
TRACER: A Symbolic Execution Tool for Verification

JOXAN JAFFAR1, V IJAYARAGHAVAN MURALI1, JORGEA. NAVAS2, AND ANDREW

E. SANTOSA3

1National University of Singapore
2The University of Melbourne

3University of Sydney

Abstract. We presentTRACER, a verifier forfinite-statesafety properties of se-
quential C programs. It is based on symbolic execution (SE) and its unique fea-
tures are in how it makesSEfinite in presence of unbounded loops and its uses of
interpolants to tackle thepath-explosionproblem.

1 Introduction
Recentlysymbolic execution (SE) [15] has been successfully proven to be an alternative
to CEGAR for program verification offering the following benefits among others [12,
18]: (1) it does not explore infeasible paths avoiding expensive refinements, (2) it avoids
expensivepredicate imagecomputations (e.g.,CartesianandBooleanabstractions [2]),
and (3) it can recover fromtoo-specificabstractions as opposed to monotonic refine-
ment schemes often used. Unfortunately, it posses its own challenges: (C1) exponential
number of paths, and (C2) infinite-length paths in presence of unbounded loops.

We presentTRACER, a verification tool based onSE for finite-statesafety properties
of sequential C programs. Informally,TRACER attempts at building a finite symbolic
execution tree which overapproximates the set of all concrete reachable states. If the
error location cannot be reached from any symbolic path thenthe program is reported
as safe. Otherwise, either the program may contain a bug (TRACER reports a false alarm
only if the theorem prover fails to prove a valid claim) or it may not terminate.The most
innovative features ofTRACER stem from how it tackles (C1) and (C2).

In this paper, we describe the main ideas behindTRACER and its implementation as
well as our experience in running real benchmarks.

1.1 State-Of-The-Art Interpolation-Based Verification Tools

SLAM

FSOFT

SATABS

BLAST

ARMC

YOGI

CPA-CHECKER

KRATOS
IMPACT

TRACER

Lazy Eager

Weaker

Stronger

Fig. 1.Some state-of-the-art verifiers

Fig. 1 depicts one possible view of current ver-
ification tools based on two dimensions:lazi-
nessand interpolation strength. Lazy means
that the tool starts from a coarsely abstracted
model and then refines it whileeageris its dual,
starting with the concrete model and then re-
moving irrelevant facts.CEGAR-based tools [1,
4, 7, 10, 21] are the best examples of lazy ap-
proaches whileSE-based tools [12, 18] are for

eager methods. Special mention is required for hybrid approaches such asYOGI [20],
CPA-CHECKER[3], andKRATOS [5]. YOGI computes weakest preconditions from sym-
bolic execution of paths as a cheap refinement forCEGAR. One disadvantage is that

it cannot recover from too-specific refinements (see programdiamondin [18]). CPA-
CHECKER and KRATOS encode loop-free fragments into a Boolean formula that can
then be subjected to aSMT solver in order to avoid refinements if no loops are involved.

On the other hand, the performance of interpolation-based verifiers depends on the
logical strength of the interpolants1. In lazy approaches, a weak interpolant may contain
spurious errors and cause refinements too often. Stronger interpolants may delay con-
vergence to a fixed point. In eager approaches, weaker interpolants may be better (e.g.,
for loop-free fragments) than stronger ones since they allow removing more irrelevant
facts from the concrete model.

TRACER performsSE and computes efficient approximatedweakest preconditions
as interpolants. To the best of our knowledge,TRACER is the first publicly available
(http://www.clip.dia.fi.upm.es/˜jorge/tracer) verifier with these characteristics.

2 How TRACER Works
Essentially,TRACER implements classical symbolic execution [15] with some novel
features that we will outline along this section. It takes symbolic inputs rather than
actual data and executes the program considering those symbolic inputs. During the ex-
ecution of a path all its constraints are accumulated in a first-order logic (FOL) formula
calledpath condition (PC). Whenever code of the formif(C) then S1else S2 is reached
the execution forks the current symbolic state and updates path conditions along both
the pathsPC1 ≡ PC∧C andPC2 ≡ PC∧¬ C, respectively. Then, it checks if either
PC1 or PC2 is unsatisfiable. If unsatisfiable, then the path isinfeasibleand hence, the
execution can halt and backtrack to the last choice point. Otherwise, the execution fol-
lows the path. Note that bothPC1 andPC2 can be satisfiable simultaneously but both
cannot be unsatisfiable. The verification problem consists of building afinite symbolic
execution tree that contains at least all concrete reachable states and proving that for
every symbolic path the error location is unreachable.

2.1 Cache-based Algorithm with Weakest Preconditions as Interpolants

The first key aspect ofTRACER, originally proposed in [13] and used later in [12, 18], is
the avoidance of full enumeration of symbolic paths bylearning from infeasible paths
by computinginterpolants[8], in a similar spirit to thenogoodlearning inSAT. Prelim-
inary versions ofTRACER [12, 13] computed interpolants based onstrongest postcondi-
tions (sp). Given two formulasA (symbolic path) andB (last guard where infeasibilility
is detected) such thatA∧B is unsat, an interpolant was obtained by∃x ·A wherex are
A-local (i.e., variables occurring only inA) variables. However unlikeCEGAR, TRACER

starts from the concrete model of the program and then, deletes irrelevant facts. There-
fore, the weaker the interpolant is the more likely it is forTRACER to avoid exploring
other “similar” symbolic paths. This is the motivation behind an interpolation method
based onweakest preconditions (wp). The contrived example in Fig. 2 shows the need
for wp as well as the essence of our approach to mitigate the “path-explosion” problem.
The error location〈8〉 is unreachable since the variables can be at most4. Note also the
program has four symbolic paths. Assume the first path is〈0〉-〈1〉-〈2〉-〈4〉-〈5〉-〈7〉-〈8〉

1 Given formulasA andB such thatA ∧ B is unsatisfiable, aCraig interpolant[8] I satisfies:
(1) A |= I, (2) I ∧ B is unsatisfiable, and (3) its variables are common toA andB. We say
an interpolantI is stronger (weaker) thanI ′ if I |= I ′ (I ′ |= I).

〈0〉 s=0;
〈1〉 if(*) 〈2〉 s++;else 〈3〉 s+=2;
〈4〉 if(*) 〈5〉 s++;else 〈6〉 s+=2;
〈7〉if(s> 10) 〈8〉 error();
〈9〉

Fig. 2.Safe Code

which is infeasible since the formula (after renaming)
s0 = 0 ∧ s1 = s0 + 1 ∧ s2 = s1 + 1 ∧ s2 > 10 is un-
satisfiable. Then,TRACER using a reasonable interpo-
lation method (e.g.,FOCI [17], CLP-PROVER [22], and
MATHSAT [6]) infers the interpolantss0 ≤ 0, s1 ≤ 1,

ands2 ≤ 2 at program locations〈1〉, 〈4〉, and〈7〉, and memoizes them in a cache2.
Unfortunately, those interpolants are not weak enough to avoid or subsume3 the explo-
ration of the other symbolic paths. That is,s0 = 0 ∧ s1 = s0 + 1 ∧ s2 = s1 + 2 (from
〈0〉-〈1〉-〈2〉-〈4〉-〈6〉-〈7〉) 6|= s2 ≤ 2 ands0 = 0 ∧ s1 = s0 + 2 (from 〈0〉-〈1〉-〈3〉-〈4〉)
6|= s1 ≤ 1. . However, by weakest preconditions we can easily obtain from the first path
the interpolantss0 ≤ 8, s1 ≤ 9, ands2 ≤ 10, which clearly subsume the other paths.

For efficiency, our algorithm under-approximates the weakest precondition by a mix
of existential quantifier elimination, unsatisfiable cores, and some heuristics. Whenever
an infeasible path is detected we compute¬ (∃y ·G), thepostconditionthat we want to
map into aprecondition, whereG is the guard where the infeasibility is detected andy
areG-local variables. The two main rules for propagating wp’s are:
(A) wp(x := e, Q) = Q[e/x]
(B) wp(if(C) S1 else S2,Q) = (C ⇒ wp(S1, Q)) ∧ (¬ C ⇒ wp(S2, Q))

Rule (A) replaces all occurrences ofx with e in the formulaQ. Thus, the challenge is
how to produce conjunctive formulas from rule (B) as weak as possible to increase the
likelihood of subsumption. During the forwardSE when an infeasible path is detected
we discardirrelevantguards by using the concept ofunsatisfiable cores (UC)4 to avoid
growing the wp formula unnecessarily. For instance, the formulaC ⇒ wp(S1, Q) can
be replaced withwp(S1, Q) if C 6∈ C whereC is a (not necessarily minimal) UC.
Otherwise, we underapproximateC ⇒ wp(S1, Q) as follows. Letd1 ∨ . . . ∨ dn be
¬ wp(S1, Q) then∀ di (1 ≤ i ≤ n) · (

∧
i
(¬ (∃ x′ · (C ∧ di)))), where we use ex-

istential quantifier elimination to remove the post-state variablesx′. A very effective
heuristic if the resulting formula is disjunctive is to delete those conjuncts that are not
implied byC because they are more likely to be irrelevant to the infeasibility reason.
Remarks. TRACER separately discovers loop invariants during the forward symbolic
execution. This ensures that any wp generated is necessarily entailedby the loop invari-
ant. Thus, loops are not an issue in our wp computations. Finally, weakest preconditions
may fail to generalize with some loops as Jhala et al. pointedout in [14] (Sec.1, page
2). Then,TRACER can compute other interpolants or be fed with inductive invariants
from external tools (see Sec. 3).

2.2 Path Invariants via Widening with Counterexample-Guided Loop Unrolling
With unbounded loops the only hope to produce a proof isabstraction. In a nutshell,
upon encountering a cycleTRACER computes thestrongestpossible loop invariantsΨ

2 Those interpolants can be also obtained by computing strongest postconditions and rewriting
x = y asx ≥ y ∧ y ≥ x.

3 A symbolic stateσ is subsumedor coveredby another symbolic stateσ′ if they refer to same
location and the set of states represented byσ is a subset of those represented byσ′. Alterna-
tively, if σ andσ′ are seen as formulas thenσ is subsumed byσ′ if σ |= σ′.

4 Given a constraint setS whose conjunction is unsatisfiable, anunsatisfiable core (UC)S′ is
any unsatisfiable subset ofS. An UCS′ is minimal if any strict subset ofS′ is satisfiable.

by using widening techniques in order to make theSE finite. If a spurious abstract error
is found then arefinement phase(similar toCEGAR) discovers an interpolantI that rules
〈0〉lock=0; new=old+1;
〈1〉while(new 6= old) {
〈2〉 lock=1; old=new;
〈3〉 if(*){ 〈4〉 lock=0;new++;}
〈5〉}
〈6〉if(lock == 0) 〈7〉 error();
〈8〉
Fig. 3. Excerpt from a
NT Windows driver

the spurious error out. After restart,TRACERstrengthens
Ψ by conjoining it with I and the symbolic execution
checkspath by pathif the new strengthened formula is
a loop invariant. If this test fails for a given pathπ, then
TRACER will unroll only π at least one more iteration
and continue with the process. Notice that the genera-
tion of invariants isdynamicin the sense that loop un-
rolls will expose new constraints producing new invari-

ant candidates. For lack of space, we refer readers to [12].
Remarks. OtherSE-based tools (e.g.,IMPACT [18]) may not terminate with our exam-
ple in Fig. 3 (see [12] Sec.1, Ex.1) whileTRACER converges in two iterations. On the
other hand, our path invariant technique via widening is closely related to the widening
”up to” S (∇S) used in [9], whereS contains the constraints inferred by the refinement
phase. However, they use it to enhanceCEGAR while SE poses different challenges
(see [12] Sec.1, Ex.3). Finally, abstraction inTRACER also differs fromCEGAR in a
fundamental way.TRACER attempts at inferring thestrongestloop invariants modulo
the limitations of widening techniques whileCEGAR, as well as hybrid tools likeCPA-
CHECKER and KRATOS, will often propagate coarser abstractions. Although stronger
abstractions may be more expensive they may converge fasterin presence of loops
(see [12] Sec.1, Ex.4).

3 Usage and Implementation

Loop Inv. Gen

Error

Safe Refinement
Loop Inv.

Abstract
Error

C program

SE Interpreter

C frontend

Alias Analysis

InterProc

Interpolation

Constraint Solving

Interpreter

Frontend

Fig. 4. Implementation ofTRACER

Input . TRACER takes as input a C pro-
gram with assertions of the formTRACER abort(Cond),
whereCond is a quantifier-free FOL formula.
Then, each path that encounters the assertion
tests whetherCond holds or not. If yes, the
symbolic execution has reached an error node
and thus, it reports the error and aborts if the
error is real, or refines if spurious. Otherwise,
the symbolic execution continues normally.

Output. If the symbolic execution terminates
and all TRACER abort assertions failed then
the program is reported as safe and the corre-
sponding symbolic execution tree is displayed

as the proof object. If the program is unsafe then a counterexample is shown.

Implementation. Fig. 4 outlines the implementation ofTRACER. It is divided into two
components: afrontendand aninterpreter. First, a C-frontend based onCIL [19] trans-
lates the input program into a constraint-based logic program. Both pointers and ar-
rays are modeled using the theory of arrays. An alias analysis is used in order to yield
sound and finer grained independent partitions (i.e.,separation) as well as infer which
scalars’ addresses may have been taken. Optionally, it usesINTERPROC [16] (option
-loop-inv) to provide loop invariants. The second component is an interpreter which

symbolically executes the constraint-based logic programand it aims at demonstrating
that error locations are unreachable. This interpreter is implemented in aConstraint
Logic Programming(CLP) system called CLP(R) [11], taking advantage of intrinsic
features of CLP such asbacktracking, efficientexistential quantifier elimination, and
incrementalconstraint solving. Its main sub-components are as follows:

• Constraint Solvingrelies on the CLP(R) solver to reason fast over linear arith-
metic over reals (R) without expensive calls to general-purpose theorem provers.
A decision procedure for arrays (option-mccarthy) has been also implemented.

• Interpolation implements two methods with different logical strength. The first
method usesstrongest postconditions[12, 13] (-intp sp). The second computes
weakest preconditions(-intp wp) as described in Sec. 2.1 but current implemen-
tation only allows reasoning in linear arithmetic over reals. TRACER also provides
interfaces to other interpolation methods such asCLP-PROVER(-intp clp).

• Loop Invariant Refinement. Similar to CEGAR the effectiveness of the refinement
phase usually relies on heuristics (-h option). But unlikeCEGAR tools, SE only
performs abstractions at loop headers. Thus, given a path that reaches an error lo-
cationTRACER only needs to visit those abstraction points in the path and checks
if one of the them caused the reachability of the error. If yes, it uses interpolation to
choose which constraints can rule out the error. Otherwise,the error must be real.

• Loop Invariant Generation. Whenever a loop header is encounteredTRACERrecords
a set ofloop invariantcandidates. Then, if a cycleπ is foundTRACER performs a
widening of the state at the loop headerc∇c′ wherec′ is the candidatec after the ex-
ecution ofπ. Current implementation of the∇ operator followsc∇c′ , c if c′ |= c
otherwise⊤. Very importantly, if∇ attempts at abstracting a constraint needed
to exclude an error then it fails and the path is unrolled at least one more iteration.
Although our experiments demonstrate that our implementation is quite fast and ef-
fective, it is clearlyincomplete(in the sense that it may cause non-termination) for
several reasons. First, the generation of candidates considers only constraints prop-
agated bySE althoughTRACER allows enriching this set with inductive invariants
provided by INTERPROC. Second, the implementation of∇ is imprecise. Third,∇
is applied to each candidateindividually. By applying∇ to all candidate subsets
we could produce richer invariants, although this process would be exponential.

4 Experience with Benchmarks
We ranTRACERon thentdrivers-simplified andssh-simplified benchmark suites from the
SV-COMP5. Due to lack of space, we present in Fig. 5 only data that focuses on the two
key features ofTRACER: use of weakest preconditions as interpolants and how it han-
dles unbounded loops computing strongest loop invariants.The experiments were run
on Intel 2.33Ghz 3.2GB. Columns 2 and 3 compare the number of states of the symbolic
execution tree (S) explored byTRACER using SP and WP, columns 4 and 5 compare
the total verification timeT(s) in seconds (excluding the C-frontend). Columns 6 and 7
compare the number of loop invariant refinements made (R), and the last two columns
compare the time of computing loop invariants (InvG(s)), as outlined in Sec. 2.2. If

5 “1st Competition on Software Verification”(sv-comp.sosy-lab.org). We also runstatemate,
from WCET(Worst-Case Execution Time) community, to prove upper bounds.

marked with∞, TRACER did not finish within900 seconds.WP often pays off with
greater gains in programs whereTRACER refines heavily, mainly because loop unrolls
are expensive forSE and hence, more often subsumption is vital. Forstatemate, WP
dramatically decreases the search space. However indiskperf andkbfiltr, WP is slower
even though the size reduction due to the overhead of computing wp’s. As expected,
InvG increases if loop unrolls are more frequent and more loop headers are explored.

S T(s) R InvG(s)
Program SP WP SP WP SP WP SP WP
cdaudio.i.cil.c 16547 13737 266 201 0 0 0.8 0.6

diskperf.i.cil.c 15715 9181 117 121 0 0 0.1 0.1

floppy.i.cil.c 16588 5421 212 91 6 2 1.5 0.5

kbfiltr.i.cil.c 1854 1484 3 6 0 0 0 0

s3 clnt 1.cil.c 19956 2656 156 11 27 8 57 2.7

s3 clnt 2.cil.c ∞ 13018 ∞ 74 ∞ 58 ∞ 21

s3 clnt 3.cil.c ∞ 10598 ∞ 58 ∞ 45 ∞ 15

s3 clnt 4.cil.c 35392 4130 275 17 63 17 92 4.2

s3 srvr 2.cil.c 39174 14066 241 83 49 42 56 18

s3 srvr 3.cil.c 9340 4081 48 15 6 6 12 3

s3 srvr 4.cil.c 35454 14065 346 102 33 33 147 44

s3 srvr 13.cil.c ∞ 48323 ∞ 826 ∞ 127 ∞ 401

statemate 18995 1021 119 11 0 0 0.1 0

Fig. 5. TRACER: SP (-intp sp) vs WP (-intp wp)

Remarks. For a compari-
son with other SE meth-
ods andBLAST [4] we re-
fer to [12] and our un-
published report available at
arxiv.org/abs/1103.2027, re-
spectively. For our experi-
ments we turn off INTER-
PROC because its inductive
invariants did not make any
impact on the convergence
of TRACER. We were able
to run CLP-PROVER(-intp
clp) for statemate and the
size of the symbolic tree was

identical to using-intp sp. For the others, we could not runCLP-PROVERbecause
its available implementation can only annotate one location per call, rather than all lo-
cations along the path per call, as commonly done, degradingthe performance quickly.

References
1. T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM. InIFM’2004.
2. T. Ball et al. Relative Completeness of Abstraction Refinement for Software Model CheckingTACAS’02.
3. D. Beyer et al. Software Model Checking via Large-Block Encoding. In FMCAD’09.
4. D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar. BLAST.Int. J. STTT, 2007.
5. A. Cimatti et al. Kratos - A Software Model Checker for SystemC. InCAV’11.
6. A. Cimatti et al. Efficient Interpolant Generation in SMT. InTACAS’08.
7. E. Clarke et al. Satabs: Sat-based Predicate Abstraction for ansi-C.In TACAS’05.
8. W. Craig. Three Uses of Herbrand-Gentzen Theorem in Relating Model and Proof Theory.JSC’55.
9. B. S. Gulavani et al. Refining Abstract Interpretations.Inf. Process. Lett., 2010.

10. F. Ivancic et al. F-Soft: Software Verification Platform. InCAV’05.
11. J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) System.TOPLAS, 1992.
12. J. Jaffar et al. Unbounded Symbolic Execution for Program Verification. InRV’11.
13. J. Jaffar, A. E. Santosa, and R. Voicu. An Interpolation Method for CLP Traversal. In CP’09.
14. R. Jhala et al. A Practical and Complete Approach to Predicate Refinement. InTACAS’06.
15. J . King. Symbolic Execution and Program Testing.Com. ACM’ 76.
16. G. Lalire, M. Argoud, and B. Jeannet. The Interproc Analyzerhttp://pop-

art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc.
17. K. L. McMillan. An interpolating theorem prover.TCS, 2005.
18. K. L. McMillan. Lazy Annotation for Program Testing and Verification.In CAV’10.
19. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL. InCC’02.
20. A.V. Nori, S.K. Rajamani, S. Tetali, A.V. Thakur. The Yogi Project. In TACAS’09.
21. A. Podelski and A. Rybalchenko. ARMC. InPADL’07.
22. A. Rybalchenko and V. Sofronie. Constraint Solving for Interpolation. In VMCAI’07.

This appendix contains more detailed information about howour tool TRACER veri-
fies the two program fragments shown in Fig. 2 and Fig. 3. It is included to help the
reviewing process and would not be part of the final version.

A Example of Fig. 2

In this section, we illustrate howTRACERverifies the snippet shown in Fig. 2 using two
of the available interpolation methods in the tool. Fig. 6(a)-(c) show the details about
how the symbolic execution tree is built byTRACER if state-of-the-art interpolation
methods (e.g.FOCI, CLP-PROVER, or MATHSAT) are used. This can be achieved by run-
ning TRACER with options-intp clp or -intp sp -convert-eq-to-ineq
y. On the other hand, Fig. 7(a)-(c) show the symbolic execution tree using our weak-
est preconditions method by running with option-intp wp. As a feature,TRACER

displays the below symbolic execution trees indot format.

s++

s++

s=0

s>10

1

2

4

5

7

9false

s<=2

s<=1

s<=0

s<=0

s<=1

true

(*)

(*)

s<=10

s++

2

4

false

s<=2

s<=1

s<=0

false

1

s=0

6

7

9 9

5

7

s++ s+=2

s>10

s<=1

s<=0

true

(*)

(*)
(*)

s>10 s<=10

s++

2

4

false

s<=2

s<=1

s<=0

false

1

s+=2

s=0

6

7

9 9

5

false false

4

3

7

9 9

5

7

s++ s+=2

s>10
7

s++ s+=2

6

true

s<=0

s<=1

(*)
(*)

(*)
(*) (*) (*)

s>10 s>10 s>10 s<=10

(a) (b) (c)

Fig. 6. Symbolic execution trees runningTRACER with -intp clp or -intp sp
-convert-eq-to-ineq y options.

Fig. 6(a) shows the first symbolic path explored byTRACER which is indeed infea-
sible. The symbol(*) means that the evaluation of the guard can betrueor false. After
renaming we obtains0 = 0 ∧ s1 = s0 + 1 ∧ s2 = s1 + 1 ∧ s2 > 10 which is clearly
unsatisfiable. State-of-the-art interpolation techniques will annotate every location with
its corresponding interpolant:ι1 : s0 ≤ 0, ι2 : s0 ≤ 0, ι4 : s1 ≤ 1, ι5 : s1 ≤ 1,
and ι7 : s2 ≤ 2 whereιk refers to the interpolant at locationk. In all figures, inter-
polants are enclosed in (red) boxes. Fig. 6(b) shows also thesecond symbolic path.
Note that at location7 of the second pathTRACER tests if the current symbolic state
s0 = 0∧s1 = s0+1∧s2 = s1+2 is subsumed byι7 : s2 ≤ 2, the interpolant at location
7. However, this tests fails sinces0 = 0∧s1 = s0+1∧s2 = s1+2 6|= s2 ≤ 2. Similarly,
TRACER attempts again at location4 of the third path in Fig. 6(c) if the new symbolic
path can be subsumed by a previous explored path. Here, it tests if s0 = 0∧s1 = s0+2

s++

s++

s=0

1

2

4

5

7

9false

s<=10

s<=9

s<=8

true

s<=8

s<=9

(*)

(*)

s>10 s<=10

s++

s++ s+=2

s=0

s>10

1

2

4

5 6

7 7

9false

s<=10

s<=9

s<=8

true

s<=8

s<=9

subsumed

(*)

(*)
(*)

s<=10

s++

s++ s+=2

s=0

s>10

1

2

4

5 6

7 7

9false

s<=10

s<=9

s<=8

4

2

true

s<=9

s<=8

s+=2
subsumed

subsumed

(*)
(*)

(*)
(*)

s<=10

(a) (b) (c)

Fig. 7.Symbolic execution tree runningTRACER with weakest preconditions (-intp wp)

implies ι4 : s1 ≤ 1 but again it fails. Finally,TRACER is able to prove the program is
safe but notice that the symbolic execution tree built is exponential on the number of
program branches.

Next, Fig. 7(a) shows the same first symbolic path explored byTRACER but anno-
tated this time with the interpolants obtained by weakest preconditions:ι1 : s0 ≤ 8,
ι2 : s0 ≤ 8, ι4 : s1 ≤ 9, ι5 : s1 ≤ 9, andι7 : s2 ≤ 10.

For this example, the weakest precondition computations are notably simplified
since the guards are not considered since they are clearly irrelevant for the infeasi-
bility of the path. Therefore, only rule (A) from Sec.2.1 is triggered. For instance,
ι7 : s2 ≤ 10 is obtained by¬ (∃V \ {s2} · s2 > 10) ≡ s2 ≤ 10 whereV is the
set of all program variables (including renamed variables), and ι6 : s1 ≤ 9 is ob-
tained bywp(s2 = s1 + 1, s2 ≤ 10) = s1 ≤ 9. Fig. 7(b) shows the second symbolic
path but note that the path can be now subsumed at location7 since the symbolic state
s0 = 0∧s1 = s0+1∧s2 = s1+2 |= s2 ≤ 10. Dashed edges represent subsumed paths
and are labelled with “subsumed”. Finally, Fig. 7(c) illustrates how the third symbolic
path can be also subsumed at location4 sinces0 = 0 ∧ s1 = s0 + 2 |= s1 ≤ 9.

B Example of Fig. 3

We provide here more details about howTRACERhandles unbounded loops through the
classical example in Fig 3. We still refer readers to [12] fortechnical discussion.

TRACERexecutes the program until a cycle is found and checks whether a certain set
of loop candidates, created by propagation ofSE, holds after the execution of the cycle.
In our example, we obtain the symbolic path (after renaming)π1 ≡ lock0 = 0∧new0 =
old0 + 1 ∧ (new0 6= old0) ∧ lock1 = 1 ∧ old1 = new0 from executing theelse
branch, shown in Fig. 8(a). Assume a trivial widening operator∇ defined asc∇ c′ , c
if c′ |= c otherwise⊤ (i.e., true), wherec andc′ are the constraint versions before
and after the execution of the cycle corresponding to one candidate. Then, widening
our loop candidates (shown between curly brackets in the first occurrence of location

lock=0, new=old+1

lock=1, new=old

1

2

3

5

0

1

(new != old)
{lock = 0, new = old+1}

{lock = 1, new = old}

(*)
subsumed

lock=0, new=old+1

lock=1, new=old

1

2

3

5

0

1

(new != old)

{lock = 1, new = old}

(*)

(after widening)true

subsumed

subsumed

lock=0, new=old+1

lock=1, new=old

1

2

3

5

0

1

(new != old)

{lock = 1, new = old}

4

5

6

7

(new == old)

{new = old}

(lock == 0)

ERROR is reachable!

(*) (*)

true (after widening)

(a) (b) (c)

Fig. 8.First iteration ofTRACER execution

5

8

lock=0, new=old+1

lock=1, new=old

1

2

3

0

(new != old)

false 6

(new == old)

(lock == 0)

false

(lock != 0)

(new != old)

1
B

A {lock=0, new=old+1}

{lock=1, new=old}

(*)

(widening failed!)

subsumed

5

4

5

8

lock=0, new=old+1

lock=1, new=old

1

2

3

lock=0, new++

0

(new != old)
{lock=1, new=old}

false 6

(new == old)

(lock == 0)

false

(lock != 0)

{lock=0, new=old+1}

false

(new != old) (new == old)

1 1B

A

C

{lock=0, new=old+1}

(*) (*)

(a) (b)

Fig. 9.Second iteration ofTRACER execution

1) {lock0 = 0, new0 = old0 + 1} produces an abstracted symbolic state⊤ (lock0 =
0 ∇ lock1 = 1 ≡ ⊤ andnew0 = old0 + 1 ∇ old1 = new0 ≡ ⊤). The symbol⊤
meanstrue. The symbolic pathπ1 after widening is shown in Fig. 8(b). Note that the
symbolic state at the loop header istrue, and as a result, we can halt the execution of
the path and avoid unrolling the pathπ1 forever since the child (second occurrence of
location1) is subsumed by its parent (first occurrence of1).

We then continue and backtrack executing a second pathπ2 from executing the
then branch. Forπ2, the candidates are indeed invariants but this is irrelevant since
the execution ofπ1 already determined that they were not invariant. As a resultof the
loss of precision of our abstraction, the exit condition of the loop(new0 = old0) is
now satisfied, and in fact, the error location is reachable bythe symbolic pathπ3 ≡
(new0 = old0) ∧ (lock0 = 0).

We then trigger a counterexample-guided refinement. First,we check thatπ3 is in-
deed spurious due to the loop abstraction (i.e.,lock0 = 0∧new0 = old0+1∧(new0 =
old0) ∧ (lock0 = 0) is unsatisfiable). Second, by weakest preconditions we infer an in-
terpolantI ≡ new0 6= old0 that suffices to rule out the counterexample. Third, we
strengthen our loop abstraction⊤ (true) with I, record thatI cannot be abstracted fur-
ther, and restart.

After restart, the execution ofπ1 shown in Fig. 9(a) cannot be halted as before at
location labelled withB since(new0 = old0 + 1) ∇ (old1 = new0) is still ⊤ but
this abstraction does not preservenew0 6= old0, the interpolant from the refinement
phase. As a result, we are not allowed to abstract the candidate new0 = old0 + 1 at
location labelled withA and thus the path must be unrolled one more iteration. How-
ever, the unrolled path will not take the loop body anymore but follow the exit condition
propagating the constraintslock1 = 1∧new1 = old0. Hence, the unrolled path is safe.

Finally, and in order to get a proof, we still need to exploreπ2 from thethen branch
shown in Fig. 9(b). Fortunately, we can stop safely the exploration ofπ2 as before since
we do not need to perform any abstraction for this path and hence,new0 6= old0 is
preserved. As a result, the state of the child labelled withC is subsumed by its ancestor
A.

