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Abstract. A safety property restricts the set of reachable states. In this paper, we
introduce a notion of relative safety which states that certain program states are
reachable provided certain other states are. A key, but not exclusive, application
of this method is in representing symmetry in a program. Here, we show that rela-
tive safety generalizes the programs that are presently accommodated by existing
methods for symmetry. Finally, we provide a practical algorithm for proving rel-
ative safety.

1 Introduction

A safety property restricts the set of reachable states. Let [P] denote the collecting

semantics of a program P with variables X. Thus each sequence X of variable values in

[P] represents a reachable state. A safety property may be simply written as a constraint

W over the variables X. For example, the safety property X +Y < 9 states that in all

reachable states, the values of the program variables X and Y sum to less than 9. If we

Iet the predicate p(X) be true just in case the sequence of values of program variables
K is in [[P], then a safety property may be written in the form p(X) k= W, for example,
p(X,Y) EX4+Y <9.

In this paper, we introduce the notion of relative safety. Briefly and informally, this
asserts that a certain state is reachable provided a certain other state is reachable. Note
that this does not mean that these two states share a computation path. Specifically,
consider the specification of states in the form p(X) A W. That is, we use the constraint
Y to identify the set of solutions of W which correspond to reachable states. Then
our notion of relative safety simply relates two of these specifications in the following
way: p(X) AW = p(Y) AW where W and W' are constraints over X,Y. For example,
P(X1,X2) k= p(Y1,Y2) A X1 = Y2 A X2 = Y1 (or more succinctly, p(Xy, Xz) = p(X2,X1))
asserts that if the state (o, ) is reachable, then so is (B, ), for all values a and B. In
other words, the observable values of the two program variables commute.

Relative safety can specify powerful structural properties of programs. The driv-
ing application we consider in this paper is that of verification with symmetry reduc-
tion. Symmetry has been widely employed for minimizing the search space in program
verification. It is a reduction technique employed in Mur¢ [13] and SMC [21] model
checkers among many others. Symmetry is often defined using automorphisms 1t 0n
the symmetric objects. These induce an equivalence relation between program states.
Efficiency in state exploration is hence achieved by only checking the representatives
of the equivalence classes.

Let us take as an example a concurrent program with two almost identical pro-
cesses, Where process 1 updates the variables PC; and Xz, and process 2, PC, and



X2. Here PC1 and PC, are process 1 and 2’s program counters, respectively. Let us
consider (a,p,y,0) to be values of (PC1,PCy,X1,X2). Classic symmetry “exchanges”
process 1 and 2, that is, 1i((a,B,Y,9)) = (B,a,d,y). A necessary condition for Tt to
be an automorphism is that whenever X is a reachable state, so is 1(X). Such a rela-
tion between X and 11(X) can be logically represented as the relative safety assertion
p(PC1,PCz,X1,X2) = p(PC2,PC1, X2, X1) Where the predicate p, once again, represents
the reachable states of the program. Below we show many more examples of symmetry,
including ones that are not covered by existing techniques.

The main technical part of this paper is a proof method. In its most basic form, the
method to prove the assertion G; = G2 checks that the set of states represented by the
symbolic formula G is reachable, whenever the set G is reachable. This is done by
the basic operation of “backward unfolding” the program’s transition relation. A key
element in our algorithm is the use of the principle of coinduction which is critical for
termination of the unfolding process.

The paper is organized as follows. We discuss some related work in Section 2.
We then formalize the program semantics and the proof method in the framework of
Constraint Logic Programming (CLP) [14], for two main reasons. First, the logical
framework of CLP is eminently suitable for the represntation of our concept of relative
safety, and second, the established implementation technology of CLP systems allow
us to perform unfolding operations efficiently. We introduce some preliminary CLP
concepts in Section 3. Relative safety is then formally defined in Section 4. Here, we
show via several examples, novel ways to realize symmetry. In addition to these, we
will also show a non-symmetry example. Section 5 formally presents our algorithm.
Finally, in Section 6, we demonstrate the use of our prototype implementation on some
classes of programs in order to show the practical potential of our algorithm.

2 Related Work

Existing approaches define symmetry on syntactic considerations. In contrast, our no-
tion of relative safety is based on semantics. An advantage is more flexibility in spec-
ifying a wide range of symmetry-like properties, including many that would not be
considered a symmetry property by the existing methods. One example, shown later, is
a mutual exclusion algorithm with priority between processes. We can handle a wider
range than [7, 20], for example. Importantly, relative safety goes far beyond symmetry
(and below, we demonstrate the property of serializability).

In more detail, symmetry is often defined as a transition-preserving equivalence [8,
3, 13,9, 20], where an automorphism 1, other than being a bijection on the reachable
states, also satisfies that (X,X') is a transition iff (T(X),T(X')) is. Another notion of
equivalence used is bisimilarity [7], replacing the second condition with bisimilarity
on the state graph. These stronger equivalences allows for the handling of larger class
of properties beyond safety such as CTL* properties. However, stronger equivalence
also means less freedom in handling symmetries on the collecting semantics, which we
exploit further in this paper.

In [20], while still defining symmetry as transition-preserving equivalence, they
attempt to handle systems which state graphs are not fully symmetric. The approach
transforms the state graph into a fully symmetric one, while keeping annotation for



while (true) do while (true) do

(0) tl:=t2+1 (0) t2:=t1+1
(1) await (t1<t2 Vv t2=0) skip (1) await (t2<tl v t1=0) skip
(2) t1:=0 (2) t2:=0

end end

Fig. 1. Bakery-2

each transition that has no correspondence in the original state graph. The graph with
full symmetry is then reduced by equating automorphic states. This work is the most
general and can reduce the state graph of even totally asymmetric programs, however,
its application is limited to programs with syntacticly specified static transition priority.

Similar to the work of [20], prior works infer symmetry based on syntactic con-
ditions, such as concurrent program with identical processes or syntactic restrictions
on program statements and variable usage. These also include the scalarset approach
of Murg [13], and the limitation to permutation of process identifiers in SMC model
checker [21]. In contrast, our approach to prove symmetry semanticly for each program
enables us to treat more programs where the semantics is symmetric although the syntax
is not.

An application of our symmetry proof method has been demonstrated in the context
of timed automata verification [16]. This paper presents a generalization and automation
of the method.

There have been many works in the area of verification using CLP (see [11] for
a non-exhaustive survey), partly because it is natural to express transition relations as
CLP rules. Due to its ability in handling constraints, CLP has been notably used in ver-
ification of infinite-state systems [5, 10, 12, 17], although results for finite-state systems
are also available [18, 19]. None of these works, however, deal with relative safety.

3 CLP Representation of Programs

We start by stipulating that each process in a concurrent program has the usual syntax
of a deterministic imperative language, and communication occurs via shared variables.
We also have a blocking primitive await (b) s where b is a boolean expression and s a
program statement, which can be executed only when b holds. A program is a collection
of a fixed number of processes. We provide the 2-process bakery algorithm in Figure 1
as an example. We display program points in angle brackets.

We now introduce CLP programs. CLP programs have a universe of discourse D
which is a set of terms, integers, and arrays of integers. A constraint is written using
a language of functions and relations. They are used in two ways: in the base pro-
gramming language to describe expressions and conditionals, and in user assertions,
defined below. In this paper, we will not define the constraint language explicitly, but
invent them on demand in accordance with our examples. Thus the terms of our CLP
programs include the function symbols of the constraint language.

An atom, is as usual, of the form p(t:) where p is a user-defined predicate symbol
and the f a tuple of terms. The set {p(d)} where p ranges over the predicates and d
ranges over the tuples in D is called the domain base B of our CLP programs.



p([0,0], Ty, T2)«-T1 =0,T> =0. %init
P([1,Po], T{, T2)=p([0,P2], Ty, T2), T{ = T2+ 1. %r1
p([2,P2], Ty, T2)4—p([1, P2], T, 2),(T <TpVT =0). % el
P([0,P2], T{, T2)«=p([2,P2], Ty, T2), T{ = 0. % x1
p([P17 1] Tla )<_p([P17 } Tl7 2)7 I_Tl+1 %r2
p([P1,2], Ty, T2)4=p([P1,1], T1, T2), (T2 <T1\/T1 0). % e2
p([PlaO] T15T2)<_p([Plv } T17T2) T2 = % X2

Fig.2. CLP Representation of Bakery-2

Now, a CLP program is a set of rules. A rule is an implication of the form A < B, ¢
where the atom A is the head of the rule, and the sequence of atoms B and the constraint
@ constitute the body of the rule. We say that a rule is a (constrained) fact if B is the
empty sequence.

Translating a user program Py into an appropriate CLP program P is in fact intu-
itively straightforward; we thus provide only an informal outline here. Our CLP rules
corresponding to a transition of the program will be of the form

P(PC’,X{,X3,...,Xp) < P(PC,X1,X2,...,%Xn), .

Here, PC is a list representing the program counters in the k processes of Py before the
transition. Its primed counterpart PC’ represents the list after the transition. X1, Xz, ..., Xq
and their primed counterparts represent the variables in Py before and after the transi-
tion, while @is a constraint on all the variables. Note that as in the above rule, through-
out this paper we often use a comma in place of A to denote conjunction. The above
rule depicts a transition from rhs to Ihs .

Example 1 (Bakery-2). Consider our 2-process bakery algorithm in Figure 1. Note that
the point (2) indicates the critical section, and initially,t 1 =t 2 = 0. The CLP program
in Figure 2 (the parts preceded by %are comments) is in fact its CLP representation. x

The semantics of a CLP program is based on the concept of ground instances. A
ground instance of a constraint ¢ is obtained by instantiating the variables therein from
D, and the result is true or false. We write this as @o [14] where o : var(@) — D a
grounding. Similarly, a ground instance of an atom or rule is obtained by instantiating
variables therein with values in B using a grounding o. Now consider the fixpoint op-
erator Tp : 2% — 2 for a CLP program P defined as follows: a ground atom Ag is in
Tp(S) if Ao € S or there is a ground instance (A « B, @)o of a rule A « B, @in P such
that Bo C S and o is true. A basic theorem of CLP is that the least fixpoint of Tp is the
least model of P, and this is also equal to the set of ground atoms. We denote this set by
[P]- A ground instance Aa is true iff Ao € [[P]. Similarly, a ground instance (B, g)o of
a goal is true iff Bo C [[P] and o is true. We denote the set of true ground instances of
a goal G by [C].

In general, where P is the CLP representation of Py, we have that the collecting
semantics of Pg is characterized by [P].

4 Relative Safety

We now present an assertion language to express relative safety property, and demon-
strate its expressive power for program reasoning. We start with a definition of a con-
straint state.



Definition 1 (Constraint State). A constraint state is a goal in the form
p(PC,X1,...,Xn),® where PC,X4,...,Xn represent the list of program counters and
program variables, and @is a constraint on the variables.

Now let GL be a constraint state and GR either constraint or constraint state. Let X =
var(Gt) uvar(GR).

Definition 2 (Relative Safety). A relative safety assertion is of the form G =GR
Its meaning is VX : G- — GR that is, for each grounding o such that G-o € [[GL]],
GRo € [GR.

Intuitively, a relative safety assertion specifies that certain states are reachable only if
certain other states are.
Here we start with a traditional safety property, generally of the form:

p(PC,X), 0 | ¢

where @ and ¢ are constraints on the program counter array PC and program variables
X. For example, in the Bakery-2 program, the following assertions specify mutual ex-
clusion.

p([Pl, Pz],Tl,Tz) ': P1 ;ﬁ 2AP ;é 2, or, p([Z,Z],Tl,Tz) IZ false
Now consider a relative safety assertion, stating symmetry for Bakery-2:

P([P1,P2), Ty, T2) k= p([P2, P1], T2, T).

Note that an automorphism must be included in a group with the composition of
automorphisms as its operator [23]. Such a group is known as an automorphism group.
Our idea is to use a set of relative safety assertions to specify possible automorphisms
on reachable states. Note that a single relative safety assertion in general only describes
a partial mapping, while an automorphism is total. In general we need a set of assertions
to describe a total mapping Tt Moreover, equivalence between states is obtained by also
proving a complete set of assertions which represent the mappings in an automorphism
group. This would include inverses, which proof is often straightforward. Suppose that
map(G" |= GR) is the mapping represented by the assertion G- |= GR. Now, as an exam-
ple, the above symmetry assertion for Bakery-2 characterizes an automorphism group
Aut on the collecting semantics as follows:

— We include the obvious map(p([P1,P2],T1,T2) | p([P1,P2],T1,T2)) in Aut satisfy-
ing the existence of identity.

— By simple renaming {Py — P2,P2 — P1, Ty — To, T2 — T1} on the above assertion,
the reverse map(p([P2,P1], T2, T1) = p([P1,P2], T1,T2)) is in Aut satisfying the ex-
istence of inverse.

— ltis straightforward to show that if map(G1 |= G2) € Aut and map(G: = G3) € Aut
then map(G; = G3) € Aut.

We will prove the assertion later in Section 5. We now proceed with several examples.

Example 2 (Rotational Symmetry). Next we demonstrate rotational symmetry in the
solution of N dining philosophers’ problem using N — 1 tickets. For simplicity, we as-
sume there are N=3 philosophers having ids 1, 2 and 3, and there are 3 forks represented
as boolean array f, where f[ 1], f[ 2], f[ 3] are forks between philosopher 3 and 1, 1



while (true) do while (true)

(0) await (x2 = 0) x1 :=1 (0) x2 :=1
(1) skip (1) await (x1 = 0) skip
(2) x1:=0 (2) x2:=0

end end

Fig. 3. Priority Mutual Exclusion

p([0,0],0,0).
p([1, P2, 1 , %2)<=p([0,P2], X1, %X2), X2 = 0. P([P1,1], X1, 1)4=p([P1,0], X1, X2).
p([27P2] X17X2)<_p([1 PZ] X17X2) p([PlaZLX17X2)<_p([Pl71]7X17X2)7X1:0'
P([0,P2],0,X2)+=p([2, P2], X1, X2)- P([P1,0],X1,0)4=p([P1, 2], X1, X2)-

Fig. 4. CLP Representation of Priority Mutual Exclusion

and 2, and 2 and 3, respectively. Initially the ticket number t =2. To save space, we
do not show the actual code. For our purpose it is suffice to demonstrate the rotational
symmetry as the assertion:

P([P1,P2,Ps],F1, 2, F3, T) = p([Ps, P1, P2), Fs, F, B2, T),
where P; denotes the program point of philosopher i, F1, F and F3 are the values of f [ i] ,
1 <i <3, respectively, and T is the number of tickets left. The above assertion specifies
a cyclic shift. For this example, arbitrary transposition does not result in automorphism.

Example 3 (Permutation of Variable-Value Pair). In [16] we discussed a timed au-
tomata version of Fischer’s algorithm, a timing-based mutual exclusion algorithm. The
pseudocode can be found in [1] and is not presented here to save space. The algorithm
uses a global variable k whose value is the process identifier of the process that is about
to enter the critical section. This is translated into a variable K in our CLP representa-
tion (also not shown here). Since the example uses timing, our CLP representation for
the 2-process version uses the variables T and T2, denoting the running time of each
process. Our symmetry assertion here is

p([Pl’ P2]7T15T2, K) ': p([P27 Pl],T21T1, K,),(pa
where @constrains (K,K’) to (0,0), (1,2) or (2,1). This is called permutation of variable-
value pair [20] since it maps the value of a variable onto a new one without exchanging
it with another variable. This is not covered by some previous approaches such as [13,
21].

Example 4 (Priority Mutual Exclusion). We can also express the kind of “approximate”
symmetry, as exemplified by the simple 2-process priority mutual exclusion in Figure 3.
Each process has (2) as the critical section. Initially, the values of both x1 and x2 are 0.
We show the CLP representation in Figure 4. This example is semantically similar to the
asymmetric readers-writers in [6] and the priority mutual exclusion in [20]. Although
the state graph of the program is not symmetric, the state space, i.e. the set of nodes in
the state graph, is, and knowing this is already useful to prove safety properties such as
mutual exclusion. We can represent the symmetry on the state space simply as:

p([Pl’ PZ],X]_,XZ) 'Z p([P27 Pl],XZ,X]_)-
It is not immediately obvious that the program is symmetric based on syntactic obser-
vation alone.



while (true) do while (true) do

(0) x1:=1 (0) x2:=1
(1) await(x2<3) skip (1) await(x1<3) skip
(2) x1:=3 (2) x2: =3
(3) if (x2=1) do (3) if (x1=1) do
(4) x1:=2 (4) X2: =2
(5) await(x2=4) skip (5) await(x1=4) skip
end end
(6) x1: =4 (6) x2: =4
(7) skip (7) await(x1<2) skip
(8) await(x2<2vx2>3) skip (8) skip
(9) x1: =0 (9) x2:=0
end end

Fig. 5. 2-Process Szymanski’s Algorithm
p([0,0],0,0).% Initial State
% Rules for Process 1

% Rul es for Process 2
P([L,P2], 1, X2)4=p([0, P2], X1, X2).-

P([P1, 1], X1, 1)4=p([P1, 0], X1, X2)-

EEE,Pz}’;(1;(2()23_:?[(2[1'3;2])()1(,1;()2()2) P23 ([P, 2], X, Xo) ([P, 1], Xg, Xo), X < 3.
P4, P2 X0, X0) B3, P2 X, 00) o = 1. b S SLONC PORLEDAE.
p([SaPZ]vz X2)<—p([4,P2],X1,X2). p([ b Lxl,z )<_p(P[ b ]X l;( 2), 1=
P16, Po] X1, 06) P, P, X0, 30) o 1. PEvel T s PURL AL
p([G,P2],X1,X2)(—p([5,Pz],X]_,XZ). p([ . LXl,x )<_p([Pl, ]Xl’XZ), l?é '
p([7,Pa], 4, %)« p([6, P2], X1, Xo). P([PL, Lxl i )<_p(F[> 1) ]X 1;( 2).

(8, P, X, Xo) < p([7, Pol, Xa, Xe). PR T XL PO Xa).
p([97P2] Xl,X2)<—p([8,Pz],X1,X2), p([ 1, L 1) )<_p([ 1 ] 1, 2)7 1< 2.
(X <2\/X2>3) p([ 1 Lxl X; )<_p([Plv ] X17X2)-

: P([Py, 0], X1,0)4=p([P1,9], X1, X2).

P([0, P2],0,X2)4=p([9, Po], X1, X2).
Fig. 6. CLP Representation of Szymanski’s Algorithm

Example 5 (Szymanski’s Algorithm). Szymanski’s algorithm is a more complex priority-
based mutual exclusion algorithm which is commonly encountered in the literature. We
show the pseudocode in Figure 5. Its CLP representation is in Figure 6.

Roughly speaking, since the algorithm is based on prioritizing Process 1 to enter
the critical section (8), it is not possible for Process 2 to be in the critical section while
Process 1 is at its trying section. For example, the following does not hold:

P([8,7],X1,X2) = p([7,8], X2, X1)-
It is because the program points [8, 7] are reachable while [7,8] are not. In other words,
there is a grounding for the lhs goal, but no grounding for the rhs goal. Therefore, a
simple symmetry assertion such the one given in the bakery algorithm does not hold.
However, the following “not-quite” symmetry assertions still hold:

P([8,P2],X1,X2),P2 < 3 |= p([P2,8], X2, X1).
P([8,P2],X1,X2),P2 > 7 |= p([P2,8], X3, X1).
P([9,P2], X1, X2),P2 # 7 |= p([P2,9], X2, X1).
P([P1, P2, X1,X2),P1 # 8,P1 # 9 |= p([P2, P1], X2, X1).
At first it seems that the above assertions no longer defines an automorphism group
since p([P1,8],X1,X2),3 < Py <7 |= p([8,P1],X2,X1) can be derived from the last as-



Consuner : Producer:

while (true) do while (true) do
(0) await (full=1) full:=0 (0) proa() (1) ... (n—1) prop()
(1) cong() (2) ... (n) conp() (n+1) (n) await (full=0) full:=1 (n+1)
end end

Fig. 7. Producer/Consumer
p([0,0],0,X).% Initial State

% Consuner % Pr oducer

p([1,P2],0,X) + p([0,P2],1,X). p([P1,1], Full,X) + p([P1,0], Full, X).
p([2, P2], Full,X) < p([1,P], Full,X). p([Px1, n}, Full,X) < p([P1,n— 1], Full, X).
p([n7P2]7Fu”7X) ~ p([n_17 P2LFUI|7X)' p([Plan+l]7FUI|7X) — p([Plan]vFu”’X)'
p([0, P2], Full,X) < p([n, P2], Full,X). p([P1,0],1,X) « p([P1,n+1],0,X).

Fig. 8. Partial CLP Representation of Producer/Consumer

sertion, yet the inverse does not hold. However, by observation the assertion p([P1, 8],
X1,X2) EP1 < 3V Py > 7 holds since it is not possible for process 2 to be in the criti-
cal section while process 1 is waiting. Similarly, p([P1,9],X1,X2) = P1 # 7 also holds.
These impose restrictions on the last assertion above.

We are not aware of any verification technique that would allow us to express and
use this kind of symmetry.

Example 6 (Serializability). We next discuss an application of relative safety assertion
beyond symmetry. We show a producer/consumer program in Figure 7, which CLP rep-
resentation is in Figure 8. The macros cong() and proj(), abstract program fragments
that serve to produce and consume respectively. We will imagine that apart from the
variable f ul | there are other variables x which may be used in cony() and pro;().

Consider the assertions:

p([n +1, PZ], FU", f(X)), P2<n ': p([la PZ], FU”,X)

p([Pla n],FU”,g(X)),P]_ >1 ': p([P]_,O],FU”,X)
where the expression f(X) and g(X) are the results of performing coni() ... conp()
and proa() ... pron() respectively on X. Then the assertions say that the result of
performing the interleaving of cony() and proj() macros, 1<k<P;—1,1<I<Pyis
as though the two sequences of transitions are serializable. Note that here we still have
an automorphism group which contains the above assertions and their inverses.

Both symmetry and serializability are examples of non-behavioral properties, i.e.,
properties determined by the structure of the program. They are not necessarily related
to the intended result of the computation. Relative safety is potentially useful to specify
many other useful non-behavioral properties, possibly ad-hoc and application specific.
The class of such properties is potentially large. It is intuitively clear that such infor-
mation can help in speeding up the proof process of other properties, which we will
demonstrate later.

5 TheProof Method

Now let G = (B1,...,Bn,@) and P denote a goal and program respectively. Let R =
A < Cyq,...,Cm, @1 denote a rule in P, written so that none of its variables appear in



G. Let the equation A = B be shorthand for the pairwise equation of the corresponding
arguments of A and B. A reduct of G using R, denoted by reduct(G,R), is of the form

(Bl,...,Bifl,Cl,...,Cm, Bi+1,...,Bn,Bi = A/\(p/\ (p_|_)
provided the constraint B; = AA @A @ has a true ground instance. Since the CLP rules
are implications, it follows that G < reduct(G, R) holds.

Definition 3 (Unfold). Given a program P and a goal G which contain one atom,
a complete unfold of a goal G, denoted by unfold(G) is the set {G'|IR e P: G’ =
reduct(G,R)}. A (not necessarily complete) unfold of G is a set unfold’(G) C unfold(G).

Note that since [G] # 0 only if G N Tp([[\Vunfold(G)]]) # 0, and this holds only if
[V unfold(G)] # 0, we have the logical semantics of unfold: G — \/ unfold(G).

Definition 4 (Unfold Tree Goals). Given a program P and a set H of goals each con-
tain one atom, we define the function 3(H) = H Uunfold’(G1), when G1 € H. We obtain
a set of unfold tree goals of G by a finite successive applications of 6 on {G}.

Since for any goal G, G <« reduct(G,R), for any goal G; in the unfold tree goals of G,
G]_ — G.

Definition 5 (Frontier). Given a program P and a set H of goals which contains one
atom, when there exists G; € H, we define the nondeterministic function e(H) = (H —
{G1}) uunfold(G1). €() can be successively applied to a singleton set containing an
initial goal G obtaining a frontier F = &(... (¢({G}))...).

From the logical semantics of unfold, for any frontier F of G, G — \/F.

Intuitively, in order to prove G- |= GR, we proceed as follows: unfold G- completely
to obtain a frontier containing the goals Gk,...,Gk, and unfold GR (not necessarily
completely) obtaining unfold tree goals G?, ...,GR This is depicted in Figure 9. Then
the proof holds if

Giv...VvGL | GRV...VvGR
or alternatively, if G- = GRv...vGR forall 1 <i < n. The justification for this
result comes from the logical semantics of unfold: we have that G- — G& V...V Gh,
and GJR — GRforall jsuchthat 1 < j < m. By achain of implications we may conclude
Gt =GR

More specifically, but with some loss of generality, the proof holds if

Vi:il<i<n3j:1<j<m:Gp E GR
and for this reason, our proof obligation shall be defined below to be simply a pair of
goals, written G |= GF.

Note that since we replace the global satisfaction criterion by local criteria, our
proof method is therefore incomplete in cases where we need to perform some unfolds
of GR, that is, when proving relative safety assertions. Unfold of GR is not needed for
proving traditional safety assertions.

Our proof method can also be viewed as checking that the set of states represented
by the symbolic formula GR is reachable, whenever the set G- is reachable. This is
done by showing that a frontier of states that reach G also reaches GR. If G is to
be reachable from the initial state, it must be through at least one of the states in this
frontier. And since from all states in the frontier GR is reachable, GR must also be
reachable from the initial state.



G = GR

Partial
Full Unfold
Unfold S L
. ) o To Prove:
1 GiV...VGi =
GRV...VGR

Coinduction

G[,G5 ... Gf

Fig. 9. Informal Structure of Proof Process
5.1 Proof Rules

We now present a calculus for proving relative safety assertions. To handle the possibly
infinite unfoldings of G* and GR (see Figure 9), we shall depend on the use coinduction
for the unfolding of G\.

Proof by coinduction proceeds by assuming everything we like as long as we do
not violate any facts. While assuming a set of assertions of the form G- = GR collected
along an unfold path, we prove another assertion on the path, making it unnecessary to
unfold the path further. For the use of coinduction, we now give the following definition.

Definition 6 (Proof Obligation). A proof obligation is of the form ArGt =GR, where
Gt and GR are goals and A is a set of assertions that are assumed.

The role of proof obligations is to capture the state of a proof. The set A contains asser-
tions that can be used coinductively to discard the proof obligation at hand.

Our proof rules are presented in Figure 10. Each rule operates on the (possibly
empty) set of proof obligations I, by selecting a proof obligation from I and attempting
to discard it. In this process, new proof obligations may be produced. The proof process
is typically centered around unfolding the goals in proof obligations.

The left unfold and coinduction (Lu+c) rule performs a complete unfold on the
Ihs of a proof obligation, producing a new set of proof obligations. The original asser-
tion, while removed from I1, is added as an assumption to every newly produced proof
obligation, opening the door to using coinduction in the proof.

Example 6 (Proving Symmetry). We exemplify our proof rules using a proof of a sym-
metry property of the 2-process bakery algorithm (Figure 2):

P([P1,P2], T1, T2) |= p([P2, P1], T2, Ta)- D)

Initially, M = {0+ p([Py,P2],T1,T2) |= p([P2,P1], T2, T1) }.

Using the rule Lu+c, and all the CLP rules of Figure 2, we perform a left unfold
of G = p([P1,P2], T1, T2), obtaining a new set of proof obligations IM’. In particular, by
the unfold of CLP rule r 1, M’ includes the obligation (O1):

A+ p(IPL, P2, T, T2),PL="1,P = 0,Ts = T2+ L |= p([P2,P], T2, Ta),
where A" = {p([P1,P2], T1, T2) [= p([P2,P1], T2, T1) }.
By the unfold of CLP rulei ni t, M’ also includes the obligation (02):



A+ P]_ = P2 = O,Tl = T2 =0 ': p([Pz, Pl],Tz,Tl).

Other than these two obligations, M’ also includes the result of unfolding using the rules
el, x1,r2,e2,and x2.

The rule right unfold (Ru) performs an unfold operation on the rhs of a proof obli-
gation. Note that only one unfolded goal is used. Now, in practice, it is generally not
known which reduct GR of GR is the one we need later, or indeed if GR itself is needed
later.

Returning to our example, by unfolding GR = p([P», P1], T2, T1) of (O1) using proof
rule RU and CLP rule r 2 of Figure 2, we obtain M” which includes (03):

A p([Pia PZ]’TJ{’TZ)’Pl = l,Pi = OaTl =Tr+1 ':

p([PZa P1,]5T27T]{l)7 Pl = 17 Pil = OaTl = T2+ 1
Similarly, by unfolding the rhs of (02) using Ru and the CLP rule i ni t, we obtain 1"
which includes the obligation (04):

A’I—P1:PZ:O,leTZ:O|:P1:P2:0,T1:T2:0.

The rule assumption proof (AP) transforms an obligation by using an assumption,
and realizes the coinduction principle (since assumptions can only be created by the
rule (LU+C)).

Continuing our example, we can now immediately prove (O3) by rule AP, and ap-
plying the original symmetry assertion (1) which is included in the set of assumed
assertions A’ of (03). More concretely, we apply (1) to the Ihs of (O3) obtaining the
goal p([P2,P{], T2, T{),P1 = 1,P; =0, Ty = T, + 1, which clearly implies the rhs of (O3)
by renaming of each double primed variables to its single primed version.

The rule direct proof (DP) discards a proof obligation when it can be directly proven
that it holds, possibly by some renaming of variables. This rule is used to discharge
(04), since it is immediately clear that it holds. The renaming 0 that we apply here is
the identity.

Finally, the rule split (SPL) converts a proof obligation into several, more specialized
ones.

Given an assertion G- |= GR, a proof shall start with M = {A + G- = GR}, and
proceed by repeatedly applying the rules in Figure 10 to it. The conditions in which a
proof can be completed are stated in the following theorem.

Theorem 1 (Proof of Assertions). A safety assertion G- |= GR holds if, starting with
the proof obligation M = {0  G' |= GR}, there exists a sequence of applications of
proof rules that results in M = 0. The safety assertion holds conditionally on A if we
start with [ = {A+ G |= GR}, where A £ 0.

Our proof method can be used to prove traditional safety assertion G- = W, to prove
relative safety assertion G- = GR, where GR contains an atom, and to prove traditional
safety assertion using other assertions, e.g., relative safety assertions representing sym-
metry, possibly obtaining smaller proof. For the last use we start a prove of traditional
safety assertion with a non-empty set of assumed assertions.

The proof rules above are sufficient in principle for our purposes. However, there
is a very important principle which gives rise to an optimization: redundancy between
obligations which essential idea is based on the observation that in proving G- = GR,
we may obtain a goal G} by a sequence of unfolds from G, and prove the obligation
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(sPL) QLV...VQistrue.

Gh |= GR. Using this we can try to establish GJ-L,(p = GR in another part of the tree,
where i # ], where there exists a renaming 6 such that GjL = GL6. Here, we reuse the
proof of G- |= GR in the proof of G}, @ = GR.

A fundamental question in proving relative safety assertion G- = GR in general, is
how to interleave the unfolding of the lhs versus the rhs. For this we can repeatedly
apply left-unfolding on G- either until “looping”, that is, until each path in the tree
contains a repeated occurrence of a program counter, or the final goal of the path is a
constraint. This is because coinduction is likely to be applicable at a looping point.

6 Implementation and Experiments

We implemented our proof algorithm as regular CLP(R) [15] programs. Our prototype
implementations use coinduction, and a tabling mechanism for storing assumed asser-
tions. We run our prototypes using a 2 GHz Pentium 4 Xeon machine with 2 GB of
RAM.

Our first prototype is for proving relative assertions. Here we hope that the symme-
try proof using coinduction concludes in just 1 level of unfold of both Ihs and rhs of
the assertion, because this is the case for perfectly symmetric programs. These include
bakery algorithm and dining philosophers’ problem. In these examples, every transition
from state s to t has its symmetric counterpart that maps 11(s) to the Ti(t), where Ttan au-
tomorphism of states. Our implementation therefore first tries to check goals obtained
from 1 level of both lhs and rhs unfold. For each goal in the Ihs frontier, it tries to search
for a goal in the rhs of depth 1, such that the original symmetry assertion is applicable
coinductively. Where the proof does not conclude in this manner, we have a program
with imperfect symmetry, such is the case with the simple priority mutual exclusion
and Szymanski’s algorithm. In this case, general depth-first traversal of Ihs subtree is
initiated. For producer-consumer problem, we do not perform any lhs unfolding.



| Problem [A#[LSt[RSt] T | | Problem [A#[LStfRSt| T |

Bakery-2 11927 | 0.00 Philosopher-4| 1 |24 | 232 |0.02

Bakery-3 | 2 |44 |254| 0.10 Priority |1 43| 220 |0.04

Bakery-4 | 3 |147|1557| 11.28 Szymanski-2 | 8 (362(28419(59.11

Bakery-5 | 4 |424|7804|2320.3 Szymanski-3 (16| oo | oo ]

Bakery-6 | 5| o | o o Prod/Cons-10| 2 | 0 | 170 |0.19

Philosopher-3| 1 | 19 | 124 | 0.01 Prod/Cons-20[ 2 | 0 | 530 | 1.88
Table 1. Relative Safety Proof Experimental Results

Experimental results in proving relative safety assertions are shown in Table 1,
where A#=number of verified assertions, LSt=number of visited lhs goals, RSt=number
of visited rhs goals, and T=time in seconds. In ProblemName-N, N denotes the num-
ber of processes, except for Prod/Cons-N where N denotes that there are N produce
and consume operations. Note that we could not complete the experiment for 6-process
bakery algorithm and 3-process Szymanski’s algorithm after a few hours.

We also implemented a second prototype to prove safety assertions of the form
G = false with or without assumed relative safety assertions (e.g., symmetry). G = false
declares non-reachability of error states G.

A coinductive verification requires matching between the goal in an assertion and
an assumed assertion such that the said assertion can be proven coinductively. As is
common in the literature, for verification using symmetry we need to define a set of
canonical representatives of the equivalence class of goals induced by given symmetry,
such that the matching can be done efficiently among representatives. Unfortunately,
finding all the canonical representatives of a goal is a hard problem known as the orbit
problem [2]. Our solution here is to try to generate canonical representatives of a goal
only up to a constant number, and we employ a sorting algorithm as our canonicalization
function. We note, however, that canonicalization is not hard for dining philosophers’
problem since for this problem it is a cyclic shift which is linear to the permutable
domain size (cf. [2]). Also that neither sorting nor cyclic shift is necessary when using
serializability assertions.

The results are shown in Table 2 (a). The proof of traditional safety does not require
right unfolding, hence there is no column for RSt value. We ran the bakery, Peterson’s,
Lamport’s fast mutual exclusion and Szymanski’s algorithms proving mutual exclu-
sion. Note that we do not prove the symmetry assertions of some of the problems (e.g.,
Szymanski-3). For the dining philosophers’ problem, we prove that there cannot be
more than N /2 philosophers simultaneously eating. For the producer-consumer prob-
lem, each proj() increments a variable x, and conj() decrements it. Here we verify
that the value of x can never be more than 2n.

Bakery algorithm has infinite reachable states, and therefore cannot be handled by
finite-state model checkers. We compare our search space the results of the CLP-based
system of Delzanno and Podelski [4]. As also noted by Delzanno and Podelski, the
problem does not scale well to larger number of processes, but using symmetry, we
have pushed its verification limit to 7 processes without abstraction.

In Table 2 (b) we summarize the effectiveness of the use of a variety of rela-
tive safety assertions. The use of symmetry assertion effectively reduces the search
space of perfectly symmetric problems (bakery, Peterson’s, Lamport’s fast mutex, din-
ing philosophers). However, the reduction for Szymanski’s algorithm is competitive



CLP/Coinductive Tabling |Delzanno- Problem |% Reduction
Problem | No Assertion | W/ Assertion | Podelski Type LSt] T

LSt ‘ T LSt | T # Facts Bakery |76%)| 78%
Bakery-2 15 | 000 | 8 0.00 13 Peterson [95%] 99.9%
Bakery-3 | 296 | 0.07 | 45 | 0.01 109 Lamport [67%| 65%
Bakery-4 |4624| 6.60 | 191 | 0.20 963 Szymanski [68%| 83%
Bakery-5 00 0 677 | 2.88 Philosopher|36%| 53%
Bakery-6 00 o | 2569 | 49.08 Prod/Cons [87%| 94%
Bakery-7 00 o |11865(1052.32 (b) % Reduction

Peterson-2 | 105 | 0.05 | 10 | 0.00
Peterson-3 |20285(119.03| 175 | 0.15
Peterson-4 00 o 3510 | 11.98
Lamport-2 | 143 | 0.02 | 72 0.02
Lamport-3 | 4255 | 1.13 | 707 | 0.40
Lamport-4 00 o |5626| 7.63
Szymanski-2 | 240 | 0.08 | 84 | 0.02
Szymanski-3 |10883| 35.43 | 3176 | 2.91
Philosopher-3| 882 | 0.51 | 553 | 0.30
Philosopher-4| 4293 | 27.77 | 2783 | 9.67
Prod/Cons-10| 664 | 0.10 | 171 | 0.02
Prod/Cons-20| 2314 | 1.90 | 331 | 0.04
(a) Stored Assertionsand Time

Table 2. Safety Proof Experimental Results

with perfectly symmetric problems, showing that “not-quite” symmetry reduction is
worth pursuing. The use of rotational symmetry in the dining philosophers’ problem
is, expectedly, less effective. We also note that we managed to obtain a substantial re-
duction of state space for the producer/consumer problem. Reduction in time roughly
corresponds to those of state space.

Finally, comparing Table 1 and 2, the proof of relative safety assertions are no easier
than the proof of traditional safety assertions, even with coinduction. This is because of
the need to perform rhs unfold when proving relative safety.

7 Conclusion

In this paper, we introduced a novel assertion called relative safety. This can be uniquely
used to assert structural properties of programs. We chose a driving application area of
symmetry, and demonstrated that, by using relative safety, we could accommodate a
larger class of programs than have been previously considered by other means. We
provided a proof system, based upon well understood computational steps of unfolding,
and introduced a new coinductive tabling mechanism. We then ran some experiments in
order to show the practical potential of our algorithm. Further work is to discover more
important classes of structural properties for which relative safety can be used.
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