An Interpolation Method for CLP Traversal

Joxan Jaffar, Andrew E. Santosa, and Razvan Voicu

School of Computing, National University of Singapore
{j oxan, andr ews, razvan}conp. nus. edu. sg

Abstract. We consider the problem of exploring the search tree of a GiaPig
pursuit of a target property. Essential to such a processristhod of tabling to
prevent duplicate exploration. Typically, only actualigversed goals are mem-
oed in the table. In this paper we present a method where, thigosuccessful
traversal of a subgoal, generalizationof the subgoal is memoed. This enlarges
the record of already traversed goals, thus providing masaipg in the subse-
quent search process. The key feature is that the abstractioputed is guaran-
teed not to give rise to a spurious path that might violateahget property.

A driving application area is the use of CLP to model the béirenf other
programs. We demonstrate the performance of our method @mehtmark of
program verfication problems.

1 Introduction

In this paper we present a general method for optimizingrénestsal of general search
trees. The gist of the method is backward-learning: proogad a depth-first manner,
it discovers arnterpolantfrom the completed exploration of a subtree. The intergolan
describes properties of a more general subtree which, itauptty, preserves the essence
of the original subtree with respect tdarget property We show via experiments that
often, the generalized tree is considerably more geneaalttie original, and therefore
its representation is considerably smaller.

Our method was originally crafted as a means to optimize xp&eation of states
in computation trees, which are used as a representatiorogfgm behaviour in pro-
gram analysis and verification. Such a representation casyimbolic in that a sin-
gle node represents not one but a possibly infinite set ofret&@rogram states or
traces. The importance of a computation tree stems froneittdtat it can represent a
proof of some property of the program. Building such a tree in fa@ri instance of a
search problem in the sense of Constraint Programminggs¢g gand viewed as such,
the problem of state-space exploration essentially besdah@eproblem of traversing a
search tree. In this circumstance, the target property icaplys be a predicate, corre-
sponding to aafety propertyOr it can be something more general, like the projection
onto a set of distinguished variables; in this example, grésg the target property
would mean that the values of these variables remain uneuing

More concretely, consider a CLP derivation tree as a detisée where a node has
a conjunction of formulas symbolically representing a dedtates. Its successor node
has an incrementally larger conjunction representing adesision. Suppose the target
nodes are the terminal nodes. During a depth-first travesbenever a path in the tree

is traversed completely, we computeiaterpolantat the target node. WheFedenotes
the formula in this node and denotes the target property, this interpolant is a formula
F’ such thaF = F' andF’ |=T. (Failure is reported if no sud®’ can be found, ie: that

F = T.) Any suchF’ not only establishes that this node satisfies the targeepiybut
also establishes that a generalizatiorfofvill also suffice. This interpolant can now
be propagated back along the same path to ancestor staiéiges their possible
generalizations. The final generalization of a state is theiconjunction of the possible
generalizations of derivation paths that emanate fromstiaite.

One view of the general method is that it provides an enhaanein the general
method oftablingwhich is used in order to avoid duplicate or redundant sednobur
case, what is tabled is not the encountered state itsel§ dpemeralizatiorof it.

The second part of the paper presents a specific algorithivofibrcomputing and
propagating interpolants throughout the search tree. $kergial idea here is to con-
sider the formulas describing subgoals as syntactic estiéind then to use serial con-
straint replacement successively on the individual foemuktarting in chronological
order of the introduction of the formulas. In this way, we iael efficiency and can
still obtaining good interpolants.

1.1 Related Work

Tabling for logic programming is well known, with notable nistation in the SLG
resolution [2, 3] which is implemented in the XSB logic pragriming system [4]. As
mentioned, we differ by tabling a generalization of an emtered call.

Though we focus on examples of CLP representing other pnogjraee mentioned
that we have employed an early version of the present ideafifferent problems. In
[5], we enhanced the dynamic programming solving of ressaanstrained shortest
path (RCSP) problems. This kind of example is similar to gdarlass of combinatorial
problems.

Our interpolation method is related to various no-goodieggytechniques in CSP [6]
and conflict-driven and clause learning techniques in SAVirsg [7—10]. These tech-
niques identify subsets of the minimadnflict setor unsatisfiable coref the problem
at hand w.r.t. a subtree. This is similar to our use of intixan, where we generalize
a precondition “just enough” to continue to maintain thefied property.

An important alternative method for proving safety of prams is translating the
verification problem into a Boolean formula that can thendigected to SAT or SMT
solvers [11-16]. In particular, [8] introduces bounded elathecking, which translates
k-bounded reachability into a SAT problem. While practigaiificient in case when the
property of interest is violated, this approach is in facoimplete, in the sense that the
state space may never be fully explored. An improvementdsaqted in [17], which
achieves unbounded model checking by using interpolatiosutcessively refine an
abstract transition relation that is then subjected to dereal bounded model check-
ing procedure. Techniques for generating interpolantsi$e in state-of-the-art SMT
solvers, are presented in [18]. The use of interpolants tsmlkse seen in the area of
theorem-proving [19].

In the area of program analysis, our work is related to vari@mehniques of ab-
stract interpretation, most notaltpunterexample-guided abstraction refinemi-

Po(X,Y) - pa(X,Y).
(©)if () thenx:=x+1 Po(X,Y) - Py(X',Y), X' =X +1.
(1)if (y>1)thenx:=x+2 PLXY) 0= Pe(X,Y), Y,<1
(2)if (y<1)thenx:=x+4(3) PLX,Y) - Po(XY) X=X +2Y = 1
P2(X,Y) - ps(X,Y),Y > 1.
P20X,Y) 1 - pa(X,Y), X =X +4,Y < 1.
Pa(X,Y.X.Y)

(a) (b)

Fig. 1. A Program and Its CLP Model

Po(X) 1 - pr(X), X' =X+1. Po(1,N,X,Y) = pr(l,N,X,Y),d(X).
pO(X):' () po(l,N,X,Y) (|7N XY)v ()

pu(X) i - pa(X'), X =X +2. P(1,N, X, Y) - p(1,N, X, Y), 1 < N.

P1(X) 1 - P2(X). Pu(l,NX,Y) ¢ - p4(l N, X,Y),1 >N.

pa(X) : pg(x) X' =X+4. Pa(1,N,X,Y) - pa(l,N,X, Y)Y =Y x (=Y).
p2(X) : - pa(X). Pa(1,N, X, Y) - pr(1, N, XY 1 =1+ 1.
p3(x) p4(I~N/X‘Y)

() (b)

Fig. 2. CLP Programs

GAR [20-22], which perform successive refinements of the absttomain to discover
the right abstraction to establish a safety property of @gm. An approach that uses
interpolation to improve the refinement mechanism of CEG&Rresented in [22, 23].
Here, interpolation is used to improve over the method gingp1], by achieving better
locality of abstraction refinement. Ours differ from CEGA®trhulations in some im-
portant ways: first, instead céfining we abstracta set of (concrete) states. In fact, our
algorithm abstracts a state after the computation subtremating from the state has
been completely traversed, and the abstraction is consttfiom the interpolations of
the constraints along the paths in the subtree. Thus a seliff@cbnce: our algorithm
interpolates dree as opposed to path More importantly, our algorithm does not tra-
versespurious pathsunlike abstract interpretation. We shall exemplify thiffedence
in a comparison with BAST [24] in Section 6.

2 The Basic Idea

Our main application area is the state-space traversalpéiiative programs. For this,
we model imperative programs in CLP. Such modeling has beesepted in various
works [25-27] and is informally exemplified here. Consides tmperative program
of Fig. 1 (a). Here the: denotes a condition of nondeterministic truth value. We als
augment the program with program points enclosed in anglekiets. The CLP model
of the same program is shown in Fig. 1 (b).

To exemplify our idea, let us first consider a simpler CLP pang of Fig. 2 (a),
which is a model of an imperative program. The execution ef@hP program results
in the derivation tree shown in Fig. 3 (top). The derivatiggetis obtained by reduction
using p; predicates in the CLP model. In Fig. 3 (top), we write a CLPIgQQ)?),d) as

(k),9’ whered' is a simplification ofp by projecting on the variablé$, and an arrow

denotes a derivation step.

(A) ()X =0

(B) ()X =0 C) WX =1

(D) (2X=0 (B)(2X=2 @2x=1 2x=3

® 2\ PN

©)
(BX=0 (IX=4 (IX=2 (IX=6 (PIX=1 (IX=5 BIX=3 (IX=7
(A) (OX <0

(B) (DX < 1=~ “eubsumed ©)x<1

(D) (2)X < B (B)2X<3
— subsumed
(F) ©)
@X<T o oo- (@x<7
subsumed

Fig. 3. Interpolation

Starting in a goal satis-
fying X = 0, all deriva-
tion sequences are de-
picted in Fig. 3 (top).
Suppose the target prop-
erty is thatX < 7 at
program poin{3). The
algorithm starts reduc-
ing from (A) to (F). (F)

is labelled withX =0
which satisfiesX < 7.
However, a more gen-
eral formula, sayX <

5, would also satisfy
X < 7. The constraint
X < 5 is therefore an

interpolant, sinceX = 0 impliesX <5, andX < 5 in turn impliesX < 7. We could
use such an interpolant to generalize the label of node (&)veder, we would like
to use as general an interpolant as possible, and cleartysrtase, it isX < 7 itself.
Hence, in Fig. 3 (bottom) we replace the label of (F) wih X < 7. In this way, node
(G) with label(3) X = 4 (which has not yet been traversed) is rewbsumedby node
(F) with the new label (sincX = 4 satisfiesX < 7) and so (G) need not be traversed
anymore. Here we can again generate an interpolant for (&) that it remains sub-
sumed by (F). The most general of thesXis: 7 itself, which we use to label (G) in

Fig. 3 (bottom).

We next use the interpolants of (F) and (G) to produce a gépatian of (D). Our
technique is to first compute candidate interpolants fragnrterpolants of (F) and (G),
w.r.t. the reductions from (D) to (F) and from (D) to (G). Thedi interpolant of (D)
is the conjunction of these candidate interpolants. In phigess, we first rename the
variables of (F) and (G) with their primed versions, suct {Raand (G) both have the
label X’ < 7. First consider the reduction from (D) to (F), which is in facfuivalent
to aski p statement, and hence it can be represented as the conXtrainX. It can
be easily seen that the lab¥l= 0 of (D) entailsX’ = X = X’ < 7. Here again we
compute an interpolant. The interpolant here would be kutdiy X = 0 and entails

X' =X = X' < 7. As interpolant, we choosé < 7.

Similarly, considering the goal reduction (D) to (G) as thgmentation of the con-
straintX’ = X 44, we obtain a candidate interpolaxt 3 for (D). The final interpolant
for (D) is the conjunction of all candidates, which¥s< 7A X <3 =X < 3. We label
(D) with this interpolant in Fig. 3 (bottom). In this way, (E§ now subsumed by (D),
and its traversal for the verification of target propertyas necessary.

1 This interpolant corresponds to theakest preconditiof28] w.r.t. the statemerX := X and
the target propertX < 7, however, in general the obtained precondition need notéw/éak-

est, as long as it is an interpolant.

We then generate an interpolantfor (E) in the same way weodi(f¥). By repeating
the process described above for other nodes in the tree, taim tfoe smaller tree of Fig.
3 (bottom), which is linear in the size of the program. Thégtrepresents the part of the
symbolic computation tree that wouddttually be traversedy the algorithm. Hence,
while the tree’s size is exponential in the number idf statements, our algorithm
prunes significant parts of the tree, speeding up the process

2.1 With Infeasible Sequences

Now consider Fig. 1 (a) where there anéeasiblesequences ending in goals with un-
satisfiable constraint, which are depicted in Fig. 4 (top}.the target property be <5

at point(3). A key principle of our re-labeling process is thapreserves the infeasibil-
ity of every derivation sequence. Thus, we must avoid re-lag&inode too generally,
since that may turn infeasible paths into feasible onesnBietstand why this is neces-
sary, let us assume, for instance, re-labelling (E), whoggnal label isX =2,Y > 1,
into X = 2. This would yieldX = 6 at point(3) (a previously unreachable goal), which
no longer entails the target propeky< 5.

Next note that the

A {Ox=0 . :
: path ending at (F) is
(B) ()X =0 ©{nx=1 also infeasible. Ap-
T plying our infeasibil-
(D) (2)X=0,Y <1 (E)(2X=2Y>1 2X=1Y<1 (2X=3Y>1 . . .
B\ © ity preservation prin-
(3 @X=4Y<LU3IX=2Y>1(3) (38) (IX=5Y<1BX=3Y>1(3 ciple, we keep (F) la-
infeasible infeasibleinfeasible infeasible beled Wlth false and
(A) (O)X <0 therefore the only pos-
subsumed™—~(©) sible interpolant for
®xs1=" xst (F) isfalseitself. This
D) @X<1Y<1 (E)@X<5Y>1 would produce the in-
N — T terpolanty < 1 at (D)
3 3JIX <5 3JIX <5 3 . —
easily =S s ifeaate since this is the most
general condition that
Fig. 4. Interpolation of Infeasible Sequences preserves the infeasi-

bility of (F). Note that
here,Y < 1 is implied by the original labeX = 0,Y < 1 of (D) and impliesy > 1 |=
false which is the weakest preconditionfaflsew.r.t. the negation of théf condition
on the transition from (D) to (F).

Now consider (G) withX = 4,Y < 1 and note that it satisfies < 5. (G) can be
interpolated toX < 5. As before, this would produce the preconditi¥n< 1 at (D).
The final interpolant for (D) is theonjunctionof X < 1 (produced from (G)) and < 1
(produced from (F)). In this way, (E) cannot be subsumed bysfbce its label does
not satisfy both the old and the new labels of (D). Forturyatedwever, after producing
the interpolant for (B), the node (C) can still be subsumed.

In Section 5 we detail an efficient technique to generatapolants calledserial
constraint replacemenivhich is based on constraint deletion and slackening.t€hls-
nique is briefly explained next.

2.2 Loops

Our method assumes that the derivation tree is finite in theesthat there is no infinite
sequence of distinct goals in a single path, although tkeertray contain cyclic deriva-
tions. Here we discuss how we may compute an interpolant éyaotic derivations.
Consider Fig. 2 (b) which is a pro-
gram with cyclic derivation. The pro-
gram contains some constraigt
D0y >(%)Y _ o<1>£$)v oy <o The derivation tree, where the initial

N R goalisY > 0,Y <0, is shown in Fig.
5. The tree is finite because in (D),
yEyx(=y) the second occurrence of poittt),

(D) (B) is subsumedy the ancestor (B). This

(1)¢,Yy=>0Y<0 (49,Yy=>0Y<0EY=>0Q gypsumption is enabled byl@op in-
variant made available by some ex-
ternal means at node (B), and which
renders unnecessary the expansion of node (D) (the conputiege is“closed” at (D)).

In the spirit of the example, we now attempt to generalizeen@&] in order to avoid
having to traverse node (C) (which must be traversed if (Bpwmt generalized).

Let us first examine the path (A), (B), (D). The constraintan be removed from
(B) so that the resulting goal remains a loop invariant. Thisecaus# is not related
to the other variables. More importantly,s itself a loop invariant, and we come back
to this later.

Next we attempt to remove the constrafht 0. The resulting goal at (B) now has
the constrain¥ > 0. But this goal is no longer invariant. That is, the comgotatree
at this new node (B) is such that the corresponding node (B)tisubsumed by (B). A
similar situation would arise if we kept < 0 and deletety > 0.

The only possibility we have left is to check if we can rembeghof Y < 0 andY >
0. Indeed, that is possible, since the sequence (A), (B),f(Bn which all constraints
¢,Y <0,Y > 0 are removed, is such that (B) subsumes (D). Indeed, in #ss,dhe
generalized (B) subsumes all the goals at p¢iit

So far, we have shown that for the sequence (A), (B), (D), den®), we could
perform the following kinds of deletions: (1) delete nothir{2) deleted alone, (3)
delete both off < 0 andY > 0, and (4) delete all ap,Y < 0 andY > 0. (That is, we
exclude the case where we delete just on¥ ef 0 andY > 0.) We would then have a
new sequence where (B) continues to subsume (D).

Let us now examine the sequence (A), (B), (E), which is theoiséaerivation
sequence emanating from (B). Note that (E) is a target godlyee require that > 0
here. Thus the choices (3) or (4) above made for the sequéhcéB]), (D) would not
be suitable for this path, because these deletions wouldwell constraints oM.

It thus becomes clear that the best choice is (2). That is,mdeu@ generalizing
(B) by deleting only the constraidt. With this as an interpolant, it is now no longer
necessary to traverse the subtree of goal (C).

In summary, a final goal that is subsumed by one of its ancest@iready labelled
with a path invariant that is, a invariant that holds only for the particular dation
sequence. However, it is still possible to generalize tha fyjoal by deleting any indi-

(A) (0)Y >0,y <0

Fig. 5. Loop Interpolation

vidual constraint that also appears at the ancestor godlitasitself invariant Note
that in this examplep was invariant through the cycle, unlike< 0 orY > 0. A rather
straightforward idea then is to consider only invariantstoaints as candidates for dele-
tion within a sequence. We detail this in sections 4 and 5.2.

3 CLP Preliminaries

We first briefly overview CLP [29]. Theniverse of discoursis a set of terms, inte-
gers, and arrays of integers.odnstraintis written using a language of functions and
relations. In this paper, we will not define the constrainglaage explicitly, but invent
them on demand in accordance with our examples. Thus the t#rour CLP programs
include the function symbols of the constraint language.

An atom is as usual, of the forrp(f) wherep is a user-defined predicate symbol
and thef a tuple of terms. Aule is of the formA: - B, @ where the atonA is thehead
of the rule, and the sequence of atohand the constrainp constitute thévodyof the
rule. A goal Ghas exactly the same format as the body of a rule. We say thée ésr
a (constrainediactif B is the empty sequence.gxound instancef a constraint, atom
and rule is defined in the obvious way.

A substitutionsimultaneously replaces each variable in a term or constiiatio
some expression. We specify a substitution by the note{ﬁidbi], whereX is a se-
quenceXi, ..., X, of variables ancE a list Ey,...,E, of expressions, such th¥ is
replaced byg; for all 1 <i < n. Given a substitutio®, we write asE® the application
of the substitution to an expressi@n A renamingis a substitution which maps vari-
ables variables. Aroundingis a substitution which maps each variable into a value in
its domain.

In this paper we deal with goals of the foqoa(X), W(X), wherepy is the predicate
defined in a CLP model of an imperative program ar(ak) is a constraint oiX. Given
a goalg = pX),W(X), [¢] is the set of the groundingsof the primary variables
X such that3¥(X)8 holds. We say that a goal = px(X), ¥(X) subsumesnother
goal G = pp(X'),W(X') if k=K and[G] 2 [¢]. Equivalently, we say thag is a
generalizatiorof g. We write g, = G, if g; andg, are generalizations of each other.
We say that a sequencessbsumedf its last goal is subsumed by another goal in the
sequence.

Given two goals;; = pk(X1), W1 andg , = pk(X2), W2 sharing a common program
point k, and having disjoint sets of variables, we wrifg A G, to denote the goal
Pr(X1), (X1 = X2, W1, Wy).

Let G = (By,---,Bn,0) and P denote a goal and program respectively. Ret
A -Cq,---,Chp, @1 denote a rule irP, written so that none of its variables appear in
G. Let A= B, whereA andB are atoms, be shorthand for equations between their
corresponding arguments.rAductof G usingR is of the form

(B1,--+,Bi~1,C1,---,Cm,Biy1,---,Bn,Bi = AA QA Q1)
providedB; = AA QA @ is satisfiable.

A derivation sequences a possibly infinite sequence of gods, Gy, --- where
Gi,i > 0is a reduct ofG;_;. If there is a last goa, with no atoms callederminal
goal, we say that the derivation successfulln order to prove safety, we test that

the goal implies the safety condition. A derivation is grduinevery reduction therein
is ground. Given a sequencedefined to beg,,G,...,G,, thencongr) is all the
constraints of the goa} ,. We say that a sequencefesasibleif congt) is satisfiable,
andinfeasibleotherwise. Moreover, we say that a derivation sequerisesuccessful
when it is feasible an#d is the final point.

Thederivation treeof a CLP has as branches its derivation sequences. In tkis tre
the ancestor-descendantlation between nodes is defined in the usual way. A leaf of
this tree icyclicif its program point appears at one of its ancestors, whidhwicalled
thecyclic ancestoof the leaf in question. A derivation treedtosedif all its branches
are either successful, infeasible, or subsumed. Given aw@ttPa derivation tre€l,
whose root is a goaj, we denote byl'[g’/g] the tree obtained by replacing the root
G by a new goal;’, and relabeling the nodes @fto reflect the rules represented by
the edges oT . In other wordsT[G'/G] represents the symbolic computation tree of
the same program, started at a different goal.

Informally, we say that two closed tre@sand T’ have thesame shapé their se-
guences can be uniquely paired up such that, for every psétpfence&, v'), we have:
(a)1 is a sequence i, andt’ is a sequence if’; (b) T andt’ have the same sequence
of predicates; and (d) andt’ are both simultaneously either successful, infeasible, or
subsumed.

Given a target property represented as a condHigK) on system variables, we
say that a final goag is safeif [[g] € [pk(X), W(X)].

We end this section with a definition of the notion of inteigoal

Definition 1 (Interpolant). A goalg, is aninterpolantfor closed tree T with roog if:
e all its successful sequences end in safe goals;
e G, subsumeg,
e T and T[g,/G] have the same shape/]

4 The Algorithm

In this section, we describe an idealized algorithm to tre@@ computation tree of a
given goalg . The recursive procedure computes for each sgch possibly infinite
set of interpolants. These interpolants are then propddatthe parent goafy, of .
The eventual completion of the traversalgfis likewise augmented by a computation
of its interpolant. Clearly this process is most naturathpiemented recursively by a
depth-first traversal. Our main technical result is thaira#irpolants areafe that is, all
computation trees resulting from a goal subsumed by anpalant are safe.

The algorithm is presented in Fig. 6. Its input is a ggaWe assume that there is a
target property tha¥¢ (Xf) must hold at a target poikt . Without loss of generality, we
also assume that andWs do not share variables, and before the execution, the memo
table containing computed interpolants is empty. The ide@ icompute interpolants
that are as general as possible. The functiolnve is initially called with the initial
goal. We first explain several subprocedures that are udeigir6:

e nenoed(g) testsifg’ is in the memo table such that subsumesg; . If this is the
case, it returns the set of all sugh.

e meno(1) records the set of interpolants in the memo table.
e WP(g,p) is a shorthand for the conditigni= W’ wherep is the constraint in the
rule used to produce the redurts p(X'),W’; X andX’ are the variables appearing

in this rule. i) . .
In what follows, we discuss each of the five cases of our algoriEach case is charac-

terized by a proposition that contributes to the proof of¢berectness theorem stated
at the end of this section.

First, the algorithm tests whether the input gagals already memoed, in which
case, the return value oknoed() is returned. The following proposition holds:

Proposition 1. If g’ € nenoed(g) theng’ is an interpolant ofg .

Next consider the case where current ggais false Here the algorithm simply
returns a singleton set containing the gpg(X),false The following proposition is
relevant to the correctness of this action.

Proposition 2. The goal m()?),false is an interpolant of a false goal.

Next consider the case where current ggals terminal. If g is unsafe, that is
[6] Z [px(Xs), Wt (Xs)], the entire function aborts, and we are done. Otherwise, the
algorithm returnsall generalizationg; of g such thaf[G] € [[pk(X¢), Wt (X¢)]. The
following proposition is relevant to the correctness o$taction.

Proposition 3. When the target property is specified b<y(p~(f), Wt where k is a final
program point, and the goaj is safe, then its generalizatiap is an interpolant ofg,
where([g] € [k (Xs), ¥r].

Next consider the case where current gpas a looping goal, that is; is subsumed
by an ancestor goal. Here we compute a set of generalizatfdhe ancestor goal such
that the same execution from the ancestor goal to the cumput goal still results in
a cycle. In other words, we return the set of all possible gdizations of the ancestor
goal such that when the same reduction sequence (with eartstralong the sequence)
is traversed to the current goal, the goal remains subsuméaebancestor goal. The
following proposition is relevant to the correctness o$taction.

Proposition 4. If g = p(X), W is a goal with ancestor ;pi)N(’)_,LIJ: such that¥ = W' A
®, then i(X),W[X/X'] is an interpolant ofy whereW A ® = W[X/X/] if all successful
goals in the tree are safe.

Finally we consider the recursive case. The algorithm isgreed by the recursive
procedureol ve, given in Figure 6, applies all applicable CLP rules to ceeww goals
from ¢ . It does this by reducing . It then performs recursive calls using the reducts.
Given the return values of the recursive calls, the algoridtomputes the interpolants
of the goalg by an operation akin to weakest precondition propagatitie. final set
of interpolants forg is then simply the intersection of the sets of interpolaatanned
by recursive calls.

Proposition 5. Let g have the reducts; wherel <i <n. Letg, € sol ve(g;), 1 <
i <n.Theng is an interpolant ofg ifforall 1 <i<n,g =" {p(X),WwP(G;,pi)}-

solve(g = pr(X), W) returns a setof interpolants
case (7 = nenoed(g)): return 1
case G is false (W=false: return {pk(f(),false}
case g is target (k=ks):
if (WXe/X] = Wr) abort else return {G:[G] C [[pk (X¢), We]}
case g is cyclic:
let cyclic ancestor of g be p(X), W and W=W AD
return {p(X), WX/X']: ‘PMD\: WIX/X']}
case ot herwi se:
foreach rule p(X) :- pe(X),p(X,X):
1= 10 {p(X).we(g',p) 1 G € sol ve(pe(X'),WAp) }
endf or
meno(7) and return I

Fig. 6. The Interpolation Algorithm
The following theorem follows from Propositions 1 through 5
Theorem 1 (Safety).The algorithm in Fig. 6 correctly returns interpolants.

We note that the generation of interpolants here employgdiamof weakest pre-
conditionin the literature [28, 30]. Given a goal transition inducgdatstatemend and
represented as input-output constraifX, X'), the weakest precondition of a condition
W isp(X,X') = W'. By our use of interpolation, we do not directly use the webjies-
condition to generalize a goal, a technique which is notmlpinefficient [31], but we
instead use interpolants, which approximate the weakesbpdition, are efficient to
compute, and yet still generalize the input goal. That istéad ofwp, we use another
function INTP(g ,p) such that whery is p (X'), W', thenINTP(g,p) is a constraint
W such that entails(p = W). In the next section, we demonstrate an algorithm that
implementsINTP based upon an efficient implementation of constraint dmistiand
“slackening.”

5 Serial Constraint Replacement

We now present a general practical approach for computirigtarpolant. Recall the
major challenges arising from the idealized algorithm ig. i

e not one but aetof interpolants is computed for each goal traversed,;

e even for a single interpolant, there needs to be efficienttwapmpute it;

e interpolants for the descendants of a goal need to be couhbine process akin to
weakest-precondition propagation, and then these rasedtd to be conjoined.

Given a set of constraints, we would like to generalize thgimal number of con-
straints that would preserve some “interpolation conditi®Recall that this condition
is (a) being unsatisfiable in the case we are dealing withraited (false goal, (b)
implying a target property in case we are dealing with a tiggal, or (¢) implying that
the subsumed terminal node remains subsumed.

Choosing a subset of constraints is clearly an inefficiemt@ss because there are an
exponential number of subsets to consider. Instead, we trdeonstraints according
to the execution order, and process the constragrially. While not guaranteed to find
the smallest subset, this process is efficient and more itzptly, attempts to generalize
the constraintén the right orderbecause the earliest constraints, those that appear in
the most goals along a path, are generalized first.

The computation of interpolants is different across thee¢hkinds of paths con-
sidered. Case (a) and (b) are similar and will be discussgether, and we discuss
separately case (c).

5.1 Sequences ending in a False or Target Goal

Consider each constraikt along the path to the terminal goal in turn. If the terminal
goal werefalse we replace with a more general constraint if the goal remédiaise
In case the terminal goal were a target, we replceith a more general constraint
if the goal remains safe. We end up concretely with a substteo€onstraints in the
terminal goal, and this defines that the interpolant is thal goth the replacements
realized. We next exemplify.

Note that a program statement gives rise to a constrairtirrglthe states before
and after execution of the statement Consider the followimggerative program and its
CLP model:

— Po(X.Y,2) :- pa(XY,Z), X =X +1.

O e PXYD X220

2 yex pL(X,Y,2) ;- ps(X,Y,Z),Z <0,

B P2(X,Y,Z) - pa(X,Y',2), Y = X.
p3(XvY’Z)

The sequence of constraints obtained from the derivatignesece which starts from
the goalpo(Xo, Yo, Zo), %o = 0,Yo = 2 and goes alon{), (1), (2),to (3) isXo=0,Yo =

2, X1 =Xo+1,Zy > 0,Y1 = X1 for some indices 0 and 1 denoting versions of variables.
At this point, we need t@rojectthe constraints onto theurrent variablesthose that
represent the current values of the original program véggalit (3), the projection of
interestisXx =1Y=1,Z>0.

If the target property wer¥ > 0 at point(3), then it holds because the projection
implies it. In the case of an infeasible sequence (not the baee), our objective would
be to preserve the infeasibility, which means that we testttie constraints imply the
target conditiorfalse

In general, then, we seek to generalize a projection of aflisbnstraints in order to
obtain an interpolant. Here, we simply replace a constegitiit a more general one as
long as the result satisfies the target property. For the pbkaabove, we could delete
(replace withtrue) the constraint¥p = 2 andZp > 0 and still prove the target property
Y > 0 at(3).

In Table 1 we exemplify both the deletion and the slackengatphiques using our
running example. The first column of Table 1 is the executatestents column (we
represent the initial goal in curly braces). During the firaversal without abstraction,

Statement No Interpolation Deletion Deletion and
Slackening (1)
Constraint _[Projection Constraint [Projection ||Constraint [Projection
{x=0,y=2} (0)||[%=0,Yo=2|X=0,Y =2 X =0 X=0 X0 >0 X>0
x:=x+1(1) X1 =X+1 |[X=1Y=2 X1=X+1X=1 X1 =X+1|X>1
if (z>0) (2 Z0>0 X=1Y =2,Z>0|(none) X=1 (none) X>1
y:=x(3) Yy =X X=1Y=1Z>0|V;=% [X=1Y=1|Yi=X [X>1Y=X
Table 1.Interpolation Techniques

the constraints in the second column is accumulated. ThHegiion of the accumulated
constraints into the primary variables is shown in the temtimn. As mentioned, this
execution path satisfies the target propéfity> 0. We generalize the goals along the
path using one of two techniques:

e Constraint deletion. Here we replace a constraint wittue, effectively deleting it.
This is demonstrated in the fourth column of Table 1. SineedbnstrainZy > 0
andYp = 2 do not affect the satisfaction of the target property, ttey be deleted.
The resulting projections onto the original variables isvgh in the fifth column,
effectively leavingy unconstrained up t(2), while removing all constraints an.

e Slackening.Another replacementtechniqge is by replacing equalitiéls mdn-strict
inequalities, which we calilackeningFor example, replacing the constra¥at= 0
with Xp > 0 in the fifth column of Table 1 would not alter the unsatisfiapof the
constraint system. (We would repeat this exercise Witk 0.) The actual replace-
ment in the sixth column results in the more general intenpial in the seventh
column. Recall the demonstration of slackening in Section 2

5.2 Sequences ending in a Subsumed Goal

Consider now the case of a sequencending in a goal which is subsumed by an
ancestor goal. Sayis 1112 wheret; depicts the prefix sequence up to the subsuming
ancestor goal. The subsumption property can be expressed as

congT) = congTy)[Xi /X]

Following the spirit of the previous subsection, we now seeleplace any individual
constraint int1 as long as this subsumption holds. (Note that replacing atcaint in
11 automatically replaces a constrainttilbecause is a prefix oft.)

However, there is one crucial difference with the previaussection. Here we shall
only be replacing an individual constrakftthat isitself invariant(for pointk) in the se-
quence. The reason for this is based on the fact that in avgeopagate an interpolant
(now represented as a single goal, and not a family), thepolents for descendant
nodes need to be simply conjoined in order to form the intargdor the parent goal
(explained in the next section). This may result in re-idtrction of a replaced con-
straintW in 11. The condition that is itself invariant guarantees that evendifis
re-introduced, we still have an interpolant that is invarifr the cycle.

5.3 Propagating Interpolants

One key property of serial constraint replacement is the ®étk which interpolants are
generated from various derivation paths that share sonfix.pReecall in the previous
sections that we need to produce a common interpolant fointeemediate nodes in
the tree from the interpolants of their children. Here, wapate candidate interpolants
of a parent node from the interpolants of the children. Nio&t ¢ach interpolant is now
simply a conjunction of constraints. Then, the interpolainthe parent issimply the
conjunctionof the candidate interpolants (cf. the intersection of ripddéants for the
recursive case of the algorithm in Section 4).

Statement Deletion and Combination Let us now consider another
Slackening (2) 1), (2 path through the sample pro-
ConstraintProjectior)| Constraint _|Projection gram, one that VISIt@), <1>,

x=0y=2} O)[Yo>1 J[r>1 X >0Y>1Xx>0Y>1 and(3) without visiting (2).

x:=x+1(1) (none) Y >1 |IX1=X%+1 |[X>1Y>1 The statements and the inter-

if (220)(3 [[(none) v =1 polation along this path by
Table 2. Propagating Interpolants deletion and slackening are

shown in the first to third
columns of Table 2. Note that this path, and the p@h (1), (2), and (3) consid-
ered before, share the initial gopd(Xo, Yo,Z0), X0 = 0,Yo = 2 and the first statement
of the program. Now to compute the actual interpolant{@rand(1), we need to con-
sider the interpolants generated from both paths. Usingemimique, we can simply
conjoin the constraints at each level to obtain the commterpolants. This is exem-
plified in the fourth column of Table 2. As can be seen, theltieguinterpolants are
simple because they do not contain disjunction. The reguftrojection is shown in the
fifth column. The execution of the program, starting from ¢fual represented by the
projection, along either of the possible paths, is guashte satisfy the target property.

6 Experimental Evaluation

We implemented a prototype verifier using Gl#P) constraint logic programming sys-
tem [32]. This allows us to take advantage of built-in Fouhotzkin algorithm [33]
and meta-level facilities for the manipulation of consttai We performed the experi-
ments on a 1.83GHz Macbook Pro system.

6.1 Array Bounds Verification by Constraint Deletion

We verify that at each array access point, the possible indkeres are legal. The pro-
grams “FFT” and “LU” are from the Scimark benchmark suited &linpack” from
Toy [34]. Here we manually provide an invariant for each looffinitize the traversal.
The specific interpolation method used is the constrairetabe.

In Table 3, “Goals” indicates the cost of traversal, and theetis in seconds. The
fairly large “linpack” program (907 LOC) is run in four cases

No Interpolatiofinterpolatioj ~ For the first three, we apply a depth bound
Problem|LOC|Statey Time [State}Time| for the search tree, progressively at 200, 400,
FFT [165]2755] 10.62 | 120] 0.10 and 600 (denoted in the table as Iinp%;ck
" ';l:kzoo ;83 :3?55 1053790 ;gg g-g whereb is the depth bound) to demonstrate
|ingac|(‘0° 907| 8995| 151.65 | 867 | 2.47 the_ chgnge m_the slze .Of the search ”_ee*
linpacké®| 907|1612¢ 773.63 | 867 | 2.47 which is pract|cally_|nf||_’1|te wher_1 there is
linpack | 907| o o 867 | 2.47 no depth bound. Using interpolation, on the
other hand, we can completely explore the
computation tree. In all cases, the number of

goals visited is significantly reduced as a result of inté&fion.

Table 3. Array Bounds Verification

6.2 Resource Bound Verification by Constraint Deletion and Bckening

Here we seek to verify an upper bound for a certain varialepresenting resource
usage. In our examples, the resource of interest is the Baadime of a program,
modeled as a monotonically increasing instrumented vigriab

No Interpolationinterpolatior) V_ve consider the “decoder”, “Sqrt”’ “qurt”’

Problem |LOC|[State} Time [State$Time ‘janne.complex” and “statemate” pro-
decoder | 27 | 324] 142 | 1601049 grams from the Malardalen benchmark [35]
sqrt 16 | 923 | 27.13 | 253 | 7.46 used for testing WCET (worst-case execu-
qurt 40 | 1104| 38.65 | 290 |11.39 tion time) analysis. One challenge to ac-
jannecomplex 15 | 1410 48.64 | 439 | 7.87 curate WCET is that program fragments
Ziiiﬂig 1298 1@;1 g:gg i; 8:(1)2 can behave significantly different when

statemat® | * | o 71 | 024 invoked in different contexts. For the

statemate | “ | o w | 1240[17.09 “statemate” problem, we limit the depth

bound of the goal-space search without in-
terpolation into cases 20, 30, and 40, and
we also store the summarization of the maximum resourcesusfagycomputation sub-
tree in the memo table. In Table 4, “statenfatienotes verification runs of “statemate”
with n as the the depth bound. For “statemate,” we limit the numbéeration of a
loop in the program to two (actual number of iterations whiknaaiables are initialized
to 0). The “statemate” program displays a significant amofidependencies between
Boolean conditions in a path. The more dependency betweéensents there is, the
less the reduction that can be obtained by interpolationekample, in the experiment
“statematé® the reduction in goal space from 1581 to 48. More notableg, ititer-
polation based goal exploration can in fact completely egthe goal space for the
“statemate” experiment, traversing just 1240 goals.

Finally, we compare with the CEGAR toollBsT, on a fragmeng, of “statem-
ate.” As in BLAST, we combine statements in a block into single transitioratilitate
proper comparison of the number of search tree nodes. Otwtppe completed the
verification in traversing 142 search tree nodes. With detations (breadth-first, no
heuristics), RAST traverses 1410 nodes. The difference is essentially dugutaosis
paths and constraint slackening.

Table 4. Resource Bound Verification

2 BLAST ran out of memory when run with the full program.

Acknowledgement

We thank Dirk Beyer for his help oniB\sT.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Marriott, K., Stuckey, P.J.: Programming with ConsttairMIT Press (1998)
. Chen, W., Warren, D.S.: Tabled evaluation with delayiogdeneral logic programs. J.

ACM 43(1) (January 1996) 20-74

. Swift, T.: A new formulation of tabled resolution with @gl In Barahona, P., Alferes, J.J.,

eds.: 9th EPIA. Volume 1695 of LNCS., Springer (1999) 16317

. Sagonas, K., Swift, T., Warren, D.S., Freire, J., RacC#, B., Johnson, E., de Castro, L.,

Dawson, S., Kifer, M.: The XSB System Version 2.5 Volume hd@@ammer’s Manual. (June
2003)

. Jaffar, J., Santosa, A.E., Voicu, R.: Efficient memotmatior dynamic programming with

ad-hoc constraints. In: 23rd AAAI, AAAI Press (2008) 297330

. Frost, D., Dechter, R.: Dead-end driven learning. Inh1®2AAI, AAAI Press (1994) 294—

300

. Bayardo, Jr., R.J., Schrag, R.: Using csp look-back fgcies to solve real-world sat in-

stances. In: 14th AAAI/9th IAAI, AAAI Press (1997) 203-208

. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic miel checking without BDDs. In

Cleaveland, R., ed.: 5th TACAS. Volume 1579 of LNCS., Spein@.999) 193-207

. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., MalS.: Chaff: Engineering an

efficient SAT solver. In: 38th DAC, ACM Press (2001) 530-535

Silva, J.P.M., Sakallah, K.A.: GRASP—a new search d@lgorfor satisfiability. In: ICCAD
1996, ACM and IEEE Computer Society (1996) 220-227

McMillan, K.L.: Applying SAT methods in unbounded synlicanodel checking. Lecture
Notes in Computer Scien@104(2002) 250-??

Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT tectmés for fast predicate abstraction.
[36] 424-437

Jones, R.B., Dill, D.L., Burch, J.R.: Efficient validithecking for processor verification. In
Rudell, R.L., ed.: ICCAD 1995, IEEE Computer Society Prd€9p) 2—6

Barrett, C., Dill, D.L., Levitt, J.R.: Validity checkgnfor combinations of theories with equal-
ity. In Srivas, M.K., Camilleri, A.J., eds.: 1st FMCAD. Vahe 1166 of LNCS., Springer
(1996) 187-201

Stump, A., Barrett, C., Dill, D.L.: CVC: A cooperatingligity checker. In Brinksma, E.,
Larsen, K.G., eds.: 14th CAV. Volume 2404 of LNCS., Sprin@#f02) 500-504

Barrett, C., Berezin, S.: CVC Lite: A new implementatiointhe cooperating validity ¢
hecker. In Alur, R., Peled, D.A., eds.: 16th CAV. Volume 31f4 NCS., Springer (2004)
McMillan, K.L.: Interpolation and SAT-based model ckigg. In: 15th CAV. Volume 2725
of LNCS., Springer (2003) 1-13

Cimatti, A., Griggio, A., Sebastiani, R.: Efficient inp@lant generation in satisfiability mod-
ulo theo ries. In Ramakrishnan, C.R., Rehof, J., eds.: 1AQAS. Volume 4963 of LNCS.,
Springer (2008) 397-412

McMillan, K.L.: An interpolating theorem prover. TC&51) (2005) 101-121

Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.:uBterexample-guided abstraction
refinement for symbolic model checking. J. AG5) (September 2003) 752—-794
Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.:ylatzstraction. In: 29th POPL, ACM
Press (2002) 58—-70 SIGPLAN Notices 37(1).

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.LAbstractions from proofs. In:
31st POPL, ACM Press (2004) 232-244

McMillan, K.L.: Lazy abstraction with interpolants.gB123-136

Beyer, D., Henzinger, T., Jhala, R., Majumdar, R.: THenswe model checker Blast. Int. J.
STTT9 (2007) 505-525

Flanagan, C.: Automatic software model checking usib@.CIn Degano, P., ed.: 12th
ESOP. Volume 2618 of LNCS., Springer (2003) 189-203

Jaffar, J., Santosa, A.E., Voicu, R.: Modeling systemSLP. In Gabbrielli, M., Gupta, G.,
eds.: 21st ICLP. Volume 3668 of LNCS., Springer (2005) 413-4

Delzanno, G., Podelski, A.: Constraint-based dedectiodel checking. Int. J. STT3(3)
(2001) 250-270

Dijkstra, E.W.: A Discipline of Programming. Prentietdl Series in Automatic Computa-
tion. Prentice-Hall (1976)

Jaffar, J., Maher, M.J.: Constraint logic programmiAgsurvey. J. LP19/20 (May/July
1994) 503-581

Bjgrner, N., Browne, A., Manna, Z.: Automatic genenataf invariants and intermediate
assertions. TC%731) (February 1997) 49-87

Flanagan, C., Saxe, J.B.: Avoiding exponential explusenerating compact verificatio n
conditions. In: 28th POPL, ACM Press (2001) 193—-205

Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.®@e TLPR) language and system. ACM
TOPLAS14(3) (1992) 339-395

Jaffar, J., Maher, M.J., Stuckey, P.J., Yap, R.H.C.pOuin CLP®). In: Proc. Int. Conf. on
Fifth Generation Computer Systems, Tokyo, Japan. Volun{g922) 987-995

Toy, B.: Linpack.c (1988) URL http://www.netlib.org@bchmark/linpackc.

: Malardalen WCET research group benchmarks. WRLp: //ww. nrt c. ntdh. se/ pro-

j ects/weet/benchmarks. ht i (2006)

Ball, T., Jones, R.B., eds.: Computer Aided VerificatiBth International Conference, CAV
2006, Seattle, WA, USA, August 17-20, 2006, ProceedingsBdih, T., Jones, R.B., eds.:
18th CAV. Volume 4144 of LNCS., Springer (2006)

