Lazy Symbolic Execution for Enhanced Learning

Duc-Hiep Chu, Joxan Jaffar, and Vijayaraghavan Murali

National University of Singapore
hiepcd, joxan,m.vijay@comp.nus.edu.sg

Abstract. Symbolic execution with interpolation has emerged as a pow-
erful technique for software verification. Its performance heavily relies
heavily on the quality of the computed “interpolants”, formulas which
succinctly describe a generalization of the symbolic states proved so far.
Symbolic execution by default is eager, that is, execution along a sym-
bolic path stops the moment when infeasibility is detected in the logi-
cal constraints describing the path so far. This may however hinder the
discovery of better interpolants, i.e., more general abstractions of the
symbolic state which are yet sufficient ensure the entire symbolic path
remains error-free.

In this paper, we present a systematic method which speculates that an
infeasibility may be temporarily ignored in the pursuit of better infor-
mation about the path in question. This speculation does not lose the
intrinsic benefits of symbolic execution because its operation shall be
bounded. We argue that the trade-off between this ‘enhanced learning’
and incurring additional cost (which in principle may not be productive)
is in fact in favor of speculation. Finally, we demonstrate with a state-
of-the-art system on realistic benchmarks that this method enhances
symbolic execution by a factor of 2 or more.

1 Introduction

Symbolic execution has been shown to be largely successful in program verifica-
tion, testing and analysis [15, 20, 23, 13, 16]. It is a method for program reasoning
that uses symbolic values as inputs instead of actual data, and it represents the
values of program variables as symbolic expressions on the input symbolic val-
ues. As symbolic execution reaches each program point along different paths,
different ‘symbolic states’ are created. For each symbolic state, a path condition
is maintained, which is a formula over the symbolic inputs built by accumulat-
ing constraints that those inputs must satisfy in order for execution to reach the
state. A symbolic execution tree depicts all executed paths during the symbolic
execution.

We say that a state is infeasible if its path condition is unsatisfiable, there-
fore one obviously cannot reach an error location from this state. Whenever
an infeasible state is encountered, symbolic execution will backtrack along the
edge(s) just executed. In that regard, symbolic execution by default is eager.
This eagerness has been considered as a clear advantage of symbolic execution,
in comparison with Abstract Interpretation (AI) [6] or Counterexample-Guided
Abstraction Refinement (CEGAR) [5], since it avoids the exploration of infeasible
paths which could block exponentially large symbolic trees in practice.

The main challenge for symbolic execution is addressing the path explosion
problem. The approaches of [15, 20, 14, 13] tackle this fundamental issue by elim-
inating from the concrete model those facts which are irrelevant or too-specific
for proving the unreachability of the error nodes. This ‘learning’ phase consists
of computing interpolants in the same spirit of no-good learning in SAT solvers.
Informally, the interpolant at a given program point can be seen as a formula
that succinctly captures the reason of infeasibility of paths which go through
that program point. In other words it succinctly captures the reason why paths
through the program point are error-free. As a result, if the program point is
encountered again through a different path such that the interpolant is implied,
the new path can be subsumed, because it can be guaranteed to be error-free. In-
terpolation has been proven to be crucial in scaling symbolic execution because
it can potentially result in exponential savings by pruning large sub-trees. It is
also generally known that the quality of interpolants greatly affects the amount
of savings provided.

This is where a conflict between eagerness and learning arises. Eagerly stop-
ping and backtracking at an infeasible state can make the learned interpolants
unnecessarily too restrictive — while the interpolant would typically capture the
reason for infeasibility of the state, the infeasibility could have nothing to do
with the safety of the program. In practice, safety properties often involve a
small number of variables whereas conditional expressions, which act as guards
by causing infeasibility in paths, could be on any unrelated variable. Ultimately,
this causes the (restrictive) interpolant to disallow subsumption in future, miti-
gating its benefit. In other words, eagerness hinders a goal-directed approach.

In this paper, we propose a new method to enhance the learning of power-
ful interpolants but without losing the intrinsic benefits of symbolic execution.
Whenever an infeasible path is encountered during symbolic execution, instead
of backtracking immediately, we selectively abstract the infeasible state so that it
becomes feasible, and proceed with the search. For instance, assuming forward
symbolic execution, we can ignore the constraint from the most recent guard
that caused the infeasibility, in order make it a feasible state.

By performing such an abstraction, we say that we have entered speculation
mode. More generally, as we progressively abstract away infeasibility in the con-
sideration of a symbolic path, we are exhibiting a goal (or property) directed
strategy. Note again that this exercise does not have an immediate benefit be-
cause we already know that all paths containing an infeasible prefix subpath
are in fact safe. The point here is to learn new interpolants. Now, recalling the
mantra “a little knowledge is dangerous, but so is a lot”, is it in fact true that
the more interpolants we learn, the better? The answer is no: we could have an
exponential number of interpolants and yet many or all of them may be useless
for pruning the search space. What we really want are good interpolants. But of
course the challenge is how to target our algorithm in this direction.

Our answer is speculation, but subject to a bound. This mitigates the poten-
tial blowup of what was already a workable method (symbolic execution with
interpolation), but yet retaining the possibility of discovering good interpolants.

It is easy to see that this bound should be linearly related to the program size:
anything less than this makes the speculation phase arbitrarily short. That is,
we do need set aside at least a linear bound. It is a main contribution of this
paper, that in other direction, a linear bound is good enough.

2 Examples

We begin with an exemplification of when (eager) symbolic execution is clearly
not the most direct way to conduct a proof. For the programs in Figure 1, assume
(1) the boolean expressions e; do not involve the variables z and y, and (2) the
desired postcondition is y < n for some constant n > 0. A path expression is of
the form Fy A Eo A--- A\ E, where each FE; is either e; or its negation. Note that
each of the (2") path expressions represents a unique path through each of the
programs.

In the first program in Figure 1(a), it is easy to see that we can reason about
y without considering the satisfiability of the path expressions. Using symbolic
execution, in contrast, many of the unsatisfiable path expressions need to be de-
tected and worse, their individual reasons for unsatisfiability (the “interpolants”)
need to be recorded and managed. Note that if we used a CEGAR approach [5]
here, where abstraction refinements are performed only when a spurious counter-
example is encountered, that we would have a very efficient (linear) proof.

In the next program in Figure 1(b), slightly modified from the previous, we
present a dual and opposite situation. Note that the program is safe just if,
amongst the path expressions that are satisfiable, less than n/2 of these involve
a distinct and positive expression e; (as opposed to the negation of e;), for i
ranging from 1 to n. This means that the number of times the “then” bodies
of the if-statements are (symbolically) executed is less than n/2. Here, is is
in fact necessary to record and manage the unsatisfiable path expressions as
they are encountered during symbolic execution. (Using CEGAR, in contrast,
would require a large number of abstraction refinements in order to remove
counter-examples arising from not recognizing the unsatisfibility of “unsafe” path
expressions, i.e. those corresponding to n/2 or more increments of y.)

In practice, a typical program would correspond to being in between the
above two extreme cases in Figures 1(a) and 1(b). Our key argument, however,
is that in fact a typical program lies closer to the first example rather than the
second. For the final example program in Figure 1(c), assume that all and only

X=y=0 X=y=0 X=y=0
if (e1) y++ else x++ if (e1) y += 2 if (e1) y++ else x++
if (e2) y++ else x++ if (e2) y += 2

if (e;) y++ else y = n+l
if (en) y++ else x++ if (en) y += 2
if (en) y++ else x++

(a) Lazy is Good (b) Eager is Good (c) Lazy is Still Better

Fig. 1: Proving y < n: Eager vs Lazy

the path expressions which contain the subexpression e; are unsatisfiable. (In
other words, the only way to execute the ;! if-statement is through its “then”
body.) Here we clearly need to detect the presence of the expression e; and
not any of the other expressions. More generally, we argue that while some path
expressions must be recorded and managed, this number is small. The challenge
is, of course, is how to find these important path expressions, which is precisely
the objective of our speculation algorithm. We next exemplify this.

context; :y=4ANx >0 ! b
contexts 1y <3Nz <1 ! y=4x>0 ly3 x=1

1 I

1

1 if (x == 1)
2 X++;

{y<98,x+y=5}

X== X==
else
3 x+=2 (x+y25 xty>d fty<s5, ixty<d)
. y<98} y<98} y<99;} y<99;}
4 if (x +y < 6) B P X4=2 X++ I x+=2|

5 ++;

clee R ek <699 ..
6 y += 25
if (y > 100) error(); %

y<100} {y<100}

Fig. 2: A Symbolic Execution Tree with Learning

We now elaborate our method using a concrete example, in Figure 2. Consider
two different initial contexts for the program fragment: y = 4 Az > 0 and
y < 3Az < 1. In both contexts, the program is safe because y < 100 at the end.

We start symbolic execution at program point 1 with the first context y =
4 Nz > 0. Both the then and else bodies being enabled, assume that it first
takes the then body with condition x==1, executing x++ at line 2 and reaching
line 4. For this branch, the then body cannot be reached as the path condition
y=4ANz >0Ax =1A2" =x+1AN2 +y < 6 is unsatisfiable. Being
eager, symbolic execution would immediately backtrack, and to preserve this
infeasibility, it would learn an interpolant. Assuming weakest precondition (WP)
is used as the interpolant, it would annotate line 4 with z +y > 6. Exploring the
else body would prove that it is safe, and so line 6 would be annotated with the
interpolant y < 98 to preserve its safety. Combining the then and else body’s
interpolants, it would generate @' +y > 6 Ay < 98 at line 4. (Note that we use
z instead of z’ in the Figure because we always project the formula onto the
original program variable names.) Passing this back through WP propagation,
it would generate x +y > 5 Ay < 98 at line 2.

Now, executing the else body x+=2 of the first if-statement, it would reach
line 4 with the path condition y = 4Ax > 0Axz # 1Az’ = x+2, which implies the
interpolant =’ +y > 6 Ay < 98. Therefore the path would be subsumed (dotted
line). Propagating this interpolant through x+=2 would result in z+y > 4Ay < 98

at line 3. Now, combining the then and else body’s interpolant would result in
the disjunction: (z =1= (2 4+y > 5 Ay <W)A(z £ 1= (x+y > 4Ny <98)).
For the sake of clarity, we strengthen this to y < 98 Az + y > 5, but we assure
the reader that our discussion is not affected by this. Thus, the final symbolic
execution tree explored for this context will be the one on the left in Figure 2.

Now, when the program fragment is reached along the second context y <
3 Az < 1, subsumption cannot take place at line 1 as the interpolant y <
98 A x +y > 5 is not implied. Symbolic execution would therefore proceed to
generate the symbolic tree shown on the right. It is worth noting that even if
the program was explored with the order of the contexts swapped, subsumption
cannot take place at the top level.

I I
I I
| y=4x>0 1y=3,x<1
| (y<98] |

{y<100} fy<100}

Fig. 3: Symbolic execution tree with selective abstraction and speculation

We now describe our lazy symbolic execution process with selective abstraction
and speculation. On the same program, assume that we reach line 1 with the
context y = 4Ax > 0, and proceed to execute the then body x++. On reaching the
second if-statement at line 4, as before the then body would be infeasible because
of the unsatisfiable path condition y = 4Az > 0Ax = 1A =2+ 1A2 +y < 6.
This time, instead of immediately backtracking, we selectively abstract the path
condition to make it satisfiable. Since we are doing forward symbolic execution,
a simple way to do this is to ignore the constraint(s) from the last guard that
we encountered. Here, this means deleting the constraint x +y < 6, which would
make the formula satisfiable.

We now proceed to explore the then body with the abstracted path condition
y=4ANx>0ANz=1A2" =2+ 1. We say that we have entered ‘speculation
mode’ — we speculate that we can obtain a better interpolant by opening the
infeasible branch than by simply backtracking. However there is a problem: in
general the ‘subtree’ underneath the infeasible branch may be arbitrarily large,
exploring which would be intractable. We definitely do not want to resort to an

exponential search, as we already know the entire tree is infeasible, and hence
safe. Therefore we restrict the search by imposing a bound on it. A bound that
we found works very well in practice from our experiments is a linear bound.
That is, in speculation mode we explore each program point at most with one
symbolic state. If another symbolic state is encountered corresponding to the
same program point, we demand it to be subsumed. If not, we backjump to the
last point where speculation was triggered and use the ‘default’ eager interpolant
to block the infeasible branch. Note that speculation can be triggered recursively
during another level of speculation.

Back to the example, we proceed to execute the statement y++ and reach
the end of the path to find that it is safe, as the safety y < 100 is implied.
Speculation has now succeeded, hence we annotate line 5 with y < 99, assuming
WP interpolants. Exploring the else body of the second branch, we execute y+=2
and again reach the end of the safe path, generating the interpolant y < 98 at
line 6. Combining the two we get the interpolant y < 98 at line 4. Propagating
it back through the tree we get the interpolant y < 98 at line 1. Now, when
the program fragment is reached along the second context y < 3 Az < 1, the
interpolant is implied at line 1, and the entire tree can be subsumed at the top
level. The resulting final symbolic tree is shown in Figure 3. Note that we applied
strengthening of WP as before in order to simplify the interpolants. (Without
strengthening, the subsumption will also take place.)

This example has shown that speculation can potentially result in exponential
savings for taking a ‘risk’ with merely linear cost. The reason why speculation
works in practice is that safety properties are only on a small subset of variables
whereas program guards that cause infeasibility can be on any of them. Ignoring
the infeasibility for the time being can help in discovering interpolants closely
related to the safety, such as those in Figure 3, rather than interpolants that
blindly preserve the infeasibility, such as those in Figure 2. In Section 5, we
provide empirical evidence that the (potentially) exponential gains provided by
speculation clearly outweigh its linear cost.

3 Preliminaries

Syntax. We restrict our presentation to a simple imperative programming lan-
guage where all basic operations are either assignments or assume operations,
and the domain of all variables are integers. The set of all program variables
is denoted by Vars. An assignment x := e corresponds to assign the evaluation
of the expression e to the variable x. In the assume operator, assume(c), if the
Boolean expression c evaluates to true, then the program continues, otherwise
it halts. The set of operations is denoted by Ops. We then model a program
by a transition system. A transition system is a quadruple [X, I, —, O] where
X is the set of program locations and I C X' is the set of initial locations.
—C X' x X x Ops is the transition relation that relates a state to its (possible)
successors executing operations. This transition relation models the operations
that are executed when control flows from one program location to another. We

shall use £ =2 ¢’ to denote a transition relation from ¢ € ¥ to ¢’ € X executing
the operation op € Ops. Finally, O C X is the set of final locations.

Symbolic Execution. A symbolic state s is a triple (¢, o, IT). The symbol £ € X
corresponds to the current program location. We will use special symbols for
initial location, £sare € I, final location, fenq € O, and error location epor € O (if
any). W.l.o.g we assume that there is only one initial, final, and error location
in the transition system.

The symbolic store ¢ is a function from program variables to terms over
input symbolic variables. Each program variable is initialised to a fresh input
symbolic variable. The evaluation [c]s of a constraint expression ¢ in a store o
is defined recursively as usual: [v]g = o(v) (if ¢ = v is a variable), [n]o = n
(if ¢ = n is an integer), [e op, €']o = [e]o op, [¢']lo (if ¢ = € op,. € where e, €
are expressions and op, is a relational operator <,>,==!=>= <=), and
[e op, €']o = [€]o op, [€']c (if ¢ = e op, € where e, e’ are expressions and op,
is an arithmetic operator +, —, X,...).

Finally, II is called path condition, a first-order formula over the symbolic
inputs that accumulates constraints which the inputs must satisfy in order for
an execution to follow the particular corresponding path. The set of first-order
formulas and symbolic states are denoted by FOL and SymJStates, respectively.
Given a transition system [X, I, —, O] and a state s = (¢, 0, II) € SymStates,
a ‘symbolic step’ of transition ¢t : £ —2 (' returns another symbolic state s’
defined as:

, » [W, o, IIN[c]s) if op = assume(c
s = SYMSTEP(s,#) = {(5/,0[1‘ — [[[[e%g},lﬂ ifop=x:=e () (1)
Given a symbolic state s = (¢, 0, II) we define [s] : SymStates — FOL as the
formula (A, . ygrs [v]o) A II where Vars is the set of program variables.

A symbolic path ™ = sg - s1 - ... - Sp, is a sequence of symbolic states such that
Vi el <i < n the state s; is a successor of s;_1, denoted as SUCC(s;_1, ;). A
path m = sg- 81 ... 8 is feasible if s, = (¢, 0, IT) such that [IT]s is satisfiable. If
£ € O and s, is feasible then s,, is called terminal state. If [II])s is unsatisfiable
the path is called infeasible and s, is called an infeasible state. If there exists
a feasible path @ = sg - 81 - ... - 8, then we say s; (0 < k < n) is reachable
from sg. A symbolic execution tree contains all the execution paths explored
during the symbolic execution of a transition system by triggering Equation (1).
The nodes represent symbolic states and the arcs represent transitions between
states. Verification is done by exploring the symbolic execution tree and ensuring
that the error location fepor is not reachable.

Finally, we define a special ‘widening’ operator V : FOL x FOL that accepts
an unsatisfiable FOL formula IT and returns a satisfiable formula by abstracting
(arbitrary) constraints from I7. In Section 4 we will describe a specific way to
abstract constraints that is suitable to our algorithm.

Interpolation. The main challenge for symbolic execution is the path explosion
problem. This issue has been addressed using the concept of interpolation.

Definition 1 (Craig Interpolant). Given two formulas A and B such that
A A B is unsatisfiable, a Craig interpolant [7], INTP(A, B), is another formula
U such that (a) A=W, (b) W A B is unsatisfiable, and (c) all variables in ¥ are
common to A and B.

An interpolant allows us to remove irrelevant information in A that is not
needed to maintain the unsatisfiability of A A B. That is, the interpolant cap-
tures the essence of the reason of unsatisfiability of the two formulas. Efficient
interpolation algorithms exist for quantifier-free fragments of theories such as
linear real/integer arithmetic, uninterpreted functions, pointers and arrays, and
bitvectors (e.g., see [3] for details) where interpolants can be extracted from the
refutation proof in linear time on the size of the proof.

Definition 2 (Subsumption check). Given a current symbolic state s =
(£,0,) and an already explored symbolic state s’ = ({,-,-) annotated with the
interpolant ¥, we say s is subsumed by s', SUBSUME(s, (s',W)), if [s]o E V.

To understand the intuition behind the subsumption check, it helps to know
what an interpolant at a node actually represents. An interpolant ¥ at a node
s’ succinctly captures the reason of infeasibility of all infeasible paths in the
symbolic tree rooted at s’ (let us call this tree T7). Then, if another state s at ¢
implies ¥, it means the tree rooted at s (say, T») has exactly the same, or more,
infeasible paths compared to T7. In other words, T5 has exactly the same, or less
feasible paths compared to T7. Since T; did not contain any feasible path that
was buggy, we can guarantee the same for T as well, thus subsuming it.

Eager vs. Lazy. We say that a symbolic execution approach is eager if the
successor relation is defined only for feasible states. In other words, when we
encounter an infeasible state, we immediately backtrack and compute an in-
terpolant, succinctly capturing the reason of the infeasibility. Though different
systems might employ different search strategies for symbolic execution (our for-
mulation above is called forward symbolic execution [18]), it is worth to note
that all common symbolic execution engines are indeed eager. This eagerness
has been considered as a clear advantage of symbolic execution, since it avoids
the consideration of infeasible paths, of which the number could be exponential
in practice.

However, with learning, i.e. interpolation, being eager might not give us the
best performance. The intuition behind this is that, here, we are using the learned
interpolant from 77 to subsume other tree, say 75, which has less feasible paths
than Ty. Therefore, if T} itself has very few feasible paths, due to eagerness, it
is unlikely that the learned interpolant would be able to subsume many of such
T5 instances.

In this paper, we propose a lazy symbolic execution approach that whenever
an infeasible state is encountered, instead of backtracking immediately, we ab-
stract the infeasible state into a feasible one, and allow our symbolic execution
to proceed further. We delay the detailed description of our algorithm to the
next section.

4 Algorithm

We present our algorithm as a symbolic execution engine with interpolation and
speculative abstraction. In Fig. 4, the recursive procedure SymExec is of the type
SymExec : SymStates x N — FOL U {e}. It takes two parameters — a symbolic
state s typically on which to do symbolic execution, and a number representing
the current level of speculative abstraction, which we will define soon. Its return
value is a FOL formula representing the interpolant it generated at s. A special
value of € is used to signify failure of speculation.

Initially, SymExec is called with the initial state sg with fsart as the program
point, an empty symbolic store, and the path condition true. For clarity, ignore
lines 2-5 which we will come to later. Lines 6-12, represent the three base cases
of eager symbolic execution in general — terminal, subsumed and infeasible node
(of course, in our lazy method infeasible node is not a base case). In line 6, if the
current symbolic state s is a terminal node (defined by ¢ being the same as fenq),
then we simply set the current interpolant ¥ to true, as the path is safe and there
is no infeasibility to preserve. In line 7, the subsumption check is performed to
see if there exists another symbolic state s’ at the same program point ¢ such
that s’ subsumes s (see Definition 2). If so, then the current interpolant ¥ is

set to be the same as the subsuming node’s interpolant ¥’ Note that this is an

Assume initial state so = (lstart, -, true)
(1) Initially : SymExec(so,0)
function SymExec(s = (¢, 0, II), AbsLevel)
(2) if AbsLevel > 0 then
(3) if (bounds violated) or (¢ = fewor) then return e endif
(4) else if £ = Legor then report error and halt
(5) endif

(6) if TERMINAL(s) then ¥ := true
(7) else if 3 &' = (£,-,-) annotated with ¥ s.t. SUBSUME(s, (s',¥’)) then ¥ := &'
(8) else if INFEASIBLE(s) then
(9) i’/:: <€,G,V(H)2
(10) ¥ := SymExec(s’, AbsLevel + 1)
(11) if ¥ = ¢ then ¥ := false else ¥ := ¥ endif
(12) if AbsLevel = 0 then clear data on bounds endif
(13) else
(14) W := true
(15) foreach transition t: £ — ¢’ do
(16) s’ := SYMSTEP(s, t)
(17) U := SymExec(s’, AbsLevel)
(18) if U' = ¢ then return ¢
(19) else ¥ := ¥ A INTP(II,constraints(t) A - ')
20 endfor
émi endif

(22) annotate s with ¥ and return (¥)
end function

Fig. 4: A Framework for Lazy Symbolic Execution with Speculative Abstraction

important case for symbolic execution to scale as it can result in exponential
savings.

In line 8, we check if the current state s is infeasible, defined by [s]o being
unsatisfiable. Normally at this point, eager symbolic execution would simply
generate the interpolant false to denote the infeasibility of s and return. For lazy
symbolic execution, we begin our selective abstraction procedure here. Line 9
creates a new symbolic state s’ such that it has the same program point £ and
symbolic store o as s, but its (unsatisfiable) path condition IT is widened using
V to make the new path condition, which is satisfiable. In our implementation,
we use a simple and effective widening operator as follows: since SymExec does
forward symbolic execution, the path condition would have been feasible until
the preceding state whose successor is the current infeasible state s. That is, the
state s such that SUCC(s”, s) must have been a feasible state. Hence simply
setting IT to the path condition of s” would make it satisfiable. This is a selective
abstraction of IT because we are in essence ignoring the recent constraint(s) that
caused its infeasibility.

Once the abstraction is made, we now speculate by recursively calling SymExec
with s’ and incrementing the abstraction level by 1. An abstraction level greater
than 0 means that we are under speculation mode. SymExec essentially performs
symbolic execution on the widened state but with a condition — focus now on
lines 2-5. Running under speculation mode, if at any point the bound is violated
or if the error location fe.or is encountered, it means the speculation failed. In
this case, we return a special value € to signify the failure (line 3). Of course, if we
are not speculating and leor is encountered (line 4), then it is a real error to be
reported and the entire verification process halts. Otherwise, SymExec proceeds
to normally explore s and finally return an interpolant.

Now in line 10, the interpolant returned from speculation is stored in 7
If € was returned, indicating that speculation failed, we simply resort to using
false as the interpolant, just like a fully eager symbolic execution procedure.
Otherwise, we use the interpolant computed by speculation (line 11). Finally,
in line 12, if the current abstraction level is 0 (i.e., we are at the ‘root’ of the
speculation tree), then regardless of whether we succeeded or not, we reset all
the data that count towards the bounds. For instance, in our implementation,
we restrict the speculation to not explore more than one state per program point
£, which would result in a bound that is linear in the program’s size. In this case,
we have to maintain a count of the number of states explored for each program
point. At line 12 this data is cleared since the speculation has finished.

Note that there are two reasons why speculation can fail. A first reason is sim-
ply that an abstracted guard is needed to avoid a counter-example. If this guard
corresponds to abstraction level 0, speculation resulted in nothing learnt at this
program point (but we could have learnt something from the start of speculation
until the encounter with the counter-example, for descendant program points).
If however the guard abstraction is at a deeper level, the top-level invocation of
speculation still can learn new interpolants. The second reason why speculation
can fail is that the bound was exceeded. In this case, we put forward that, by

increasing the bound, it is not likely to result in signifcant learning. That is,
increasing the bound is a strategy of diminishing returns. We will return to this
point when we discuss certain statistics in Section 5.

If none of the base cases were activated, SymExec proceeds to unwind the
path, in lines 13-20. It first initialises the interpolant ¥ to true. Then, for every
transition from the current program point ¢, it does the following. First it per-
forms a symbolic step (SYMSTEP) to obtain the next symbolic state s” along the
transition ¢ : £ — ¢'. Then in line 17 it recursively calls itself with s’ to obtain
an interpolant 7 for s (note that we are not speculating here so the abstraction
level is unchanged). Now, if the returned interpolant is €, it means further down
some speculation was done and it resulted in failure. Hence it simply propagates
back this failure by returning e (line 18). Otherwise, it computes the current
interpolant by invoking INTP on the path condition IT and the conjunction of
the constraints of the current transition, constraints(t), with the negation of

2 (note that IT A constraints(t) A 7 s unsatisfiable). The result is conjoined
with any existing interpolant (line 19).

Finally, in line 22 we annotate the current state s with the interpolant ¥
(computed from one of the above cases) and returns ¥. This annotation is per-
sistent such that the subsumption check at line 7 can utilise this information.

We conclude this section with some insights about the new interpolants dis-
covered by speculation. At the root of speculation, the eager algorithm would
have returned false as an interpolant. Therefore any other valid interpolant is
clearly better. However, is it the case that using the new (and better) interpolant
here, results in better interpolants higher up in the tree? Intuitively the answer
is yes, provided that the interpolation algorithm is, in some sense, well behaved.
We formalize this as follows.

Definition 3 (Monotonic Interpolation). The interpolation method used in
our algorithm is said to be monotonic if for all transition t, path condition II,
and formulas W1,y o Wy = Wy implies INTP(II, constraints(t) A = ¥y) E
INTP(II, constraints(t) A = Ws)

Monotonicity ensures that better interpolants at a program point translate
into better interpolants at a predecessor point. The supreme interpolation algo-
rithm, which is based on the weakest precondition, is of course monotonic. When
using a more practical algorithm, however, it is not always easy to guarantee that
it is monotonic. For example, an algorithm which is based on computing an un-
satisfiable core (i.e., it simply disregards some constraints which do not affect
unsatisfiability), is in general not monotonic because it can arbitrarily choose
between choices of cores.

Nevertheless, we noticed in our experiments, detailed in Section 5, that new
interpolants from speculation do translate into better interpolants and this, in
turn, produces more subsumption. This indicates that the interpolation algo-
rithm employed in [13], is indeed relatively well behaved. Some random inspec-
tions of the interpolants obtained in the experiments showed that we often have
monotonic behavior. We show below via concrete statistics that as a result of
this, we obtain fewer and yet better interpolants.

5 Experiments

We implemented our lazy algorithm on top of the TRACER [13]. We note that
originally TRACER is an eager symbolic execution system, and we make use
of the same interpolation method presented in [13]. We re-emphasize that we
used a linear bound for the speculation, i.e., during speculation if a program
point is visited more than once, we demand it to be subsumed. If it cannot be
subsumed, we stop the speculative search, and annotate the symbolic state with
false. We implemented the selective abstraction (the widening operator V) by
simply ignoring the constraints in the last guard that was encountered during
forward symbolic execution, which would make the unsatisfiable path condition
satisfiable. Given an incremental theory solver, this abstraction step can be
performed efficiently.

We used as benchmarks several device drivers from the ntdrivers-simplified
category of the Software Verification Competition (SV-COMP) 2013: cdaudio,
diskperf, floppy, floppy2 and kbfiltr. We also used two linux device driver programs
gpmouse and tlan, an air traffic collision avoidance system tcas, and statemate
a program generated by the STAtechart Real-time-Code generator STARC. All
experiments were carried out on an Intel 2.3 Ghz machine with 2GB memory.

Bench CPA| IMP TRACER

Time| Time Time (sec) States #lnterpolants

(sec)| (sec)||EAGILZY[Speedup][EAG] LZY]Red.]| EAG|] LZY]Red.
cdaudio 21 28| 16| 9 1.78[| 5158 1264|75%| 2006| 1129]44%
diskperf 28| 152|| 56| 14 4.00|| 6746 1240|82%|| 1766| 509|71%
floppy2 98 40(| 20| 12 1.67|| 6182 2283|63%|| 1424| 900|37%
floppy 27 34| 13| 6 2.17|| 4384| 1052|76%]|| 1020 437|57%
kbfiltr 3 8 2 2 1.00 980 510(48% 247 185|25%
gpmouse 3 8| 27| 13 2.08|| 1313 718 45%|| 1452| T61|48%
statemate 2| 115|] 18] 5 3.60|| 5955 852|86%|| 3922| 1135|71%
tcas 2 13|| 10| 3 3.33|| 6718 689|90%|| 3425| 531|84%
tlan OOM|OOM|| 26| 16 1.63|| 3895| 2311|41%|| 1859| 1023|45%
Total 184| 398|| 188| 80 2.35((41331({10919|74%(|17121|6610(61%

Table 1. Verification Statistics for Eager and Lazy Symbolic Execution

To give a perspective of where TRACER stands in the spectrum of verifica-
tion tools, we compare its performance with two competitive verifiers CPA-
CHECKER [25] (ABM version) and IMPACT [20]. Of these, IMPACT implements
an eager symbolic-execution based search procedure, whereas CPA-CHECKER is a
hybrid of sMT-based search and CEGAR. Since IMPACT is not publicly available,
we use CPA-CHECKER’s implementation of its algorithm.

For each benchmark, we record in the shaded columns in Table 1 the veri-
fication time (in seconds) of CPA-CHECKER (CPA), IMPACT (IMP) and TRACER
with eager symbolic execution (TRACER EAG.), respectively. As it can be seen
TRACER is generally faster than IMPACT but sometimes slower than CPA-CHECKER
so it can be roughly positioned between the two (closer to CPA-CHECKER) in
terms of performace. We note that CPA-CHECKER and IMPACT ran out of mem-
ory for the tlan benchmark, so we exclude it from the total time giving those

verifiers the benefit of the doubt. In the end, this comparison is to show that we
chose a competitive verifier to implement our algorithm and we fully expect the
same benefits to be provided to other similar verifiers.

We now present the main results in the rest of Table 1. In the set of columns
labelled Time (sec) we show the verification time of TRACER in seconds for each
benchmark. In this, the (shaded) column EAG which we just saw, performed
eager symbolic execution, while the LZY column performed lazy symbolic execu-
tion, and Speedup is the ratio of the two. It can be seen that in all programs (with
the exception of kbfiltr), selective abstraction makes the verification much faster,
providing an average speedup of 2.35. This also makes lazy TRACER perform
much better than eager TRACER.

We move on to a more fine-grained measurement than time in the next set
of columns States, which shows the number of symbolic states TRACER encoun-
tered during verification. Again, it can be seen that there is a large reduction
in the states in the lazy (LZY) column across all benchmarks compared to the
eager (EAG) column. In kbfiltr, we notice a reduction of 48% of states. This ben-
efit was not shown in time because of the small size of the program which was
verified in just 2 seconds. In total, we found that about 41331 states were encoun-
tered without speculation and just 10919 states with speculation, a reduction of
about 74%. This shows that speculation is resulting in more subsumption, which
thereby causes a reduction in the search space.

Next, we measure the improvement in space provided by speculation. In the
set of columns #lnterpolants, we show the total number of interpolants stored by
TRACER at the end of the verification process. Interpolants typically contribute
to a major part of memory used by modern symbolic execution verifiers. In this
regard, selective abstraction reduced the number of interpolants in TRACER from
17121 (EAG) to 6610 (LZY), a reduction of 61% across all benchmarks.

We now focus on the two metrics: number of interpolants (#lInterpolants), and
amount of subsumption, in terms of states (States) encountered. The critical
point is the inverse relationship: laziness provided a much smaller number of
interpolants while simultaneously increasing subsumption. In other words, the
quality of interpolants discovered through speculation is enhanced.

We conclude this section with a few more statistics which, while not directly
linked to absolute performance, nevertheless shed additional insight. First, con-
sider the number of distinct program variables that are involved in the inter-
polants. In the case without speculation, we noticed across all benchmarks that
there were 339 such variables. In contrast, with speculation, the number is only
234. This means that many (105) variables were not required to determine the
safety of the program. They were being needlessly tracked by interpolants simply
to preserve infeasible paths.

Next consider the “success rate” of speculation: how many times does a
speculation find an alternative interpolant? For simplicity, let us consider only
those speculations triggered at the top-level of the algorithm (from abstraction
level 0 to abstraction level 1). We found, across the benchmark programs, a
rate of 40-80%, and more often at the higher end. This means that speculation

returns something useful, most of the time. However, it is important to note
that even when speculation was not successful at the top-level, there is likely
to have been interpolants discovered at the lower levels. These are interpolants
one would have not found if there had been no speculation. Finally, reconsider
the bound. The above success rate also indicates that there are a significant,
though minority, number of failures. We want mention that when we do fail,
the overwhelming reason is not the bound, but instead, the counterexamples.
In summary, the rather high rate of success, and the rather low rate of failure
caused by the bound, together suggest that increasing the bound would be a
strategy of diminishing returns.

6 Related Work and Discussion

Symbolic execution [17] has been widely used for program understanding and
program testing. We name a few notable systems: KLEE [2], Otter [21], and
SAGE [11]. Traditionally, execution begins at the first program point and then
proceeds according to the program flow. Thus symbolic execution is actually
forward execution. Recently, [18] proposed a variation, directed symbolic execu-
tion, making use of heuristics to guide symbolic execution toward a particular
target. This has shown some initial benefits in program testing.

For the purpose of having scalability in program verification, however, sym-
bolic execution needs to be equipped with learning, particularly in the form of
interpolation [15,20, 14, 13,1]. Due to the requirement of ezhaustive search, as
in the case of this paper, these systems naturally implement forward symbolic
execution. All the above-mentioned systems can be classified as eager symbolic
execution. In other words, we do not continue a path when the accumulated
constraints are enough to decide its infeasibility.

In the domain of SAT solving and hardware verification, property directed
reachability (PDR) [10] has recently emerged as an alternative to interpolation
[19]. Some notable extensions of PDR are [12,4,24]. However, the impact of
PDR to the area of software verification is still unclear. While such “backward”
execution has merits in terms of being goal directed, it has lost the advantage
of using the (forward) computation to limit the scope of consideration.

In contrast, our lazy symbolic execution preserves the intrinsic benefits of
symbolic execution while at the same time, by opening the infeasible paths se-
lectively, it enables the learning of property directed interpolants. We believe this
is indeed the reason for the efficiency achieved and demonstrated in Section 5.

The traditional CEGAR-based approach to verification may also be thought
of a “lazy”. This is because it starts from a coarsely abstracted model and
subsequently refines it. Such concept of laziness is, therefore, different from what
discussed in this paper. In the context of this paper, given a refined abstract
domain, a CEGAR-based approach is in fact considered as eager, since it avoids
traversal of infeasible paths, which are blocked by the abstract domain. Some of
such paths are indeed counter-examples learned from the previous phases. The
work [20] discussed this as a disadvantage of CEGAR-based approaches: they

might not recover from over-specific refinements. Our contribution, therefore, is
plausibly applicable in a CEGAR-based setting.

There is now an emerging trend of employing generic SMT solvers for (bounded)
symbolic execution, and since modern SMT solvers, e.g. [9], do possess the sim-
ilar power of interpolation — in the form of conflict clause learning or lemma
generation — we now make a few final comments in this regard.

First, note that lazy symbolic execution has no relation with the concept of
lazy sMT. In particular, the dominating architecture DPLL(T"), which underlies
most state-of-the-art SMT tools, is based on the integration of a SAT solver and
one (or more) T-solver(s), respectively handling the Boolean and the theory-
specific components of reasoning. On the one hand, the SAT solver enumerates
truth assignments which satisfy the Boolean abstraction of the input formula.
On the other hand, the T-solver checks the consistency in 7" of the set of literals
corresponding to the assignments enumerated. This approach is called lazy (en-
coding), and in contrast to the eager approach, it encodes an sMT formula into
an equivalently-satisfiable Boolean formula and feeds the result to a SAT solver.
See [22] for a survey.

Second, we note that though the search strategies used in modern DPLL-based
SMT solvers would be more dynamic and different from the forward symbolic ex-
ecution presented in this paper, it is safe to classify these SMT solvers as eager
symbolic execution. This is because, in general, whenever a conflict is encoun-
tered, a DPLL-based algorithm would analyze the conflict, learn and/or propagate
new conflict clauses or lemmas, and then immediately backtrack (backjump) to
some previous decision, dictated by its heuristics [8].

We believe that for the purpose of program verification, the benefit of be-
ing lazy by employing speculative abstraction, would also be applicable to sMT
approaches. This is because, in general, we can always miss out useful (good)
interpolants if we have not yet seen the complete path. In this paper, we have
demonstrated that in verification, property directed learning usually outper-
forms learning from “random” infeasible paths. Eagerly stopping when the set
of constraints is unsatisfiable might prevent a solver from learning the conflict
clauses which are more relevant to the safety of the program. In SMT solvers,
the search, however, is structured around the decision graph. Therefore, some
technical adaptations to our linear bound need to be reconsidered. For example,
a bound based on the number of decisions seems to be a good possibility.

7 Conclusion

We presented a systematic approach to perform speculative abstraction in sym-
bolic execution in pursuit of program verification. The basic idea is simple: when
a symbolic path is first found to be infeasible, we abstract the cause of infeasibil-
ity and enter speculation mode. In continuing along the path, more abstractions
may be performed, while remaining in speculation mode. Crucially, speculation
is only permitted up to a given bound, which is a linear function of the program
size. A number of reasonably sized and varied benchmark programs then showed
that our speculative abstraction produced speedups of a factor of two and more.

References

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Whale: An interpolation-
based algorithm for inter-procedural verification. In VMCAI, 2012.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs. In OSDI,
2008.

A. Cimatti, A. Griggio, and R. Sebastiani. Efficient interpolant generation in
satisfiability modulo theories. In TACAS’08, pages 397-412, 2008.

Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. Ic3
modulo theories via implicit predicate abstraction. CoRR, 2013.

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. CounterrExample-Guided
Abstraction Refinement. In CAV, 2000.

P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis. In POPL, 1977.

W. Craig. Three uses of Herbrand-Gentzen theorem in relating model theory and
proof theory. Journal of Symbolic Computation, 22, 1955.

Ofer Strichman Daniel Kroening. Decision procedures: An algorithmic point of
view, 2008.

L. De Moura and N. Bjgrner. Z3: an efficient smt solver. In TACAS, 2008.

. Niklas Een, Alan Mishchenko, and Robert Brayton. Efficient implementation of

property directed reachability. In FMCAD, 2011.

Patrice Godefroid, Michael Y. Levin, and David Molnar. Sage: Whitebox fuzzing
for security testing. Queue, 2012.

Krystof Hoder and Nikolaj Bjgrner. Generalized property directed reachability. In
SAT, 2012.

J. Jaffar, V. Murali, J.A. Navas, and A. Santosa. TRACER: A symbolic execution
engine for verification. In CAV, 2012.

J. Jaffar, J.A. Navas, and A. Santosa. Unbounded Symbolic Execution for Program
Verification. In RV, 2011.

J. Jaffar, A. E. Santosa, and R. Voicu. An interpolation method for clp traversal.
In CP, 20009.

Joxan Jaffar, Vijayaraghavan Murali, and Jorge Navas. Boosting Concolic Testing
via Interpolation. In FSE, 2013.

J. C. King. Symbolic Execution and Program Testing. Com. ACM, 1976.
Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks. Directed
symbolic execution. In SAS, 2011.

K. L. McMillan. Interpolation and SAT-based model checking. In 15th CAV,
volume 2725 of LNCS, pages 1-13. Springer, 2003.

K. L. McMillan. Lazy annotation for program testing and verification. In CAV,
2010.

Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster, and Adam Porter.
Using symbolic evaluation to understand behavior in configurable software systems.
In ICSE, 2010.

Roberto Sebastiani. Lazy satisability modulo theories. JSAT, 2007.

S.Khurshid W. Visser, C. Psreanu. Test input generation with java pathfinder. In
ISSTA, 2004.

Tobias Welp and Andreas Kuehlmann. Qf bv model checking with property di-
rected reachability. In DATE, 2013.

D. Wonisch. Block Abstraction Memoization for CPAchecker. In TACAS, 2012.

