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Abstract

We present an assertion language for expressing propeftikga
structures. Its key features acenstraintsover arrays, multisets
and integers which allow the specification of basic assestiand
rules which allow the recursive specification of assertions.sThi
language can thus be used to define assertions to an arlévety
of expressiveness, ranging from low-level properties ofrroey
allocation, for example, to abstract properties of compdexa
structures such as AVL trees.

The main result is a proof method for verification conditions
arising from a program annotated with assertions. The noetlas
two main components. First and foremost is an unfoldingréigm
which works by reducing the recursive definitions so that a-co
straint proof may now be applied. Here we introduce a notibn o
coinductionwhich forms the basis for termination of the unfold-
ing process. The second step is to reduce the constrainitsh wh
general contain expressions involving all the three dgiasyof in-
tegers, arrays and multisets, into a base constraint imglonly
integer constraints. Base constraints can then be dispenite
available solvers.

We finally show via a small benchmark of classic examples that
our proof method is practical.

1. Introduction

Reasoning about programs which construct and manipulate mu
table data structures remains an open problem in the seate th
present methods are limited in applicability, and that tdeynot
scale well to large programs.

A traditional challenge is how to implement a notiorctisure
such as transitive closure. Typically, there is no closethfto de-
scribe a typical class of data structures, for example, tyelia
singly-linked lists. Therefore, in order to specify that ariable
points to such a structure, one would require an inductiveser
cursive formulation. Indeed, such a class of data strustigreften
called “recursive” in the literature. For example, to prévat a cell
g is reachable from a celb one would some formulation of the
reachability closure op.

Another traditional challenge conceralgasing the problem of
reasoning about two pointers which may, or definitely do point
to the same data structure. For example, one specific challien
to determine, when a data structure pointed to by one péaticu
pointer is changed, what the effect is on all other point8mne
approaches focus on maintaining non-aliasing informafidrus,
for example, after operations are performed on a data steict
pointed to byp, we may reason that no change has taken place

[Copyright notice will appear here once "preprint’ opti@removed.]

on the structure of another poingrConversely, there is also need
to consider explicit aliasing information. For examplegqipoints
to the third cell of an acyclic lisp, and if a three-step traversal of
p results inr, we would require thag =r.

The most important challenge of all, however, is to capture
abstractproperties of data structures in such a way that the formal
techniques are in tandem with the intuitive reasoning erigubith
the user program.

In this paper, we address these issues, amongst otherssiby fir
defining a language of array, multiset and integer exprassibhe
class of integer expressions includes both array elementsaa
ray indices. These basic formulas can describe basic aadetbt
properties about mutable heaps and pointers. We then erhfsed t
formalism in Constraint Logic Programming (CLP) so that CLP
predicates can be used to describe recursive propertiesa$ttuc-
tures. This formulation of recursion then provides for thedfica-
tion of basic closure properties, amongst other properfegher,
because the CLP formalism has a well-understood logicdimga
assertion predicates can be designed to represent alstopetr-
ties of data structures. At the same time, low-level spetifos,
such as pointer arithmetic or memory management operatians
be represented by the rich constraint language. In paaticalr
formalism supports a notion afeparation[19] by simply using
multiset constraints to specify that certain heaps do rnietsect.

The main contribution is a proof method for CLP assertiompre
icates. We present an algorithm which is based on a standéhn
of unfolding definitions. The main novelty is the use of “leftd
right” unfolding, augmented with a principle obinductionwhich
forms the basis for terminating the unfolding process. Tinif|d-
ing process ultimately reduces the proof obligation to heothat
no longer contains (recursive) assertion predicates. iBhathat
remains is to prove a constraint.

The secondary contribution is an algorithm for proving a-con
straint. The algorithm reduces the proof of a constraindlving
array, multiset and integer constraints, into a proof imira only
integer constraints. The novelty in our approach is in hosvdh
ray and multiset constraints are arithmetized, that isyedad into
equivalent integer constraints. At this point, the remagnproof
obligation can be dispensed with standard constraint smlve

We finally argue, via examples, that our proof methodology is
intuitive and expressive, and amenable to a practical imptga-
tion. We show via a small benchmark of classic examples that o
automatic proof method is in fact practical.

1.1 Related Work

The use of proof rules for proving properties of user-defipieti-
icates in a CLP-based setting has been widely explored [116,4
22]. For example, the “negation as failure” inference in|islakin
to our left unfold rule, while the “definite clause infereisgep in
[11, 12] is akin to our right-unfold step below. In [22], félohfold
transformations are performed toward the objective ofdfiam-
ing two programs into syntactically identical ones. All $keap-
proaches are based on some form of structural and/or computa
tional induction.

In this respect, one major difference of our algorithm ig iha
is based on a coinduction principle, which does not requibase
case. Recent work [2] provides a method for proving the eguiv
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lence of general CLP programs that makes use of a coinduction e M = %4 U 9%

rule. However, this work does not address data structures.

A main difference of our work from all these is that our proof ~ * MEM@: @M, N>2
method is systematic. Another difference is that our doro&iis- The purpose of the first form is clear, to allow the propagetid
course is aonstraintdomain of arrays, multisets and integers. In - equational reasoning between multiset terms constructtdaily
contrast, these other works are based on traditional lagigram- via multiset union. The latter form, which in fact defines mfty
ming, or do not directly accommodate properties of datacsires. of n-ary constraints, specifies that the multisef&, 1 <i <n, are

The area ofshape analysisdopts an abstract interpretation- djsjoint, That is, each element appearing in one multiset does not
based approach, and is surveyed in [24]. Here the focus iB®n t appear in the other. As we shall see later, this constragpésially

accuracy and efficiency trade-off involving the abstracindm introduced in order to capture the notionsefparatiorbetween the
(which is constructed of predicates that define the “shapeh® cells of two different data structures.

data structure), and the fixpoint iteration algorithm. Agued in The meaning of a constraint is defined in the obvious way.

(3], itis rather difficult to construct modular, interprateral shape In what follows, we use constraint to mean either an atomic
analyses, since after every memory update, all reachalsilations constraint or a conjunction of constraints. We shall usesgimabol
have to be recomputed. Attempts to introduce local reagoiniio g or W, with or without subscripts, to denote a constraint.

shape analysis are presented in [20, 21]. Also, [10] pro@ose
interprocedural shape analysis that represents eachdunecas a 2.2 Constraint Logic Programs

raﬂheéxiov?,;s?n%ﬁitéﬁcggggfcl,ttsh:;rpy\,tc;?;;psm égl‘;tifgd on reasonin We present some preliminary definitions about CLP [9].aam
about data structures in customized wa sp 9is of the formp(f) wherep is a user-defined predicate symbol and
ys. ' a tuple of terms, as defined abovere is of the formA: - W, B

Other approaches to data structure verification includeathe >
o where the atord\ is theheadof the rule, and the sequence of atoms
proaches based qgraph typed13, 17], which is based on Hoare B and constraint constitute thebodyof the rule. Aprogramis a

logic, and PALE [17] verifier can be efficiently run when loop i

variant is given. The paper [15] presents an algorithm fecip finite set of rules. Agoalhas exactly the same format as the body of
cation and verification of data structure using equalityoms. It ? rulle. A goal that contains only constraints and no atomallse
has a support for scalar values as compared to most worksape sh ~ Tinal.

analysis. A substitutior simultaneously replaces each variable in a term
None of the above works on shape analysis and customized©F constrainginto some expression, and we wrégto denote the
reasoning about data structures allow recursive defiritwavided result. Arenamingis a substitution which maps each variable in
by the user. A recent exception is [18] which considers asclas the expressioninto a distinct variablegfoundingis a substitution
of pointer operations augmented with a separation cortstand which maps each array, multiset or integer variable intmtended
allows user-defined shape properties. They employ foldingy a  Universe of discourse: an array, a multiset or an integeerét
unfolding rules, whereas we employ unfolding alone, augewn 'S a constraint, a grounding 8f results intrue or falsein the usual
with a coinduction rule. They do not consider arrays. way. . . . .
Finally, we comment on our design decision on choosing array A groundingg of an atomp(f) is an object of the fornp({6). A
and multisets over integers. The case for arrays is cleaguse grounding® of a goalg = (p(f), W) is a grounding of p(t) where
a heap is essentially an array. We chose the domain of nsltise ¥ is true. We write [ ]| to denote the set of groundings 6f

for two main purposes: to specify separation [19], and péamu Let G = (By,---,Bn,W) and P denote a non-final goal and
tion. Our algorithm extends the early works [6, 8]. In adufitito program respectively. LeR = A: - W1,Cy,---,Cry denote a rule in
multisets, one could also consider modeling array segnasnigts P, written so that none of its variables appeagirLet the equation
or sequences. However, there are no known efficient algosifior A= B be shorthand for the pairwise equation of the corresponding
these. For sets, the problem at hand would essentially béaited arguments ofA and B. A reductof G using a ruleR, denoted

by ACI unification, see eg. [1]. For sequences, the probleaveés reduct g, R), is of the form

harder than reasoning about word equations, see eg. [7]. (Ba,-++,Bi—1,C1,++,Cm, Biy1,--+,Bn, B = A, W, Wy)

provided the constrai®; = AAW A W1 is satisfiable.
A derivation sequenctor a goal G is a possibly infinite se-
2. The Language quence of goalg;,, G4,--- whereg;,i > 0 is a reduct ofG;_. If
21 Basic Assertions the last goalg, is a final goal, we say that the derivationsisc-

cessful A derivation treefor a goal is defined in the obvious way.
We consider three kinds of terms: integer, array and maltgses. )
Integer terms are constructed in the usual way, with onetiaddi DEFINITION 1 (Unfold). Given a program P and a godf,
the array element. The latter is defined recursively to beefarm UNFOLD(G) is {G'[3Re P: G’ =reduc(G,R)}. ]
ali] wherea is anarray expressiorandi an integer term. An array ) .
expression is either an array variable or of the fdani, j) wherea In the formal treatment below , we shall assume, withoutigsi
is an array expression andj are integer terms. A multiset term  generality, that goals are written so that atoms contaiy distinct
is either a singleton multisefi} wherei is an integer variable, ~ Vvariables as arguments.
a multiset variable, or it is constructed from an array “segtit 23 A " in CLP
a{i..j} whereais an array expression amnd integer variables. : ssertions in
The meaning of an array expression is simply a map from A basic assertion is expressed directly in CLP as a constiaie
integers into integers, and the meaning of an array exmessi shall adopt the following convention: if the structure abtids a list
a = (a,i, j) is a map just likea except tha#'[i] = j. The meaning andl is a pointer to a structure, then heap locatianl represents
of array elements is governed by the classic McCarthy [1@ras: the “next” pointer of the list. Similarly, if the structuidehas two
ik Ok = “next” pointers, such as in a binary tree, the heap locatlond
=k —(ai k=] andl + 2 shall represent these pointers. In general, if the strectu
i#k — (&, )k =alk of interest has multiple pointers, we use 1,1 +2, - -, etc.

The meaning of a singleton multiset is obvious, and the nmepoii An assertion can, more generally, beeaursiveassertion. This
a multiset term of the form{i..j} is the multiset of array elements ~ can be represented as any CLP program. However, for this,pape
{afi],ali+1],---,a[j]}. we shall limit ourselves to two slightly specialized classEirst
A constraintis either an integer equality or inequality, an equa- Cconsidene-heamssertions whose rules are of the form:
tion between array expressions, amaltiset constraintThe latter p(H,)?) T- Yy, p(H/,X/).
is of one of the forms: p(H,X) - Wg.
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Program:

{I =lo>0}
i,x,y:=2,1,0
while (i<l) do

tmp: =x (2)
_oyi=tnp (4)
{fib(lo,x) }
Assertion Predicate:
fib(0,0).
fib(1,1).
fib(1,X4+Y): - 1 > 2 fib(l — 1,X),fib(l —2,Y).

(0)
(1)
3

—

X: =X+y
i:=i+1 end (5)

<

Figure 1: Fibonacci Number Generator

Program:
i =0;
(0) while (i<N-1) do
(1) j:=0 )
(2) while (j < N-1-i) do
3) f([j+1<j]) then _
)] [ ]t endif
(4) j:=j+1 end
(5) i:=i+1l end (6)
Assertion Predicates:
sortedH,I,N):- I =N.
sortedH,I,N):- | <N H[l] <H[l +1],sortedH,| +1,N).
maxH,Y,U):- 0>Y.
maxH,Y+1LU):- 0<Y+1H[Y+1] <U,maxH,Y,U).

Figure 2: Bubble Sort

0<i <n-—
whereH,H’ are array expressions representing the previous and { <

next versnons of the global heap, aXdX’ are sequences of vari-
ables, some of which represent the program variables. Hestam
p(H, X) specifies that the variabl&ssatisfy some proper@in the
heapH.
Similarly, atwo-heapassertion is one whose rules are of the

form:

p(Hl7H27):() o LpAv p(H:?_?Hév)’.(’/)

p(Hl7H27X) - LI"'B~

wherep(Hz1,Hz, X) specifies a relationship between heéfsand
Ho, typically thatH, is an update of;.

Predicates such gs are calledassertion predicateand cor-
respondingly, atomg(H, X) are calledassertion atomswWe will
provide a few examples in Section 3.

With some loss of generality, but no substantial loss, wel sha
assume that anipcal variable in a rule, one that appears in the

Program:

{h =ho,p = po >0}
(0) while (p>0) do

[p] 1= 0 (1)
p:=[p+l] (2) end (3)
{3y.allz(ho,h, po,y), h[y+1] = 0}

Assertion Predicates:

“Tail Recursive”
allz(H,(H,L,0),L,L):- L>0.
allz(Hy, (H2,L,0),L,R) : - L > 0,allz(Hy,Hz,H1[L+1],R).

“Sublist Recursive”

allz(H,(H,L,0),L,L):- L>0.

allz(Hy, (H2,R,0),L,R) : - R>0,R=Ha[T +1],
El”Z(HLHz7 L,T).

Figure 3: List Reset

1],---,H[N], if I <N, is an ordered sequence. The predicate
maxH,Y,U) istrueif U is an upper bound of the valueig0], - - -, H[Y].
We will later exemplify two proofs of the inner lodp (between
(2) and (5) of the bubble sort program in Figure 2). The “Hoare

triples” are:

{ =0,0<i <n—1maxn—i —1n—i),
sortedh,n—i,n)}
B

(1)
{0<i <n—1,maxn—i —2,n—i —1),
sortedh,n—i —1,n)},
and
{] =0,0<i <n—1h=hp}
B (2

1,ho{0...n-1} =h{0...n-1}}

The condition(1) states that given the array elements frem to

n is sorted beforeB, the execution results in a sorted array from
n-i-1 to n. It also specifies the upper bounds of certain array
segments. The conditiof2) states that at the er's execution,
the values in the array is a permutation of the original arvsy
note here that equality between array segments above isuitisen
equality, that is, the equality holds iff the multiset of #lements of
the lhs array segment is the same as those of the rhs arragstegm
We outline the proofs in Section 6.2.

3.3 Examples using Pointers
List Reset

Figure 3 shows a program which “zeroes” all elements of argive
linked list with heach. The correctness assertion states that given a

body but not the head, appears as an argument of one of its bodynonempty list, the program produces a nonempty null-teaifig

atoms.

3. Example Assertion Predicates
3.1 An Integer Example: Fibonacci

The annotated program in Figure 1 compute ithe | -th Fi-
bonacci number. Fibonacciness is defined by the assertehi-pr
catefib(a, b).
6.1.

3.2 An Array Example: Bubblesort

Here we consider array segments and multisets. Considéutie
ble sort program and definitions of the predicatesxandsorted
in Figure 2. The CLP definition ofortedH,I,N) is a one-heap
predicate that specifies that the sequence of delld,H][l +

We prove the correctness of the program in Section |igt segmen(H[L +1],R).

list upon its termination, with all values in the nodes seréno.
Note that in Figure 3i is a program variable denoting the current
heap. The assertions use the prediedlt€H, H’, L, R) which states
that the heapi’ differs fromH only by having zero elements in the
non-empty sublist fronh. to R.

In Figure 3 we provide two different definitions aflz. The
tail-recursiveversion defines a zeroed list segméhiR) as one
whose head contains zero, and its tail is, recursively, treed
In the sublist-recursivespecification, a
zeroed list segment.,R) is defined to be a zeroed list segment
(L,T) appended by one extra zero elemBniNote that we have
not required thak ## Rin either of the definitions odllz., because
we do not require that the list is acyclic.

Clearly the program behaves in consistency with the latér d
nition, and not the former. Despite this, we see later iniBr&.3
that we can provide a proof usimitherdefinition.
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Program:
{alist(ho,io,Mo)}

J =
(0) while (i>0) do
(1) k,[i+1],j:=[i+1],],i
i:=k end (2)
{reverseho, h,io,0,] ), alist(h,j ,mp)}
Assertion Predicates:
revers¢H,H,1,1,0).
reversgHi, (Hz,J+ 1, NewNext, |, OldNextJ) : -
Hz[J+ 1] = OldNext
reversg¢H1,Ho, 1,J, NewNext.

alist(H,L,0):- L=0.
alist(H,L,SU{L,L+1}):- L>0,
{LLL+1}®Salist(H,H[L+1],9).

Figure 4: List Reverse

List Reverse

The CLP program foreverséHi, Ho, I1,12,J) in Figure 4 describes
atwo-heap predicate. It states that the linked list in Hégptarting
with 11 up to but not includingd> is the reverse of that of the null-
terminated list in the heaB, which starts from cell. The array
updates in the specification is used to specify that theHliss an
update of the lisH;, hence the reverse operationiissitu. The
CLP program fomlist(H, L, S) defines an acyclic list whose set of
node addresses &

In section 6.4 we prove that given an acyclic list with héad
we obtain a list with head which is a reverse of the original list.

AVL Tree

This example concerns Figure 5 which is a re-balancing meuaf
an AVL tree after node insertion. AVL is a balanced binanetre
where for each node, the depth of its left and right subtrééersl
by only one. Here we demonstrate quantitative reasoningnon a
abstract data structure. Thus our proof method can be catipar
with that of [23], who introduced a specialized abstractmreason
about scalar values in data structures.
The rebalancing routine is given an unbalanced subtreedoot
atx, where its left subtree is two deeper than its right subtxad,
at its left child, the left subtree is one deeper than itstrigltbtree.
At point (7) we expect to obtain as output a balanced AVL tree.
The CLP program foavl(H, X, D, S) describes a one-heap as-
sertion predicate. It states that the binary ¥ea H is an AVL tree
of heightD, with Sas the set of all node addresses in the tree. We
discuss a proof that the program preserves AVL structureai&
6.5.

3.4 On Separation Logic

Recent work on verification of programs with shared mutablka d
structures [19] introduced the concept sgparationas a means
to simplify the reasoning process and make program comsstn
proofs less tedious. The separating connectives provédmat and
concise means of specifying that a set of data structuresatre
shared, or that the elements of a data structure are notaiglach
from within another data structure.

The general idea is that heap predicadtgsmay be combined,
in pairs or in a tuple, in the formPy * Wox---x Wy, n > 2 by
a separationoperatorx. The interpretation of a heap predicate is
just a heap in which the predicate is true. The interpratatib
Wi+ Wox---x Wy is a collection ofn disjoint heapsH; in which
Wi holds, 2<i<n.

In our framework, we achieve this by creating an assertion
predicatep; which defines the heap predicatg, and explicitly
mentions its heap locations as a multiset variaife Then, we
simply add the constraint

Program:
{avl(h,[x+2] ,dlp — 2,52),
avi(h, [[x+1] +1] ,dlp—1,511),
avi(h,[ [ x+1] +2] ,dlp—2,512),
Mo = {X,X+1,x+2} U{[x+1] [ x+1] +1,[ x+1] +2}
Us2Usl11usi2},
{6 x+1,x+2} @ {[ x+1] , [ x+1] +1,[ x+1] +2}
®52®311®512}
y = [x+1]
i

[ x+1]
{avl(h,y,dlo,
endi f
Assertion Predicate:
avl(H,0,0,0).
avi(H,X,D1 + 1, {X,X + LX+2} USUSp) : -
H[X] =D1—D,,0< D1 —D3,D;—D> <1,
X, X+1, X425,
avi(H,H[X +1],D1,S),avi(H,H[X +2],D2, ).
avlilH,X,Do+ 1, {X,X+1,X+2} USUS) : -
H[X] =D1—D2,D1 —D2 = -1,
{XX+1L,X4+2} 250,
avlilH,H[X+1],D1,S1),avlH,H[X + 2],D2,S).

()
mo) }

Figure 5: AVL Tree

MMM
We shall exemplify this below.

4. Proof Method for Recursive Assertions

In this key section, we consider proof obligations of thenfor
G E H wherevar(H) C var(G). The validity of this formula
expresses the fact thaf6 succeeds w.r.t. the CLP program at hand
wheneverg6 succeeds, for any groundirjof G. They are the
central concept of our proof system, by being expressivegmto
capture interesting properties of data structures, andiyenable
to automatic proof process.

The general idea is to reduce the proof obligation into oa¢ th
can be proven by using the constraint solver alone. Es$igntias
involves removing all occurrences of assertion predicatethe
obligation. In general, however, this method is not alwayglia
cable to the obligation at hand. That is, upon predicate vamthe
constraint proof fails. Then it is necessary to reduce thigation
to another obligation upon which the constraint proof carabe
tempted again. This reduction process, which constitute=asch
process, is based on a standard notion of unfolding the defigi
of assertion predicates contained in the obligation.

This section describes the unfolding rules. In the follgyin
section, we describe the remaining part of the overall pnoethod,
that which proves constraints.

4.1 Unfolding Recursive Assertions

Intuitively, we proceed as follows: unfold completely a finite
number of steps in order to obtain a “frontier” containing tioals
Gi,--.,Gn. Then unfold #, but this time not necessarily com-
pletely, that is, not necessarily obtainialy the reducts each time,
obtain goals#1,..., #y. This situation is depicted in Figure 6.
Then, the proof holds if

GLV ..V G E HV ...V Hn

or alternatively,G = # V...V Hy forall 1 <i<n. This follows
easily from the fact that; = G1 V...V G, and 7 = A for all
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Complete
Unfold

To Prove:

GIV..V Gl
HN L Hy

Coinduction

G, ... Gn

Figure 6: Informal Structure of Proof Process

j such that 1< j < m. More specifically, but with some loss of
generality, the proof holds if

Virl<i<n3jp:l<ji<m:Gg E A
and for this reason, oyroof obligationshall be defined below to
be simply a pair of goals, writteG; |= 7 .

4.2 Proof Rules

We now present a formal calculus for the proofof= . To han-
dle the possibly infinite unfoldings @f and#/, we shall depend on
the use of a key conceptoinduction Proof by coinduction allows
us to assume the truth ofpaeviousobligation.

The proof process starts with a set of proof obligations and
attempts to discharge them one by one (although at timesethe s
may in fact become larger).

DEFINITION 2 (Proof Obligation).A proof obligationis of the
form A+ G = #H where theG and # are goals andA is a set
of assumptiorgoals. ]

The role of proof obligations is to capture the state of a foroo

(Lu+Q) N {ArG =7} UNFOLD(G) =
MU UL {AU{G 2} G oy (G0 bl
(RU) HH{AFNGFH} — ' € UNFOLD(%)
NUUici<k{AF G E '}
Nu{Ak G = H} G' =9 € Aand there
(co) ———————  exists a substitutiofl s.t.
NU{AFHOEH}  Gl=gG'e
Nw{Ar G = H}
(cuT) —~ _
NU{AF G 4, ArGEG')
Nu{Ak G =} _
(spy I'IUU};I{AF I Wy V...V is true.
() Nw{AGAPR) = H AP}
Nuw{Al G = HAK=¥}

Figure 7: Proof Rules for Reduction into Constraints

The (cuT) rule is manual and hence not used by our automatic
algorithm. It is included here because it is particularlgfus for
strengthening an obligation. Indeed, given a proof obiat; =
H, it is often the case that! is too weak to result in applications
of the (Co) and P) rules that would lead to a successful proof. To
address this, thec(UT) rule introduces a new goa}’ and the new
proof obligationsG = G’ andG’ |= #.

The rulesplit (spL) rule is also manual and hence not used by
our automatic algorithm. It is particularly useful for cemting a
proof obligation into several, more specialized ones.

Finally, the ruleconstraint proof(cpP), when used repeatedly,
discharges a proof obligation by reducing it to a form whion-c
tains no assertion predicates. Note that one applicatighisfre-

The setA contains goals whose truth can be assumed coinductively moves one occurrence of a predicatg) appearing in the rhs of

to discharge the proof obligation at hand.

Our proof rules are presented in Figure 7. Theymbol rep-
resents the disjoint union of two sets, and emphasizes théifat
in an expression of the forlAw B, we have thahNB = 0. Each
rule operates on the (possibly empty) set of proof obligesti®, by
selecting one of its proof obligations and attempting techizsge
it. In this process, new proof obligations may be produced.

The left unfold with coinductiorfLu+c) rule performs a com-
plete unfold on the lhs of a proof obligation, producing a setvof
proof obligations. The original assertion, while removeahi I,
is added as an assumption to every newly produced proofasblig
tion, opening the door to using coinduction in the proof. Thle
right unfold(Ru) performs an unfold operation on the rhs of a proof
obligation. In general, the two unfold rules will be systeivelly
interleaved. The resulting proof obligations are thenltisged ei-
ther coinductively or directly, using thec©) and (CP) rules, re-
spectively.

The rulecoinduction applicatiorfco) transforms an obligation
by using an assumption, and thus opens the door to disclgargin
that obligation via the direct proofcf) rule. Since assumptions
can only be created using theu+c) rule, the €0) rule realizes
the coinduction principle. The underlying principle bedhthe €0)
rule is that a "similar” assertiorg’ = #' has been previously
encountered in the proof process, and assumed ds true

Note that this test for coinduction applicability is itself the
form G = #. However, the important point here is that this test
can only be carried out using constraints, in the mannercpbesl
for the cprule described below. In other words, this test does not
use the definitions of assertion predicates.

11n fact, the repeating pattern corresponds to a loop in tigénad program-
ming language, and{ acts as an invariant.

an obligation. Once a proof obligation has no predicate értis,
a constraint proof may be attempted by simply removing aegpr
icates in the corresponding lhs. Such a constraint is hdrixjlehe
proof method for constraints in the following section.

_Given a proof obligationg = #{, a proof shall start withil =

F G = #H}, and proceed by repeatedly applying the rules in

Figure 7 to it. The conditions in which a proof can be complete
are stated in the following theorem.

THEOREM1 (Soundness of UnfoldingA proof obligationG =
7 holds if, starting with the proof obligatio - G |= #, there
exists a sequence of applications of proof rules that resumt
proof obligationsZ - G’ = #’ such that (a)#’ contains only
constraints, and (b);’ = #’ can be discharged by the constraint
solver.

We have now presented proof rules to explain how to reduce a
proof obligation into others, and how, eventually, a caaistrproof
may be attempted. We next describe a strategy so as to make the
application of the rules automated.

4.3 A Systematic Strategy for Unfolding

First, we remark that we do not make use of the cutt) and split
rules (SPL) rules.

This subsection simply describes a systematic interlgaoin
the left-unfold and right-unfold rules, attempting a coastt proof
along the way. We present our algorithm in pseudocode inrEigu
8. Note that the presentation is in the form of a nondetestini
algorithm, and thus each of the nondeterministic opereoiose
needs to be implemented by some form of systematic search.

By a constraint proofof a obligation, we mean to repeatedly
apply thecp rule in order to remove all occurrences of assertion
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REDUCHG |= H) returns boolean

e Constraint Proof:
Apply a constraint proof t@; = .
If successfulreturn true, otherwisereturn false
e memoize(G = H) as an assumption
e Coinduction : . .
chooseto attempt coinduction or not
case:yes
Check if the coinduction ruleo applies, that is,
there is an assumptioi’ = #" such that
G = G'6 has a constraint proof.
If so return REDUCHH'0 |= H);

otherwisecontinue
case:no
continue
e Unfold: .
chooseleft or right
case:left
choosean atomA in G to reduce
for all reductsg_ of G usingA:
if REDUCH G |= #) = falsereturn false
return true
case:right
choosean atomAin # to reduce, obtainingi

return REDUCHG = Gr)

Figure 8: Systematic Reduction into Constraints

predicates in the obligation, in an obvious way. Then thestramt
solver is applied to the resulting obligation.

5. Proof Method for Constraints

We now present an algorithm which, given a constraint okibga
Y. E YR whereW andWr are constraints, reduces this to one or
more obligations| |= W, which contains only integer constraints

such that¥_ |= Wy iff all of the obligations W] |= Wk hold.

5.1 Remove Existential Variables

First considerexistentialvariablesy that appear in¥r but not
in WY_. Since we started off with a proof obligatiog = H

Define that gpartition orderingl is an ordering of the array
indices using the relation$=, <} which is consistent with the
hypothesis constraift . That is, given a partition ordering, it
is the case that for each pair of array indicesd j, exactly one of
i=j,i<]j,j<iholdg.

Clearly there are in general an exponential number of peamtit
orderings. However, as we shall see later for several exasnpl
often it is the case that the number is manageable. The masome
for this is that the array indices in a given program are @ihyc
already constrained in a partial order which is nearly adireder.

In what follows, our constraint obligation is now

WATE YR

wherell is a partition ordering fol and¥r.

5.3 Flatten Array Expressions

The purpose of this subsection is to reduce composite axfags-
sions into array variables.

First consider multiset expressions of the fofmk,e){i..j}
involving a composite array expressi¢ai,e). If I impliesk < i
or j <k, then replace the expression#fj.. | }. Otherwise, replace
the expression by:

o {ejuafi+1.j} if NEi=Kk
eafi.j—1}ufet if NEj=k
e afi. k—1}ufetualk+1.j} if NMEi<k<]

Repeatedly applying this step results in all multiset esgiens
being of the forma{i..j} whereais an array variable.

Next consider array equations which involve at least one-com
posite array expression, that is, equations of the farm (a,i, ).
We now introduce, temporarily, a new equation calledoanded
array equatiorand it is of the form

a=jja

and it means that array equality applies only within the latsirio
j, thatis, it means that [k] = a[k] for alli <k < j. We shall allow
the special bounds« and-+ so that initially all array equations
a = acan be written a8’ =[_¢, 1o &
We now replace each bounded array equation which involves
a composite array expression, ﬂyz[i”” (a,k,€), as follows. If
M impliesk < i or j < k, then replace the equation Iay:[i”” a.

wherevar(#) C var(G), any existential variable igr must have ) : .
emerged from a right unfold. Recall that we have assumed that Otherwise, replace the equation by:
any local variable in a CLP rule appears as an argument toa bod
atom. This means that the existential variabheust have appeared
as an argument in a predicate in the rhs of a proof obligafibis

in turn means that after using tle® rule to eliminate predicates
by equating predicate arguments in the lhs with the cormdpo
ing arguments on the rhs, there will be an equation of the form
y = e where the expressioacontains no existential variable. Fi-

o d =li+1.j] aif M ‘=i=k;
o d =li..j—-1] aif N '= ] =k;

od =y qaanda =y,q jaif MEi<k<]

nally, by renaming all occurrences of such existentialalagsy

by their counterparts, we may assume hereafter that there are no

existential variables in our constraint obligati¢h = Wr.

5.2 Partition Orderings
Consider the set of integer expressioria both W and YR that
appear as an index in
e a composite array expression, ie of the foami, €), or
e an array element, ie. of the forafi], or
e a multiset expression of the forafi..j} wherei and j are
integer variables.

wherea is an array expression. Call these expressionsathey

indices Without losing generality, we assume that array indices ar

integer variables.

and finally, add the constraiat[k] = e (to the collection of integer
constraints).

Repeatedly applying this step this results in all array &qoa
being of the form&’ =; ;; awhere botte’ anda are array variables.

Finally consider array elements (which appear in integer co
straints). Replace any occurren@ei, e)[j] involving a composite
array expression by the simpler express@in case the partition
orderingl impliesi = j; otherwise, replace bg[j]. Repeatedly
applying this step this results in all array elements beihghe
forma[j] wherea is an array variable.

At this stage, our proof obligation is of the forlH. ATl |
Yr whereW andW_ contains bounded array equations, multiset
constraints and integer constraints. Further, there amngosite
array expressions.

2This definition is in fact stronger than needed. But its ratan is com-
plicated and hence omitted.
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5.4 Partition Array Equations and Multiset Expressions

The purpose of this subsection is to ensure that each artatieq
a =(i..j @ and multiset expressioa{i..j} is such that the interval
[i..j] is “basic” in the partition orderingl, that is, there is no array
indexk such that <k < j.

First consider any array equation of the foa’n:[i”j] a and
suppose there is an array indeguch thai <k < j. Then, replace
this equation by

o d =li+1.j] aif I ):I =k (33)
o =li.j-1 aif M ': j =k (3b)
o & =jjy_qgaandd =p,q jaif NEi<k<] (3c)

and add the constrairé[k] = a[k] (to the collection of integer
constraints).

Next consider any multiset expressiafi..}. If there is an ar-
ray indexk such that <k < j, then replace the multiset expression

by

e {aK}tuafi+1.j} if NEi=k (4a)
eafi.j—1}u{akl} if NTEj=k (4b)
o afi.k—1}Uu{akl}Uafk+1.j} if MTEi<k<] (4c)

Repeatedly perform the above steps would lead to all arrag-eq
tions and multiset expressions involving only basic ingsyv
Finally, for each array equation or multiset expressioatae in
steps(3a) through(4c) whose sizesis such that neithell =s=1
nor M = s> 1 holds, we need to perform a partition orderieg
finementFor example, if it were ste{8a) where the array equation
a =[it+1..j] Was created, refine the partition orderifignto the two

cased'lldzefl'l/\intlz j andly d:EfI'IAiJr1< j.
Similarly, in the case stef¥c) where the two multiset expres-
sionsaf{i..k— 1} anda{k+1..j} were created, refine the partition

orderingl into the four case$ly e ni=k— 1,Mp def

=NAi<
k—1,Ms % Ak 1=, Mm% nakr1<i.

We now repeat this procedure of partitioning refinement, and
it in fact terminates. When it does, we have in general sévera
proof obligations and in each, each array equation and setilti
expression refers to a “basic interval” in the sense that dasic

interval refers to joint regions of the arrays they are aisged to.

5.5 Prove Array Equations

We now have the proof obligatio# AT = ¥r where all array
expressions are simply array variables, all array equatibﬁ[i“j]

aand multiset expressiomrgi.. j } involve only basic intervalg.. j].

Itis now easy to dispense with array equations. First renatlve
occurrences of trivial array equatioas=;_j a. Then each array
equation inWr must appear if¥_ or else the proof obligation is
false

Next, for each array equatiol =; ;) a wherei # —c and
j # +o , add the multiset constrairat {i..j} = a{i..j}. Finally,
discard allarray equations.

Having dispensed with proving array equations, we are néiw le
with proving the formula¥_ A | WYr whereW, andW¥_ contains
only multiset and integer constraints. Further, there areampos-
ite array expressions in array element and multiset exjoress

5.6 Arithmetize Array Elements

Without losing generality, assume that all remaining agi@ynents
are of the formali] wherea is an array variable andan integer
variable. Replace each array element by introducing a fresger
variable. Then for every pair of array elemerfg anda[j] where
N =i = j, equate the corresponding introduced variables.

At this point, the remaining proof obligation contains oniyl-
tiset and integer expressions.

5.7 Arithmetize Multiset Constraints

For simplicity, and without losing generality, we assumebeaaul-
tiset term is either a multiset variable or of the fofe}, wheree
is an integer variable, Recall that each multiset condtiaiof the
form M = {e}, M = MU M or My @ Mo @ --- @ Mn Where M,
1 <i < nare multiset variables.

Where{e} is a term that appears in a multiset constraint, call the
integer variable anelement-termLet £ = {ey, - - -, &} denote the

set of all such ternts Let M denote the set of all multiset variables
appearing in the multiset constraints.

e Create new integer variables of the fornte#) where e

ranges overE and M over the multiset variableg/. Then
add toW, the constraints

#(e,M) >0, forallec £ andM € M.

If M were a variable created in Section 5.3 (to represent an
array segmerdfi..j}, then also add the constraint

#ler, M)+ +#e M) =j—i+1

e Replace each multiset constraiff = {e} by the new integer
constraints:

#eM)=1 N
#e, M)=0,foralled e £—e

e Replace each multiset constraif = M U A6, by the new
integer constraints:

#e, M) = #(e, M) +#(e, M), for allec E.

e Replace each multiset constraiftf @ M ® --- @ My by the
new integer constraints:

#e M) >0—#e M) =---=#e M)=0
#(ev%)>04)#(ev%.):"’:#(ev%*l):0 }

Note that the arithmetization of the disjoint constraintesulted

in a number of implications, which are essentially disjimrcs. In
practice, however, the number of such disjunctions is sbeslduse

it is often the case the appearance or non-appearance ofaincer
elemente within a multiset is known. We shall see this in our
examples below.

The constraint obligation we obtain at end of this process no
contains only integer constraints. We are thus at the endhef t
process now, delegating the remainder of the proof obtigattd
an integer solver. We do not pursue the matter further inghgser.

for all
ecE

THEOREM2 (Soundness and Completeness of Arithmetization).
Let Y| Wr denote a constraint obligation. Let this be trans-
formed by the process described above into several consthli-
gations ¥/ = W which contain only integer constraints. Then,
W_ = Wr iff all of the integer proof obligationsW/ AT = Wh
hold. |:|

6. Examples of Proofs
6.1 Fibonacci Number Generator

Consider Figure 1. In the proof of the program, we use thesll
ing loop invariant¥ = fib(l — 1, X),fib(l —2,Y),1 > 2,1 <L+ 1.
We confirm that the condition is a genuine invariant by prg\ime
following:

WI<LX =X4Y,Y=X1"=1+1

S W 1Y = Y X X (FD)

3|f there are in fact no element terms, we shall just invent one
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In F.1 the lhs goal represents the invaridhiand the execution of
the loop bodyF.1 can be simplified into

fib(l — 1,X),fib(l —2,Y),1 > 2,1 <L
= fib(1, X +Y),fib(l —1,X),1 > 1,1 <L.

By unfolding the atoniib(l, X +Y) in the rhs of the implication we
obtain another rhs goal

fib(1 — 1,2%y),fib(l — 2,71),fib(l — 1,X),
X+Y =2X+2,1 > 11 <L.

Here we instantiate the existentially quantified variat{gsndY;
asX andY respectively. The predicates of the lhs and rhs are now
identical and can be removed.
Now we are left with a constraint proof obligationlof 2,1 <
L =1 > 1,1 <L. Clearly this is triviallytrue.

(F.2)

6.2 Bubble Sort

The program has two loops. Here we shall just prove that therin
loop satisfies a particular input-output relation. Thedwaiing proof
obligation states the correctness of the symbolic execwting
the inner loop:

I+ =1,Nf =N,0< Iy <Nj —1,
ma')(vaNf_If_27Hf[Nf_|f_1])7 (S.l)
sortedHs,Nf — s —1,Ns —1) =

I+ =1,Nf = N,sortedH¢,Nf — 1 —2,Ns — 1).

We now perform one left unfold omax and one right unfold on
sortedso that we obtain
It =1,Nf =N,0< Iy <Nj —1,
O0<Nf—Ilf—2,H¢[Ns —1f —2] <H¢[Ns —I7 —1],
ma)(vaNf 7If 737Hf[Nf 7If 71})7
sortedH¢,Nf — I —1L,N; — 1) = (S2)
It =1,Nf =N,Nf — It —2<Nf -1,
He[Nf — It — 2] <H¢[Nf — I — 1],
sortedH¢, Nt — I+ —1,Nf — 1)

Next we replace both array referen¢¢&gNs — It — 2] andH¢ [Ns —
I+ — 1] with simple integer variables.
Now the proof obligation contains only integer constraiatsd
its validity is easy to verify.
We next prove2), that is, the inner loop results in a permutation
of the original array segment. This problem is reduciblertiving
a number of obligations, one of which is the following:

0<1<N-1,0<J<N-1-1,HJI+1 <H[J]l;=1I,Nf =N,
((H,d,H[J+1]),J+LH[J){0..N—1} =

Hi{0...N—1} = (P1)
lf=I,Nf =N,0<=1<N—1H{0...N—1} =H{0...N—1}

Now consider multiset elements. They ared,0J + 1, andN — 1.
We shall consider one partition ordering<0J < J+1 < N—1.
(There are in fact a total of 4 orderings.) We next performtiset
partitioning which transforméP.1) into:

0<I<N—-1,0<J<N—1-1,HJ+1 <H[J],
I =INP=N0<JJI<I+1)+1<N-1,

(P2)

=
—~
(&
-
C:

,J+LH%
[

= H{0...J 1} UH{{JYUH {J+ 1} UH{ {3+ 2...N— 1}
lf=I,Nf =N,0<1 <N—1,

H{0...J— 1} UH{J}UH{J+ 1} UH{J+2...N— 1}
=H¢{0...J— 1} UH{{J}UH{{J+1}U
Hi{d+2..N—1}

We now apply flattening to the multisets, for example, we @n r
duce((H,J,HJ+1]),J+1,H[J]){0...J—1} into (H,J, H[J+1])
{0...0- 1} sinceJ —1 < J+1, and this can be further rewrit-
ten |ntoH{0 .J—1} sinced — 1 < J. Repeatedly doing this, we
rewrite (P.2) into:

0<I<N-10<J<N-1-I,H[J+1] <H[J],
I+ =1,Nf=N,0<J,J<J+1,J+1<N-1
H{0...0—-1}UH{J}UH{J+1}UH{J+2...N—-1}
=H;{0...J—-1}UH{ {J}UH{{J+ 1} UH;{J+2...N—-1}
Elf=1,Nf =N,0<I <N-1, (P3)
H{0...J—1}UH{J}UH{J+1}UH{J+2...N-1}
=H{0...J-1}UH{{J}UH{{J+ 1} UH{J+2...N—-1}
Next we writeH{0...J — 1} asMy, H{J} asMy, H{J+ 1} as
M3z, H{J+2...N—1} asMg, H;{0...J— 1} asNg, Ht{J} asNy,
Hi{J+ 1} asNs, andHs{J+2...N — 1} asNs. We also rewrite
H[J] andH[J + 1] into X andY respectively using separate fresh
integer variables. This is becauset J + 1.

The next step is to convePt3 into an integer obligation. In order
to do this, we need to define a set of element terms. Here we are
unable to do so since there is no constraint of the ferm M,
for some multiseM, hence we invent an element te@nWe then
convertP.3 into the following obligation in the way prescribed in
Section 5.7.

0<I<N-10<J<N-1-LY<X,
It =1,N; = N 0<, J<J+1J+1<N 1,
HZ,Mp) > 0,#(Z,M3) > 0,#Z. |v|4) >0,

z N2) >0 #(z N3) >0 H(Z,Ng) > 0,

H*
N
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: ) HH#(Z,M3) + #(Z, M) =
#(Z.Ny) +#(Z.Np) +#(Z,Ng) +#(Z. Ny)
It can be easily checked that this integer obligation isdvali

6.3 List Reset

We now consider the list reset example in Section 3.3. Thasfpr
shows that the program recursion which is “sublist recefsneed
not be the same as the recursion in the assertion predidaits) i
tail recursive.

Among the obligations that need to be proven, we have to-estab
lish thatW = allz(hg, h, po,p) is a loop invariant. This obligation is
expressed as

allz(Ho,H,Py,P),H[P+1] >0 (z.1)
allz(Ho, (H,H[P+1],0),Py,H[P+1]). ’
Here we apply left unfolduu+c rule) to the only Ihs atom using
the two rules ofallz obtaining two new obligations. We shall just
display one of them:
allz(Ho,H1,Ho[Po+1],P),Po > O,H1[P+1] >0 = (2.2)
allz(Ho, ((H1,Po, 0),H1[P+1],0), Py, H1 [P+ 1]). '
Now we apply coinduction (ruledo)) usingZ.1 as the hypothesis.
According to theco rule, we require two conditions. The first is
allz(Ho, H1,Ho[Po +1],P), Py > 0,H1 [P+ 1] > 0 =

a'”Z(H07 Hi, HO[PO + 1]7 P)7 Hl[P + 1} >0

This is established by eliminating the predicates, as\alo
Po>0,H1[P+1] >0
Ho = Ho,H1 = Hi1,Ho[Po + 1] = Ho[Po + 1],
P=PHi[P+1]>0.
We do not detail this proof further; it is in fact trivial. Tleecond
condition is
allz(Ho, (H1, H1[P+1],0), Ho[Po+ 1], H1 [P+ 1]) |= 2.3)
allz(Ho, ((H1,Po, 0),H1[P+1],0), Py, H1 [P+ 1]). '
Here we perform a right unfold using the 2nd ruleatif resulting
in
allz(Ho, (H1, H1[P+1],0), Ho[Po + 1], H1 [P+ 1]) |=
allz(Ho, ?Hz, Ho[Po + 1], H1 [P+ 1]), (z.4)
((H1,Po,0),H1[P+1],0) = (?H2, Py, 0)
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Here,H; is existentially quantified. We substitute it by the expres- We now perform three unfolds simultaneously, for brevitye W
sion(Hy, H1[P+ 1],0), because both appear in the same positionin unfold the atomalist(H,I,U) in the Ihs and both the atoms

the argument oéllz in the hypothesis and conclusion of the obli-
gation. By an application of P proof rule, we also equate the rest

of the arguments ddllz, and remove the predicates resulting in the

obligation:
true = Ho = Ho, Ho[Po + 1] = Ho[Po + 1],
H]_[P+ 1] = H]_[P+ 1],
((H1,Po,0), H1[P+1],0) = ((H1,H1[P+1],0),P,0).
We now consider one partition ordering of array indi€gs= P <

Po+1=P+ 1< H1[P+1]. Note that this full consideration of all
the array indices is not really needed. We can in fact igigre 1,

(z.5)

reverséHo, (H,1 +1,J),1g,H[1 +1],1) andalist((H,1 +1,J),1,7T")
in the rhs obtaining the obligation
revers¢Ho,H, lo,1,J),alist(H,J,T), alist(H, H[l +1],U1),
I >0,U=UgU{l,I1 +1}{l,I +1} ®Uq,
TeU,S=TUU,l >0
reverséHp,H, lo,1,J),
alist((H,1 +1,3),(H,1 +1,3)[I +1],?Ty),
alist((H,1 +1,3),H[l +1],U"),
| >0,1 €?T, 2T =711 U{l,1 + 1}, {I,1 + 1}®7Ty,
TN, 7TUN =S

(R2)

P andP 1, because they are not used in an array expression.\ye now proceed to remove predicates so reducing the prolalem t

Hence it is sufficient to consider the simpler orderifag< H1 [P+

1]. Using this ordering, we now can flatten the array expressions

used in array equations obtaining
Py < H]_[P+ l], P+1< Hl[P+ l] '=

Ho = Ho, Ho[Po + 1] = Ho[Po+ 1],
Hi[P+1] =Hi[P+1],H1 = o p,—1 H1,
Hi =py 1 myP+1)-1) H1, H1 =1y P11 400 HL
((H1,Po,0),H1[P+1],0)[H1 [P+ 1]] = O,
((H1,Po,0),H1[P+1],0)[Po] = 0

We continue flattening array expressions, this time, foséhthat

appear in integer constraints:

Po <Hi[P+1],Po+1<Hi[P+1] |
Ho = Ho, Ho[Po + 1] = Ho[Po + 1],
Hi[P+1] = Hy[P+1],H1 = o p,—1) H1,

Hi =py1 1.1y Pr1 -1 Hi. Hl =y prgj 1. 400 Hi
0=0,0=0

(2.6)

(2.7)

a constraint proof.
At this point, we will temporarily assume a useful lemma:

alist(H,J,9),{l} ® S=alist((H,1,E),J,9),

Using this, we replace any predicate in the rhsRat matching
the above rhs predicate, with the corresponding |hs. Thosqss
results in the following:
revers¢Ho,H, lo,1,J),alist(H,J,T),alist(H,H[l +1],U1),
I >0U=UgU{l,I +1},{l,I +1} @ Uy,
TeU,S=TUU,l >0
revers¢Ho,H, lo,1,J),
alist(H, (H,1 + 1, 3)[I +1],?T1), {l + 1} ®7Ty,
alist(H,H[I + 1], U"),{l + L}/,
[ >0,1 €?T, 2T =?TLU{l,1 + 1} {I,1 + 1}®7Ty,
TV TV =S
We now apply thecp proof rule to remove the predicates. We first
note that we can substitute the existentially quantifiethzdesT;

(R3)

As dictated in Section 5.5, here we need to introduce a fresh 3nqu’ with T andUy, respectively, resulting in the following (for

variable for each array equality and test for unsatisfigh#iso that
we need to replace array elements with fresh variables. Menve
in each array equality in the conclusion 217, both sides are the

same, and so it is with array element equalities. Hence we can

immediately conclude that the obligation holds.

So far we have used the tail recursive definitionadliz to
complete the proof. We could alternatively use the subdistirsive
definition (Figure 3), which demonstrates the robustneseunf
proof method to handle different definitions. Again, we tsteith
the obligationZ.1. We now perform right unfold oZ.1 using the
2nd rule of the sublist recursive definition:

allz(Ho,H,Py,P),H[P+1] >0

allz(Ho,H,Py, T),H[P+1] > O,H[P+1] =H[T +1].
We now substitute the existentially-quantifi@édwith P, and we
remove the predicates, obtaining an obligation that haidiatly.

H[P+1]>0 [Ho=Ho,H=H, 2.9)
Po=Pg,H[P+1] > 0,H[P+1] =H[P+1] :

(2.8)

6.4 List Reverse

Consider the list reverse example in Figure 4. Note that the

definition of reverse corresponds to an “in-situ” property of the
reverse function. In particular, the memory region occdpy
the list is unchanged. Moreover, the definition also imptiest
whenever one node points to another in the input, the latiden
points to the former in the output.

clarity, we immediately remove trivial equivalences sush & |):

I >0,U=Uu{l,1+1} {I,1 +1}®@Uq,
T®U,S=TUU,l >0
J=HI1+1 )0 +1 {1+ 1T {I+1}aU,
>0l eTU{l,I+1},{l,LI+1}®T,
(TU{lL1 +1})®U, TU{l,1 +1}UU; =S

We now discuss how we prove the array constrginty {I,l +
1}) ® U1 of the rhs. Intuitively, this constraint is implied by the
constraintd) = U U{l,1 +1}, {l,| +1} @ U1, andT ®U on the
Ihs. We will omit proving the other constraints on the rhs.

We next convertT U{l,| +1}) ®U into constraints on integers
as prescribed in Section 5.7, resulting in the followingigdtion.
Note that we equate a new varialjeo | + 1 so that we can ude
in counting variables.

#(1,U) =#(1,Uq) +#(1,{1,11}),

I,T)+#(1,U) <1,

1,U) =#(11,U1) +#(11, {1, 11}),
.U +#(11,{1,11}) <1,

1 T)+#(|1,U) <1,

(R4)

U+ 1) = #(1, (1) +#(1, {11}),
1,41 +1}) =#(11, {1}) +#(11,{11}),
) =141, {11} = 0.#(10, {1}) = 0.#(13, {I1}) = 1 |=

#L,T)+#(1, {1, 11}) +#(1,U1) <1,

#(|1,T)+#(|1,{|,|1})+#(|1,U1) <1

Similar to the list reset example, here we also need to prove a Let us now prove the rhs constrairft#T ) +#(1, {I,11}) +#(1,U1) <

loop invariant, which in this case 8= 3t , u.reversehg, h,ig,i ,j ),
alist(h,j ,t), alist(h,i ,u). The proof amounts to establishing the
following obligation:

reverséHo,H, lo,1,J),alist(H,J,T),alist(H,I,U),
ToU,S=TUU,l >0
revers¢Ho, (H,1 +1,J), 1o, H[l +1],1), R1
alist((H,1 -+1,3),1,7T"), (R1)

alist((H,1+1,3), H[l + 1], 2U"),
T 7Tu =S

1 by testing the unsatisfiability of the conjunction of itsgae
tion with Ihs constraints. Notice that we have in the Ili5¥) =
#(1,U1) +#(1,{1,11}), and #1,T) +#(1,U) < 1. The conjunction
of these with #1,T) +#(1,{l,11}) +#(1,U1) > 1 is clearly unsat-
isfiable.

6.5 AVL Tree

Consider the program in Figure 5. The proof obligation aisged
with the program point7) is
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Yi =H[X+1],H[Y;] =1,
H' = (H,X,0),H"” = (H',Y;,0),H"” = (H" ) Yf +2,X),
H¢ = (H”,X+1,H"[Y; +2]),
avliH,H[X+2],DL-2,S),
avilH,H[H[X+1]+1],DL—1,S1),
avli(H,H[H[X+1]+2],DL-2,S;7),
S={X,X+1,X+2}U
{HX+1,HX+1+1,HX+ 1+ 2} USUS1US2,
XX+ L X+2} @ {HX+ 1, HX+1+1HX+1+2}®
S 2819512
= avl(H¢,Ys,DL,S).
Here we perform right unfold twice on the recursive defimitiaf
avl. After these unfolds, we perform predicate eliminationshe t
we are left with a constraint obligation. The remainder &f pihoof
proceeds much like the list reverse example, and hence tssaimi

(V.1)

6.6 Statistics

The critical statistics for performance are firstly, (a) size of

the unfold search tree, (b) the number of partition ordes;rzsnd

finally, (c) the number of multiset elements and multisethiclv

gives rise to counting variables of the forrti#\). It is easy to see
that for all the above examples, these numbers are trivgafigll.

First consider unfolds. In the Fibonacci example (obligati
F.1), we needed only a single unfold. The bubble sort proof for
sortedness (obligatiod 1) used one left and one right unfolds. The
proof of permutation of bubble sort (obligatiél) used none. The
list reset example (obligation.1) used two left unfolds, and three
right unfolds. The list reverse example (obligatiBrl) used one
left and two right unfolds. Finally the AVL tree example (@ation
V.1) used two right unfolds.

Next consider partition orderings. In the prooffefl,S.1 and
R.1 we only required a single partition ordering. In the proéf o
P.1, we have only four possible orderings. In the proofz6,
we needed five. In the proof &f.1 there are only two possible
orderings.

Finally consider multiset counting variables. The proofdf,
Z.1, andS1 did not employ multiset constraints. For the proof of
P.1 there was 8 multiset counting variables. Rot there was also
8, and finally forv.1, there were 18.

In general, we believe our algorithm scales mainly because t
number of partition orderings is typically very constrainand is
largely independent the size of the program. The unfoldirg p
cess is typically short because user-supplied predicafgesent-
ing abstract properties of linked data structures, arecallyi sim-
ple. Predicates representing arithmetic properties camolbever
be very complek Finally, multiset elements are typically very few.
This is because they represent the few distinguished cetidata
structure, such as the head of a list or root of a tree.

7. Conclusion

We presented a general purpose assertion language forssikge
properties of data structures, and a CLP-based proof sy&iem
assertions of this language. We showed that the systemriessipe
because it describes both low-level specifications via tcaimss,
and high-level specifications via CLP rules.

The main contribution was proof method which is based on un-
folding CLP definitions of user-specified properties of dstraic-
tures. We introduced a novel principle of coinduction whihsed
in conjunction with a set of unfold rules in order to efficigndis-
pense recursive definitions into constraints involvingugsy multi-
sets and integers. We then provided a sound and complet@deth
for reducing these constraints into integer constraintsally we
demonstrated the practicality of our algorithm.

While we have used the integer domain as our destination,

clearly we could have used another domain consistent witifr a d
ferent modeling of the underlying machine, for example,b&2-

numbers. In our experimental system, we make one more s&ep: w

4But here we would have few partition orderings.

10

transform the integer problenmt# ' AT = W into a satisfiability
problem in the obvious way, and useeal arithmeticsolver avail-
able in order to dispense the proof. Note that this step ingade.
a successful result is correct, but not complete, ie. thiesaser
may not succeed even if a proof exists.
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