
search problem in the sense of Constraint Programming, see eg. [1], and viewed as such,
the problem of state-space exploration essentially becomes the problem of traversing a
search tree. In this circumstance, the target property can simply be a predicate, corre-
sponding to asafety property. Or it can be something more general, like the projection
onto a set of distinguished variables; in this example, preserving the target property
would mean that the values of these variables remain unchanged.

More concretely, consider a CLP derivation tree as a decision tree where a node has
a conjunction of formulas symbolically representing a set of states. Its successor node
has an incrementally larger conjunction representing a newdecision. Suppose the target
nodes are the terminal nodes. During a depth-first traversal, whenever a path in the tree



is traversed completely, we compute aninterpolantat the target node. WhereF denotes
the formula in this node andT denotes the target property, this interpolant is a formula
F ′ such thatF |= F ′ andF ′ |= T. (Failure is reported if no suchF ′ can be found, ie: that
F 6|= T.) Any suchF ′ not only establishes that this node satisfies the target property, but
also establishes that a generalization ofF will also suffice. This interpolant can now
be propagated back along the same path to ancestor states resulting in their possible
generalizations. The final generalization of a state is thenthe conjunction of the possible
generalizations of derivation paths that emanate from thisstate.

One view of the general method is that it provides an enhancement to the general
method oftablingwhich is used in order to avoid duplicate or redundant search. In our
case, what is tabled is not the encountered state itself, butageneralizationof it.

The second part of the paper presents a specific algorithm forboth computing and
propagating interpolants throughout the search tree. The essential idea here is to con-
sider the formulas describing subgoals as syntactic entities, and then to use serial con-
straint replacement successively on the individual formulas, starting in chronological
order of the introduction of the formulas. In this way, we achieve efficiency and can
still obtaining good interpolants.

1.1 Related Work

Tabling for logic programming is well known, with notable manifestation in the SLG
resolution [2, 3] which is implemented in the XSB logic programming system [4]. As
mentioned, we differ by tabling a generalization of an encountered call.

Though we focus on examples of CLP representing other programs, we mentioned
that we have employed an early version of the present ideas for different problems. In
[5], we enhanced the dynamic programming solving of resource-constrained shortest
path (RCSP) problems. This kind of example is similar to a large class of combinatorial
problems.

Our interpolation method is related to various no-good learning techniques in CSP [6]
and conflict-driven and clause learning techniques in SAT solving [7–10]. These tech-
niques identify subsets of the minimalconflict setor unsatisfiable coreof the problem
at hand w.r.t. a subtree. This is similar to our use of interpolation, where we generalize
a precondition “just enough” to continue to maintain the verified property.

An important alternative method for proving safety of programs is translating the
verification problem into a Boolean formula that can then be subjected to SAT or SMT
solvers [11–16]. In particular, [8] introduces bounded model checking, which translates
k-bounded reachability into a SAT problem. While practically efficient in case when the
property of interest is violated, this approach is in fact incomplete, in the sense that the
state space may never be fully explored. An improvement is presented in [17], which
achieves unbounded model checking by using interpolation to successively refine an
abstract transition relation that is then subjected to an external bounded model check-
ing procedure. Techniques for generating interpolants, for use in state-of-the-art SMT
solvers, are presented in [18]. The use of interpolants can also be seen in the area of
theorem-proving [19].

In the area of program analysis, our work is related to various techniques of ab-
stract interpretation, most notablycounterexample-guided abstraction refinement(CE-



〈0〉 if (∗) then x := x+1
〈1〉 if (y≥ 1) then x := x+2
〈2〉 if (y < 1) then x := x+4〈3〉

p0(X,Y) :- p1(X,Y).

p0(X,Y) :- p1(X′,Y),X′ = X +1.

p1(X,Y) :- p2(X,Y),Y < 1.

p1(X,Y) :- p2(X′,Y),X′ = X +2,Y ≥ 1.

p2(X,Y) :- p3(X,Y),Y ≥ 1.

p2(X,Y) :- p3(X′,Y),X′ = X +4,Y < 1.

p3(X,Y,X,Y).

(a) (b)

Fig. 1.A Program and Its CLP Model

p0(X) :- p1(X′),X′ = X +1.

p0(X) :- p1(X).

p1(X) :- p2(X′),X′ = X +2.

p1(X) :- p2(X).

p2(X) :- p3(X′),X′ = X +4.

p2(X) :- p3(X).

p3(X).

p0(I ,N,X,Y) :- p1(I ,N,X,Y),ϕ(X).

p0(I ,N,X,Y) :- p1(I ,N,X,Y),¬ϕ(X).

p1(I ,N,X,Y) :- p2(I ,N,X,Y), I ≤ N.

p1(I ,N,X,Y) :- p4(I ,N,X,Y), I > N.

p2(I ,N,X,Y) :- p3(I ,N,X,Y′),Y′ = Y× (−Y).

p3(I ,N,X,Y) :- p1(I ′,N,X,Y), I ′ = I +1.

p4(I ,N,X,Y).

(a) (b)

Fig. 2. CLP Programs

GAR) [20–22], which perform successive refinements of the abstract domain to discover
the right abstraction to establish a safety property of a program. An approach that uses
interpolation to improve the refinement mechanism of CEGAR is presented in [22, 23].
Here, interpolation is used to improve over the method givenin [21], by achieving better
locality of abstraction refinement. Ours differ from CEGAR formulations in some im-
portant ways: first, instead ofrefining, weabstracta set of (concrete) states. In fact, our
algorithm abstracts a state after the computation subtree emanating from the state has
been completely traversed, and the abstraction is constructed from the interpolations of
the constraints along the paths in the subtree. Thus a seconddifference: our algorithm
interpolates atreeas opposed to apath. More importantly, our algorithm does not tra-
versespurious paths, unlike abstract interpretation. We shall exemplify this difference
in a comparison with BLAST [24] in Section 6.

2 The Basic Idea

Our main application area is the state-space traversal of imperative programs. For this,
we model imperative programs in CLP. Such modeling has been presented in various
works [25–27] and is informally exemplified here. Consider the imperative program
of Fig. 1 (a). Here the∗ denotes a condition of nondeterministic truth value. We also
augment the program with program points enclosed in angle brackets. The CLP model
of the same program is shown in Fig. 1 (b).

To exemplify our idea, let us first consider a simpler CLP program of Fig. 2 (a),
which is a model of an imperative program. The execution of the CLP program results
in the derivation tree shown in Fig. 3 (top). The derivation tree is obtained by reduction
usingpi predicates in the CLP model. In Fig. 3 (top), we write a CLP goal pk(X̃),ϕ as



〈k〉,ϕ′ whereϕ′ is a simplification ofϕ by projecting on the variables̃X, and an arrow
denotes a derivation step.

(F) (G)

(E) 〈2〉X = 2

〈3〉X = 0 〈3〉X = 4 〈3〉X = 2 〈3〉X = 6 〈3〉X = 1 〈3〉X = 5 〈3〉X = 3 〈3〉X = 7

(D) 〈2〉X = 0 〈2〉X = 1 〈2〉X = 3

(C) 〈1〉X = 1(B) 〈1〉X = 0

(A) 〈0〉X = 0

(G)(F)

(D) 〈2〉X ≤ 3

(B) 〈1〉X ≤ 1

(E) 〈2〉X ≤ 3

〈3〉X ≤ 7
subsumed

subsumed

subsumed

(A) 〈0〉X ≤ 0

(C) 〈1〉X ≤ 1

〈3〉X ≤ 7

Fig. 3. Interpolation

Starting in a goal satis-
fying X = 0, all deriva-
tion sequences are de-
picted in Fig. 3 (top).
Suppose the target prop-
erty is that X ≤ 7 at
program point〈3〉. The
algorithm starts reduc-
ing from (A) to (F). (F)
is labelled withX = 0
which satisfiesX ≤ 7.
However, a more gen-
eral formula, sayX ≤
5, would also satisfy
X ≤ 7. The constraint
X ≤ 5 is therefore an

interpolant, sinceX = 0 impliesX ≤ 5, andX ≤ 5 in turn impliesX ≤ 7. We could
use such an interpolant to generalize the label of node (F). However, we would like
to use as general an interpolant as possible, and clearly in this case, it isX ≤ 7 itself.
Hence, in Fig. 3 (bottom) we replace the label of (F) with〈3〉 X ≤ 7. In this way, node
(G) with label〈3〉 X = 4 (which has not yet been traversed) is nowsubsumedby node
(F) with the new label (sinceX = 4 satisfiesX ≤ 7) and so (G) need not be traversed
anymore. Here we can again generate an interpolant for (G) such that it remains sub-
sumed by (F). The most general of these isX ≤ 7 itself, which we use to label (G) in
Fig. 3 (bottom).

We next use the interpolants of (F) and (G) to produce a generalization of (D). Our
technique is to first compute candidate interpolants from the interpolants of (F) and (G),
w.r.t. the reductions from (D) to (F) and from (D) to (G). The final interpolant of (D)
is the conjunction of these candidate interpolants. In thisprocess, we first rename the
variables of (F) and (G) with their primed versions, such that (F) and (G) both have the
label X′ ≤ 7. First consider the reduction from (D) to (F), which is in factequivalent
to a skip statement, and hence it can be represented as the constraintX′ = X. It can
be easily seen that the labelX = 0 of (D) entailsX′ = X |= X′ ≤ 7. Here again we
compute an interpolant. The interpolant here would be entailed by X = 0 and entails
X′ = X |= X′ ≤ 7. As interpolant, we chooseX ≤ 71.

Similarly, considering the goal reduction (D) to (G) as the augmentation of the con-
straintX′ = X+4, we obtain a candidate interpolantX ≤ 3 for (D). The final interpolant
for (D) is the conjunction of all candidates, which isX ≤ 7∧X ≤ 3 ≡ X ≤ 3. We label
(D) with this interpolant in Fig. 3 (bottom). In this way, (E)is now subsumed by (D),
and its traversal for the verification of target property is not necessary.

1 This interpolant corresponds to theweakest precondition[28] w.r.t. the statementX := X and
the target propertyX ≤ 7, however, in general the obtained precondition need not be the weak-
est, as long as it is an interpolant.



We then generate an interpolant for (E) in the same way we did for (G). By repeating
the process described above for other nodes in the tree, we obtain the smaller tree of Fig.
3 (bottom), which is linear in the size of the program. This tree represents the part of the
symbolic computation tree that wouldactually be traversedby the algorithm. Hence,
while the tree’s size is exponential in the number ofif statements, our algorithm
prunes significant parts of the tree, speeding up the process.

2.1 With Infeasible Sequences

Now consider Fig. 1 (a) where there areinfeasiblesequences ending in goals with un-
satisfiable constraint, which are depicted in Fig. 4 (top). Let the target property beX ≤ 5
at point〈3〉. A key principle of our re-labeling process is that itpreserves the infeasibil-
ity of every derivation sequence. Thus, we must avoid re-labeling a node too generally,
since that may turn infeasible paths into feasible ones. To understand why this is neces-
sary, let us assume, for instance, re-labelling (E), whose original label isX = 2,Y ≥ 1,
into X = 2. This would yieldX = 6 at point〈3〉 (a previously unreachable goal), which
no longer entails the target propertyX ≤ 5.

infeasibleinfeasible infeasible infeasible

(F) (G)

(C) 〈1〉X = 1

〈2〉X = 3,Y ≥ 1〈2〉X = 1,Y < 1

〈3〉 〈3〉X = 5,Y < 1〈3〉X = 3,Y ≥ 1 〈3〉〈3〉 〈3〉X = 4,Y < 1〈3〉X = 2,Y ≥ 1 〈3〉

(D) 〈2〉X = 0,Y < 1 (E) 〈2〉X = 2,Y ≥ 1

(A) 〈0〉X = 0

(B) 〈1〉X = 0

(F)

infeasible

subsumed

infeasible

(C)

(G)
〈3〉 〈3〉X ≤ 5 〈3〉〈3〉X ≤ 5

(A) 〈0〉X ≤ 0

〈1〉X ≤ 1(B) 〈1〉X ≤ 1

(D) 〈2〉X ≤ 1,Y < 1 (E) 〈2〉X ≤ 5,Y ≥ 1

Fig. 4. Interpolation of Infeasible Sequences

Next note that the
path ending at (F) is
also infeasible. Ap-
plying our infeasibil-
ity preservation prin-
ciple, we keep (F) la-
beled with false, and
therefore the only pos-
sible interpolant for
(F) is falseitself. This
would produce the in-
terpolantY < 1 at (D)
since this is the most
general condition that
preserves the infeasi-
bility of (F). Note that

here,Y < 1 is implied by the original labelX = 0,Y < 1 of (D) and impliesY ≥ 1 |=
false, which is the weakest precondition offalsew.r.t. the negation of theif condition
on the transition from (D) to (F).

Now consider (G) withX = 4,Y < 1 and note that it satisfiesX ≤ 5. (G) can be
interpolated toX ≤ 5. As before, this would produce the preconditionX ≤ 1 at (D).
The final interpolant for (D) is theconjunctionof X ≤ 1 (produced from (G)) andY < 1
(produced from (F)). In this way, (E) cannot be subsumed by (D) since its label does
not satisfy both the old and the new labels of (D). Fortunately, however, after producing
the interpolant for (B), the node (C) can still be subsumed.

In Section 5 we detail an efficient technique to generate interpolants calledserial
constraint replacement, which is based on constraint deletion and slackening. Thistech-
nique is briefly explained next.



2.2 Loops

Our method assumes that the derivation tree is finite in the sense that there is no infinite
sequence of distinct goals in a single path, although the tree may contain cyclic deriva-
tions. Here we discuss how we may compute an interpolant fromcyclic derivations.

(E)

(B) (C)

(D)

y := y× (−y)

〈4〉ϕ,Y ≥ 0,Y ≤ 0 |= Y ≥ 0〈1〉ϕ,Y ≥ 0,Y ≤ 0

(A) 〈0〉 Y ≥ 0,Y ≤ 0

〈1〉ϕ,Y ≥ 0,Y ≤ 0〈1〉¬ϕ,Y ≥ 0,Y ≤ 0

Fig. 5.Loop Interpolation

Consider Fig. 2 (b) which is a pro-
gram with cyclic derivation. The pro-
gram contains some constraintϕ.
The derivation tree, where the initial
goal isY ≥ 0,Y ≤ 0, is shown in Fig.
5. The tree is finite because in (D),
the second occurrence of point〈1〉,
is subsumedby the ancestor (B). This
subsumption is enabled by aloop in-
variant made available by some ex-
ternal means at node (B), and which

renders unnecessary the expansion of node (D) (the computation tree is“closed” at (D)).
In the spirit of the example, we now attempt to generalize node (B) in order to avoid

having to traverse node (C) (which must be traversed if (B) were not generalized).
Let us first examine the path (A), (B), (D). The constraintϕ can be removed from

(B) so that the resulting goal remains a loop invariant. Thisis becauseϕ is not related
to the other variables. More importantly,ϕ is itself a loop invariant, and we come back
to this later.

Next we attempt to remove the constraintY ≤ 0. The resulting goal at (B) now has
the constraintY ≥ 0. But this goal is no longer invariant. That is, the computation tree
at this new node (B) is such that the corresponding node (D) isnotsubsumed by (B). A
similar situation would arise if we keptY ≤ 0 and deletedY ≥ 0.

The only possibility we have left is to check if we can removebothof Y ≤ 0 andY≥
0. Indeed, that is possible, since the sequence (A), (B), (D), from which all constraints
ϕ,Y ≤ 0,Y ≥ 0 are removed, is such that (B) subsumes (D). Indeed, in this case, the
generalized (B) subsumes all the goals at point〈1〉.

So far, we have shown that for the sequence (A), (B), (D), at node (B), we could
perform the following kinds of deletions: (1) delete nothing, (2) deleteϕ alone, (3)
delete both ofY ≤ 0 andY ≥ 0, and (4) delete all ofϕ,Y ≤ 0 andY ≥ 0. (That is, we
exclude the case where we delete just one ofY ≤ 0 andY ≥ 0.) We would then have a
new sequence where (B) continues to subsume (D).

Let us now examine the sequence (A), (B), (E), which is the second derivation
sequence emanating from (B). Note that (E) is a target goal, and we require thatY ≥ 0
here. Thus the choices (3) or (4) above made for the sequence (A), (B), (D) would not
be suitable for this path, because these deletions would remove all constraints onY.

It thus becomes clear that the best choice is (2). That is, we end up generalizing
(B) by deleting only the constraintϕ. With this as an interpolant, it is now no longer
necessary to traverse the subtree of goal (C).

In summary, a final goal that is subsumed by one of its ancestors is already labelled
with a path invariant, that is, a invariant that holds only for the particular derivation
sequence. However, it is still possible to generalize the final goal by deleting any indi-



vidual constraint that also appears at the ancestor goal, and it is itself invariant. Note
that in this example,ϕ was invariant through the cycle, unlikeY ≤ 0 orY ≥ 0. A rather
straightforward idea then is to consider only invariant constraints as candidates for dele-
tion within a sequence. We detail this in sections 4 and 5.2.

3 CLP Preliminaries

We first briefly overview CLP [29]. Theuniverse of discourseis a set of terms, inte-
gers, and arrays of integers. Aconstraintis written using a language of functions and
relations. In this paper, we will not define the constraint language explicitly, but invent
them on demand in accordance with our examples. Thus the terms of our CLP programs
include the function symbols of the constraint language.

An atom, is as usual, of the formp(t̃) wherep is a user-defined predicate symbol
and thet̃ a tuple of terms. Arule is of the formA:-B̃,φ where the atomA is thehead
of the rule, and the sequence of atomsB̃ and the constraintφ constitute thebodyof the
rule. A goal Ghas exactly the same format as the body of a rule. We say that a rule is
a (constrained)fact if B̃ is the empty sequence. Aground instanceof a constraint, atom
and rule is defined in the obvious way.

A substitutionsimultaneously replaces each variable in a term or constraint into
some expression. We specify a substitution by the notation[Ẽ/X̃], whereX̃ is a se-
quenceX1, . . . ,Xn of variables andẼ a list E1, . . . ,En of expressions, such thatXi is
replaced byEi for all 1≤ i ≤ n. Given a substitutionθ, we write asEθ the application
of the substitution to an expressionE. A renamingis a substitution which maps vari-
ables variables. Agroundingis a substitution which maps each variable into a value in
its domain.

In this paper we deal with goals of the formpk(X̃),Ψ(X̃), wherepk is the predicate
defined in a CLP model of an imperative program andΨ(X̃) is a constraint oñX. Given
a goalG ≡ pkX̃),Ψ(X̃), [[G ]] is the set of the groundingsθ of the primary variables
X̃ such that∃̃Ψ(X̃)θ holds. We say that a goalG ≡ pk(X̃),Ψ(X̃) subsumesanother
goal G ≡ pk′(X̃

′),Ψ(X̃′) if k = k′ and [[G ]] ⊇ [[G ]]. Equivalently, we say thatG is a
generalizationof G . We writeG1 ≡ G 2 if G1 andG 2 are generalizations of each other.
We say that a sequence issubsumedif its last goal is subsumed by another goal in the
sequence.

Given two goalsG1 ≡ pk(X̃1),Ψ1 andG 2 ≡ pk(X̃2),Ψ2 sharing a common program
point k, and having disjoint sets of variables, we writeG 1 ∧ G 2 to denote the goal
pk(X̃1),(X̃1 = X̃2,Ψ1,Ψ2).

Let G ≡ (B1, · · · ,Bn,φ) and P denote a goal and program respectively. LetR≡
A:-C1, · · · ,Cm,φ1 denote a rule inP, written so that none of its variables appear in
G. Let A = B, whereA and B are atoms, be shorthand for equations between their
corresponding arguments. Areductof G usingR is of the form

(B1, · · · ,Bi−1,C1, · · · ,Cm,Bi+1, · · · ,Bn,Bi = A∧φ∧φ1)
providedBi = A∧φ∧φ1 is satisfiable.

A derivation sequenceis a possibly infinite sequence of goalsG0,G1, · · · where
Gi , i > 0 is a reduct ofGi−1. If there is a last goalGn with no atoms calledterminal
goal, we say that the derivation issuccessful. In order to prove safety, we test that



the goal implies the safety condition. A derivation is ground if every reduction therein
is ground. Given a sequenceτ defined to beG 0,G 1, . . . ,G n, then cons(τ) is all the
constraints of the goalG n. We say that a sequence isfeasibleif cons(τ) is satisfiable,
and infeasibleotherwise. Moreover, we say that a derivation sequenceτ is successful,
when it is feasible andk is the final point.

Thederivation treeof a CLP has as branches its derivation sequences. In this tree,
theancestor-descendantrelation between nodes is defined in the usual way. A leaf of
this tree iscyclic if its program point appears at one of its ancestors, which will be called
thecyclic ancestorof the leaf in question. A derivation tree isclosedif all its branches
are either successful, infeasible, or subsumed. Given a CLPwith a derivation treeT,
whose root is a goalG , we denote byT[G ′/G ] the tree obtained by replacing the root
G by a new goalG ′, and relabeling the nodes ofT to reflect the rules represented by
the edges ofT. In other words,T[G ′/G ] represents the symbolic computation tree of
the same program, started at a different goal.

Informally, we say that two closed treesT andT ′ have thesame shapeif their se-
quences can be uniquely paired up such that, for every pair ofsequences(τ,τ′), we have:
(a) τ is a sequence inT, andτ′ is a sequence inT ′; (b) τ andτ′ have the same sequence
of predicates; and (c)τ andτ′ are both simultaneously either successful, infeasible, or
subsumed.

Given a target property represented as a conditionΨ(X̃) on system variables, we
say that a final goalG is safeif [[G ]] ⊆ [[pk(X̃),Ψ(X̃)]].

We end this section with a definition of the notion of interpolant.

Definition 1 (Interpolant). A goalGI is an interpolantfor closed tree T with rootG if:
• all its successful sequences end in safe goals;
• GI subsumesG ,
• T and T[GI/G ] have the same shape.

4 The Algorithm

In this section, we describe an idealized algorithm to traverse a computation tree of a
given goalG . The recursive procedure computes for each suchG a possibly infinite
set of interpolants. These interpolants are then propagated to the parent goalGp of G .
The eventual completion of the traversal ofGp is likewise augmented by a computation
of its interpolant. Clearly this process is most naturally implemented recursively by a
depth-first traversal. Our main technical result is that allinterpolants aresafe, that is, all
computation trees resulting from a goal subsumed by an interpolant are safe.

The algorithm is presented in Fig. 6. Its input is a goalG . We assume that there is a
target property thatΨ f (X̃f ) must hold at a target pointkf . Without loss of generality, we
also assume thatG andΨ f do not share variables, and before the execution, the memo
table containing computed interpolants is empty. The idea is to compute interpolants
that are as general as possible. The functionsolve is initially called with the initial
goal. We first explain several subprocedures that are used inFig. 6:

• memoed(G ) tests ifG ′ is in the memo table such thatG ′ subsumesG . If this is the
case, it returns the set of all suchG ′.



• memo(I ) records the setI of interpolants in the memo table.
• WP(G ,ρ) is a shorthand for the conditionρ |= Ψ′ whereρ is the constraint in the

rule used to produce the reductG ≡ pk(X̃′),Ψ′; X̃ andX̃′ are the variables appearing
in this rule.

In what follows, we discuss each of the five cases of our algorithm. Each case is charac-
terized by a proposition that contributes to the proof of thecorrectness theorem stated
at the end of this section.

First, the algorithm tests whether the input goalG is already memoed, in which
case, the return value ofmemoed(G ) is returned. The following proposition holds:

Proposition 1. If G ′ ∈ memoed(G ) thenG ′ is an interpolant ofG .

Next consider the case where current goalG is false. Here the algorithm simply
returns a singleton set containing the goalpk(X̃), false. The following proposition is
relevant to the correctness of this action.

Proposition 2. The goal pk(X̃), false is an interpolant of a false goal.

Next consider the case where current goalG is terminal. If G is unsafe, that is
[[G ]] 6⊆ [[pk(X̃f ),Ψ f (X̃f )]], the entire function aborts, and we are done. Otherwise, the
algorithm returnsall generalizationsG of G such that[[G ]] ⊆ [[pk(X̃f ),Ψ f (X̃f )]]. The
following proposition is relevant to the correctness of this action.

Proposition 3. When the target property is specified by pkf (X̃f ),Ψ f where kf is a final

program point, and the goalG is safe, then its generalizationG is an interpolant ofG ,
where[[G ]] ⊆ [[pkf (X̃f ),Ψ f ]].

Next consider the case where current goalG is a looping goal, that is,G is subsumed
by an ancestor goal. Here we compute a set of generalizationsof the ancestor goal such
that the same execution from the ancestor goal to the currentinput goal still results in
a cycle. In other words, we return the set of all possible generalizations of the ancestor
goal such that when the same reduction sequence (with constraintΦ along the sequence)
is traversed to the current goal, the goal remains subsumed by the ancestor goal. The
following proposition is relevant to the correctness of this action.

Proposition 4. If G ≡ pk(X̃),Ψ is a goal with ancestor pk(X̃′),Ψ′ such thatΨ ≡ Ψ′∧
Φ, then pk(X̃),Ψ[X̃/X̃′] is an interpolant ofG whereΨ∧Φ |= Ψ[X̃/X̃′] if all successful
goals in the tree are safe.

Finally we consider the recursive case. The algorithm represented by the recursive
proceduresolve, given in Figure 6, applies all applicable CLP rules to create new goals
from G . It does this by reducingG . It then performs recursive calls using the reducts.
Given the return values of the recursive calls, the algorithm computes the interpolants
of the goalG by an operation akin to weakest precondition propagation. The final set
of interpolants forG is then simply the intersection of the sets of interpolants returned
by recursive calls.

Proposition 5. Let G have the reductsG i where1≤ i ≤ n. LetG i ∈ solve(G i), 1≤

i ≤ n. ThenG is an interpolant ofG if for all 1≤ i ≤ n,G ≡ ∩n
i=1{pk(X̃),WP(G i ,ρi)}.



solve(G ≡ pk(X̃),Ψ) returns a set of interpolants
case (I = memoed(G )): return I
case G is false (Ψ ≡ false): return {pk(X̃), false}
case G is target (k = kf ):

if (Ψ[X̃f /X̃] 6|= Ψ f ) abort else return {G : [[G ]] ⊆ [[pkf
(X̃f ),Ψ f ]]}

case G is cyclic:
let cyclic ancestor of G be pk(X̃′),Ψ′ and Ψ ≡ Ψ′ ∧Φ
return {pk(X̃),Ψ[X̃/X̃′] : Ψ∧Φ |= Ψ[X̃/X̃′]}

case otherwise:
foreach rule pk(X̃) :- pk′(X̃′),ρ(X̃, X̃′):

I := I ∩ {pk(X̃),WP(G
′
,ρ) : G

′
∈ solve(pk′(X̃′),Ψ∧ρ)}

endfor
memo(I ) and return I

Fig. 6. The Interpolation Algorithm

The following theorem follows from Propositions 1 through 5:

Theorem 1 (Safety).The algorithm in Fig. 6 correctly returns interpolants.

We note that the generation of interpolants here employs a notion of weakest pre-
conditionin the literature [28, 30]. Given a goal transition induced by a statementsand
represented as input-output constraintρ(X̃, X̃′), the weakest precondition of a condition
Ψ′ is ρ(X̃, X̃′) |= Ψ′. By our use of interpolation, we do not directly use the weakest pre-
condition to generalize a goal, a technique which is notoriously inefficient [31], but we
instead use interpolants, which approximate the weakest precondition, are efficient to
compute, and yet still generalize the input goal. That is, instead ofWP, we use another
function INTP(G ,ρ) such that whenG is pk′(X̃

′),Ψ′, then INTP(G ,ρ) is a constraint
Ψ such thatΨ entails(ρ |= Ψ′). In the next section, we demonstrate an algorithm that
implementsINTP based upon an efficient implementation of constraint deletions and
“slackening.”

5 Serial Constraint Replacement

We now present a general practical approach for computing aninterpolant. Recall the
major challenges arising from the idealized algorithm in Fig. 6:

• not one but asetof interpolants is computed for each goal traversed;
• even for a single interpolant, there needs to be efficient wayto compute it;
• interpolants for the descendants of a goal need to be combined by a process akin to

weakest-precondition propagation, and then these resultsneed to be conjoined.

Given a set of constraints, we would like to generalize the maximal number of con-
straints that would preserve some “interpolation condition”. Recall that this condition
is (a) being unsatisfiable in the case we are dealing with a terminal (false) goal, (b)
implying a target property in case we are dealing with a target goal, or (c) implying that
the subsumed terminal node remains subsumed.



Choosing a subset of constraints is clearly an inefficient process because there are an
exponential number of subsets to consider. Instead, we order the constraints according
to the execution order, and process the constraintsserially. While not guaranteed to find
the smallest subset, this process is efficient and more importantly, attempts to generalize
the constraintsin the right orderbecause the earliest constraints, those that appear in
the most goals along a path, are generalized first.

The computation of interpolants is different across the three kinds of paths con-
sidered. Case (a) and (b) are similar and will be discussed together, and we discuss
separately case (c).

5.1 Sequences ending in a False or Target Goal

Consider each constraintΨ along the path to the terminal goal in turn. If the terminal
goal werefalse, we replaceΨ with a more general constraint if the goal remainsfalse,
In case the terminal goal were a target, we replaceΨ with a more general constraint
if the goal remains safe. We end up concretely with a subset ofthe constraints in the
terminal goal, and this defines that the interpolant is the goal with the replacements
realized. We next exemplify.

Note that a program statement gives rise to a constraint relating the states before
and after execution of the statement Consider the followingimperative program and its
CLP model:

〈0〉 x := x+1
〈1〉 if (z≥ 0) then
〈2〉 y := x
〈3〉

p0(X,Y,Z) :- p1(X′,Y,Z),X′ = X +1.
p1(X,Y,Z) :- p2(X,Y,Z),Z ≥ 0.
p1(X,Y,Z) :- p3(X,Y,Z),Z < 0.
p2(X,Y,Z) :- p3(X,Y′,Z),Y′ = X.
p3(X,Y,Z).

The sequence of constraints obtained from the derivation sequence which starts from
the goalp0(X0,Y0,Z0),X0 = 0,Y0 = 2 and goes along〈0〉, 〈1〉, 〈2〉, to 〈3〉 is X0 = 0,Y0 =
2,X1 = X0 +1,Z0 ≥ 0,Y1 = X1 for some indices 0 and 1 denoting versions of variables.
At this point, we need toproject the constraints onto thecurrent variables, those that
represent the current values of the original program variables. At〈3〉, the projection of
interest isX = 1,Y = 1,Z ≥ 0.

If the target property wereY ≥ 0 at point〈3〉, then it holds because the projection
implies it. In the case of an infeasible sequence (not the case here), our objective would
be to preserve the infeasibility, which means that we test that the constraints imply the
target conditionfalse.

In general, then, we seek to generalize a projection of a listof constraints in order to
obtain an interpolant. Here, we simply replace a constraintwith a more general one as
long as the result satisfies the target property. For the example above, we could delete
(replace withtrue) the constraintsY0 = 2 andZ0 ≥ 0 and still prove the target property
Y ≥ 0 at〈3〉.

In Table 1 we exemplify both the deletion and the slackening techniques using our
running example. The first column of Table 1 is the executed statements column (we
represent the initial goal in curly braces). During the firsttraversal without abstraction,



Statement No Interpolation Deletion Deletion and
Slackening (1)

Constraint Projection Constraint Projection Constraint Projection

{x = 0,y = 2} 〈0〉 X0 = 0,Y0 = 2 X = 0,Y = 2 X0 = 0 X = 0 X0 ≥ 0 X ≥ 0
x := x+1 〈1〉 X1 = X0 +1 X = 1,Y = 2 X1 = X0 +1 X = 1 X1 = X0 +1 X ≥ 1
if (z≥ 0) 〈2〉 Z0 ≥ 0 X = 1,Y = 2,Z ≥ 0 (none) X = 1 (none) X ≥ 1
y := x 〈3〉 Y1 = X1 X = 1,Y = 1,Z ≥ 0 Y1 = X1 X = 1,Y = 1 Y1 = X1 X ≥ 1,Y = X

Table 1. Interpolation Techniques

the constraints in the second column is accumulated. The projection of the accumulated
constraints into the primary variables is shown in the thirdcolumn. As mentioned, this
execution path satisfies the target propertyY1 ≥ 0. We generalize the goals along the
path using one of two techniques:

• Constraint deletion.Here we replace a constraint withtrue, effectively deleting it.
This is demonstrated in the fourth column of Table 1. Since the constraintZ0 ≥ 0
andY0 = 2 do not affect the satisfaction of the target property, theycan be deleted.
The resulting projections onto the original variables is shown in the fifth column,
effectively leavingY unconstrained up to〈2〉, while removing all constraints onZ.

• Slackening.Another replacement techniqe is by replacing equalities with non-strict
inequalities, which we callslackening. For example, replacing the constraintX0 = 0
with X0 ≥ 0 in the fifth column of Table 1 would not alter the unsatisfiability of the
constraint system. (We would repeat this exercise withX0 ≤ 0.) The actual replace-
ment in the sixth column results in the more general interpolants in the seventh
column. Recall the demonstration of slackening in Section 2.

5.2 Sequences ending in a Subsumed Goal

Consider now the case of a sequenceτ ending in a goal which is subsumed by an
ancestor goal. Sayτ is τ1τ2 whereτ1 depicts the prefix sequence up to the subsuming
ancestor goal. The subsumption property can be expressed as

cons(τ) |= cons(τ1)[X̃i/X̃]

Following the spirit of the previous subsection, we now seekto replace any individual
constraint inτ1 as long as this subsumption holds. (Note that replacing a constraint in
τ1 automatically replaces a constraint inτ, becauseτ1 is a prefix ofτ.)

However, there is one crucial difference with the previous subsection. Here we shall
only be replacing an individual constraintΨ that isitself invariant(for pointk) in the se-
quence. The reason for this is based on the fact that in order to propagate an interpolant
(now represented as a single goal, and not a family), the interpolants for descendant
nodes need to be simply conjoined in order to form the interpolant for the parent goal
(explained in the next section). This may result in re-introduction of a replaced con-
straint Ψ in τ1. The condition thatΨ is itself invariant guarantees that even ifΨ is
re-introduced, we still have an interpolant that is invariant for the cycle.



5.3 Propagating Interpolants

One key property of serial constraint replacement is the ease with which interpolants are
generated from various derivation paths that share some prefix. Recall in the previous
sections that we need to produce a common interpolant for theintermediate nodes in
the tree from the interpolants of their children. Here, we compute candidate interpolants
of a parent node from the interpolants of the children. Note that each interpolant is now
simply a conjunction of constraints. Then, the interpolantof the parent issimply the
conjunctionof the candidate interpolants (cf. the intersection of interpolants for the
recursive case of the algorithm in Section 4).

Statement Deletion and Combination
Slackening (2) (1), (2)

ConstraintProjection Constraint Projection

{x = 0,y = 2} 〈0〉 Y0 ≥ 1 Y ≥ 1 X0 ≥ 0,Y0 ≥ 1 X ≥ 0,Y ≥ 1
x := x+1 〈1〉 (none) Y ≥ 1 X1 = X0 +1 X ≥ 1,Y ≥ 1
if (z≥ 0) 〈3〉 (none) Y ≥ 1

Table 2.Propagating Interpolants

Let us now consider another
path through the sample pro-
gram, one that visits〈0〉, 〈1〉,
and〈3〉 without visiting 〈2〉.
The statements and the inter-
polation along this path by
deletion and slackening are
shown in the first to third

columns of Table 2. Note that this path, and the path〈0〉, 〈1〉, 〈2〉, and 〈3〉 consid-
ered before, share the initial goalp0(X0,Y0,Z0),X0 = 0,Y0 = 2 and the first statement
of the program. Now to compute the actual interpolant for〈0〉 and〈1〉, we need to con-
sider the interpolants generated from both paths. Using ourtechnique, we can simply
conjoin the constraints at each level to obtain the common interpolants. This is exem-
plified in the fourth column of Table 2. As can be seen, the resulting interpolants are
simple because they do not contain disjunction. The resulting projection is shown in the
fifth column. The execution of the program, starting from thegoal represented by the
projection, along either of the possible paths, is guaranteed to satisfy the target property.

6 Experimental Evaluation

We implemented a prototype verifier using CLP(R ) constraint logic programming sys-
tem [32]. This allows us to take advantage of built-in Fourier-Motzkin algorithm [33]
and meta-level facilities for the manipulation of constraints. We performed the experi-
ments on a 1.83GHz Macbook Pro system.

6.1 Array Bounds Verification by Constraint Deletion

We verify that at each array access point, the possible indexvalues are legal. The pro-
grams “FFT” and “LU” are from the Scimark benchmark suite, and “linpack” from
Toy [34]. Here we manually provide an invariant for each loopto finitize the traversal.
The specific interpolation method used is the constraint deletion.

In Table 3, “Goals” indicates the cost of traversal, and the time is in seconds. The
fairly large “linpack” program (907 LOC) is run in four cases.



No InterpolationInterpolation
Problem LOC States Time StatesTime

FFT 165 2755 10.62 120 0.10
LU 102 298 0.39 138 0.17

linpack200 907 6385 19.70 332 0.53
linpack400 907 8995 151.65 867 2.47
linpack600 907 16126 773.63 867 2.47

linpack 907 ∞ ∞ 867 2.47

Table 3.Array Bounds Verification

For the first three, we apply a depth bound
for the search tree, progressively at 200, 400,
and 600 (denoted in the table as linpackb,
whereb is the depth bound) to demonstrate
the change in the size of the search tree,
which is practically infinite when there is
no depth bound. Using interpolation, on the
other hand, we can completely explore the
computation tree. In all cases, the number of

goals visited is significantly reduced as a result of interpolation.

6.2 Resource Bound Verification by Constraint Deletion and Slackening

Here we seek to verify an upper bound for a certain variable, representing resource
usage. In our examples, the resource of interest is the execution time of a program,
modeled as a monotonically increasing instrumented variable.

No InterpolationInterpolation
Problem LOC States Time StatesTime

decoder 27 344 1.42 160 0.49
sqrt 16 923 27.13 253 7.46
qurt 40 1104 38.65 290 11.39

jannecomplex 15 1410 48.64 439 7.87
statemate20 1298 21 0.05 21 0.08
statemate30 “ 1581 2.93 48 0.16
statemate40 “ ∞ ∞ 71 0.24
statemate “ ∞ ∞ 1240 17.09

Table 4.Resource Bound Verification

We consider the “decoder”, “sqrt”, “qurt”,
“janne complex” and “statemate” pro-
grams from the Mälardalen benchmark [35]
used for testing WCET (worst-case execu-
tion time) analysis. One challenge to ac-
curate WCET is that program fragments
can behave significantly different when
invoked in different contexts. For the
“statemate” problem, we limit the depth
bound of the goal-space search without in-
terpolation into cases 20, 30, and 40, and

we also store the summarization of the maximum resource usage of a computation sub-
tree in the memo table. In Table 4, “statematen” denotes verification runs of “statemate”
with n as the the depth bound. For “statemate,” we limit the number of iteration of a
loop in the program to two (actual number of iterations when all variables are initialized
to 0). The “statemate” program displays a significant amountof dependencies between
Boolean conditions in a path. The more dependency between statements there is, the
less the reduction that can be obtained by interpolation. For example, in the experiment
“statemate30” the reduction in goal space from 1581 to 48. More notably, the inter-
polation based goal exploration can in fact completely explore the goal space for the
“statemate” experiment, traversing just 1240 goals.

Finally, we compare with the CEGAR tool BLAST, on a fragment2, of “statem-
ate.” As in BLAST, we combine statements in a block into single transition to facilitate
proper comparison of the number of search tree nodes. Our prototype completed the
verification in traversing 142 search tree nodes. With default options (breadth-first, no
heuristics), BLAST traverses 1410 nodes. The difference is essentially due to spurious
paths and constraint slackening.

2 BLAST ran out of memory when run with the full program.
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