TRACER: A Symbolic Execution Tool for Verification

JOXAN JAFFAR!, VIJAYARAGHAVAN MURALI!, JORGEA. NAVAS2, AND ANDREW
E. SanTOSA?

!National University of Singapore
2The University of Melbourne
3University of Sydney

Abstract. We presentrRACER, a verifier forfinite-statesafety properties of se-
quential C programs. It is based on symbolic execut&g) &nd its unique fea-
tures are in how it makese finite in presence of unbounded loops and its uses of
interpolants to tackle theath-explosiorproblem.

1 Introduction

Recentlysymbolic executiors) [15] has been successfully proven to be an alternative
to CEGAR for program verification offering the following benefits angpothers [12,
18]: (1) it does not explore infeasible paths avoiding exgpanrefinements, (2) it avoids
expensivepredicate imageomputations (e.gGartesianandBooleanabstractions [2]),
and (3) it can recover fronoo-specificabstractions as opposed to monotonic refine-
ment schemes often used. Unfortunately, it posses its oafteciges: (C1) exponential
number of paths, and (C2) infinite-length paths in presefcalbounded loops.

We presentRACER, a verification tool based ose for finite-statesafety properties
of sequential C programs. InformallyRACER attempts at building a finite symbolic
execution tree which overapproximates the set of all cdaaeachable states. If the
error location cannot be reached from any symbolic path themprogram is reported
as safe. Otherwise, either the program may contain atrRigqER reports a false alarm
only if the theorem prover fails to prove a valid claim) or iaynnot terminate.The most
innovative features ofRACER stem from how it tackles (C1) and (C2).

In this paper, we describe the main ideas bemrRgdcER and its implementation as
well as our experience in running real benchmarks.

1.1 State-Of-The-Art Interpolation-Based Verification Tools

Fig. 1 depicts one possible view of current ver-
Stronger| BLAST CPA-CHECKER |\, ification tools based on two dimensioriazi-
ARMC KRATOS . .
nessand interpolation strength Lazy means
SLAM that the tool starts from a coarsely abstracted
Weaker SFAST(;I;'; YOGI mod_el ano! then refines it whiksgeris its dual,
starting with the concrete model and then re-
Lazy Eager moving irrelevant factsCEGAR-based tools [1,

. .. 4,7,10,21] are the best examples of lazy ap-
Fig. 1. Some state-of-the-art verifiers, 4 ches whilese-based tools [12, 18] are for
eager methods. Special mention is required for hybrid apgres such asoGi [20],
CPA-CHECKER([3], andKRATOS [5]. YOGI computes weakest preconditions from sym-
bolic execution of paths as a cheap refinementdecAR. One disadvantage is that

it cannot recover from too-specific refinements (see progteEmondin [18]). CPA-
CHECKER and KRATOS encode loop-free fragments into a Boolean formula that can
then be subjected togmT solver in order to avoid refinements if no loops are involved.

On the other hand, the performance of interpolation-baseifiers depends on the
logical strength of the interpolartdn lazy approaches, a weak interpolant may contain
spurious errors and cause refinements too often. Strongepalants may delay con-
vergence to a fixed point. In eager approaches, weaker oltenis may be better (e.g.,
for loop-free fragments) than stronger ones since thewakamoving more irrelevant
facts from the concrete model.

TRACER performsse and computes efficient approximategakest preconditions
as interpolants. To the best of our knowledgrACER s the first publicly available
(http://www.clip.dia.fi.upm.es/“jorge/tracer) verifier with these characteristics.

2 How TRACER Works

Essentially, TRACER implements classical symbolic execution [15] with someeaiov
features that we will outline along this section. It takesbylic inputs rather than
actual data and executes the program considering thoseofigrimputs. During the ex-
ecution of a path all its constraints are accumulated in &ditder logic (FOL) formula
calledpath condition (PC)Whenever code of the forif(C) then Slelse S2 is reached
the execution forks the current symbolic state and updaiths gonditions along both
the paths?C, = PC AC andPCy = PC A— C, respectively. Then, it checks if either
PCy or PCy is unsatisfiable. If unsatisfiable, then the patinfeasibleand hence, the
execution can halt and backtrack to the last choice poitite@tise, the execution fol-
lows the path. Note that botRC; and PC; can be satisfiable simultaneously but both
cannot be unsatisfiable. The verification problem consisitsiidding afinite symbolic
execution tree that contains at least all concrete reaelsibtes and proving that for
every symbolic path the error location is unreachable.

2.1 Cache-based Algorithm with Weakest Preconditions as erpolants

The first key aspect ofRACER, originally proposed in [13] and used later in [12, 18], is
the avoidance of full enumeration of symbolic pathddgrningfrom infeasible paths
by computingnterpolantg[8], in a similar spirit to thenogoodlearning insSAT. Prelim-
inary versions off RACER[12, 13] computed interpolants basedstrongest postcondi-
tions (sp) Given two formulasA (symbolic path) and® (last guard where infeasibilility
is detected) such that A B is unsat, an interpolant was obtaineddsy- A whereZ are
A-local (i.e., variables occurring only id) variables. However unlikeEGAR, TRACER
starts from the concrete model of the program and then,afeigtlevant facts. There-
fore, the weaker the interpolant is the more likely it is f’’ACER to avoid exploring
other “similar” symbolic paths. This is the motivation betlian interpolation method
based orweakest preconditions (wpyhe contrived example in Fig. 2 shows the need
for wp as well as the essence of our approach to mitigate thth~explosion” problem.
The error locatior{8) is unreachable since the variaslean be at most. Note also the
program has four symbolic paths. Assume the first pat)ig1)-(2)-(4)-(5)-(7)-(8)

! Given formulas4 and B such thatd A B is unsatisfiable, &raig interpolant[8] I satisfies:
(1) A E I, (2) I A Bis unsatisfiable, and (3) its variables are commor tand B. We say
an interpolant is stronger (weaker) thaH if I = I' (I' = I).

) = which is infeasible since the formula (after renaming)

(0

2411> :1]:8 255 Z: 2:22 26; S+:2; s =0As1=s50+1As3 =35 +1Asy>10isun-
(7
(9

)if(s > 10) (8) error(); satisfiable. ThenTRACER using a reasonable interpo-
) lation method (e.g£0cCI[17], CLP-PROVER[22], and
Fig. 2. Safe Code MATHSAT [6]) infers the interpolantsy, < 0, s; < 1,

ands, < 2 at program locationgl), (4), and(7), and memoizes them in a caéhe
Unfortunately, those interpolants are not weak enough ¢idasr subsumethe explo-
ration of the other symbolic paths. Thatég,= 0 A s; = sg + 1 A sa = s1 + 2 (from
(0)-(1)-(2)-(4)-(6)-(7)) = 52 < 2andsy = 0 A sy = s + 2 (from (0)-(1)-(3)-(4))
£ s1 < 1.. However, by weakest preconditions we can easily obtaim fihe first path
the interpolants, < 8, s; < 9, andss < 10, which clearly subsume the other paths.
For efficiency, our algorithm under-approximates the wetfgeecondition by a mix
of existential quantifier elimination, unsatisfiable com@asd some heuristics. Whenever
an infeasible path is detected we computély -), thepostconditiorthat we want to
map into gprecondition wheredG is the guard where the infeasibility is detected gnd
areG-local variables. The two main rules for propagating wpks. ar
(A) wp(z ==, Q) =Qle/x]
(B) wp(if(C) S1 else S2,Q) = (C = wp(S1,Q)) A (- C = wp(S52,Q))
Rule (A) replaces all occurrences.ofwith e in the formula@. Thus, the challenge is
how to produce conjunctive formulas from rule (B) as weak@ssible to increase the
likelihood of subsumption. During the forwagk when an infeasible path is detected
we discardrrelevantguards by using the conceptursatisfiable cores (U¢}o avoid
growing the wp formula unnecessarily. For instance, thefdaC = wp(S1, Q) can
be replaced withwp(S1,Q) if C ¢ C whereC is a (not necessarily minimal) UC.
Otherwise, we underapproximate = wp(S1, Q) as follows. Letd; v ...V d, be
—wp(S1,Q) thenV d; (1 < i < n) - (A\;(-(32'-(CAd;)))), where we use ex-
istential quantifier elimination to remove the post-stadeiablesz’. A very effective
heuristic if the resulting formula is disjunctive is to digléhose conjuncts that are not
implied byC because they are more likely to be irrelevant to the infé#gibeason.
Remarks. TRACER separately discovers loop invariants during the forwantsylic
execution. This ensures that any wp generated is necgssatdiledby the loop invari-
ant. Thus, loops are not an issue in our wp computationslifinseakest preconditions
may fail to generalize with some loops as Jhala et al. poiatedn [14] (Sec.1, page
2). Then,TRACER can compute other interpolants or be fed with inductive riiards
from external tools (see Sec. 3).

2.2 Path Invariants via Widening with Counterexample-Guided Loop Unrolling
With unbounded loops the only hope to produce a proafbistraction In a nutshell,
upon encountering a CycleRACER computes thetrongestpossible loop invariantg

2 Those interpolants can be also obtained by computing strongest patitmmend rewriting
r=yasr>yAy>rc.

3 A symbolic stater is subsumear coveredby another symbolic state’ if they refer to same
location and the set of states represented lig/a subset of those representedsdyAlterna-
tively, if o ando’ are seen as formulas thetis subsumed by’ if o = o.

* Given a constraint sef whose conjunction is unsatisfiable, ansatisfiable core (UCY’ is
any unsatisfiable subset 6f An UC S’ is minimalif any strict subset of’ is satisfiable.

by using widening techniques in order to make $tidinite. If a spurious abstract error
is found then aefinement phasgimilar toCEGAR) discovers an interpoladtthat rules

(O)lock=0; new=old+1; the spurious error out. After restarRACER strengthens

¥ by conjoining it with I and the symbolic execution

ézi lock=1; old=new; . .

(3) if(*) { (4) lock=0;new++} Ccheckspath by pathif the new strengthened formula is
(5)} a loop invariant. If this test fails for a given path then
(6)if(lock == 0) (7) error(); TRACER will unroll only 7 at least one more iteration
(8) and continue with the process. Notice that the genera-
Fig.3. Excerpt from a tion of invariants isdynamicin the sense that loop un-
NT Windows driver rolls will expose new constraints producing new invari-

ant candidates. For lack of space, we refer readers to [12].

Remarks. Otherse-based tools (e.giMPACT [18]) may not terminate with our exam-
ple in Fig. 3 (see [12] Sec.1, Ex.1) whil®RACER converges in two iterations. On the
other hand, our path invariant technique via widening iselprelated to the widening
"up to” S (V°) used in [9], wheres contains the constraints inferred by the refinement
phase. However, they use it to enhar@®GAR while SE poses different challenges
(see [12] Sec.1, Ex.3). Finally, abstractionTiRACER also differs fromCEGAR in a
fundamental wayrRACER attempts at inferring thetrongestioop invariants modulo
the limitations of widening techniques whittlEGAR, as well as hybrid tools likePA-
CHECKER and KRATOS, will often propagate coarser abstractions. Althoughrgjes
abstractions may be more expensive they may converge fiasfgesence of loops
(see [12] Sec.1, Ex.4).

3 Usage and Implementation

Input. TRACER takes as input a C pro-
,, gram with assertions of the formMRACER_abort(Cond),
Fronend whereCondis a quantifier-free FOL formula.
Then, each path that encounters the assertion
tests whetheiCond holds or not. If yes, the
,,,,,,,,,,,,,,, symbolic execution has reached an error node

meprae Aorac and thus, it reports the error and aborts if the
rror - -

Safe SE Interpreter hemet | error is real, or refines if spurious. Otherwise,
the symbolic execution continues normally.

Consiraint Solving Output. If the symbolic execution terminates

and all_TRACER_.abort assertions failed then

]] the program is reported as safe and the corre-
Fig. 4. Implementation of RACER gponding symbolic execution tree is displayed

as the proof object. If the program is unsafe then a courgengie is shown.

Implementation. Fig. 4 outlines the implementation GRACER. It is divided into two
components: &ontendand aninterpreter. First, a C-frontend based anL [19] trans-
lates the input program into a constraint-based logic @ogrBoth pointers and ar-
rays are modeled using the theory of arrays. An alias arsalysised in order to yield
sound and finer grained independent partitions Geparation as well as infer which
scalars’ addresses may have been taken. Optionally, itluseRPROC [16] (option
-1 oop- i nv) to provide loop invariants. The second component is ampnéger which

Cprogram

Loop Inv. Gen

Interpolation

symbolically executes the constraint-based logic progmarchit aims at demonstrating
that error locations are unreachable. This interpretemjsiémented in a&onstraint
Logic Programming(CLP) system called CLFR) [11], taking advantage of intrinsic
features of CLP such dsacktracking efficientexistential quantifier eliminatigrand
incrementalkonstraint solving. Its main sub-components are as fotlows

e Constraint Solvingelies on the CLPR) solver to reason fast over linear arith-
metic over reals®) without expensive calls to general-purpose theorem psove
A decision procedure for arrays (optiemccar t hy) has been also implemented.

¢ Interpolation implements two methods with different logical strengtheTfirst
method usestrongest postconditiorj$é2, 13] (i nt p sp). The second computes
weakest precondition(si nt p wp) as described in Sec. 2.1 but current implemen-
tation only allows reasoning in linear arithmetic over seaRACER also provides
interfaces to other interpolation methods sucltas-PROVER(-i nt p cl p).

e Loop Invariant RefinemenSimilar to CEGAR the effectiveness of the refinement
phase usually relies on heuristicsh(option). But unlikeCEGAR tools, SE only
performs abstractions at loop headers. Thus, given a pathighches an error lo-
cationTRACER only needs to visit those abstraction points in the path dedks
if one of the them caused the reachability of the error. If jtasses interpolation to
choose which constraints can rule out the error. Othenligeerror must be real.

e Loop Invariant GenerationVhenever a loop header is encounteredCERrecords
a set ofloop invariantcandidates. Then, if a cycleis found TRACER performs a
widening of the state at the loop head®&tc’ wherec’ is the candidate after the ex-
ecution ofr. Current implementation of tH& operator follows:V¢' £ cif ¢/ = ¢
otherwiseT. Very importantly, if V attempts at abstracting a constraint needed
to exclude an error then it fails and the path is unrolled ast®ne more iteration.
Although our experiments demonstrate that our implemimtad quite fast and ef-
fective, it is clearlyincompletg(in the sense that it may cause non-termination) for
several reasons. First, the generation of candidatesdemsginly constraints prop-
agated bysk althoughTRACER allows enriching this set with inductive invariants
provided by NTERPROC. Second, the implementation ®fis imprecise. ThirdV
is applied to each candidaiedividually. By applyingV to all candidate subsets
we could produce richer invariants, although this processlavbe exponential.

4 Experience with Benchmarks

We ranTRACER 0n thentdrivers-simplified andssh-simplified benchmark suites from the
SV-COMP. Due to lack of space, we present in Fig. 5 only data that fe€os the two
key features off RACER: use of weakest preconditions as interpolants and how i han
dles unbounded loops computing strongest loop invariditits.experiments were run
on Intel 2.33Ghz 3.2GB. Columns 2 and 3 compare the numb¢atafssof the symbolic
execution tree§) explored byTRACER using SP and WP, columns 4 and 5 compare
the total verification timd (s) in seconds (excluding the C-frontend). Columns 6 and 7
compare the number of loop invariant refinements m&jednd the last two columns
compare the time of computing loop invariantsvG(s)), as outlined in Sec. 2.2. If

5 “1st Competition on Software Verificatior(v-comp.sosy-lab.org). We also rurstatemate,
from WCET (Worst-Case Execution Timeommunity, to prove upper bounds.

marked withoco, TRACER did not finish within900 secondsWP often pays off with
greater gains in programs whereAcEeR refines heavily, mainly because loop unrolls
are expensive fose and hence, more often subsumption is vital. Batemate, WP
dramatically decreases the search space. Howewishperf andkbfiltr, WP is slower
even though the size reduction due to the overhead of congpuip’s. As expected,
InvG increases if loop unrolls are more frequent and more loopédrsaare explored.
S TG) R |invG(s)] Remarks. For a compari-

Program SP [WP ||[SP[WP|[SP|WP|[SP[WP| son with other SE meth-
cdaudio.i.cil.c [[1654713737|[266/201][0 | 0 [[0.8]0.6] ods andBLAST [4] we re-
diskperf.i.cil.c ||15715| 9181 |[117|121|| 0 | 0 ||0.1|0.1| fer to [12] and our un-
floppy.i.cil.c 16588| 5421 {|212] 91 || 6 | 2 ||1.5|0.5| published report available at

0]0

2

kbfiltr.i.cil.c 1854 | 1484 3 6 0 0 arxiv_org/abs/1103_2027’ re-
s3.cint Lcil.c | 19956(2656 ||156| 11 8 |57|27| spectively. For our experi-
sg,c:n:,é.c!:.c o0 iggég o0 ;g ii o0 ?é ments we turn off NTER-
So_Cint_a.Cll.C o0 o0 o0 . . .
s3.cnt4cile [35392] 4130 275| 17 [63| 17 || 02 [4.2| PROC because its inductive
s3.srvr.2.cil.c |39174]14066(241| 83 |[49| 42 || 56 | 18 | Nvariants did not make any
s3.srvr3.cilc | 9340|4081 | 48|15 6 | 6 12| 3 | impact on the convergence
s3.srvr 4.cil.c |35454(14065(346(102|(33| 33 |[147| 44 | OF TRACER We were able
s3.srvr.13.cil.c|| oo (48323 oo [826/ 00 |127| o0 [401| O runCLP-PROVER-i Nt p
statemate 18995/ 1021 |[119] 11 || 0 | 0 ||0.1] 0 | cl p) for statemate and the

Fig.5. TRACER SP (-intp sp)vsWP (-intp wp) Size of the symbolic tree was
identical to using i nt p sp. For the others, we could not r@LP-PROVERbecause

its available implementation can only annotate one loogper call, rather than all lo-
cations along the path per call, as commonly done, degrdadegerformance quickly.

References

T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM. IRM’2004.

T. Ball et al. Relative Completeness of Abstraction Refinement fiin&oe Model CheckinACAS’'02

D. Beyer et al. Software Model Checking via Large-Block Encoding-MCAD’09.

D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar. BLABIT. J. STTT2007.

A. Cimatti et al. Kratos - A Software Model Checker for SystemCCAV'11

A. Cimatti et al. Efficient Interpolant Generation in SMT.TACAS’08

E. Clarke et al. Satabs: Sat-based Predicate Abstraction for altlsIFECAS’05

W. Craig. Three Uses of Herbrand-Gentzen Theorem in RelatingeModi Proof TheornydSC'55

B. S. Gulavani et al. Refining Abstract Interpretatioim$. Process. Lett.2010.

. F. lvancic et al. F-Soft: Software Verification Platform.GAV’05

. J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The GUPRystem.TOPLAS 1992.

. J. Jaffar et al. Unbounded Symbolic Execution for Program ¢atiéin. InRV’'11

. J. Jaffar, A. E. Santosa, and R. Voicu. An Interpolation Metho€td® Traversal. In CP’09.

. R. Jhala et al. A Practical and Complete Approach to Predicate RefiieINnTACAS’06

. J. King. Symbolic Execution and Program TestiGgm. ACM’ 76

. G. Lalire, M. Argoud, and B. Jeannet. The Interproc Analyzerhttp://pop-
art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc.

17. K. L. McMillan. An interpolating theorem provef.CS 2005.

18. K. L. McMillan. Lazy Annotation for Program Testing and Verification.CAV’10.

19. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIIC@02.

20. A.V. Nori, S.K. Rajamani, S. Tetali, A.V. Thakur. The Yogi Prdjelan TACAS'09

21. A.Podelski and A. Rybalchenko. ARMC. RADL'07.

22. A. Rybalchenko and V. Sofronie. Constraint Solving for Interfiafa In VMCAI'07.

N

oo
(0.9]

CoNoorWNE

e N
OUBRWNREO

This appendix contains more detailed information about lwanvtool TRACER veri-
fies the two program fragments shown in Fig. 2 and Fig. 3. Inhiduded to help the
reviewing process and would not be part of the final version.

A Example of Fig. 2

In this section, we illustrate hoWwRACER verifies the snippet shown in Fig. 2 using two
of the available interpolation methods in the tool. Fig.)§@ show the details about
how the symbolic execution tree is built IRACER if state-of-the-art interpolation
methods (e.gFOCI, CLP-PROVER or MATH SAT) are used. This can be achieved by run-
ning TRACER with options-intp clpor-intp sp -convert-eq-to-ineq

y. On the other hand, Fig. 7(a)-(c) show the symbolic exeautiee using our weak-
est preconditions method by running with optionnt p wp. As a featureTRACER
displays the below symbolic execution treeslot format.

Fig.6. Symbolic execution trees runningRACER with -intp clp or -intp sp
-convert-eg-to-ineq y options.

Fig. 6(a) shows the first symbolic path exploredi®aceR which is indeed infea-
sible. The symbo{ *) means that the evaluation of the guard catrbeor false After
renaming we obtairg = 0 A sy = so + 1 A ss = s1 + 1 A so > 10 which is clearly
unsatisfiable. State-of-the-art interpolation techniqu#l annotate every location with
its corresponding interpolant; : sop < 0,12 : 590 < 0, ¢4 : 51 < 1,15 : 81 < 1,
and.; : so < 2 wherey, refers to the interpolant at locatidn In all figures, inter-
polants are enclosed in (red) boxes. Fig. 6(b) shows als@d¢hend symbolic path.
Note that at locatiort of the second patliRACER tests if the current symbolic state
so = 0As1 = sg+1Asy = s1+2is subsumed by, : so < 2, the interpolant at location
7. However, this tests fails sineg = 0As1 = sg+1Asy = s14+2 [~ so < 2. Similarly,
TRACER attempts again at locatichof the third path in Fig. 6(c) if the new symbolic
path can be subsumed by a previous explored path. Herdsiifteg = 0 A s; = sg+2

(b)

Fig. 7. Symbolic execution tree runningRACER with weakest preconditions { nt p wp)

implies:4 : s; < 1 but again it fails. FinallyTRACERIis able to prove the program is
safe but notice that the symbolic execution tree built isoevgmtial on the number of
program branches.

Next, Fig. 7(a) shows the same first symbolic path exploredfycER but anno-
tated this time with the interpolants obtained by weakestgnditionsz; : sg < 8,
12180 <814 :81 <9,15:51 <9,ande; : 55 < 10.

For this example, the weakest precondition computatiorsnatably simplified
since the guards are not considered since they are cleeglgvant for the infeasi-
bility of the path. Therefore, only rule (A) from Sec.2.1 rigyered. For instance,
17+ s < 10 is obtained by— (FV\ {s2} - s2 > 10) = s2 < 10 whereV is the
set of all program variables (including renamed variablagd s : s; < 9 is ob-
tained bywp(s2 = s1 + 1, s < 10) = 51 < 9. Fig. 7(b) shows the second symbolic
path but note that the path can be now subsumed at locasorce the symbolic state
so =0As1 = sp+1As2 = 8142 | so < 10. Dashed edges represent subsumed paths
and are labelled with “subsumed”. Finally, Fig. 7(c) illates how the third symbolic
path can be also subsumed at locati®incesy = 0A sy = sg+2 = s1 <09.

B Example of Fig. 3

We provide here more details about howacER handles unbounded loops through the
classical example in Fig 3. We still refer readers to [12]tearhnical discussion.
TRACERexecutes the program until a cycle is found and checks whattertain set
of loop candidates, created by propagatiosefholds after the execution of the cycle.
In our example, we obtain the symbolic path (after renamingx locky = 0Anewy =
oldyg + 1 A (newg # oldy) A locky = 1 A old; = newy from executing theel se
branch, shown in Fig. 8(a). Assume a trivial widening oper&t defined ag V ¢/ = ¢
if ¢ | cotherwiseT (i.e., true), wherec and¢’ are the constraint versions before
and after the execution of the cycle corresponding to ondidate. Then, widening
our loop candidates (shown between curly brackets in thiedasurrence of location

lock=0, new=old+1 lock=0, new=old+1 lock=0, new=old+1
--------- > 2 true (after widening)

’ lock =0, new = old+1] P Br ™ true (after widenin .
(new!=old)‘/\l) {) ,—‘(new!=o|d)‘/\l’ () Lo (new 1= old)‘/\i (new == old)
e S ST Qe
lock=1, new=old + lock=1, new=old + lock=1, new=old (lock ==0)
®) ©,

*)

*)
\© ERROR is reachable!

\’1_) {lock = 1, new = old} '~~:1_) {lock = 1, new = old} "'\’1_) {lock = 1, new = old}

@) (b) (©

Fig. 8. First iteration ofTRACER execution

lock=0, new=old+1 lock=0, new=old+1
A » '~ {lock=0, new=old+1} A » '~ {lock=0, new=old+1}

(new != oldy, 1) (widening failed!) (new != old))/. 1 fTew-=z old)

false S
N

lock=1, new=old lock=1, new=old

*)

. .

W1)B {lock=1, new=old} {lock=1, new=old} 1)B
(new != old) / =\ (new == old) (new != old) / -
false false

(lock == 0) (lock !=0) (lock == 0)

@) (b)

Fig. 9. Second iteration of RACER execution

1) {locko = 0,newy = oldy + 1} produces an abstracted symbolic statéock, =
0Vliocky =1 = T andnewy = oldy + 1 V old; = newg = T). The symbolT
meandrue. The symbolic pathr; after widening is shown in Fig. 8(b). Note that the
symbolic state at the loop headertige, and as a result, we can halt the execution of
the path and avoid unrolling the path forever since the child (second occurrence of
location1) is subsumed by its parent (first occurrencea of

We then continue and backtrack executing a second patinom executing the
t hen branch. Forr,, the candidates are indeed invariants but this is irretesate
the execution ofr; already determined that they were not invariant. As a resfuthe
loss of precision of our abstraction, the exit condition leé toop (newg = oldy) is
now satisfied, and in fact, the error location is reachableéhleysymbolic pathrs =
(newg = oldy) A (locky = 0).

We then trigger a counterexample-guided refinement. Fuestzheck thatrs is in-
deed spurious due to the loop abstraction (ieeky = 0 Anewg = oldg+ 1A (newg =
oldy) A (lockg = 0) is unsatisfiable). Second, by weakest preconditions we amfén-
terpolant/ = newy # oldy that suffices to rule out the counterexample. Third, we
strengthen our loop abstractidn(true) with I, record that/ cannot be abstracted fur-
ther, and restart.

After restart, the execution of; shown in Fig. 9(a) cannot be halted as before at
location labelled withB since (newy = oldy + 1) V (old; = mewy) is still T but
this abstraction does not presemwew, # oldy, the interpolant from the refinement
phase. As a result, we are not allowed to abstract the caedida, = oldy + 1 at
location labelled withA and thus the path must be unrolled one more iteration. How-
ever, the unrolled path will not take the loop body anymoretllow the exit condition
propagating the constrainteck; = 1 A new; = oldy. Hence, the unrolled path is safe.

Finally, and in order to get a proof, we still need to explosdrom thet hen branch
shown in Fig. 9(b). Fortunately, we can stop safely the engion of 7, as before since
we do not need to perform any abstraction for this path andéerew, # oldy is
preserved. As a result, the state of the child labelled @itk subsumed by its ancestor
A.

