Recursive Abstractions for Parameterized Systems

JoXAN JAFFAR and ANDREW E. SANTOSA

Department of Computer Science, National University og&@pore
Singapore 117590
{j oxan, andr ews }conp. nus. edu. sg

Abstract. We consider a language of recursively defined formulas a@iways
of variables, suitable for specifying safety propertiepafameterized systems.
We then present an abstract interpretation framework winistslates a paramer-
ized system as a symbolic transition system which propagsteh formulas
as abstractions of underlying concrete states. The maitrilsotion is a proof
method for implications between the formulas, which thesvjates for an imple-
mentation of this abstract interpreter.

1 Introduction

Automation of verification of parameterized systems aredivearea of research [1—
7]. One essential challenge is to reason about the unboyatacheten representing

the number of processes in the system. This usually ent@isrovision of an induction

hypothesis, a step that is often limited to manual interieentThis challenge adds to
the standard one when the domain of discourse of the precassénfinite-state.

In this paper, we present an abstract interpretation [8it@gugh for the verification
of infinite-state parameterized systems.

First, we present a language for the general specificatigmayferties of arrays of
variables, each of whom has length equal to the paranmet€he expressive power
of this language stems from its ability to specify complegg@rties on these arrays.
In particular, these complex properties are just thoseahise from a language which
allowsrecursive definitionsf properties of interest.

Second, we present a symbolic transition framework foriobtg a symbolic ex-
ecution tree which (a) is finite, and (b) represents all gissioncrete traces of the
system. This is achieved, as in standard abstract intatef by computing a sym-
bolic execution tree but using a process of abstraction ersyimbolic states so that
the total number of abstract states encountered is bou@eitication of a particular
(safety) property of the system is then obtained simply Isp@ttion of the tree.

Third, the key step therefore is to compute two things: (agigian abstract state
and a transition of the parameterized system, compute theabstract state, and (b)
determine if a computed abstract state is subsumed by th®psty computed abstract
states (so that no further action is required on this stated.main contribution of this
paper is an algorithm to determine both.

Consider a driving example of a parameterized systento® process where each
process simply increments the value of shared variafdee Figure 1 (left)). The idea
is to prove, given an initial state whexe= 0, thatx = n at termination.

Figure 1 (right) outlines the steps in generating the syml®ecution tree for this
example. The tree is constructed by letting each procesgpddfrom an initial program
point (0) to its final point(1).

§o : ((O0,0)O)

. ¢ abstract
process(id) { B L
(0) x =x +1 (1) 61:((0,...,0,1,0,...,0),1) G1:((0,1,1,...),m)
subsumed -

G2:((0,1,1,...),m+1) G3:((L,1,...,1),n)

Fig. 1: Abstract Computation Tree of Counting Ones

We start with a program state gb = ((0,0,---,0),0) where the first element is a
sequence af bits representing the program counter, and the second eteep@esents
the value ofx. A first transition would bring the system to a state= ((0, ---, 0, 1,

0, ---, 0), 1), where the position of the “1” is anywhere in the range ht@and the
value ofx is now 1. At this point, we would like to abstract this statatstateg; where
the counter has, not exactly one numeral 1, but soriari< n copies of the numeral
1. Further, the value of is not 1, but instead is equal to. Let us denote this state
((07 17 17)am>

There are now two possible transitions: first, correspamtiinthe case wherg;
has at least two 0's, we get a new stgewhose counter has a mixture of 0's and 1s.
But this new state is already covered §yand hence need not be considered further.
The second case is whegg has exactly one 0, in which the final transition results in
the final stategs = ((1,1,---,1),x) where the counter has all 1's. Since the valua of
in g3 equals the number of 1's, it follows that= nin this final state.

The key points in this proof are as follow. First, we employkd notion of an
abstract states; where the counter has < m < n copies of 1 (the rest are 0), and
x = m. We then show that the concrete stgteemanating from the initial state is in
fact an instance of;;. We then showed that the stage emanating fromg; is either
(a) itself g1 (which therefore requires no further consideration), Jrtfie final state
G3:((1,1,---,1),x), and wherex=n. Thus the proof that = nat the end is established.

The main result in this paper, in terms of this example, i$ fr€onstruct the com-
putation tree, but more importantly to provide an automaitaof of the conditions that
make the tree a true representation of all the traces of therlying parameterized
system. In our example, our algorithm proves the entailmgnt= g1 and g2 = G1.
Although not exemplified, all states in discussed here aittanrin our constraint lan-
guage using arrays and recursive definitions, which is todmudsed in Section 2. For
instance, the statgy is represented usingelement array of zeroes which is defined us-
ing a recursive definition. We provide an algorithm to promga@ments in verification
conditions which involve integer arrays and the recursandions.

In summary, our contributions are threefold:

e We present a language for defining recursive abstractionsigting of recursive
definitions and integer arrays. Such abstractions are tcsbd to represent core
properties of the parameterized system that are invariatt the parameten of
the system. The provision of these abstractions is gegesatricted to be manual.

e Then we provide a symbolic traversal mechanism to consaragimbolic execution
tree which exhibits the behavior of the parameterized systehich is exemplified
in Figure 1 (left). In constructing the tree we abstract tfag¢es encountered using
the recursive abstractions. In the above example, thisamelified with the ab-
straction ofg; to G1. Our objective is to produce a closed tree, where all the paths

in the tree reaches the end of the program’s execution ($eeafg; above) or ends
in a state that is subsumed by some other state in the treeg#eeofs,, which is
subsumed by;;).

Now, there are two kinds of proofs needed: one is for the ctmess of the
abstraction step (represented aseh&ilments; = g1 of two formulas). Similarly,
we need a proof of entailment of formulas defining the subgionmpf one state
over another (egs2 = G1 above).

e Finally we devise a proof method where the recursive definitiand the arrays
work together in the entailment proof. In this way, thely manual intervention
required is to provide the abstraction of a state (in our ganthe provision of
the abstraction;; to abstracts;). Dispensing with this kind of manual interven-
tion is, in general, clearly as challenging as discoveraaplinvariants in regular
programs. However, it is essentially dependent on knovdediput thealgorithm
underpinning the system, and not aboutphaof systenitself.

1.1 Related Work

Central to the present paper is the prior work [9] which pnésé a general method
for the proof of (entailment between) recursively definegdicates. This method is a
proof reduction strategy augmented with a principle@hduction the primary means
to obtain a terminating proof. In the present paper, thaeraxlork is extended first by
a symbolic transition system which models the behavior efitthderlying parameter-
ized system. A more important extension is the considarati@rray formulas. These
array formulas are particularly useful for specifying afst properties of states of a
parameterized systems.

Recent work by [3] concerns a class of formulas, environrpegdicates, in a way
that systems can be abstracted into a finite number of suotufas. The essence of the
formula is a universally quantified expression relatinglteal variable of a reference
process to all other processes. For example, a formula dbtiheVj # i : X[i] < x[j]
could be used to state that the local variabtd the reference processs less than the
corresponding variable iall other processes. A separate method is used to ensure that
the relationships inside the quantification fall into a réet eg. predicate abstraction.
An important advantage of these works is the possibilityuibenatically deriving the
abstract formulas from a system.

Theindexed predicatesiethod [4] is somewhat similar to environment predicates
in that the formula describes universally quantified staet® over indices which range
over all processes. Determining which indexed predicatesppropriate is however
not completely automatic. Further, these methods are rmainaganied by an abstract
transition relation.

The paper [1] presents safety verification technique of rpatarized systems us-
ing abstraction and constraints. Key ideas include the lremaf existentially and
universally-quantified transition guards), and the usgagi-order constraintsAbstrac-
tion is done by weakening the gap-order constraints.

Our method differs from the above three works because weptesgeneral lan-
guage for the specification @y abstraction, and not a restricted class. We further
provide a transition relation which can work with the absti@n language in order to
generate lemmas sufficient for a correctness proof. Thef prethod, while not decid-
able, is general and can dispense with a large class of afiphs.

Earlier work on counter abstraction [7] clearly is relevembur abstractions which
is centrally concerned with describing abstract propgmieprogram counters. Later
works oninvisible invariants[6] show that by proving properties of systems with a
fixed (and small) parameter, that the properties indeed Wwbkeh the parameter is not
restricted. In both these classes of works, however, thieisys assumed to be finite
state.

There are some other works using inductive, as opposed taatisn, methods for
example [5]. While these methods address a large classmofifas, they often depend
on significant manual intervention.

We finally mention the work of [2] which, in one aspect, is @stin philosophy to
ourwork. The main idea is to represent both the system angrtpeerty (including live-
ness properties) dggic programs In this sense, they are using recursive definitions as
we do. The main method involves proving a predicate by a pooéfolding/unfolding
of the logic programs until the proof is obvious from the sgtic structure of the re-
sulting programs. They do not consider array formulas otrabtinterpretation.

2 The Language

In this section we provide a short description of constréangguage allowed by the
underlying constraint solver assumed in all our examples.

2.1 Basic Constraints

We first considetbasic constraintsvhich are constructed from two kinds of terms:
integer terms andrray expressionsinteger terms are constructed in the usual way,
with one addition: the array element. The latter is definedrgively to be of the form
ai] whereais an array expression anen integer term. An array expression is either an
array variable or of the fornfa,i, j) wherea is an array expression amgd are integer
terms.

The meaning of an array expression is simply a map from imsgg#o integers, and
the meaning of an array express&n= (a,i, j) is a map just likea except that'[i] = j.
The meaning of array elements is governed by the classic MicCH 0] axioms:

=k —(aij)K =]

i £k — (ai,j)K =alK

A basic constraint is either an integer equality or inedyadr an equation between
array expressions. The meaning of a constraint is defindteintvious way.

In what follows, we use constraint to mean either an atomitstraint or a con-
junction of constraints. We shall use the symtpabr W, with or without subscripts, to
denote a constraint.

2.2 Recursive Constraints

We now formalizerecursive constraintssing the framework of Constraint Logic Pro-
gramming (CLP) [11]. To keep this paper self-contained, e provide a brief back-
ground on CLP.

An atomis of the formp(f) wherep is a user-defined predicate symbol dna
tuple of terms, written in the language of an underlying ¢aist solver. Arule is of
the formA: - W, B where the atord is theheadof the rule, and the sequence of atoms

syYNKX :- 1 <1d <N KId =0, K=<K1Id, 1> X =X+, sygN K, X).

Fig. 2: Transitions of Counting Ones

B and constraint’ constitute thebody of the rule. The body of the rule represents
a conjunction of the atoms and constraints within. The cairgtW¥ is also written

in the language of the underlying constraint solver, whiglassumed to be able to
decide (at least reasonably frequently) whetHés satisfiable or not. A rule represents
implication with the body as antecedent and the head as thawsion. Aprogramis

a finite set of rules, which represents a conjunction of thrages. The semantics of a
program is the smallest set of (variable-free) atoms thiagfgehe program. Given a
CLP program, recursive constraints are constructed ugiogrsive predicates defined
in the program.

Example 1 (Count Onesphe following program formalizes the states describedén th
“counting ones” example (note thatlenotes “any” value). In the predicates below, the
numbem represents the parameter, the atagpresents the counter, akdepresents
the shared variablé\l | zer oes(N, K, X) holds for anyN, K, andX whenK is an array of
lengthNwith all elements zero andlis zero Al | ones(N, K, X) holds when all elements
of K are one, an&=N. Finally, the meaning odbs(N, K, M is thatKis a bit vector
andMis the number of 1's if.

all zeroes(0, _, 0).
allzeroes(N, (KN 0), 0) :- N> 0, allzeroes(N-1, K, 0).
allones(0, _, 0)

al I ones(N, <K,N,i>, N) :- N>0, allones(N1, K N1).
bit(0).

bit(1).
abs(0, _, 0).
abs(N, (K, N,B), MB) :- N> 0, bhit(B), abs(N1, K M.

3 Formalization of a Parameterized System

We now formalize a parameterized system as a transitioemsysfe assume inter-
leaving execution of the concurrent processes, where aiti@mthat is executed by

a process is considered atomic, that is, no other processlizerve the system state
when another process is executing a transition. Similahéodefinition of recursive

constraints in the previous section, the transition systhere are also defined using
CLP, where a CLP rule models a state transition of the system.

3.1 Abstract Computation Trees

Before proceeding, we require a few more definitions on CLBuBstitutiond simul-
taneously replaces each variable in a term or consteairib some expression, and we
write €0 to denote the result. We sometimes wétmore specificly age; /t1, ..., en/tn]

to denote substitution df by g for 1 <i < n. A renamingis a substitution which maps
each variable in the expression into a variable distinanfother variables. Ayround-
ing is a substitution which maps each integer or array variaiiteiis intended universe
of discourse: an integer or an array. Whetés a constraint, a grounding &f results
in true or falsein the usual way.

A grounding® of an atomp(f) is an object of the fornp(f6) having no variables. A
grounding of a goat = (p(f), W) is a groundind of p(f) whereWo is true. We write
[6] to denote the set of groundings@f We say that a goa} entailsanother goat;’,
writteng =6, if [6] < [6'].

From now on we speak abogibalswhich have exactly the same format as the body
of arule. A goal that contains only constraints and no atanealledfinal.

Let ¢ = (By,---,Bn, W) and P denote a goal and program respectively. Ret
A -W,,Cq,---,Cyy denote a rule i, written so that none of its variables appeagin
Let the equatiorA = B be shorthand for the pairwise equation of the corresponding
arguments oA andB. A reductof g using a ruleR which head matches an atdnin
G, denotecREDUCTg (G, R), is of the form

(Bl7' : ',Bi,17C1,' a aCfT'I;BiJrl7' : '7Bn7 (BI = A),W,Lpl)
provided the constrainB; = A) AW A W1 is satisfiable.

Definition 1 (Unfold). Given a program P and a goa}, UNFOLDg(G) is {G'|3R €
P:g'=REDUCTB(G,R)}. []

A derivation sequencr a goalg , is a possibly infinite sequence of goals g1,
--- whereg;, i > 0 is a reduct ofg,_,. If the last goalg , is a final (hence no rul&
of the program can be applied to generate a redugt 9f we say that the derivation is
successfulSince a goal can be unfolded to a number of other goals (tgdwee can
identify thederivation treeof a goal.

Definition 2 (Abstract Computation Tree). An abstract computation trés defined
just like a derivation tree with one exception: the use of avddion step may produce
not the reduct goat; as originally defined, but generalization; of this reduct goal.
Whenever such a generalization is performed in the treetoactgon, we say that an
abstraction stefs performed org obtainingg.]

Our concern in this paper is primarily to compute an abstcachputation tree
which represents all the concrete traces of the underlyargrpeterized system. The
following property of abstract trees ensures this.

Definition 3 (Closure).An abstract computation tree idosedif each leaf node repre-
sents a goal; which is either terminal, ie. no transition is possible frgmor which is
entailed by a goal labelling another node in the tred]

3.2 Symbolic Transitions

Next we describe how to represent a parameterized syster@laB program. In doing
so, we inherit a framework of abstract computation treesashmeterized systems.
More specifically, the safety property that we seek can theealidained by inspection
of a closed abstract computation tree that we can geneuoatetfre system.

We start with a predicate of the forsygN,K,T,X) where the numbeN rep-
resents the parameter, theelement arrayK represents the program counter, fiie
element arrayl represents eadbcal variable of each process, and finayrepresents
a shared/global variable. Multiple copiestofind/orX may be used as appropriate.

We then write symbolic transitions of a parameterized systasing the following
general format:

syN, K T, X) :- KId =a, K =<K Id, B>
YN K T, X K, T, X), sy§N K, T, X).

This describes a transition from a program pairtb a pointp in a process. The vari-
ableld symbolically represents a (nondeterministic) choice ofchiprocess is being
executed. We call such variablgslexvariables. The formul& denotes a (basic or
recursive) constraint relating the current valied, X and future value&’, T’, X’ of
the key variables.

Consider again the example of Figure 1, and consider itsittan system in Figure
2. The transition system consists of transitions from progcounter0) to (1) of a
parameterized system, where each process simply incremtembcal variableX and
terminate$. The system terminates when the program counter contailyslds) ie.
when all processes are at poidj.

3.3 The Top-Level Verification Process

In this section we outline the verification process. The psscstarts with a goal repre-
senting the initial state of the system. Reduction and abstm steps are then succes-
sively applied to the goal resulting in a number of verificatconditions (obligations),
which are proved using our proof method.

We now exemplify using the Counting Ones example of Sectidrhis goal repre-
senting the initial state ig ; in Figure 1. Recall that we formalize the transitions of the
Counting Ones example in Figure 2. In our formalization, egresent the goa , as
follows sygN, K, X), allzeroegN, K, X) denoting a state where all the elements of the
arrayK are zero.

We apply the transition of Figure 2 by reducigg into the goalg;, which in our
formalism is the goabygN,K’, X’),allzeroegN,K,X),1 <Id; < N,K][ld1] =0,K’ =
(K,ld1,1),X" = X + 1. The goal represents a state where only one of the elements of
the arrayK is set to 1. Note that this reduction step is akin to strongestcondition
propagation [12] since given the preconditializeroegN, K, X), the postcondition is
exactly (3K, X, Id; : allzeroegN, K, X),1 < Id; < N,K[ld;] = 0,K’ = (K,Id1,1),X’ =
X+ 1)[K/K X/X'].

We now abstract the goa}; into g1, which in our formalism is represented as
sygN, K’ X"),;abgN,K’, X’). Here one verification condition in the form of an entail-
ment is generated:

allzeroegN, K, X),1 < 1d; < N,K[Id;] =0,K’' = (K,Id1,1), X' =X +1

= abgN,K’, X").
The proof this obligation guarantess that the abstracsi@miover approximation.

Now, the propagation frorg; to g, is again done by applying unfold (reduction) to

the predicatsysbased on its definition (Figure 2). As the result, we obtagngbalg,
as follows:
sygN,K” X"} abgN,K’, X"),1 < Idy < N,K'[Id2] = 0,K” = (K/,1dp,1),X" = X' +1
Proving of subsumption of, by g1 is now equivalent to the proof of the verification
condition

abgN,K’,X"),1 < Idy < N,K'[ld2] = 0,K"” = (K’,ld2,1), X" =X"+1

E abgN, K’ X")[K" /K’ X" /X].
The purpose of renaming in the above example is to match #tersyvariables of,
with those ofgj.

1 Terminationhere means that no further execution is defined.

4 The Proof Method

In this key section, we consider proof obligations of thenfar = # for goalsg and
#H possibly containing recursive constraints.

Intuitively, we proceed as follows: unfold the recursivegicates inG completelya
finite number of steps in order to obtain a “frontier” contamthe goals;, ..., Gn. We
note that “completely” here means thats, ..., Gn} = UNFOLDA(G). We then unfold
obtaining goalss 1,. .., #m, but this time not necessarily completely, that is, we only

require that {#1,...,%m} < UN-
FOLDg(#). This situation is depicted in

Figure 3. Then, the proof holds if

g = " G1V...NVGn = V...V %
Complete, Ea;tileg or alternatively,gi = #1V ...V %
Unfold o . for all 1 <i < n. This follows from the

. ;‘fff?f’fignk fact thatG = G1V ...V Gn, (Which is

V..V | Nottruein general, but true in the least-
model semantics of CLP), and the fact
#j =94 forall j such that < j <m. If
G, - Gn all variables in# appear mg we can

Coinduction

Fig. 3: Informal Structure of Proof Process reduce the proof t&/i : 1 <i <n,3j:
1<j<m:g = #.Finally, we seek
to eliminate the predicates tfj so the
remaining proof is one about basic con-

straints.

In this paper we do not go further with the proof of basic coaists. We instead
assume the use of a standard black-box solver, such as thes&8IvEFrs [13—-15]. In our
own experiments, we use a method from [16] to convert coimssran array segments
into constraints on integers, and then dispatch the integestraints using the real-
number solver of CLFPX) .

In addition to this overall idea of using left and right urds] there are a few more
rules, as detailed below.

4.1 The Coinduction Rule

Before presenting our collection of proof rules, one of théme coinduction rule, de-
serves preliminary explanation. Let us illustrate thigroh a small example. Consider
the definition of the following two recursive predicates

m(0). even(0).
mi(X+4) - mi(X). even(X+2) :- even(X).

whose domain is the set of non-negative integers. The i@ defines the set of
multiples of four, whereas the predicateen defines the set of even numbers. We
shall attempt to prove tha(X) =even(X), which in fact states that every multiple
of four is even. We start the proof process by performirmpapleteunfolding on the
Ihs goal (see definition in Section 4). We note tmé{X) has two possible unfoldings,
one leading to the empty goal with the answed, and another one leading to the goal
mi(X'), X =X- 4. The two unfolding operations, applied to the original grololigation
result in the following two new proof obligations, both of ish need to be discharged
in order to prove the original one.

X=0 =even(X) (1) mi(X), X =X-4 E=even(X) (2)

The proof obligation (1) can be easily discharged. Sinceldirig on the lhs is no
longer possible, we can only unfold on the rhs. We chbtsanfold with ruleeven(0),
which results in a new proof obligation which is triviallyut, since its Ihs and rhs are
identical.

For proof obligation (2), before attempting any furtheraldfng, we note that the
Ihs (X') of the current proof obligation, and the Ind(X) of the original proof
obligation, are unifiable (as long as we consigen fresh variable), which enables the
application of the coinduction principle. First, we "dises” the induction hypothesis
mi(X) =even(X'), as a variant of the original proof obligation. Then, we uss t
induction hypothesis to replacé(X) in (2) byeven(X). This yields the new proof
obligation

even(X), X =X-4 =even(X) (3)

To discharge (3), we unfold twice on the rhs, usingé¢lien(X+2) :- even(X) rule.
The resulting proof obligation is

even(X), X =X-4 keven(X '), X ''=X"-2, X" =X-2 (3)

where variableX ' andX '’ are existentially quantified Using constraint simplifi-
cation, we reduce this proof obligationgoen(X- 4) =even(X- 4) , which is obviously
true.

In the above exampley(X) is unfolded to a goal with answet=0, however, in
general the proof method does not require a base case. Wereonbve the faatd(0)
from the definition ofm4, and still obtain a successful proof. We call our technique
“coinduction” from the fact that it does not require any baase.

4.2 The Proof Rules

We now present a formal calculus for the proof of assertigris: # . To handle the
possibly infinite unfoldings of and# , we shall depend on coinduction, which allows
the assumption of areviousobligation. The proof proceeds by manipulating a set of
proof obligationsuntil it finally becomes empty or a counterexample is fouratnially,

a proof obligationis of the formAt+ ¢ = # where theg and# are goals and\ is a

set ofassumptiorgoals whose assumption (coinductively) can be used to aligetthe
proof obligation at hand. This set is implemented in our dthm as a memo table.

Our proof rules are presented in Figure 4. Theymbol represents the disjoint
union of two sets, and emphasizes the fact that in an expreséithe formAw B, we
have thaAN B = 0. Each rule operates on the (possibly empty) set of proofjabbns
I, by selecting one of its proof obligations and attemptindiszharge it. In this pro-
cess, new proof obligations may be produced. We note thadroof rules are presented
in the “reverse” manner than usual, where the conclusiohs faroven is written above
the horizontal line and the premise to achieve the conalusiavritten below the line.
Our proof rules can be considered as a system of productipreafises whose proofs
establish the desired conclusion.

Theleft unfold with new induction hypothegisu+1) (or simply “left unfold”) rule
performs a complete unfold on the Ihs of a proof obligatiolmdoicing a new set of

2 For clarity, we sometimes prefix such variables with '?".

(Lu+) ”LtJ{A"G =} UNFOLD(G) =
MU UL {AU{g o)t gfay (G0 Gn)
Nw{AFg

(RU) {~—g\,} 7" € UNFOLD(#)

NU{AFG =%}

(o) Nu{AFG =5} o'y’ c Aand there
NU{Al /0= 2} eXistsasubstitutiofs.t.g = G'0

(cP) Nw{AF G ApR) =2 Ap(§)}

Nu{AF G = H AX=¥}
Nu{Arg =} .

(spy) P Yp V...V is valid
NMUUZ{AF G AW =2}

Nw{AF g |- (2)} o

(EXR) = zis existential

Nu{A-grz=ekE=3(2)}

Fig. 4: Proof Rules for Recursive Constraints

proof obligations. The original formula, while removedrfidl, is added as an assump-
tion to every newly produced proof obligation, opening tlw@idto using coinduction
later in the proof.

The ruleright unfold (Ru) performs an unfold operation on the rhs of a proof obli-
gation. In general, the two unfold rules will be systemdlydaterleaved. The resulting
proof obligations are then discharged either coindudtiegldirectly, using the ¢o)
and (cP) rules, respectively.

The rulecoinduction applicatiorfco) transforms an obligation by using an assump-
tion, and thus opens the door to discharging that obligat@the direct proof¢p) rule.
Since assumptions can only be created usingitbe () rule, the €0) rule realizes the
coinduction principle. The underlying principle behinetfco) rule is that a “similar”
assertion;’ |= #' has been previously encountered in the proof process, anthas!
as true.

Note that this test for coinduction applicability is itseffthe formg = # . How-
ever, the important point here is that this test can only gezhout using basic con-
straints, in the manner prescribed for therule described below. In other words, this
test does not use the definitions of (recursive) predicates.

The ruleconstraint proof(cP), when used repeatedly, discharges a proof obligation
by reducing it to a form which contains no recursive predisafhe intended use of
this rule is in case the recursive predicates of the rhs istbset of the recursive pred-
icates of the lhs such that repeated applications of thereglalts in rhs containing no
recursive predicates. We then simply ignore the Ihs preéecand attempt to establish
the remaining obligation using our basic constraint solver

The rulesplit (spL) rule is straightforward: to break up the proof into piecEise
rule existential removalEXR) rule is similarly straightforward: to remove one instance
of anexistentialvariable, one that appears only in the rhs. What is not sitkigvard

REDUCHG = #) returns boolean
chooseone of the following:

e Constraint Proof: ¢P) + Constraint Solving
Apply a constraint proof t@; = # .
If successfulreturn true, otherwisereturn false
e Memoize(g |=) as an assumption
e Coinduction: €0)
if there is an assumptiap’ |= 7 such that
REDUCHG = G'6) = true A REDUCE#'0 |= #() = true

then return true.
e Unfold:)
choosédeft or right

case:Left: (LU+1)
choosean atomAin g to reduce
for all reductsg, of g usingA: if REDUCH G |= #) = falsereturn false
return true
case:Right: (RU)
choosean atomA in # to reduce, obtainingr
return REDUCHG = GRr)
e Split:
Find an index variabléd and a parameter variabl and apply the split rule usingd
NV Id =N to splitg into g1 and G».
return REDUCE(G1 = #) A REDUCH G2 = H)
e Existential Variable Removal:
If an existential array variable appears in the fornz = (x,i,€), then simply substitute
by (x,i,€) everywhere (inw/). If howeverz appears in the forrr = (z i,e) wherex is not
existential, then find an expressiongnof the formx = (x',i,e) and replace by X. Let the
result bez(’.
return REDUCHG = #')

Fig. 5: Search Algorithm for Recursive Constraints

however is precisely how we use teeLandexR rules: in the former case, how do we
choose the constraingg? And in the latter, how do we choose the expressiVe
present answers to this in the search algorithm below.

4.3 The Search Algorithm

Given a proof obligatiors; = #, a proof shall start witll = {0+ ¢ |= # }, and pro-
ceed by repeatedly applying the rules in Figure 4 to it. We degcribe a strategy so as
to make the application of the rules automated. Here we m®pgstematic interleav-
ing of the left-unfold (u+1) and right-unfold u) rules, attempting a constraint proof
along the way. As CLP can be executed by resolution, we canexiscute our proof
rules, based on an algorithm which has some resemblandeléal taesolution.

We present our algorithm in pseudocode in Figure 5. Notettiepresentation is
in the form of a nondeterministic algorithm, and the ordez@iing each choice of the
nondeterministic operatahooseneeds to be implemented by some form of systematic
strategy, for example, by a breadth-first strategy. Cletheye is a combinatorial explo-
sion here, but in practice the number of steps required fooaffis not large. Even so,

the matter of efficiently choosing which order to apply thiesus beyond the scope of

this paper.

In Figure 5, by aconstraint proofof a obligation, we mean to repeatedly apply the
cprule in order to remove all occurrences of predicates in tiliggation, in an obvious
way. Then the basic constraint solver is applied to the tiesubbligation.

Next consider the split rule in Figure 5. Note that
we have specified the rather specific instance of the
sPL rule in which we replace a constraint of the form

/1\"3fiunf°'d Id < N, whereld is an index variable an#l repre-
2a Id £ N 2b d_n | sents the parameter, by (a disjunction of) two constraints
3a = spit Nap | d<NId=N(d=N)andld <N,Id#N (Id <N).
4Amduction righw The reason for thls_ls purely .techmcal; it is essentially
¢ Might unfold -, because our recursive assertions depenttiod N and
unfold since they are recursive i\ a recursive state may end

up with the situation wheri > N — 1, a situation which
is not similar to the parent state.

Finally consider the existential variable elimination
rule in Figure 5. The essential idea here is simply that
an existential variable is most likely to correspond to s@mray expression on the Ihs.
Once again, this choice of existential variable eliminaii® purely technical and was
created because it works in practice.

Fig. 6: Proof Tree

Lemmal (Soundness of Rules)s = # if, starting with the proof obligatiord -
G = 41, there exists a sequence of applications of proof rules tésilts in proof
obligationsA+ ¢’ = #' such that (a)’ contains only constraints, and (o) = # '
can be discharged by the basic constraint solve]

5 Examples

5.1 Counting Ones

In Figure 1, the tree is closed is due to state subsumptiondtized as;, = 61 :
1: 1< 1dp < N,K'[Idp] = 0 = abg(N, (K’ idp, 1), X’ + 1)
A complete proof tree is outlined in Figure 6. The algoritheft Linfolds Obligation 1
into 2a and 2b (not shown). Obligation 2a can be proved dyre@bligation 2b is now
split into 3a and 3b. For 3a, we add the constr&dng N, and for 3b we add the com-
plementary constrairtl = N. We omit detailing 3b, and we proceed with explaining
the proof of 3a. Obligation 3a is as follows:
3a:abgN —1,K”, X’ —B), bit(B),K"[ld2] = 0,1 < ld2 < N

EabgN, ((K”/N,B),Id2, 1), X'+ 1)
We now perform the crucial step of applying coinduction toli@dtion 3a. This is
permitted because the Ihs of 1 is entailed by the Ihs goal 8&e€ this, perform the
substitutiongN — 1/N, X’ — B/X’] on Obligation 1. The result of applying coinduction

is:
4:abgN—1, (K" Id2,1),X’ — B+ 1),bit(B),K”[ld2] =0,1 < Id2 < N

E abgN, ((K” N,B),Id2, 1), X’ + 1)
We now right unfold this into Obligation 5, and prove Obligat5 by constraint rea-
soning, which is omitted.

process(id) {

(0) t[id] = mx(t[1],..,t[N) +1

(1) await(forall jl=id: t[id]==0 v t[id]<t[j]);
(2) tlid] =0; goto (0) }

sygK T,N :- K[1d]=0, 1<Id<N, max(T,NX), syg(K Id, 1), (T, 1d, X+1), N).
sy K T,N :- K I1d]=1, 1<Id<N, crit(T,NI1d), syg(K1d,2),T,N).

sydK T,N :- K Id]=2, 1<Id<N, syq (K Id,0), (T,1d,0),N).

a6k, T,0) - (K[Y) = 0.TI1] = 0)v (K[1] = 1 Tl1] >).

abgK,T,N): - N>1,(([N] =0, T[N] =)V (K[N] = L, T[N] > 0)),abg{K,T,N — 1).

maxT,1,X):- X>T[1].
maxT,N,X):- N> 1X>T[N],maxT,N—1,X).

crit(T,1,1d) ;- Id =1V T[4 =0vT[1] > T[id].
crit(T,N,Id) : - N> 1,(Id = NV T[N] = 0V T[N] > T[Id]), crit(T,N —1,1d).

Fig. 7: Transitions and Predicates for Bakery

5.2 Bakery Algorithm (Atomic Version)

To show a more substantial example, consider the bakeryahekelusion algorithm
[17]. Here we consider, somewhat unrealistically, a sifigalipresentation where the
test for entry into the critical section, which considers tollection of all processes, is
assumed to be performed atomically.

We represent the transitions and the recursive abstraatieed in Figure 7.

A closed computation tree is depicted in Figure 8. The ih#iate Go is where the
counter is all zeroes, and the local variablgs (the “tickets”) are also all zero. The
stateg; denotes one transition of one process, symbolically denoyéd, from point
(0) to (1). At this point we perform an abstraction to obtain a statevhich contains
not one but a number of program points at 1. This abstractsmanstrains the tickets
so that if a counter is zero, then the corresponding tickalsis zero.

No further abstraction is needed. That is, the computaties ainderg; is in fact
closed, as indicated. Note that mutual exclusion thenviglérom the fact that from
stateg ,, Or G 5,, the only states in which a process is in the critical sectioere is no
possible transition by a different process to enter thé@ecthis is emphasized by the
the notation “infeasible” in Figure 8.

One of the conditions to show closure is that the (leaf) statas subsumed by .

(There are several others, eg. tigaf. is subsumed by;1. We shall omit considering
these.) This is formalized as:

D.1:abgK’,T/,N),crit(T’,N,Id1),maxT’,N,X),1 <Id1 <N,
K'[Id1] = 1,1 <Id2 <N, (K’,1d1,2)[Id2] =0
— abg(?S, (T7,1d2, X + 1),N), crit (T, d2, X + 1), N, 2d3),
1<?d3 < N,?97?d3] =1, ({K')1d1,2),1d2,1) = (?S,?d3,2)

In the above, the prefix '?’ denotes existentially-quardifiariables. For space reasons,
we omit the detailed proof. Instead, we depict in the proeé tof Figure 8 the major
steps that can be used in the proof.

D-1eyistential

removal
D2 jeft
Go:((0,0,...,0),(0,0,...,0)) 7 5\ unfold
,’ D.3a D.3b
G1:((0,...,0,1,0,...,0),(0,...,0,40,... ,0)) ;o left l
#abstract / unfold D.4
Gq: ((0,1,1,0,...),(0,v1,v2,0,...)) ! left i
¢ A \ : unfold

I D.5
G20t (011, O 2.¥5....))' -
) J pllt/ \

G2:((0,1,2,0,...),(0,v1,v2,0,...)) ! D6a D.6b

| \, split
' o SN

i D.7a D.7b
GBa:((07172717"')7(07V17V27v37"')) / . .

i coinduction
D.8

G3p:((0,2,2,0,...),(0,v1,\2,0,...))’ right
(infeasible) K i unfold
§3c : ((07171707'")7(07\/170707'")) Dg
right
i unfold

D.10 direct proof
Fig. 8: Computation and Proof Trees of Bakery Algorithm

5.3 Original Bakery Algorithm

We finally discuss the original version of the bakery aldorif17]. Our purpose here is
to demonstrate abstraction beyond an array of variable®, ldbstraction is needed be-
cause there is an additional loop implementing the increateaquest for entry into the
critical section. To our knowledge, we provide the first spsatic proof of the original
bakery algorithm. Our proof technique is semiautomaticesgtthe user only provide
the declarative specification of loop invariants.

We show the program in Figure 9. We focus on the replacemeheaiwait block-
ing primitive in Figure 7 by a loop from3) to (8), which itself contains two internal
busy-waiting loops. Figure 9 also shows the transitionesystf the loop, and the pred-
icate that is used. In the program and elsewhere, the opeta®defined as follows:
when(a,b) < (c,d) holds, then eithea < b or whena = b, thenb < d.

Figure 10 depicts an abstract computation tree. The gtatepresents entry into the
outerloop, andy. its abstractiong 5, is its exit. The states 5, and g, represent the
two inner loops. The interesting aspect is the abstractidicated. It alone is sufficient
to produce a closed tree. More specifically, we absrgctsysK’,C, T,J',N),K[ld4] =

3,K' = (K,Id1,4),J' = (J,1d1,1) into G, : sysK',C, T,J',N),K'[Id1] = 4,crit(C, T, &, Id1),1 <

Jld] <N+ 1
The state subsumption is formalized as the entailnggit= g , as follows:

K'[ld1] = 4,crit(C, T,J,1d1),1 < J'[Id1] < N+ 1,K'[ld2] =

K" = (K’,1d2,5),K"[ld3] = 5,K"”" = (K',1d3,6),C[J[Id3]] = 3

T[] =0V (T[ld4],Ids) < (T[I[Ida]},I[Id4]),K"[Id4] = 6,K" = (K", Id4,7),

process(id) {
(0) clid =1;
(1) t[id =1+ maxinum(t[1],...,t[n]);
(2) cl[id] =0;
(3) jridl = 1;
(4) vm| le (j <N {
(5) if (c[j]'=0) goto (5);
(6) if (t[j]1!=0 && (t[j],j) =< (t[i],i)) goto (6);
(7) =)+
(8) goto (0);
sydK CT,3,N :- K1d]=3, syq(K 1d,4),CT,(J,1d 1),N
sydK CT,J,N :- KId]=4, J[1d]< N, syg(K1d,5),CTJN
sy K CT,J,N :- KId]=4, J[1d]>N, syq(1d,8),CT,J N
sysK,CT,J,N :- K 1d]=5, (J]# 0, sy§K C T,J,N
sy K CT,J,N :- K1d]=5 (J]=0, syg(K1d,6),CT,J, N
sysKCT,J,N :- K 1d]=6, T[J]#0, ((T[J],d)=<(T[Id],Id)), sy§K CT,J, N
sy(K CT,3,N - K1d]=6, (T[JI]=0v((T[I1d],Id)=(T[J],d)),
y{ (K 1d,7),C T, I, N
sydK CT,3,N :- K 1d]=7, sy (K 1d,4),CT, (J,1d I[1d]+1),N
crit(C,T,1,1d) : - 1d =1V (C[1] = 0,(T[Id],Id) < (T[1],1))
crit(C,T,N,Id) : - 1d = NV (C[N] =0, (T[id],Id) < (T[N],N)),crit(C,T,N—1,1d).
Fig. 9: Original Bakery with Transitions of the Entry Loop and Piezde
KV[Ids] = 7,KY = (K, Ids,4),J” = (¥, 1d,J'[Ids] 4 1)
k= crit(C,T,J”,2dg),KV[Id1] = 4,1 < J"[Ade] <N+ 1
which can be proven along the lines indicated
above. We omit the details.
G
iabstragt 6 Concluding Remarks
G, ng\\
/ \ \ We presented a language of recursively defined
» 93b formulas about arrays of variables for the pur-
/ \ pose of specifying abstract states of parameter-
o Gw N ized systems. We then present a symbolic tran-
/ sition framework for these formulas. This can
‘55b " produce a finite representation of the behaviour
. of the system from which safety properties can
9o be ascertained. The main result is a two step al-
Fig.10: Abstract Computation gorithm for proving entailment of these formu-

Tree for Entry Loop

las. In the first step, we employ a key concept of
coindunction in order to reduce the recursive def-
initions to formulas about arrays and integers. In
the second, we reduced these formulas to integer
formulas.

Though we considered only safety properties
in this paper, it is easy to see that our notion of

closed abstract tree does in fact contain the key informatieeded to argue about
termination and liveness. Essentially, this is becausefraumework is equiped with
symbolic transitions. What is needed is to show that in epatit ending in a subsumed
state, that the execution from the parent state decreasels 'unded measure.

References

1.

10.

11.

12.
13.

14.

15.

16.
17.

Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterizedfication of infinite-state pro-
cesses with gl obal constraints. In Damm, W., Hermanns, ds.; ¢9th CAV. Volume 4590
of LNCS., Springer (2007) 145-157

Roychoudhury, A., Ramakrishnan, 1.V.: Automated indigcterification of parameterized
protocols. In Berry, G., Comon, H., Finkel, A., eds.: 13th\C®Xolume 2102 of LNCS.,
Springer (2001) 25-37

E.M. Clarke, M.T., Veith, H.: Environment abstractiorr fearameterized verification. In
Emerson, E.A., Namjoshi, K.S., eds.: 7th VMCAI. Volume 3&88%NCS., Springer (2006)
Lahiri, S., Bryant, R.: Indexed predicate discovery fobounded system verification. In:
16th CAV, Volume 3114 of LNCS, Springer (2004).

McMillan, K.L.: Induction in compositional model checlg. In Emerson, E.A., Sistla, A.P.,
eds.: CAV 2000. Volume 1855 of LNCS., Springer (2000) 31232

A. Pnueli, S.R., Zuck, L.: Automatic deductive verificatiwith invisible invariants. In
Margaria, T., Yi, W., eds.: 7th TACAS. Volume 2031 of LNCSpri®iger (2001)

A. Pneuli, J.X., Zuck, L.: Liveness wittD,1,0) counter abstraction. In Brinksma, E.,
Larsen, K.G., eds.: 14th CAV. Volume 2404 of LNCS., Sprin802)

Cousot, P., Cousot, R.: Abstract interpretation: A udifagtice model for static analysis. In:
4th POPL, ACM Press (1977) 238-252

Jaffar, J., Santosa, A.E., Voicu, R.: A coinduction rdedntailment of recursively defined
properties. In Stuckey, P.J., ed.: 14th CP. Volume 5202 o€EN Springer (2008) 493-508
McCarthy, J.: Towards a mathematical science of contiputaln Popplewell, C.M., ed.:
IFIP Congress 1962, North-Holland (1983)

Jaffar, J., Maher, M.J.: Constraint logic programmiAgsurvey. J. LP19/20 (May/July
1994) 503-581

Dijkstra, E.W., Scholten, C.S.: Predicate CalculusRrajram Semantics. Springer (1989)
Barrett, C., Dill, D.L., Levitt, J.R.: Validity checkgnfor combinations of theories with
equality. 1st FMCAD, LNCS 1166 (1996) 187—201

Barrett, C., Berezin, S.: CVC Lite: A new implementatiohthe cooperating validity
checker. In: 16th CAV, Volume 3114 of LNCS, Springer (2004).

Nelson, G., Oppen, D.C.: Simplification by cooperatiegision procedures. ACM Trans-
actions on Programming Languages and SystH2)s(October 1979) 245-257

Jaffar, J., Lassez, J.L.: Reasoning about array segmientECAI 1982. (1982) 62—66
Lamport, L.: A new solution of Dijkstra’s concurrent gramming problem. Comm. ACM
17(8) (August 1974) 453—-455

