
Recursive Assertions for Data Structures

Joxan Jaffar Andrew E. Santosa Răzvan Voicu
School of Computing, National University of Singapore

joxan,andrews,razvan@comp.nus.edu.sg

Abstract
We present an assertion language for expressing propertiesof data
structures. Its key features areconstraintsover arrays, multisets
and integers which allow the specification of basic assertions, and
rules, which allow the recursive specification of assertions. This
language can thus be used to define assertions to an arbitrarylevel
of expressiveness, ranging from low-level properties of memory
allocation, for example, to abstract properties of complexdata
structures such as AVL trees.

The main result is a proof method for verification conditions
arising from a program annotated with assertions. The method has
two main components. First and foremost is an unfolding algorithm
which works by reducing the recursive definitions so that a con-
straint proof may now be applied. Here we introduce a notion of
coinductionwhich forms the basis for termination of the unfold-
ing process. The second step is to reduce the constraints, which in
general contain expressions involving all the three data types of in-
tegers, arrays and multisets, into a base constraint involving only
integer constraints. Base constraints can then be dispensed with
available solvers.

We finally show via a small benchmark of classic examples that
our proof method is practical.

1. Introduction
Reasoning about programs which construct and manipulate mu-
table data structures remains an open problem in the sense that
present methods are limited in applicability, and that theydo not
scale well to large programs.

A traditional challenge is how to implement a notion ofclosure,
such as transitive closure. Typically, there is no closed form to de-
scribe a typical class of data structures, for example, the acyclic
singly-linked lists. Therefore, in order to specify that a variable
points to such a structure, one would require an inductive orre-
cursive formulation. Indeed, such a class of data structures is often
called “recursive” in the literature. For example, to provethat a cell
q is reachable from a cellp one would some formulation of the
reachability closure ofp.

Another traditional challenge concernsaliasing, the problem of
reasoning about two pointers which may, or definitely do not,point
to the same data structure. For example, one specific challenge is
to determine, when a data structure pointed to by one particular
pointer is changed, what the effect is on all other pointers.Some
approaches focus on maintaining non-aliasing information. Thus,
for example, after operations are performed on a data structure
pointed to byp, we may reason that no change has taken place

[Copyright notice will appear here once ’preprint’ option is removed.]

on the structure of another pointerq. Conversely, there is also need
to consider explicit aliasing information. For example, ifq points
to the third cell of an acyclic listp, and if a three-step traversal of
p results inr, we would require thatq = r.

The most important challenge of all, however, is to capture
abstractproperties of data structures in such a way that the formal
techniques are in tandem with the intuitive reasoning embodied in
the user program.

In this paper, we address these issues, amongst others, by first
defining a language of array, multiset and integer expressions. The
class of integer expressions includes both array elements and ar-
ray indices. These basic formulas can describe basic and detailed
properties about mutable heaps and pointers. We then embed this
formalism in Constraint Logic Programming (CLP) so that CLP
predicates can be used to describe recursive properties of data struc-
tures. This formulation of recursion then provides for the specifica-
tion of basic closure properties, amongst other properties. Further,
because the CLP formalism has a well-understood logical reading,
assertion predicates can be designed to represent abstractproper-
ties of data structures. At the same time, low-level specifications,
such as pointer arithmetic or memory management operations, can
be represented by the rich constraint language. In particular, our
formalism supports a notion ofseparation[19] by simply using
multiset constraints to specify that certain heaps do not intersect.

The main contribution is a proof method for CLP assertion pred-
icates. We present an algorithm which is based on a standard notion
of unfolding definitions. The main novelty is the use of “leftand
right” unfolding, augmented with a principle ofcoinductionwhich
forms the basis for terminating the unfolding process. Thisunfold-
ing process ultimately reduces the proof obligation to another that
no longer contains (recursive) assertion predicates. Thatis, what
remains is to prove a constraint.

The secondary contribution is an algorithm for proving a con-
straint. The algorithm reduces the proof of a constraint involving
array, multiset and integer constraints, into a proof involving only
integer constraints. The novelty in our approach is in how the ar-
ray and multiset constraints are arithmetized, that is, converted into
equivalent integer constraints. At this point, the remaining proof
obligation can be dispensed with standard constraint solvers.

We finally argue, via examples, that our proof methodology is
intuitive and expressive, and amenable to a practical implementa-
tion. We show via a small benchmark of classic examples that our
automatic proof method is in fact practical.

1.1 Related Work

The use of proof rules for proving properties of user-definedpred-
icates in a CLP-based setting has been widely explored [11, 4, 16,
22]. For example, the “negation as failure” inference in [11] is akin
to our left unfold rule, while the “definite clause inference” step in
[11, 12] is akin to our right-unfold step below. In [22], fold/unfold
transformations are performed toward the objective of transform-
ing two programs into syntactically identical ones. All these ap-
proaches are based on some form of structural and/or computa-
tional induction.

In this respect, one major difference of our algorithm is that it
is based on a coinduction principle, which does not require abase
case. Recent work [2] provides a method for proving the equiva-

1 2007/12/13

lence of general CLP programs that makes use of a coinduction
rule. However, this work does not address data structures.

A main difference of our work from all these is that our proof
method is systematic. Another difference is that our domainof dis-
course is aconstraintdomain of arrays, multisets and integers. In
contrast, these other works are based on traditional logic program-
ming, or do not directly accommodate properties of data structures.

The area ofshape analysisadopts an abstract interpretation-
based approach, and is surveyed in [24]. Here the focus is on the
accuracy and efficiency trade-off involving the abstract domain
(which is constructed of predicates that define the “shape” of the
data structure), and the fixpoint iteration algorithm. As argued in
[3], it is rather difficult to construct modular, interprocedural shape
analyses, since after every memory update, all reachability relations
have to be recomputed. Attempts to introduce local reasoning into
shape analysis are presented in [20, 21]. Also, [10] proposean
interprocedural shape analysis that represents each procedure as a
rather coarse abstraction of its input-output relation.

Next we mention some other works specialized on reasoning
about data structures in customized ways.

Other approaches to data structure verification include theap-
proaches based ongraph types[13, 17], which is based on Hoare
logic, and PALE [17] verifier can be efficiently run when loop in-
variant is given. The paper [15] presents an algorithm for specifi-
cation and verification of data structure using equality axioms. It
has a support for scalar values as compared to most works on shape
analysis.

None of the above works on shape analysis and customized
reasoning about data structures allow recursive definitions provided
by the user. A recent exception is [18] which considers a class
of pointer operations augmented with a separation construct, and
allows user-defined shape properties. They employ folding and
unfolding rules, whereas we employ unfolding alone, augmented
with a coinduction rule. They do not consider arrays.

Finally, we comment on our design decision on choosing arrays
and multisets over integers. The case for arrays is clear, because
a heap is essentially an array. We chose the domain of multisets
for two main purposes: to specify separation [19], and permuta-
tion. Our algorithm extends the early works [6, 8]. In addition to
multisets, one could also consider modeling array segmentsas sets
or sequences. However, there are no known efficient algorithms for
these. For sets, the problem at hand would essentially be that faced
by ACI unification, see eg. [1]. For sequences, the problem iseven
harder than reasoning about word equations, see eg. [7].

2. The Language
2.1 Basic Assertions

We consider three kinds of terms: integer, array and multiset terms.
Integer terms are constructed in the usual way, with one addition:
the array element. The latter is defined recursively to be of the form
a[i] wherea is anarray expressionandi an integer term. An array
expression is either an array variable or of the form〈a, i, j〉 wherea
is an array expression andi, j are integer terms. A multiset term
is either a singleton multiset{i} where i is an integer variable,
a multiset variable, or it is constructed from an array “segment”:
a{i.. j} wherea is an array expression andi, j integer variables.

The meaning of an array expression is simply a map from
integers into integers, and the meaning of an array expression
a′ = 〈a, i, j〉 is a map just likea except thata′[i] = j . The meaning
of array elements is governed by the classic McCarthy [14] axioms:

i = k → 〈a, i, j〉[k] = j
i 6= k → 〈a, i, j〉[k] = a[k]

The meaning of a singleton multiset is obvious, and the meaning of
a multiset term of the forma{i.. j} is the multiset of array elements
{a[i],a[i +1], · · ·,a[j]}.

A constraintis either an integer equality or inequality, an equa-
tion between array expressions, or amultiset constraint. The latter
is of one of the forms:

• M = M1∪M2

• M1⊗M2⊗·· ·⊗Mn, n≥ 2

The purpose of the first form is clear, to allow the propagation of
equational reasoning between multiset terms constructed naturally
via multiset union. The latter form, which in fact defines a family
of n-ary constraints⊗, specifies that the multisetsMi ,1≤ i ≤ n, are
disjoint, That is, each element appearing in one multiset does not
appear in the other. As we shall see later, this constraint isspecially
introduced in order to capture the notion ofseparationbetween the
cells of two different data structures.

The meaning of a constraint is defined in the obvious way.
In what follows, we use constraint to mean either an atomic

constraint or a conjunction of constraints. We shall use thesymbol
ψ or Ψ, with or without subscripts, to denote a constraint.

2.2 Constraint Logic Programs

We present some preliminary definitions about CLP [9]. Anatom
is of the formp(t̃) wherep is a user-defined predicate symbol and
t̃ a tuple of terms, as defined above. Arule is of the formA:-Ψ, B̃
where the atomA is theheadof the rule, and the sequence of atoms
B̃ and constraintΨ constitute thebodyof the rule. Aprogramis a
finite set of rules. Agoalhas exactly the same format as the body of
a rule. A goal that contains only constraints and no atoms is called
final.

A substitutionθ simultaneously replaces each variable in a term
or constrainte into some expression, and we writeeθ to denote the
result. A renamingis a substitution which maps each variable in
the expression into a distinct variable. Agroundingis a substitution
which maps each array, multiset or integer variable into itsintended
universe of discourse: an array, a multiset or an integer. WhereΨ
is a constraint, a grounding ofΨ results intrueor falsein the usual
way.

A groundingθ of an atomp(t̃) is an object of the formp(t̃θ). A
groundingθ of a goalG ≡ (p(t̃),Ψ) is a groundingθ of p(t̃) where
Ψθ is true. We write[[G]] to denote the set of groundings ofG .

Let G ≡ (B1, · · · ,Bn,Ψ) and P denote a non-final goal and
program respectively. LetR≡ A:-Ψ1,C1, · · · ,Cm denote a rule in
P, written so that none of its variables appear inG . Let the equation
A = B be shorthand for the pairwise equation of the corresponding
arguments ofA and B. A reduct of G using a ruleR, denoted
reduct(G ,R), is of the form

(B1, · · · ,Bi−1,C1, · · · ,Cm,Bi+1, · · · ,Bn,Bi = A,Ψ,Ψ1)
provided the constraintBi = A∧Ψ∧Ψ1 is satisfiable.

A derivation sequencefor a goalG0 is a possibly infinite se-
quence of goalsG0,G1, · · · whereG i , i > 0 is a reduct ofG i−1. If
the last goalGn is a final goal, we say that the derivation issuc-
cessful. A derivation treefor a goal is defined in the obvious way.

DEFINITION 1 (Unfold). Given a program P and a goalG ,
UNFOLD(G) is {G ′|∃R∈ P : G ′ = reduct(G ,R)}.

In the formal treatment below , we shall assume, without losing
generality, that goals are written so that atoms contain only distinct
variables as arguments.

2.3 Assertions in CLP

A basic assertion is expressed directly in CLP as a constraint. We
shall adopt the following convention: if the structure at hand is a list
andI is a pointer to a structure, then heap locationI +1 represents
the “next” pointer of the list. Similarly, if the structureI has two
“next” pointers, such as in a binary tree, the heap locationsI + 1
andI +2 shall represent these pointers. In general, if the structure
of interest has multiple pointers, we useI +1, I +2, · · · , etc.

An assertion can, more generally, be arecursiveassertion. This
can be represented as any CLP program. However, for this paper,
we shall limit ourselves to two slightly specialized classes. First
considerone-heapassertions whose rules are of the form:

p(H, X̃) :- ΨA, p(H ′
, X̃′).

p(H, X̃) :- ΨB.

2 2007/12/13

Program:
{l = l0 ≥ 0}
i,x,y:=2,1,0

〈0〉 while (i≤l) do
〈1〉 tmp:=x 〈2〉 x:=x+y
〈3〉 y:=tmp 〈4〉 i:=i+1 end 〈5〉

{fib(l0,x)}

Assertion Predicate:
fib(0,0).
fib(1,1).
fib(I ,X +Y) :- I ≥ 2,fib(I −1,X),fib(I −2,Y).

Figure 1: Fibonacci Number Generator

Program:
i=0;

〈0〉 while (i<N-1) do
〈1〉 j:=0
〈2〉 while (j < N-1-i) do
〈3〉 if ([j+1]<[j]) then

t:=[j+1] [j+1]:=[j] [j]:=t endif
〈4〉 j:=j+1 end
〈5〉 i:=i+1 end 〈6〉

Assertion Predicates:
sorted(H, I ,N) :- I = N.

sorted(H, I ,N) :- I < N,H[I] ≤ H[I +1],sorted(H, I +1,N).

max(H,Y,U) :- 0 > Y.

max(H,Y+1,U) :- 0≤Y +1,H[Y+1] ≤U,max(H,Y,U).

Figure 2: Bubble Sort

whereH,H ′ are array expressions representing the previous and
next versions of the global heap, andX̃, X̃′ are sequences of vari-
ables, some of which represent the program variables. The assertion
p(H, X̃) specifies that the variables̃X satisfy some propertya in the
heapH.

Similarly, a two-heapassertion is one whose rules are of the
form:

p(H1,H2, X̃) :- ΨA, p(H ′
1,H

′
2, X̃

′).
p(H1,H2, X̃) :- ΨB.

wherep(H1,H2, X̃) specifies a relationship between heapsH1 and
H2, typically thatH2 is an update ofH1.

Predicates such asp are calledassertion predicatesand cor-
respondingly, atomsp(H, X̃) are calledassertion atoms. We will
provide a few examples in Section 3.

With some loss of generality, but no substantial loss, we shall
assume that anylocal variable in a rule, one that appears in the
body but not the head, appears as an argument of one of its body
atoms.

3. Example Assertion Predicates
3.1 An Integer Example: Fibonacci

The annotated program in Figure 1 computes inx the l-th Fi-
bonacci number. Fibonacciness is defined by the assertion predi-
catefib(a,b). We prove the correctness of the program in Section
6.1.

3.2 An Array Example: Bubblesort

Here we consider array segments and multisets. Consider thebub-
ble sort program and definitions of the predicatesmaxandsorted
in Figure 2. The CLP definition ofsorted(H, I ,N) is a one-heap
predicate that specifies that the sequence of cellsH[I],H[I +

Program:
{h = h0,p = p0 > 0}

〈0〉 while (p>0) do
[p] := 0 〈1〉
p := [p+1] 〈2〉 end 〈3〉

{∃y.allz(h0,h, p0,y),h[y+1] = 0}

Assertion Predicates:
“Tail Recursive”
allz(H, 〈H,L,0〉,L,L) :- L > 0.

allz(H1, 〈H2,L,0〉,L,R) :- L > 0,allz(H1,H2,H1[L+1],R).

“Sublist Recursive”
allz(H, 〈H,L,0〉,L,L) :- L > 0.

allz(H1, 〈H2,R,0〉,L,R) :- R> 0,R= H2[T +1],
allz(H1,H2,L,T).

Figure 3: List Reset

1], · · ·,H[N], if I < N, is an ordered sequence. The predicate
max(H,Y,U) is true if U is an upper bound of the valuesH[0], · · ·,H[Y].

We will later exemplify two proofs of the inner loopB (between
〈2〉 and〈5〉 of the bubble sort program in Figure 2). The “Hoare
triples” are:

{j = 0,0≤ i < n−1,max(n−i−1,n−i),
sorted(h,n−i,n)}

B
{0≤ i < n−1,max(n−i−2,n−i−1),
sorted(h,n−i−1,n)},

(1)

and
{j = 0,0≤ i < n−1,h = h0}

B
{0≤ i < n−1,h0{0 . . .n-1} = h{0 . . .n-1}}

(2)

The condition(1) states that given the array elements fromn-i to
n is sorted beforeB, the execution results in a sorted array from
n-i-1 to n. It also specifies the upper bounds of certain array
segments. The condition(2) states that at the endB’s execution,
the values in the array is a permutation of the original array. We
note here that equality between array segments above is the multiset
equality, that is, the equality holds iff the multiset of theelements of
the lhs array segment is the same as those of the rhs array segment.
We outline the proofs in Section 6.2.

3.3 Examples using Pointers

List Reset

Figure 3 shows a program which “zeroes” all elements of a given
linked list with headp. The correctness assertion states that given a
nonempty list, the program produces a nonempty null-terminating
list upon its termination, with all values in the nodes set tozero.
Note that in Figure 3,h is a program variable denoting the current
heap. The assertions use the predicateallz(H,H ′

,L,R) which states
that the heapH ′ differs fromH only by having zero elements in the
non-empty sublist fromL to R.

In Figure 3 we provide two different definitions ofallz. The
tail-recursiveversion defines a zeroed list segment(L,R) as one
whose head contains zero, and its tail is, recursively, the zeroed
list segment(H[L + 1],R). In thesublist-recursivespecification, a
zeroed list segment(L,R) is defined to be a zeroed list segment
(L,T) appended by one extra zero elementR. Note that we have
not required thatL 6= R in either of the definitions ofallz., because
we do not require that the list is acyclic.

Clearly the program behaves in consistency with the latter defi-
nition, and not the former. Despite this, we see later in Section 3.3
that we can provide a proof usingeitherdefinition.

3 2007/12/13

Program:
{alist(h0, i0,m0)}
j:=0

〈0〉 while (i>0) do
〈1〉 k,[i+1],j:=[i+1],j,i

i:=k end 〈2〉
{reverse(h0,h, i0,0,j),alist(h,j,m0)}

Assertion Predicates:
reverse(H,H, I , I ,0).
reverse(H1, 〈H2,J+1,NewNext〉, I ,OldNext,J) :-

H2[J+1] = OldNext,
reverse(H1,H2, I ,J,NewNext).

alist(H,L, /0) :- L = 0.

alist(H,L,S∪{L,L+1}) :- L > 0,

{L,L+1}⊗S,alist(H,H[L+1],S).

Figure 4: List Reverse

List Reverse

The CLP program forreverse(H1,H2, I1, I2,J) in Figure 4 describes
a two-heap predicate. It states that the linked list in heapH1 starting
with I1 up to but not includingI2 is the reverse of that of the null-
terminated list in the heapH2 which starts from cellJ. The array
updates in the specification is used to specify that the listH2 is an
update of the listH1, hence the reverse operation isin-situ. The
CLP program foralist(H,L,S) defines an acyclic list whose set of
node addresses isS.

In section 6.4 we prove that given an acyclic list with headi,
we obtain a list with headj which is a reverse of the original list.

AVL Tree

This example concerns Figure 5 which is a re-balancing routine of
an AVL tree after node insertion. AVL is a balanced binary tree,
where for each node, the depth of its left and right subtrees differs
by only one. Here we demonstrate quantitative reasoning on an
abstract data structure. Thus our proof method can be compared
with that of [23], who introduced a specialized abstractionto reason
about scalar values in data structures.

The rebalancing routine is given an unbalanced subtree rooted
at x, where its left subtree is two deeper than its right subtree,and
at its left child, the left subtree is one deeper than its right subtree.
At point 〈7〉 we expect to obtain as output a balanced AVL tree.

The CLP program foravl(H,X,D,S) describes a one-heap as-
sertion predicate. It states that the binary treeX in H is an AVL tree
of heightD, with Sas the set of all node addresses in the tree. We
discuss a proof that the program preserves AVL structure in Section
6.5.

3.4 On Separation Logic

Recent work on verification of programs with shared mutable data
structures [19] introduced the concept ofseparationas a means
to simplify the reasoning process and make program correctness
proofs less tedious. The separating connectives provide elegant and
concise means of specifying that a set of data structures arenot
shared, or that the elements of a data structure are not reachable
from within another data structure.

The general idea is that heap predicatesΨi may be combined,
in pairs or in a tuple, in the formΨ1 ⋆ Ψ2 ⋆ · · · ⋆ Ψn, n ≥ 2 by
a separationoperator⋆. The interpretation of a heap predicate is
just a heap in which the predicate is true. The interpretation of
Ψ1 ⋆ Ψ2 ⋆ · · · ⋆ Ψn is a collection ofn disjoint heapsHi in which
Ψi holds, 2≤ i ≤ n.

In our framework, we achieve this by creating an assertion
predicatepi which defines the heap predicateΨi , and explicitly
mentions its heap locations as a multiset variableMi . Then, we
simply add the constraint

Program:
{avl(h,[x+2],dl0−2,s2),
avl(h,[[x+1]+1],dl0−1,s11),
avl(h,[[x+1]+2],dl0−2,s12),
m0 = {x,x+1,x+2}∪{[x+1],[x+1]+1,[x+1]+2}

∪s2∪s11∪s12},
{x,x+1,x+2}⊗{[x+1],[x+1]+1,[x+1]+2}

⊗s2⊗s11⊗s12}
〈0〉 y := [x+1]
〈1〉 if ([y] = 1) then
〈2〉 [x] := 0
〈3〉 [y] := 0
〈4〉 z := [y+2]
〈5〉 [y+2] := x
〈6〉 [x+1] := z 〈7〉

{avl(h,y,dl0,m0)}
endif

Assertion Predicate:
avl(H,0,0, /0).
avl(H,X,D1 +1,{X,X +1,X +2}∪S1∪S2) :-

H[X] = D1−D2,0≤ D1−D2,D1−D2 ≤ 1,

{X,X +1,X +2}⊗S1⊗S2,
avl(H,H[X +1],D1,S1),avl(H,H[X +2],D2,S2).

avl(H,X,D2 +1,{X,X +1,X +2}∪S1∪S2) :-
H[X] = D1−D2,D1−D2 = −1,

{X,X +1,X +2}⊗S1⊗S2,
avl(H,H[X +1],D1,S1),avl(H,H[X +2],D2,S2).

Figure 5: AVL Tree

M1⊗M2⊗·· ·⊗Mn

We shall exemplify this below.

4. Proof Method for Recursive Assertions
In this key section, we consider proof obligations of the form
G |= H where var(H) ⊆ var(G). The validity of this formula
expresses the fact thatH θ succeeds w.r.t. the CLP program at hand
wheneverGθ succeeds, for any groundingθ of G . They are the
central concept of our proof system, by being expressive enough to
capture interesting properties of data structures, and yetamenable
to automatic proof process.

The general idea is to reduce the proof obligation into one that
can be proven by using the constraint solver alone. Essentially, this
involves removing all occurrences of assertion predicatesin the
obligation. In general, however, this method is not always appli-
cable to the obligation at hand. That is, upon predicate removal, the
constraint proof fails. Then it is necessary to reduce the obligation
to another obligation upon which the constraint proof can beat-
tempted again. This reduction process, which constitutes asearch
process, is based on a standard notion of unfolding the definitions
of assertion predicates contained in the obligation.

This section describes the unfolding rules. In the following
section, we describe the remaining part of the overall proofmethod,
that which proves constraints.

4.1 Unfolding Recursive Assertions

Intuitively, we proceed as follows: unfoldG completely a finite
number of steps in order to obtain a “frontier” containing the goals
G1, . . . ,Gn. Then unfoldH , but this time not necessarily com-
pletely, that is, not necessarily obtainingall the reducts each time,
obtain goalsH 1, . . . ,Hm. This situation is depicted in Figure 6.
Then, the proof holds if

G1∨ . . .∨Gn |= H1∨ . . .∨Hm

or alternatively,Gi |= H1∨ . . .∨Hm for all 1≤ i ≤ n. This follows
easily from the fact thatG |= G1 ∨ . . .∨Gn, andHj |= H for all

4 2007/12/13

G1, . . . Gn

H
?
|=G

Complete

H1∨ . . .∨Hm

G1∨ . . .∨Gn |=
To Prove:

Hm

Hj

. . .

. . .

H1

. . .

. . .

Unfold
Partial

Coinduction

Unfold

Figure 6: Informal Structure of Proof Process

j such that 1≤ j ≤ m. More specifically, but with some loss of
generality, the proof holds if

∀i : 1≤ i ≤ n,∃ j : 1≤ j ≤ m : Gi |= Hj

and for this reason, ourproof obligationshall be defined below to
be simply a pair of goals, writtenGi |= Hj .

4.2 Proof Rules

We now present a formal calculus for the proof ofG |= H . To han-
dle the possibly infinite unfoldings ofG andH , we shall depend on
the use of a key concept:coinduction. Proof by coinduction allows
us to assume the truth of apreviousobligation.

The proof process starts with a set of proof obligations and
attempts to discharge them one by one (although at times the set
may in fact become larger).

DEFINITION 2 (Proof Obligation).A proof obligation is of the
form Ã ⊢ G |= H where theG and H are goals andÃ is a set
of assumptiongoals.

The role of proof obligations is to capture the state of a proof.
The setÃ contains goals whose truth can be assumed coinductively
to discharge the proof obligation at hand.

Our proof rules are presented in Figure 7. The⊎ symbol rep-
resents the disjoint union of two sets, and emphasizes the fact that
in an expression of the formA⊎B, we have thatA∩B = /0. Each
rule operates on the (possibly empty) set of proof obligationsΠ, by
selecting one of its proof obligations and attempting to discharge
it. In this process, new proof obligations may be produced.

The left unfold with coinduction(LU+C) rule performs a com-
plete unfold on the lhs of a proof obligation, producing a newset of
proof obligations. The original assertion, while removed from Π,
is added as an assumption to every newly produced proof obliga-
tion, opening the door to using coinduction in the proof. Therule
right unfold(RU) performs an unfold operation on the rhs of a proof
obligation. In general, the two unfold rules will be systematically
interleaved. The resulting proof obligations are then discharged ei-
ther coinductively or directly, using the (CO) and (CP) rules, re-
spectively.

The rulecoinduction application(CO) transforms an obligation
by using an assumption, and thus opens the door to discharging
that obligation via the direct proof (CP) rule. Since assumptions
can only be created using the (LU+C) rule, the (CO) rule realizes
the coinduction principle. The underlying principle behind the (CO)
rule is that a ”similar” assertionG ′ |= H ′ has been previously
encountered in the proof process, and assumed as true1.

Note that this test for coinduction applicability is itselfof the
form G |= H . However, the important point here is that this test
can only be carried out using constraints, in the manner prescribed
for the CP rule described below. In other words, this test does not
use the definitions of assertion predicates.

1 In fact, the repeating pattern corresponds to a loop in the original program-
ming language, andH acts as an invariant.

(LU+C)
Π⊎{Ã⊢ G |= H }

Π ∪
Sn

i=1{Ã∪{G |= H } ⊢ G i |= H }

UNFOLD(G) =
{G1, . . . ,Gn}

(RU)
Π⊎{Ã⊢ G |= H }

Π∪
S

1≤i≤k{Ã⊢ G |= H ′
}

H ′
∈ UNFOLD(H)

(CO)
Π⊎{Ã⊢ G |= H }

Π∪{Ã⊢ H
′θ |= H }

G ′ |= H ′
∈ Ã and there

exists a substitutionθ s.t.
G |= G ′θ

(CUT)
Π⊎{Ã⊢ G |= H }

Π∪{Ã⊢ G ′ |= H , Ã⊢ G |= G ′}

(SPL)
Π⊎{Ã⊢ G |= H }

Π∪
Sk

i=1{Ã⊢ G ∧ψi |= H }
ψ1∨ . . .∨ψk is true.

(CP)
Π⊎{Ã⊢ G ∧ p(x̃) |= H ∧ p(ỹ)}

Π⊎{Ã⊢ G |= H ∧ x̃ = ỹ}

Figure 7: Proof Rules for Reduction into Constraints

The (CUT) rule is manual and hence not used by our automatic
algorithm. It is included here because it is particularly useful for
strengthening an obligation. Indeed, given a proof obligation G |=
H , it is often the case thatH is too weak to result in applications
of the (CO) and (CP) rules that would lead to a successful proof. To
address this, the (CUT) rule introduces a new goalG ′ and the new
proof obligationsG |= G ′ andG ′ |= H .

The rulesplit (SPL) rule is also manual and hence not used by
our automatic algorithm. It is particularly useful for converting a
proof obligation into several, more specialized ones.

Finally, the ruleconstraint proof(CP), when used repeatedly,
discharges a proof obligation by reducing it to a form which con-
tains no assertion predicates. Note that one application ofthis re-
moves one occurrence of a predicatep(ỹ) appearing in the rhs of
an obligation. Once a proof obligation has no predicate in the rhs,
a constraint proof may be attempted by simply removing any pred-
icates in the corresponding lhs. Such a constraint is handled by the
proof method for constraints in the following section.

Given a proof obligationG |= H , a proof shall start withΠ =
{Ã ⊢ G |= H }, and proceed by repeatedly applying the rules in
Figure 7 to it. The conditions in which a proof can be completed
are stated in the following theorem.

THEOREM 1 (Soundness of Unfolding).A proof obligationG |=
H holds if, starting with the proof obligation/0 ⊢ G |= H , there
exists a sequence of applications of proof rules that results in
proof obligationsÃ ⊢ G ′ |= H ′ such that (a)H ′ contains only
constraints, and (b)G ′ |= H ′ can be discharged by the constraint
solver.

We have now presented proof rules to explain how to reduce a
proof obligation into others, and how, eventually, a constraint proof
may be attempted. We next describe a strategy so as to make the
application of the rules automated.

4.3 A Systematic Strategy for Unfolding

First, we remark that we do not make use of the cut (CUT) and split
rules (SPL) rules.

This subsection simply describes a systematic interleaving of
the left-unfold and right-unfold rules, attempting a constraint proof
along the way. We present our algorithm in pseudocode in Figure
8. Note that the presentation is in the form of a nondeterministic
algorithm, and thus each of the nondeterministic operatorchoose
needs to be implemented by some form of systematic search.

By a constraint proofof a obligation, we mean to repeatedly
apply theCP rule in order to remove all occurrences of assertion

5 2007/12/13

REDUCE(G |= H) returns boolean

• Constraint Proof:
Apply a constraint proof toG |= H .
If successful,return true, otherwisereturn false

• memoize(G |= H) as an assumption

• Coinduction :
chooseto attempt coinduction or not
case:yes

Check if the coinduction ruleCO applies, that is,
there is an assumptionG ′ |= H ′ such that
G |= G ′θ has a constraint proof.
If so return REDUCE(H ′θ |= H);
otherwisecontinue

case:no
continue

• Unfold:
chooseleft or right
case:left

choosean atomA in G to reduce
for all reductsGL of G usingA:

if REDUCE(GL |= H) = falsereturn false
return true

case:right
choosean atomA in H to reduce, obtainingGR
return REDUCE(G |= GR)

Figure 8: Systematic Reduction into Constraints

predicates in the obligation, in an obvious way. Then the constraint
solver is applied to the resulting obligation.

5. Proof Method for Constraints
We now present an algorithm which, given a constraint obligation
ΨL |= ΨR whereΨL andΨR are constraints, reduces this to one or
more obligationsΨ′

L |= Ψ′
R which contains only integer constraints

such thatΨL |= ΨR iff all of the obligations Ψ′
L |= Ψ′

R hold.

5.1 Remove Existential Variables

First considerexistentialvariablesy that appear inΨR but not
in ΨL. Since we started off with a proof obligationG |= H
wherevar(H) ⊂ var(G), any existential variable inΨR must have
emerged from a right unfold. Recall that we have assumed that
any local variable in a CLP rule appears as an argument to a body
atom. This means that the existential variabley must have appeared
as an argument in a predicate in the rhs of a proof obligation.This
in turn means that after using theCP rule to eliminate predicates
by equating predicate arguments in the lhs with the correspond-
ing arguments on the rhs, there will be an equation of the form
y = e where the expressione contains no existential variable. Fi-
nally, by renaming all occurrences of such existential variablesy
by their counterpartse, we may assume hereafter that there are no
existential variables in our constraint obligationΨL |= ΨR.

5.2 Partition Orderings

Consider the set of integer expressionsi in both ΨL and ΨR that
appear as an index in

• a composite array expression, ie of the form〈a, i,e〉, or

• an array element, ie. of the forma[i], or

• a multiset expression of the forma{i.. j} where i and j are
integer variables.

wherea is an array expression. Call these expressions thearray
indices. Without losing generality, we assume that array indices are
integer variables.

Define that apartition orderingΠ is an ordering of the array
indices using the relations{=,<} which is consistent with the
hypothesis constraintΨL. That is, given a partition orderingΠ, it
is the case that for each pair of array indicesi and j , exactly one of
i = j , i < j , j < i holds2.

Clearly there are in general an exponential number of partition
orderings. However, as we shall see later for several examples,
often it is the case that the number is manageable. The main reason
for this is that the array indices in a given program are typically
already constrained in a partial order which is nearly a linear order.

In what follows, our constraint obligation is now

ΨL ∧Π |= ΨR

whereΠ is a partition ordering forΨL andΨR.

5.3 Flatten Array Expressions

The purpose of this subsection is to reduce composite array expres-
sions into array variables.

First consider multiset expressions of the form〈a,k,e〉{i.. j}
involving a composite array expression〈a, i,e〉. If Π impliesk < i
or j < k, then replace the expression bya{i.. j}. Otherwise, replace
the expression by:

• {e}∪a{i +1.. j} if Π |= i = k;

• a{i.. j −1}∪{e} if Π |= j = k;

• a{i..k−1}∪{e}∪a{k+1.. j} if Π |= i < k < j

Repeatedly applying this step results in all multiset expressions
being of the forma{i.. j} wherea is an array variable.

Next consider array equations which involve at least one com-
posite array expression, that is, equations of the forma′ = 〈a, i,e〉.
We now introduce, temporarily, a new equation called abounded
array equationand it is of the form

a′ =[i.. j] a

and it means that array equality applies only within the bounds i to
j , that is, it means thata′[k] = a[k] for all i ≤ k≤ j . We shall allow
the special bounds−∞ and+∞ so that initially all array equations
a′ = a can be written asa′ =[−∞..+∞] a.

We now replace each bounded array equation which involves
a composite array expression, saya′ =[i.. j] 〈a,k,e〉, as follows. If
Π impliesk < i or j < k, then replace the equation bya′ =[i.. j] a.
Otherwise, replace the equation by:

• a′ =[i+1.. j] a if Π |= i = k;

• a′ =[i.. j−1] a if Π |= j = k;

• a′ =[i..k−1] a anda′ =[k+1.. j a if Π |= i < k < j

and finally, add the constrainta′[k] = e (to the collection of integer
constraints).

Repeatedly applying this step this results in all array equations
being of the forma′ =[i.. j] a where botha′ anda are array variables.

Finally consider array elements (which appear in integer con-
straints). Replace any occurrence〈a, i,e〉[j] involving a composite
array expression by the simpler expressione in case the partition
orderingΠ implies i = j ; otherwise, replace bya[j]. Repeatedly
applying this step this results in all array elements being of the
form a[j] wherea is an array variable.

At this stage, our proof obligation is of the formΨL ∧ Π |=
ΨR whereΨL andΨL contains bounded array equations, multiset
constraints and integer constraints. Further, there are nocomposite
array expressions.

2 This definition is in fact stronger than needed. But its relaxation is com-
plicated and hence omitted.

6 2007/12/13

5.4 Partition Array Equations and Multiset Expressions

The purpose of this subsection is to ensure that each array equation
a′ =[i.. j] a and multiset expressiona{i.. j} is such that the interval
[i.. j] is “basic” in the partition orderingΠ, that is, there is no array
indexk such thati ≤ k≤ j .

First consider any array equation of the forma′ =[i.. j] a and
suppose there is an array indexk such thati ≤ k≤ j . Then, replace
this equation by

• a′ =[i+1.. j] a if Π |= i = k (3a)

• a′ =[i.. j−1] a if Π |= j = k (3b)

• a′ =[i..k−1] a anda′ =[k+1.. j] a if Π |= i < k < j (3c)

and add the constrainta′[k] = a[k] (to the collection of integer
constraints).

Next consider any multiset expressiona{i.. j}. If there is an ar-
ray indexk such thati ≤ k≤ j , then replace the multiset expression
by

• {a[k]}∪a{i +1.. j} if Π |= i = k (4a)

• a{i.. j −1}∪{a[k]} if Π |= j = k; (4b)

• a{i..k−1}∪{a[k]}∪a{k+1.. j} if Π |= i < k < j (4c)

Repeatedly perform the above steps would lead to all array equa-
tions and multiset expressions involving only basic intervals.

Finally, for each array equation or multiset expression created in
steps(3a) through(4c) whose sizes is such that neitherΠ |= s= 1
nor Π |= s> 1 holds, we need to perform a partition orderingre-
finement. For example, if it were step(3a) where the array equation
a′ =[i+1.. j] was created, refine the partition orderingΠ into the two

casesΠ1
def
= Π∧ i +1 = j andΠ2

def
= Π∧ i +1 < j .

Similarly, in the case step(4c) where the two multiset expres-
sionsa{i..k−1} anda{k+1.. j} were created, refine the partition

orderingΠ into the four casesΠ1
def
= Π∧ i = k−1, Π2

def
= Π∧ i <

k−1, Π3
def
= Π∧k+1 = j , Π4

def
= Π∧k+1 < j .

We now repeat this procedure of partitioning refinement, and
it in fact terminates. When it does, we have in general several
proof obligations and in each, each array equation and multiset
expression refers to a “basic interval” in the sense that each basic
interval refers to joint regions of the arrays they are associated to.

5.5 Prove Array Equations

We now have the proof obligationΨL ∧Π |= ΨR where all array
expressions are simply array variables, all array equationsa′ =[i.. j]
a and multiset expressionsa{i.. j} involve only basic intervals[i.. j].

It is now easy to dispense with array equations. First removeall
occurrences of trivial array equationsa =[i.. j] a. Then each array
equation inΨR must appear inΨL or else the proof obligation is
false.

Next, for each array equationa′ =[i.. j] a where i 6= −∞ and
j 6= +∞ , add the multiset constrainta′{i.. j} = a{i.. j}. Finally,
discard allarray equations.

Having dispensed with proving array equations, we are now left
with proving the formulaΨL ∧Π |= ΨR whereΨL andΨL contains
only multiset and integer constraints. Further, there are no compos-
ite array expressions in array element and multiset expressions.

5.6 Arithmetize Array Elements

Without losing generality, assume that all remaining arrayelements
are of the forma[i] wherea is an array variable andi an integer
variable. Replace each array element by introducing a freshinteger
variable. Then for every pair of array elementsa[i] anda[j] where
Π |= i = j , equate the corresponding introduced variables.

At this point, the remaining proof obligation contains onlymul-
tiset and integer expressions.

5.7 Arithmetize Multiset Constraints

For simplicity, and without losing generality, we assume each mul-
tiset term is either a multiset variable or of the form{e}, wheree
is an integer variable, Recall that each multiset constraint is of the
form M = {e}, M = M1∪M2 or M1⊗M2⊗·· ·⊗Mn whereMi ,
1≤ i ≤ n are multiset variables.

Where{e} is a term that appears in a multiset constraint, call the
integer variableeanelement-term. Let Ẽ = {e1, · · · ,ek} denote the

set of all such terms3. Let M̃ denote the set of all multiset variables
appearing in the multiset constraints.

• Create new integer variables of the form #(e,M) where e

ranges over̃E and M over the multiset variables̃M . Then
add toΨL the constraints

#(e,M) ≥ 0, for all e∈ Ẽ andM ∈ M̃ .

If M were a variable created in Section 5.3 (to represent an
array segmenta{i.. j}, then also add the constraint

#(e1,M)+ · · ·+#(ek,M) = j − i +1

• Replace each multiset constraintM = {e} by the new integer
constraints:

#(e,M) = 1
#(e′,M) = 0, for all e′ ∈ Ẽ −e

• Replace each multiset constraintM = M1 ∪ M2, by the new
integer constraints:

#(e,M) = #(e,M1)+#(e,M2), for all e∈ Ẽ .

• Replace each multiset constraintM1 ⊗ M2 ⊗ ·· · ⊗Mn by the
new integer constraints:

#(e,M1) > 0→ #(e,M2) = · · · = #(e,Mn) = 0
· · ·
#(e,Mn) > 0→ #(e,M1) = · · · = #(e,Mn−1) = 0

}
for all
e∈ Ẽ

Note that the arithmetization of the disjoint constraint⊗ resulted
in a number of implications, which are essentially disjunctions. In
practice, however, the number of such disjunctions is smallbecause
it is often the case the appearance or non-appearance of a certain
elemente within a multisetM is known. We shall see this in our
examples below.

The constraint obligation we obtain at end of this process now
contains only integer constraints. We are thus at the end of the
process now, delegating the remainder of the proof obligation to
an integer solver. We do not pursue the matter further in thispaper.

THEOREM 2 (Soundness and Completeness of Arithmetization).
Let ΨL |= ΨR denote a constraint obligation. Let this be trans-
formed by the process described above into several constraint obli-
gationsΨ′

L |= Ψ′
R which contain only integer constraints. Then,

ΨL |= ΨR iff all of the integer proof obligationsΨ′
L ∧ Π |= Ψ′

R
hold.

6. Examples of Proofs
6.1 Fibonacci Number Generator

Consider Figure 1. In the proof of the program, we use the follow-
ing loop invariantΨ ≡ fib(I −1,X),fib(I −2,Y), I ≥ 2, I ≤ L + 1.

We confirm that the condition is a genuine invariant by proving the
following:

Ψ, I ≤ L,X′ = X +Y,Y′ = X, I ′ = I +1
|= Ψ[I 7→ I ′,Y 7→Y′,X 7→ X′].

(F.1)

3 If there are in fact no element terms, we shall just invent one.

7 2007/12/13

In F.1 the lhs goal represents the invariantΨ and the execution of
the loop body.F.1 can be simplified into

fib(I −1,X),fib(I −2,Y), I ≥ 2, I ≤ L
|= fib(I ,X +Y),fib(I −1,X), I ≥ 1, I ≤ L.

(F.2)

By unfolding the atomfib(I ,X+Y) in the rhs of the implication we
obtain another rhs goal

fib(I −1,?X1),fib(I −2,?Y1),fib(I −1,X),
X +Y =?X1+?Y1, I ≥ 1, I ≤ L.

Here we instantiate the existentially quantified variablesX1 andY1
asX andY respectively. The predicates of the lhs and rhs are now
identical and can be removed.

Now we are left with a constraint proof obligation ofI ≥ 2, I ≤
L |= I ≥ 1, I ≤ L. Clearly this is triviallytrue.

6.2 Bubble Sort

The program has two loops. Here we shall just prove that the inner
loop satisfies a particular input-output relation. The following proof
obligation states the correctness of the symbolic execution exiting
the inner loop:

I f = I ,Nf = N,0≤ I f < Nf −1,

max(H f ,Nf − I f −2,H f [Nf − I f −1]),
sorted(H f ,Nf − I f −1,Nf −1) |=

I f = I ,Nf = N,sorted(H f ,Nf − I f −2,Nf −1).

(S.1)

We now perform one left unfold onmax, and one right unfold on
sortedso that we obtain
I f = I ,Nf = N,0≤ I f < Nf −1,

0≤ Nf − I f −2,H f [Nf − I f −2] ≤ H f [Nf − I f −1],
max(H f ,Nf − I f −3,H f [Nf − I f −1]),
sorted(H f ,Nf − I f −1,Nf −1) |=

I f = I ,Nf = N,Nf − I f −2 < Nf −1,

H f [Nf − I f −2] ≤ H f [Nf − I f −1],
sorted(H f ,Nf − I f −1,Nf −1)

(S.2)

Next we replace both array referencesH f [Nf − I f −2] andH f [Nf −
I f −1] with simple integer variables.

Now the proof obligation contains only integer constraints, and
its validity is easy to verify.

We next prove(2), that is, the inner loop results in a permutation
of the original array segment. This problem is reducible to proving
a number of obligations, one of which is the following:

0≤ I < N−1,0≤ J < N−1− I ,H[J+1] < H[J], I f = I ,Nf = N,

〈〈H,J,H[J+1]〉,J+1,H[J]〉{0. . .N−1} =
H f {0. . .N−1} |= (P.1)

I f = I ,Nf = N,0 <= I < N−1,H{0. . .N−1} = H f {0. . .N−1}

Now consider multiset elements. They are: 0,J, J+ 1, andN−1.
We shall consider one partition ordering 0< J < J + 1 < N− 1.
(There are in fact a total of 4 orderings.) We next perform multiset
partitioning which transforms(P.1) into:

0≤ I < N−1,0≤ J < N−1− I ,H[J+1] < H[J],
I f = I ,Nf = N,0 < J,J < J+1,J+1 < N−1,

〈〈H,J,H[J+1]〉,J+1,H[J]〉{0. . .J−1}∪
〈〈H,J,H[J+1]〉,J+1,H[J]〉{J}∪ (P.2)
〈〈H,J,H[J+1]〉,J+1,H[J]〉{J+1}∪
〈〈H,J,H[J+1]〉,J+1,H[J]〉{J+2. . .N−1}

= H f {0. . .J−1}∪H f {J}∪H f {J+1}∪H f {J+2. . .N−1}
|= I f = I ,Nf = N,0≤ I < N−1,

H{0. . .J−1}∪H{J}∪H{J+1}∪H{J+2. . .N−1}
= H f {0. . .J−1}∪H f {J}∪H f {J+1}∪

H f {J+2. . .N−1}

We now apply flattening to the multisets, for example, we can re-
duce〈〈H,J,H[J+1]〉,J+1,H[J]〉{0. . .J−1} into 〈H,J,H[J+1]〉
{0. . .J− 1} sinceJ− 1 < J + 1, and this can be further rewrit-
ten intoH{0. . .J−1} sinceJ−1 < J. Repeatedly doing this, we
rewrite(P.2) into:

0≤ I < N−1,0≤ J < N−1− I ,H[J+1] < H[J],
I f = I ,Nf = N,0 < J,J < J+1,J+1 < N−1,

H{0. . .J−1}∪H{J}∪H{J+1}∪H{J+2. . .N−1}
= H f {0. . .J−1}∪H f {J}∪H f {J+1}∪H f {J+2. . .N−1}

|= I f = I ,Nf = N,0≤ I < N−1, (P.3)
H{0. . .J−1}∪H{J}∪H{J+1}∪H{J+2. . .N−1}
= H f {0. . .J−1}∪H f {J}∪H f {J+1}∪H f {J+2. . .N−1}

Next we writeH{0. . .J− 1} as M1, H{J} as M2, H{J + 1} as
M3, H{J+2. . .N−1} asM4, H f {0. . .J−1} asN1, H f {J} asN2,

H f {J + 1} asN3, andH f {J + 2. . .N−1} asN4. We also rewrite
H[J] andH[J + 1] into X andY respectively using separate fresh
integer variables. This is becauseJ 6= J+1.

The next step is to convertP.3 into an integer obligation. In order
to do this, we need to define a set of element terms. Here we are
unable to do so since there is no constraint of the forme = M,

for some multisetM, hence we invent an element termZ. We then
convertP.3 into the following obligation in the way prescribed in
Section 5.7.
0≤ I < N−1,0≤ J < N−1− I ,Y < X,

I f = I ,Nf = N,0 < J,J < J+1,J+1 < N−1,

#(Z,M1) ≥ 0,#(Z,M2) ≥ 0,#(Z,M3) ≥ 0,#(Z,M4) ≥ 0,

#(Z,N1) ≥ 0,#(Z,N2) ≥ 0,#(Z,N3) ≥ 0,#(Z,N4) ≥ 0,

#(Z,M1) = J,#(Z,M2) = 1,#(Z,M3) = 1,#(Z,M4) = N−J−2,

#(Z,N1) = J,#(Z,N2) = 1,#(Z,N3) = 1,#(Z,N4) = N−J−2,

#(Z,M1)+#(Z,M2)+#(Z,M3)+#(Z,M4) =
#(Z,N1)+#(Z,N2)+#(Z,N3)+#(Z,N4)

|= I f = I ,Nf = N,0≤ I < N−1, (P.4)
#(Z,M1) ≥ 0,#(Z,M2) ≥ 0,#(Z,M3) ≥ 0,#(Z,M4) ≥ 0,

#(Z,N1) ≥ 0,#(Z,N2) ≥ 0,#(Z,N3) ≥ 0,#(Z,N4) ≥ 0,

#(Z,M1) = J,#(Z,M2) = 1,#(Z,M3) = 1,#(Z,M4) = N−J−2,

#(Z,N1) = J,#(Z,N2) = 1,#(Z,N3) = 1,#(Z,N4) = N−J−2,

#(Z,M1)+#(Z,M2)+#(Z,M3)+#(Z,M4) =
#(Z,N1)+#(Z,N2)+#(Z,N3)+#(Z,N4)

It can be easily checked that this integer obligation is valid.

6.3 List Reset

We now consider the list reset example in Section 3.3. This proof
shows that the program recursion which is “sublist recursive” need
not be the same as the recursion in the assertion predicate, which is
tail recursive.

Among the obligations that need to be proven, we have to estab-
lish thatΨ ≡ allz(h0,h, p0,p) is a loop invariant. This obligation is
expressed as
allz(H0,H,P0,P),H[P+1] > 0 |=

allz(H0, 〈H,H[P+1],0〉,P0,H[P+1]).
(Z.1)

Here we apply left unfold (LU+C rule) to the only lhs atom using
the two rules ofallz obtaining two new obligations. We shall just
display one of them:
allz(H0,H1,H0[P0 +1],P),P0 > 0,H1[P+1] > 0 |=

allz(H0, 〈〈H1,P0,0〉,H1[P+1],0〉,P0,H1[P+1]).
(Z.2)

Now we apply coinduction (rule (CO)) usingZ.1 as the hypothesis.
According to theCO rule, we require two conditions. The first is
allz(H0,H1,H0[P0 +1],P),P0 > 0,H1[P+1] > 0 |=

allz(H0,H1,H0[P0 +1],P),H1[P+1] > 0
This is established by eliminating the predicates, as follows:
P0 > 0,H1[P+1] > 0 |=

H0 = H0,H1 = H1,H0[P0 +1] = H0[P0 +1],
P = P,H1[P+1] > 0.

We do not detail this proof further; it is in fact trivial. Thesecond
condition is
allz(H0, 〈H1,H1[P+1],0〉,H0[P0 +1],H1[P+1]) |=

allz(H0, 〈〈H1,P0,0〉,H1[P+1],0〉,P0,H1[P+1]).
(Z.3)

Here we perform a right unfold using the 2nd rule ofallz resulting
in
allz(H0, 〈H1,H1[P+1],0〉,H0[P0 +1],H1[P+1]) |=

allz(H0,?H2,H0[P0 +1],H1[P+1]),
〈〈H1,P0,0〉,H1[P+1],0〉 = 〈?H2,P0,0〉

(Z.4)

8 2007/12/13

Here,H2 is existentially quantified. We substitute it by the expres-
sion〈H1,H1[P+1],0〉, because both appear in the same position in
the argument ofallz in the hypothesis and conclusion of the obli-
gation. By an application ofCP proof rule, we also equate the rest
of the arguments ofallz, and remove the predicates resulting in the
obligation:

true |= H0 = H0,H0[P0 +1] = H0[P0 +1],
H1[P+1] = H1[P+1],
〈〈H1,P0,0〉,H1[P+1],0〉 = 〈〈H1,H1[P+1],0〉,P0,0〉.

(Z.5)

We now consider one partition ordering of array indicesP0 = P <

P0 +1 = P+1 < H1[P+1]. Note that this full consideration of all
the array indices is not really needed. We can in fact ignoreP0 +1,

P, and P+ 1, because they are not used in an array expression.
Hence it is sufficient to consider the simpler orderingP0 < H1[P+
1]. Using this ordering, we now can flatten the array expressions
used in array equations obtaining

P0 < H1[P+1],P0 +1 < H1[P+1] |=
H0 = H0,H0[P0 +1] = H0[P0 +1],
H1[P+1] = H1[P+1],H1 =[−∞..P0−1] H1,

H1 =[P0+1..H1[P+1]−1] H1,H1 =[H1[P+1]+1..+∞] H1,

〈〈H1,P0,0〉,H1[P+1],0〉[H1[P+1]] = 0,

〈〈H1,P0,0〉,H1[P+1],0〉[P0] = 0

(Z.6)

We continue flattening array expressions, this time, for those that
appear in integer constraints:

P0 < H1[P+1],P0 +1 < H1[P+1] |=
H0 = H0,H0[P0 +1] = H0[P0 +1],
H1[P+1] = H1[P+1],H1 =[−∞..P0−1] H1,

H1 =[P0+1..H1[P+1]−1] H1,H1 =[H1[P+1]+1..+∞] H1,

0 = 0,0 = 0

(Z.7)

As dictated in Section 5.5, here we need to introduce a fresh
variable for each array equality and test for unsatisfiability, also that
we need to replace array elements with fresh variables. However,
in each array equality in the conclusion ofZ.7, both sides are the
same, and so it is with array element equalities. Hence we can
immediately conclude that the obligation holds.

So far we have used the tail recursive definition ofallz to
complete the proof. We could alternatively use the sublist recursive
definition (Figure 3), which demonstrates the robustness ofour
proof method to handle different definitions. Again, we start with
the obligationZ.1. We now perform right unfold onZ.1 using the
2nd rule of the sublist recursive definition:
allz(H0,H,P0,P),H[P+1] > 0 |=

allz(H0,H,P0,T),H[P+1] > 0,H[P+1] = H[T +1]. (Z.8)

We now substitute the existentially-quantifiedT with P, and we
remove the predicates, obtaining an obligation that holds trivially.

H[P+1] > 0 |= H0 = H0,H = H,

P0 = P0,H[P+1] > 0,H[P+1] = H[P+1]
(Z.9)

6.4 List Reverse

.
Consider the list reverse example in Figure 4. Note that the

definition of reverse, corresponds to an “in-situ” property of the
reverse function. In particular, the memory region occupied by
the list is unchanged. Moreover, the definition also impliesthat
whenever one node points to another in the input, the latter node
points to the former in the output.

Similar to the list reset example, here we also need to prove a
loop invariant, which in this case isΨ≡∃t,u.reverse(h0,h, i0,i,j),
alist(h,j,t), alist(h,i,u). The proof amounts to establishing the
following obligation:

reverse(H0,H, I0, I ,J),alist(H,J,T),alist(H, I ,U),
T ⊗U,S= T ∪U, I > 0 |=

reverse(H0, 〈H, I +1,J〉, I0,H[I +1], I),
alist(〈H, I +1,J〉, I ,?T′),
alist(〈H, I +1,J〉,H[I +1],?U ′),
?T ′⊗?U ′,?T ′∪?U ′ = S

(R.1)

We now perform three unfolds simultaneously, for brevity. We
unfold the atomalist(H, I ,U) in the lhs and both the atoms
reverse(H0, 〈H, I +1,J〉, I0,H[I +1], I) andalist(〈H, I +1,J〉, I ,?T′)
in the rhs obtaining the obligation

reverse(H0,H, I0, I ,J),alist(H,J,T),alist(H,H[I +1],U1),
I > 0,U = U1∪{I , I +1},{I , I +1}⊗U1,
T ⊗U,S= T ∪U, I > 0 |=

reverse(H0,H, I0, I ,J),
alist(〈H, I +1,J〉, 〈H, I +1,J〉[I +1],?T1),
alist(〈H, I +1,J〉,H[I +1],?U ′),
I > 0, I ∈?T,?T =?T1∪{I , I +1},{I , I +1}⊗?T1,

?T ′⊗?U ′,?T ′∪?U ′ = S

(R.2)

We now proceed to remove predicates so reducing the problem to
a constraint proof.

At this point, we will temporarily assume a useful lemma:

alist(H,J,S),{I}⊗S|= alist(〈H, I ,E〉,J,S),

Using this, we replace any predicate in the rhs ofR.2 matching
the above rhs predicate, with the corresponding lhs. This process
results in the following:

reverse(H0,H, I0, I ,J),alist(H,J,T),alist(H,H[I +1],U1),
I > 0,U = U1∪{I , I +1},{I , I +1}⊗U1,
T ⊗U,S= T ∪U, I > 0 |=

reverse(H0,H, I0, I ,J),
alist(H, 〈H, I +1,J〉[I +1],?T1),{I +1}⊗?T1,

alist(H,H[I +1],?U ′),{I +1}⊗?U ′,

I > 0, I ∈?T,?T =?T1∪{I , I +1},{I , I +1}⊗?T1,

?T ′⊗?U ′,?T ′∪?U ′ = S

(R.3)

We now apply theCP proof rule to remove the predicates. We first
note that we can substitute the existentially quantified variablesT1
andU ′ with T andU1, respectively, resulting in the following (for
clarity, we immediately remove trivial equivalences such as I = I):

I > 0,U = U1∪{I , I +1},{I , I +1}⊗U1,
T ⊗U,S= T ∪U, I > 0 |=

J = 〈H, I +1,J〉[I +1],{I +1}⊗T,{I +1}⊗U1,
I > 0, I ∈ T ∪{I , I +1},{I , I +1}⊗T,

(T ∪{I , I +1})⊗U1,T ∪{I , I +1}∪U1 = S

(R.4)

We now discuss how we prove the array constraint(T ∪ {I , I +
1})⊗U1 of the rhs. Intuitively, this constraint is implied by the
constraintsU = U1∪{I , I +1}, {I , I +1}⊗U1, andT ⊗U on the
lhs. We will omit proving the other constraints on the rhs.

We next convert(T∪{I , I +1})⊗U1 into constraints on integers
as prescribed in Section 5.7, resulting in the following obligation.
Note that we equate a new variableI1 to I +1 so that we can useI1
in counting variables.

#(I ,U) = #(I ,U1)+#(I ,{I , I1}),
#(I ,U1)+#(I ,{I , I1}) ≤ 1,

#(I ,T)+#(I ,U)≤ 1,

#(I1,U) = #(I1,U1)+#(I1,{I , I1}),
#(I1,U1)+#(I1,{I , I1}) ≤ 1,

#(I1,T)+#(I1,U)≤ 1,

#(I ,{I , I +1}) = #(I ,{I})+#(I ,{I1}),
#(I1,{I , I +1}) = #(I1,{I})+#(I1,{I1}),
#(I ,{I}) = 1,#(I ,{I1}) = 0,#(I1,{I}) = 0,#(I1,{I1}) = 1 |=

#(I ,T)+#(I ,{I , I1})+#(I ,U1) ≤ 1,

#(I1,T)+#(I1,{I , I1})+#(I1,U1) ≤ 1

Let us now prove the rhs constraint #(I ,T)+#(I ,{I , I1})+#(I ,U1)≤
1 by testing the unsatisfiability of the conjunction of its nega-
tion with lhs constraints. Notice that we have in the lhs #(I ,U) =
#(I ,U1)+#(I ,{I , I1}), and #(I ,T)+#(I ,U) ≤ 1. The conjunction
of these with #(I ,T)+#(I ,{I , I1})+#(I ,U1) > 1 is clearly unsat-
isfiable.

6.5 AVL Tree

Consider the program in Figure 5. The proof obligation associated
with the program point〈7〉 is

9 2007/12/13

Yf = H[X +1],H[Yf] = 1,

H ′ = 〈H,X,0〉,H ′′ = 〈H ′,Yf ,0〉,H ′′′ = 〈H ′′,Yf +2,X〉,
H f = 〈H ′′′,X +1,H ′′[Yf +2]〉,
avl(H,H[X +2],DL−2,S2),
avl(H,H[H[X +1]+1],DL−1,S11),
avl(H,H[H[X +1]+2],DL−2,S12), (V.1)
S= {X,X +1,X +2}∪
{H[X +1],H[X +1]+1,H[X +1]+2}∪S2∪S11∪S12,

{X,X +1,X +2}⊗{H[X +1],H[X +1]+1,H[X +1]+2}⊗
S2⊗S11⊗S12

|= avl(H f ,Yf ,DL,S).

Here we perform right unfold twice on the recursive definition of
avl. After these unfolds, we perform predicate eliminations so that
we are left with a constraint obligation. The remainder of the proof
proceeds much like the list reverse example, and hence is omitted.

6.6 Statistics

The critical statistics for performance are firstly, (a) thesize of
the unfold search tree, (b) the number of partition orderings, and
finally, (c) the number of multiset elements and multisets, which
gives rise to counting variables of the form #(i,M). It is easy to see
that for all the above examples, these numbers are triviallysmall.

First consider unfolds. In the Fibonacci example (obligation
F.1), we needed only a single unfold. The bubble sort proof for
sortedness (obligationS.1) used one left and one right unfolds. The
proof of permutation of bubble sort (obligationP.1) used none. The
list reset example (obligationZ.1) used two left unfolds, and three
right unfolds. The list reverse example (obligationR.1) used one
left and two right unfolds. Finally the AVL tree example (obligation
V.1) used two right unfolds.

Next consider partition orderings. In the proof ofF.1,S.1 and
R.1 we only required a single partition ordering. In the proof of
P.1, we have only four possible orderings. In the proof ofZ.6,

we needed five. In the proof ofV.1 there are only two possible
orderings.

Finally consider multiset counting variables. The proof ofF.1,

Z.1, andS.1 did not employ multiset constraints. For the proof of
P.1 there was 8 multiset counting variables. ForR.1 there was also
8, and finally forV.1, there were 18.

In general, we believe our algorithm scales mainly because the
number of partition orderings is typically very constrained, and is
largely independent the size of the program. The unfolding pro-
cess is typically short because user-supplied predicates represent-
ing abstract properties of linked data structures, are typically sim-
ple. Predicates representing arithmetic properties can behowever
be very complex4. Finally, multiset elements are typically very few.
This is because they represent the few distinguished cells in a data
structure, such as the head of a list or root of a tree.

7. Conclusion
We presented a general purpose assertion language for expressing
properties of data structures, and a CLP-based proof systemfor
assertions of this language. We showed that the system is expressive
because it describes both low-level specifications via constraints,
and high-level specifications via CLP rules.

The main contribution was proof method which is based on un-
folding CLP definitions of user-specified properties of datastruc-
tures. We introduced a novel principle of coinduction whichis used
in conjunction with a set of unfold rules in order to efficiently dis-
pense recursive definitions into constraints involving arrays, multi-
sets and integers. We then provided a sound and complete method
for reducing these constraints into integer constraints. Finally we
demonstrated the practicality of our algorithm.

While we have used the integer domain as our destination,
clearly we could have used another domain consistent with a dif-
ferent modeling of the underlying machine, for example, 32-bit
numbers. In our experimental system, we make one more step: we

4 But here we would have few partition orderings.

transform the integer problemΨL
′ ∧Π |= Ψ′ into a satisfiability

problem in the obvious way, and use areal arithmeticsolver avail-
able in order to dispense the proof. Note that this step is sound, ie.
a successful result is correct, but not complete, ie. the real solver
may not succeed even if a proof exists.

References
[1] F. Baader and W. Snyder. Unification theory. InHandbook of

Automated Deduction, chapter 8. Springer, 2001.

[2] S. Craciunescu. Proving equivalence of CLP programs. InP. J.
Stuckey, editor,18th ICLP, volume 2401 ofLNCS. Springer, 2002.

[3] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis
based on separation logic. In H. Hermanns and J. Palsberg, editors,
12th TACAS, volume 3920 ofLNCS, pages 287–302. Springer, 2006.

[4] L. Fribourg. Automatic generation of simplification lemmas for
inductive proofs. In V. A. Saraswat and K. Ueda, editors,ISLP 1991,
pages 103–116. MIT Press, 1991.

[5] R. Giacobazzi, editor.Static Analysis, 11th International Symposium,
SAS 2004, Verona, Italy, August 26–28, 2004, Proceedings, volume
3148 ofLNCS. Springer, 2004.

[6] J. Jaffar. Presburger arithmetic with array segments.Information
Processing Letters, 12(2):79–82, 1981.

[7] J. Jaffar. Minimal and complete word unification.Journal of the
ACM, 37(1):47–85, 1990.

[8] J. Jaffar and J.-L. Lassez. Reasoning about array segments. InECAI
1982, pages 62–66, 1982.

[9] J. Jaffar and M. J. Maher. Constraint logic programming:A survey.
Journal of Logic Programming, 19/20:503–581, May/July 1994.

[10] B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach
to interprocedural shape analysis. In Giacobazzi [5], pages 246–264.

[11] T. Kanamori and H. Fujita. Formulation of induction formulas in
verification of Prolog programs. In J. H. Siekmann, editor,8th
CADE, volume 230 ofLNCS, pages 281–299. Springer, 1986.

[12] T. Kanamori and H. Seki. Verification of Prolog programsusing an
extension of execution. In E. Y. Shapiro, editor,3rd ICLP, volume
225 ofLNCS, pages 475–489. Springer, 1986.

[13] N. Klarlund and M. I. Schwartzbach. Graph types. In20th POPL,
pages 196–205. ACM Press, 1993.

[14] J. McCarthy. Towards a mathematical science of computation. In
C. M. Popplewell, editor,IFIP Congress 1962. North-Holland, 1983.

[15] S. McPeak and G. C. Necula. Data structure specifications via local
equality axioms. In K. Etessami and S. K. Rajamani, editors,17th
CAV, volume 3576 ofLNCS, pages 476–490. Springer, 2005.

[16] F. Mesnard, S. Hoarau, and A. Maillard. CLP(X) for automatically
proving program properties. In F. Baader and K. U. Schulz, editors,
1st FroCoS, volume 3 ofApplied Logic Series. Kluwer Academic
Publishers, 1996.

[17] A. Møller and M. I. Schwartzbach. The pointer assertionlogic engine.
In 15th PLDI, pages 221–231. ACM Press, May 2001. SIGPLAN
Notices 36(5).

[18] H. H. Nguyen, C. David, S. C. Qin, and W. N. Chin. Automated
verification of shape and size properties via separation logic. In
B. Cook and A. Podelski, editors,8th VMCAI, volume 4349 ofLNCS.
Springer, 2007.

[19] J. C. Reynolds. Separation logic: A logic for shared mutable data
objects. In17th LICS, pages 55–74. IEEE Computer Society Press,
2002.

[20] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm.A semantics
for procedure local heaps and its abstractions. In32nd POPL, pages
296–309. ACM Press, 2005.

[21] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis
for cutpoint-free programs. In C. Hankin and I. Siveroni, editors,12th
SAS, volume 3672 ofLNCS, pages 284–302. Springer, 2005.

[22] A. Roychoudhury, K. N. Kumar, C. R. Ramakrishnan, and I.V.
Ramakrishnan. An unfold/fold transformation framework for definite
logic programs.ACM Transactions on Programming Languages and
Systems, 26(3):464–509, 2004.

10 2007/12/13

[23] R. Rugina. Quantitative shape analysis. In Giacobazzi[5], pages
228–245.

[24] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic.ACM Transactions on Programming Languages and
Systems, 24(3):217–298, May 2002.

11 2007/12/13

