
Summarizations for Symbolic Executions

JOXAN JAFFAR, ANDREW E. SANTOSA and RĂZVAN VOICU

School of Computing
National University of Singapore

Republic of Singapore
{joxan,andrews,razvan}@comp.nus.edu.sg

Abstract
Consideration of execution paths is basic in program analysis and
verification because it represents the process of exact propagation
through the program fragment at hand. This is challenged by the
fact that there are exponentially many paths in general. In this pa-
per, we consider a straight-line program fragment annotated with
initial and final assertions, and present an optimization technique
for this problem based on the use ofsummarizations: partial de-
scriptions of the input-output behavior of a program fragment. The
main advantage of a summarization is that, during program reason-
ing, invocations of the program fragment using different contexts
may be handled by the one summarization.

The key idea is a method for deriving summarizations dy-
namically. Traditionally, summarizations are sought for predefined
procedures. In contrast, we compute, opportunistically and on-the-
fly, summarizations of arbitrary program fragments. The objective
is to to discover its most general form, and to discover its most
specific conclusion. This enhances the likelihood that the summa-
rization is both frequently applicable and effective in future.

1. Introduction
We consider the problem of exact propagation through a loop-free
program fragment with respect to given initial and final assertions.
This is tantamount to examining the execution paths of the program
fragment. Traditionally, a final assertion is a predicate onvariable
values at the end of the program fragment. The objective thenis
a safetyproof of the final assertion. The main challenge toward
this goal is that there is in general a large number of possible
execution paths of the program fragment that need be considered.
A main advantage, however, is that proofs of larger programscan
be composed of smaller safety proofs once they are obtained1. In
other words, the final assertion serves to culminate the proof of
one program fragment into an assertion to be used for the proof of
another fragment.

In this paper, we start by a generalization of the problem: given
an initial assertion for a program fragment,discoverwhat the final
assertion is. Typically, the final assertion is an abstract description
of the input-output behavior of the program fragment. For example,

1 For loops, we of course also need to deal with invariants.

[Copyright notice will appear here once ’preprint’ option is removed.]

we could discover a bound for a given variable, or, in the tradition
of predicate abstraction [5], which finite subset of a universe of
predicates hold. In general, the abstract formulation of the final
assertion also serves, as in the traditional case of a safetyproof, to
culminate the proof of a program fragment into a simple assertion
that can then be used in a bigger proof.

The key to our algorithm is the use ofsummarizations. A sum-
marization is a partial description of the input-output behavior of
a program fragment. A program fragment may be executed under
differentcontexts, that is, the program state under which the frag-
ment’s execution begins. This is because the start of the fragment
may be reached via various execution paths. A key advantage of a
summarization is that, during analysis, invocations of theprogram
fragment using different contexts may be handled by the one sum-
marization, without the need to re-analyze the program fragment
for the various contexts. The main challenge in obtaining summa-
rizations, however, is twofold: to discover its most general form,
and to discover its most specific conclusion.

In this paper, we present a method for deriving summarizations
dynamically. Traditionally, summarizations are sought for prede-
fined procedures. In contrast, our method computes, opportunisti-
cally and on-the-fly, expressive summarizations of arbitrary pro-
gram fragments. Our method can thus be used to augment an exist-
ing analysis algorithm, which may or may not use a given abstrac-
tion function, to perform a symbolic exploration of the state space
with greater efficiency.

As an illustration, consider a programP0 with the objective
to summarize a certain program fragmentP of P0. The fragment
P is in fact invoked several times with different contexts when
executingP0. As a trivial example, suppose the program fragment
P wereif (x == 0) count++, and that we were just interested
in the variablecount. A summarization ofP would state that
the final valuecount′ of count, is equal tocount+ 1 in case the
context impliedx = 0; otherwise, the summarization would state
thatcount′ = count. However, it is often the case that the number
of contexts that need be considered is much smaller. Consider
generalizing the above example to a series ofn if-statements. Then,
even if the number of contexts arising from executing the fragment
is 2n, there are in fact onlyn possible outcomes for the final value
count′. Continuing this example, suppose that we were interested
in just the bound forcount, as opposed to its precise value. The
summarization could then say thatcount is incremented by at
most 2,regardlessof the context. In general, the challenge is to
coordinate the hypothesis and the conclusion of a summarization
so that it is just expressive enough to obtain the final discovery.

After presenting the main ideas informally in the next section,
we will present a framework for representing computation trees of
symbolic traces. Each trace contains a set of constraints represent-
ing both the history and the set of program states under consider-
ation. An important property of the framework is that it is compo-

1 2007/12/13

sitional, crucial to the reasoning about the effects of contexts on
program fragments. We then present the main algorithm whichis
based on the operation of constraint deletion. We finally demon-
strate the algorithm on several benchmark examples.

1.1 Related Work

There have been approaches in using summarization for program
analysis. In this section we discuss their representatives.

Summarization is typically applied to syntactically identifiable
program fragments, such as blocks, procedures or transactions in
the presence of concurrency. An example for procedures can be
found in [3], which presents an approximation method for the
semantics of recursive procedures. Similarly, [18] presents ap-
proaches to interprocedural dataflow analysis of sequential pro-
grams, where one is based on summarizing each procedure into
an input-output relation, which, in the process of program analy-
sis, can replace the procedure at each call location. Similar to our
approach, in [16], summarization is performed on the fly. How-
ever, this work only summarizes procedures, not arbitrary program
fragments, as input-output functions. By focusing only on dataflow
analysis problems (which in a sense defines a finite abstraction), it
provides a polynomial-time analysis algorithm. The paper [1] con-
cerns predicate-abstraction, that is, procedures are abstracted with
a predicate which represents input-output relations of thefunction.
In [15], a method for summarizing procedures in concurrent pro-
grams is presented. What is actually summarized is atransaction, a
sequence of statements of a thread which consists of, for example,
a sequence of lock acquisitions, shared data updates and lock re-
leases, and hence can be treated as atomic. A transaction mayspan
across a procedure boundary. A summarization already created can
be reused whenever the thread is to invoke the transaction.

In summary, our approach differs mainly in that summarizations
are computed opportunistically and on the fly, for arbitraryprogram
fragments. A key feature is that our summarization is exact in the
sense it describes the strongest postcondition of the fragment at
hand.

Our work is also related to the areas of program verification,
model checking and theorem proving. There are two main similar-
ities. One is that we employ search. Recently, an important alter-
native to proving safety of programs is to translate the verification
problem into a boolean formula that can then be subjected to aSAT
[2] or SMT [11] solver At the heart of these solvers is a DPLL-
based algorithm for traversing the solution space. In our work, we
use a symbolic transition system which generates formulas on-the-
fly in the search for solutions.

The second similarity is in the way we generalize a formula
while preserving certain critical properties. This is analogous to
the notion ofCraig interpolation, which generally seeks the most
liberal hypothesis for a given conclusion. The use of such inter-
polants is now an important component of model checkers [13]and
theorem-proving [14]. In fact, our algorithm generalizes aformula
in case the new formula can be shown to have a similar search pro-
file to a previous search. In more detail, our formulation shares
similarity with the specific method of generalization of finding a
minimal unsatisfiable subset of an unsatisfiable formula. See eg.
[4].

2. The Basic Idea
In this section we illustrate, by means of a simple example, the
principles of our optimization technique.

Consider the program fragmentP

〈0〉 if (b1) x := x + 1 else x := x + 2
〈1〉 if (b2) x := x + 3 else x := x + 4 〈2〉

and suppose we are interested in producing a summarization of
this fragment, which is an abstract input-output description. An
analysis procedure would then be able to use such a description
directly, instead of traversing the program fragment to compute an
analysis for program point〈2〉. Since in the analysis process the
need to traverseP may arise multiple times, the availability of a
summarization would make the process more efficient.

A summarization can be produced with a variety of purposes
in mind. The first, and most straightforward, is proving a safety
property, which translates into checking whether the program frag-
ment’s output state satisfies a given abstraction across allits (ab-
stract) input contexts. A second, and more sophisticated purpose
is the discovery of an abstract property over a (possibly infinite)
abstract domain. Such a summarization would be very useful,for
instance, in computing worst case execution times of program frag-
ments. We shall illustrate both these approaches in the remainder of
this section. To that end, let us first introduce the requiredterminol-
ogy. We shall symbolically describe a set of states in the form

(k, x̃),Ψ

wherek denotes the program counter, the sequence ˜x denote pro-
gram variables2, andΨ is aconstraintor conjunction of constraints
on these variables. Call such an expression(k, x̃),Ψ a (symbolic)
programstate. The semantics of such a state is simply the set of
instances of(k, x̃) for which the constraintΨ is true. In this exam-
ple, x̃ containsx, and possibly other variables, and the expressions
b1 and b2 are some unspecified boolean conditions unconnected
to x. WhereG is a state(k, x̃),Ψ, we writecons(G) to denote the
constraintsΨ in G .

A notion of “strongest postcondition” can now be obtained.
Consider an initial state

G ≡ (0,x0),x0 = 0

wherex0 is indicates the initial value of program variablex (zero,
in this case). This state can be propagated through thethen branch
of the first statement yielding

G0 ≡ (1,x1),x0 = 0,b1,x1 = x0 +1

and a final propagation through the secondthen branch yields

G00 ≡ (2,x2),x0 = 0,b1,x1 = x0 +1,b2,x2 = x1 +3

Note that, since the value of program variablex has changed
throughout the propagations, the symbolx0 in G has been replaced
by x1 in G0, and the symbolx1 in G0 has in turn been replaced by
x2 in G00. Since this stateG00 is final, we shall callx2 a “final”
variable. The symbolsx0 andx1 that appear inG00 still refer to
the value ofx at program points 0 and 1, and becomeauxiliary
variables in the stateG00.

The propagation operation is defined on all edges of the pro-
gram’s control flow graph. For instance, we could propagateG
along theelse branch of the first statement to produce a stateG1.
Moreover, we could regardG0 andG1 as children ofG in acompu-
tation treeof G w.r.t. the programP. Further strongest postcondi-
tion propagation steps can be applied toG0 andG1 resulting in the
statesG00, G01, G10, andG11. This computation tree is depicted
in Figure 1.

The process of building such a tree proceeds depth-first, produc-
ing the first sequence of statesG , G0, G00. The last state cannot be
further propagated, and since the constraints attached to this state

2 We use the termprogram or system variableto refer to variables that
appear in imperative programs and whose values may change throughout
a program’s execution. We use the termvariable to refer to logic variables,
which are interpreted as placeholders for values. A (logic)variable may be
used to represent the value of a program variable at a specificprogram point.

2 2007/12/13

G ≡ (0,x0),x0 = 0
G0 ≡ (1,x1),x0 = 0,b1,x1 = x0 +1

G00 ≡ (2,x2),x0 = 0,b1,x1 = x0 +1,b2,x2 = x1 +3
G01 ≡ (2,x2),x0 = 0,b1,x1 = x0 +1,¬b2,x2 = x1 +4

G1 ≡ (1,x1),x0 = 0,¬b1,x1 = x0 +2
G10 ≡ (2,x2),x0 = 0,¬b1,x1 = x0 +2,b2,x2 = x1 +3
G11 ≡ (2,x2),x0 = 0,¬b1,x1 = x0 +2,¬b2,x2 = x1 +4

Figure 1. Computation Tree

G0 ≡ (1,x1),x1 ≤ x0 +2
G00 ≡ (2,x2),x1 ≤ x0 +2,b2,x2 = x1 +3
G01 ≡ (2,x2),x1 ≤ x0 +2,¬b2,x2 = x1 +4

Figure 2. Generalized Computation Tree

are satisfiable, we call this node of the treesuccessful. Hence, the
sequence of statesG , G0, G00 (the “leftmost” path) represents a
feasible computation path, and each solution to the stateG00 is
a tuple of legal values for the corresponding program variables at
program point 2.

The depth-first traversal continues with propagatingG0 to pro-
gram point 2, yielding the stateG01. Suppose for a moment that
the constraint¬b1,¬b2 is in fact unsatisfiable. Then the sequence
of statesG ,G1,G11 (the “rightmost” path) encodes an infeasible
computation to thefalsestateG11.

The computation tree depicted in Figure 1 provides an accurate
description of program fragmentP’s behavior, and represents the
backbone of our summarization technique.

We now illustrate the process of obtaining a summarization of
P with the purpose of proving a safety property of the final states of
the program. Such a property is encoded as a constraint in a given
possibly infinite family of constraints. We shall call this family
an abstract domain, and each of its constraints anabstraction, in
order to distinguish them from regular constraints. The objective
therefore is to determine if the final states of the program satisfy
one abstraction.

Our algorithm shall, in the process of traversing the computation
tree starting from the initial state, construct asummarizationof the
various states encountered. More specifically, a summarization Σ of
a stateG ≡ (i,x),Ψ is a pair, written(G 7→Ψ′). The first component
G is a generalization3 of G , and is called thecoverageof Σ. The
second componentΨ′ is a constraint and is theanswerof Σ. The
meaning of a summarizationΣ is that the final statesG are entailed
by the answerΨ′. A summarization of the initial state, therefore,
provides the abstraction of the whole program.

An arbitrary stateG is summarizedby such a summarizationΣ
if the coverage ofΣ is a generalization ofG . If so, the appropriate
specialization ofΨ′ toward G becomes an answer forG . More
specifically, supposeG is summarized by a summarizationΣ ≡
(G 7→ Ψ′). ThenG is a generalization ofG , sayG ≡ G ∧θ. Then
the final states ofG entail the constraintcons(G)∧θ∧Ψ′.

We now provide two examples of the usage of summarization,
one in proving safety, another in discovering safety.

3 We formalize the notion of generalization in Section 3. Hereit suffices to
say that the set of program states represented symbolicly byG is a subset
of that ofG .

1. Search Space Reduction in Proving Safety.We now exemplify
the process of obtaining a summarization ofP with the purpose
of proving that our example program satisfies the abstraction
A ≡ x2−x0 ≤ 6. In other words, we are deriving an abstraction
on the amount a variable isincremented, rather than an abstrac-
tion of its maximum value. Later in this section, we will also
show how such an upper bound on the variation of a variable
can bediscovered.

Consider a generalizationG0 of G0 where we replace the con-
straintsx0 = 0,b1,x1 = x0+1 in G to becomex1 ≤ x0+2. That
is, we drop the requirement that the initial value ofx is 0, we
drop the constraintb1, and finally we relax the constraint be-
tweenx2 andx1 so that their difference is at most 2, as opposed
to exactly 1.

Consider now the computation tree of the new stateG0, de-
picted in Figure 2. Notice that the behavior of this tree is the
same as the subtree forG0 as far as the abstraction is con-
cerned. That is, the increment ofx contained in both trees (4) is
the same.

We may thus produce a summarization

Σ ≡ (G0 7→ A ≡ x2−x0 ≤ 6)

Now, instead of traversing the second subtreeG1 in Figure 1,
we may simply apply this summarization toG1 hence reducing
search effort. First we verify thatΣ is indeed a summarization
of G1, and this follows easily from the fact that the coverage
G0 of Σ is a generalization ofG1. Then we add the constraints
Ψ ≡ x0 = 0,b1,x1 = x0 +2 of G1 to G0 and conclude that the
summarized answer isΨ∧A . This entailsA , and so we con-
clude that runningG1 is safe. This demonstrates the essential
usefulness of the summarization.

2. Discovering safety.We have shown that a summarization can
express an abstraction of the amount the value of a variable
varies acrossP. Next, we will show that the upper bound of
such a variation can be in factdiscoveredin the summarization
process. Consider the abstract domain{x2− x0 ≤ α : 0 ≤ α ≤
6}. That is, each abstraction implies that the increment ofx
is bounded by a nonnegative numberα less than or equal 6.
The objective now is not just to prove that our program is
safe, but also todiscoverone such valueα. Using the same
arguments above, we can obtain the same summarizationΣ ≡
(G0 7→ x2−x0 ≤ 6), and therefore finally conclude thatα = 6.

However, consider the new scenario in which the constraint
¬b1∧¬b2 is unsatisfiable. In this case, a more precise answer is
in factα = 5. This is because the pathG ,G1,G11, which would
have produced the largest increment ofx, is no longer feasible.

The moral of the story here is that while the use of summariza-
tions preserves safety, it does not preserveprecision.

In order to preserve precision, we require an additional condi-
tion for a stateG to be summarized by some summarization
Σ ≡ (G 7→ Ψ). Presently, it is a notion of coverage only. This
in fact means that the successful paths ofG are a subset of the
successful paths ofG . For example, in Figure 2, the more gen-
eral stateG0 has a successful path toG01. In contrast, the more
specific summarized stateG1, in Figure 1, does not have this
corresponding path.

What is needed for precision is that the state summarized has
exactlythe paths of the summarizing state4.

4 We show later that we just needsomeof these paths.

3 2007/12/13

Continuing this example, if we now include this new condition,
the stateG1 is no longer summarized and its tree must be
traversed in the usual manner.

We finally extend the abstract domain to aninfinite number of
abstractions. Consider now abstract the domain{“x2−x0 ≤α′′ :
0 ≤ α}, where an abstraction states that the increment ofx is
bounded by a nonnegative numberα which is arbitrarily large.

The question now is how to summarize the stateG0? Previ-
ously, after we traversed the subtree ofG0, we determined that
its successful paths entail the abstractionx2−x0 ≤ 6. The num-
ber 6 arose from the previous definition of the abstract domain.
In this example, the subtree ofG0 can only reasonably answer
that x2 − x0 ≤ 5. While this is indeed a correct answer to a
summarization ofG0, the problem is that the coverage will be
restricted tox1− x0 ≤ 1. That is, the proposed summarization
would be:

((1,x1),x1−x0 ≤ 1 7→ x2−x0 ≤ 5)

This would then not cover the subsequently encountered state
G1, and therefore an opportunity for optimization would be lost.

The remedy here is not to summarizeG0 with the specific an-
swerx2−x0 ≤ 5, but instead to use a generalization of this such
thatsafety is preserved. For example, we could use the answer
x2− x0 ≤ 500, which implies that the coverage is(1,x1),x1−
x0 ≤ 496. Alternatively, we could use the answerx2 − x0 ≤
5000, which implies that the coverage is(1,x1),x1−x0 ≤ 4996.
In general, we should use the answerx2 − x0 ≤ y+ 6,y ≥ 0
where y is a new variable. This way the coverage becomes
(1,x1),x1−x0 ≤ y+2,y≥ 0. That is, our summarization is

((1,x1),x1−x0 ≤ y+2,y≥ 0 7→ x2−x0 ≤ y+6,y≥ 0)

and this is in fact the best possible summarization for our
purpose of discovering an upper bound for the increment ofx.
To concretize this example, consider a new stateG ′

1 which has
the constraintx1 = x0+10. Using the summarization above, we
obtain that the value ofy is 8, and therefore the answer to this
new state is 14.

Note that this summarization is not the best for all purposes: if
we were interested in alowerbound for the increment ofx, this
summarization is not appropriate.

In summary for this section, we have exemplified an algorithm
for summarizing program fragments toward the goal of satisfying
a given abstract domain in the pursuit of safety. A summarization
provides an answer to a state that preserves safety, and doesso with
a covering state which is as general as possible.

In the more common setting of finite abstract domains, the
answer of a summarization can be easily chosen as one abstraction.
However, if we demanded that only thebestabstraction be returned
in case the program is safe, then additional conditions on the use of
summarization is needed. Even so, we have found experimentally
that these additional conditions are not severe.

In the case of an infinite abstract domain, the choice of answer
to a summarization is manual. However, this task is not hard for the
small number of interesting infinite domains that we have consid-
ered. In this section, we considered the abstract domain to reflect
an upper bound of the difference between two program variables.

In what follows, we present an algorithm for the three scenarios:

• Proving Safety: is a given abstraction satisfied?

• Discovering Safety: given a possibly infinite set of abstractions,
findone abstraction which is satisfied.

• Discovering Exact Safety: given a possibly infinite set of ab-
stractions, find the “best” one which is satisfied. That is, a more
specific abstraction would be unsafe.

Section 4 deals with the first two, while Section 5 deals with the
latter.

3. Constraint Transition Systems
This section presents a formalization of what we consider tobe
a typical abstract interpretation framework, augmented with our
summarization algorithm. The essence of this section formalizes
the notion of a computation tree.

3.1 Preliminaries

We start by defining a language of first-order formulas. LetV
denote an infinite set of variables, each of which has a type in
the domainsD1, · · · ,Dn, let Σ denote a set offunctors, and Π
denote a set ofconstraint symbols. Functors represent program
operations such as arithmetic operations and array assignments,
while constraints represent conditionals in program statements such
as arithmetic relations, in addition to equalities. There is a special
collection of final variables. Aterm5 is either a constant (0-ary
functor) inΣ or of the form f (t1, · · · , tm), m≥ 1, wheref ∈ Σ and
eachti is a term, 1≤ i ≤ m. A primitive constraintis of the form
φ(t1, · · · , tm) whereφ is a m− ary constraint symbol and eachti
is a term, 1≤ i ≤ m. A constraint is constructed from primitive
constraints using logical connectives in the usual manner.WhereΨ
is a constraint, we writeΨ(x̃) to denote thatΨ possibly refers to
variables in ˜x, and we write∃̃Ψ(x̃) to denote the existential closure
of Ψ(x̃) over variables away from ˜x.

A substitutionθ simultaneously replaces each variable in a term
or constrainte into some expression, and we writeeθ to denote the
result. Arenamingis a substitution which maps each variable in the
expression into a distinct variable. We write[x̃ 7→ ỹ] to denote such
mappings.

A groundingis a substitution which maps each variable into a
value in its domain. Wheree is an expression containing a con-
straintΨ, [[e]] denotes the set of its instantiations obtained by ap-
plying all possiblegroundings which satisfyΨ.

3.2 A Reduction System

A program is represented as a transition system which can be ex-
ecuted symbolically. The following key definition serves two main
purposes. First, it is a high level representation of the operational
semantics, and in fact, it represents the exacttracesemantics. Sec-
ond, it is anexecutable specificationagainst which an assertion can
be checked.

We shall model computation by consideringn system variables
v1, · · · ,vn with domainsD1, · · · ,Dn respectively, and a program
counterk ranging over program points. In this paper, we shall
use just two example domains, that of integers, and that of integer
arrays.

DEFINITION 1 (States and Transitions).A ground stateis of the
form (k,d1, · · · ,dn) where k is a program point and di ∈ D i ,1 ≤
i ≤ n, are values for the system variables. Atransitionis a pair of
states.

DEFINITION 2 (Symbolic State).A symbolic state (or simply,
state) of a CTS is of the form:

(k, x̃), Ψ(x̃)

5 In this paper, we shall only be using simple integer terms andconstraints
as examples. In general, we can code data structures such as arrays and
pointers.

4 2007/12/13

(0,x) 7→ (1,x′),b1,x′ = x+1.
(0,x) 7→ (1,x′),¬b1,x′ = x+2.
(1,x) 7→ (2,x′),b2,x′ = x+3.
(1,x) 7→ (2,x′),¬b2,x′ = x+4.

Figure 3. CTS of Example in Section 2

where k is a program point,̃x is a sequence of variables over system
states, andΨ is a constraint over some or all of the variablesx̃, and
possibly some additional variables. The variablesx̃ are called the
primaryvariables of this state, while any additional variable inΨ
is called anauxiliary variable of the state. WhereG is a state, we
write cons(G) to denote the constraint inG . Finally, we writeG(x̃)
to indicate thatx̃ are the primary variables ofG .

DEFINITION 3 (Constraint Transition System).A constraint tran-
sitionof p is a formula

(k, x̃) 7→ (k1, x̃1),Ψ(x̃, x̃1)

where(k, x̃) and (k1, x̃1) are system states, andΨ is a constraint
overx̃ andx̃1, and possibly some additional auxiliary variables. A
constraint transition system(CTS) of p is a finite set of constraint
transitions of p.

Clearly the variables in a constraint transition may be renamed
freely because their scope is local to the transition. We thus say
that a constraint transition is avariantof another if one is identical
to the other when a renaming substitution is performed. Further,
we maysimplifya constraint transition by renaming any one of its
variablesx by an expressiony provided thatx = y in all groundings
of the constraint transition.

The above formulation of program transitions is familiar inthe
literature for the purpose of defining a set of transitions. What is
new, however, is how we use a CTS to define asymbolictransition
sequences, and thereon, the notion of a proof.

Thus a state is just like the conclusion of a constraint transition.
We say that a state isfalse if its constraint is unsatisfiable. We

shall also the notationfalse to denote afalsestate. We say that a
state isfinal if k is the final program point, one from which there
are no transitions. Running an initial state is therefore tantamount to
asking the question: which of the values of ˜x that satisfy∃̃Ψ(x̃) will
lead to a state at the final point(s)? The idea is that we successively
reduce one state to another until the resulting state is at a final state,
and then inspect the results.

We say that a stateG subsumesanother stateG if [[G]] ⊇ [[G]].
Equivalently, we say thatG is a generalizationof G . We write
G1 ≡ G2 if G1 andG2 are generalizations of each other. Note that
if G is ageneralizationof G , then there is a constraintΨ such that
G ∧Ψ ≡ G .

Given two statesG1 ≡ (k, x̃1),Ψ1 andG2 ≡ (k, x̃2),Ψ2 sharing
a common program pointk, we writeG1∧G2 to denote the state
(k, x̃1), x̃1 = x̃2,Ψ1,Ψ2.

Next we define what it means for a CTS to “prove” a state.

DEFINITION 4 (Transition Step, Sequence and Tree).Let there be
a CTS for a program, and letG ≡ (k, x̃),Ψ be a state for this. A
transition stepfrom G may be obtained providingΨ is satisfiable.
It is obtained using a variant(k, ỹ) 7→ (k1, ỹ1),Ψ1 of a transition in
the CTS in which all the variables are fresh. The result is a state of
the form(k1, ỹ1),Ψ, x̃ = ỹ,Ψ1 We say that this new state is a false
state if the constraintΨ, x̃ = ỹ,Ψ1 is unsatisfiable6.

A transition sequenceis a finite sequence of transition steps
which terminate in either a final state or a false state. Atransition

6 This particular treatment is not usual in traditional CLP [8], from where
these definitions are adapted.

pathis a finite sequence of transitions corresponding to a transition
sequence. Intuitively, a path denotes the “skeleton” of a sequence.
A transition treeis defined from transition sequences in the obvious
way.

We shall impose a special condition on transition steps: if astep
results in a final state, then the primary variables of the final state
are thefinal variables. We say that a transition sequence or path is
successfulif it terminates in a final state; otherwise, the sequence
or path isfalse.

DEFINITION 5 (Answer).Let G be a state and letG1, · · · ,Gn,
n≥ 0, denote the final states in all of the successful paths starting at
G . The answerANS(G) of a stateG is the disjunction cons(G1)∨
· · ·∨cons(Gn). Note thatANS(G)≡ false if there are no successful
paths starting atG .

4. Summarizations
DEFINITION 6 (Summarization).A summarization is a pair com-
prising a stateG and a constraintΨ over var(G), final variables
and possibly auxiliary variables, such thatANS(G) |= Ψ. We shall
call G the coverageand Ψ the answerof the summarization. We
write G 7→ Ψ to denote such a summarization.

A stateG is summarizedby a summarizationΣ ≡ (G 7→ Ψ) if
G is a generalization ofG .

The general purpose of a summarizationΣ = (G 7→Ψ) is to pro-
duce an abstract answer for a stateG for which G is a generaliza-
tion. That is,G ≡ G ∧θ for someθ. We writeGΣ to denote the an-
swer toG provided byΣ. In this case,GΣ is Ψ′ ≡ cons(G)∧θ∧Ψ,
and it is the case thatANS(G) |= Ψ′.

In this paper, summarizations are used to optimize the process of
discovering certain abstract properties about a program. These ab-
stract properties are specified simply by a possibly infinitefamily Ã
of abstractions, each of which is a formula over the final variables.
We shall call the family of abstractions anabstract domain.

DEFINITION 7 (Safety).A stateG is safe wrta possibly infinite
abstract domaiñA if ANS(G) |= A for someA ∈ Ã. A program is
safe wrt Ã if all of its final states are safe wrt̃A .

The simplest example of abstract property is a “safety” property,
and this corresponds to having an abstraction family of justone
abstraction. In Section 2 for example, we dealt with the abstraction
x2−x0 ≤ 6. Some further examples:

EXAMPLE 1 (Example Abstract Domains).

• “SIGN”
Consider a finite number of abstractions where the formulas
are conjunctions of basic constraints of the form xi ∼ 0 where
the xi range over a finite set of (interesting) variables, and∼ is
one of< and≥. Thus if there are two variables x, y, the set of
abstractions is{x < 0∧y < 0,x < 0∧y≥ 0,x≥ 0∧y < 0,x≥
0∧y≥ 0}. Note here that we have not included the cases where
the sign of x or y is not known7. Thus a program is safe only if
every trace results in a definite sign for both x and y, and thatx
has the same sign in each trace, and similarly for y.

• “PARITY”
Next consider that each abstraction states the parity of a se-
lected set of variables. If these were x and y, then the ab-
stractions are{even(x) ∧ even(y),even(x) ∧ odd(y),odd(x)∧

7 If we did, the abstract domain would be “disjunction-closed”.

5 2007/12/13

s = 0
if (b1) s = s + α1
· · ·
if (bn) s = s + αn

Figure 4. Sum of Subsets

even(y),odd(x) ∧ odd(y)} where the predicates odd() and
even() have the obvious meanings. Once again, a state in which
the parity of x or y is not determined is considered unsafe.

• “INTERVAL”
Consider now the infinite set of abstractions:{α ≤ x∧ x ≤ β :
α,β ∈ R }. Here we are interested in a real number interval
bounding the final values of x.

The main technical result in this paper is an algorithm which, given
an initial stateG , computes summarizations on the fly, toward the
goal of proving that the final states, ie.ANS(G), satisfy certain
abstract properties.

DEFINITION 8 (Safe Summarization).A summarizationΣ of G is
safe wrtÃ if there is an abstractionGΣ |= A for someA ∈ Ã.

The main property of a safe summarization is illustrated by:

LEMMA 1. Let (G 7→ A) be a safe summarization. LetG be a
specialization ofG , that is,G ≡ (G ∧ θ). Then(G 7→ cons(G)∧
θ∧A) is a safe summarization ofG .

The algorithm is presented in Figure 5. Its input is a stateG ,
and its return value, if any, is a pair(G 7→ A) denoting a safe
summarization ofG . The algorithm may abort if a summarization
of the input state cannot be produced. The algorithm comprises
two key operations (GEN) and (JOIN). The first (GEN) deals with
computing a weakest precondition of a state, which essentially
necessitates the computation of a “generalization” of the parent
state. The second operation (JOIN) requires that the computed
answers of summarizations of descendant states be combinedinto
a summarization answer for the parent state.

Defineweakest preconditionWP(R,G) of a stateG produced by
a transitionR to be a stateG ′ such that there is a proof step from
G ′ to a variant ofG using the transitionR. Formally,

DEFINITION 9 (Weakest Precondition).Suppose that a transition
R and a stateG are of the form:

(k, x̃) 7→ ΨR(x̃, x̃′), (k′, x̃′) and (k′, x̃),Ψ

respectively. Then

WP(R,G)
def
= (k, x̃),∀x̃′.ΨR(x̃, x̃′) −→ Ψ[x̃′/x̃]

In general, it is not practical to compute this functionWP() pre-
cisely. Consider, for example, the computation ofWP(R, false),
whereR is as in Definition 9, precisely. We would require a state
(i, x̃),Ψ such thatΨ∧ΨR is unsatisfiable, but forany generaliza-
tion Ψ of Ψ, Ψ∧ΨR is satisfiable. In general, suchΨ would only
be describable as a (large) disjunction in the available constraint
language.

A concrete example of the intractability ofWP() is given in Fig-
ure 4, where all propositional combinations of thebi are satisfiable.
Implementing the well-known NP-complete sum-of-subsets prob-
lem: given a setSof n numbers{α1, · · · ,αn} and another numberβ,
does a subset ofSsum toβ? Since the program takes no input, this
problem can be reduced to determining if the weakest precondition
of the program w.r.t the constraints= β is empty or not.

A possibly practical approach may be obtained from the litera-
ture onminimal unsatisfiable subsetswhich attempts to find, given
an unsatisfiable set of constraints, a subset thereof which is also un-
satisfiable. See eg. [4]. Note that such a set is not unique. Toapply
this technique, we simply use the constraints attached to the parent
state of thisfalsestate in question, conjoin the constraint from the
transitionR, and consider all of these constraints as a set. In case
we were computing the weakest preconditionWP(R,G) of a non-
false state instead ofWP(R, false), this approach can still be used
in case the constraint inG can be efficiently negated. That is, we
accumulate the constraints in the parent state ofG , the constraint in
the transitionR and finally, the constraint¬cons(G), and consider
all of these as a set.

In a more general setting than finding minimal unsatisfiable
subsets is the notion of aCraig interpolant, which we informally
describe as follows: givenΨ |= Ψ′, find a generalizationΨ of Ψ
such thatΨ |= Ψ′ also. This converges with the minimal subsets
approach whenΨ′ ≡ false. The use of such interpolants for model-
checking [13] and theorem-proving [14] is now commonplace.

In summary for (GEN), it is in general not practical to compute
theweakestprecondition of state as in the idealized algorithm. In-
deed, computing the weakest precondition is intractably hard, as we
exemplify later. Thus in practice, one would compute just a precon-
dition of the descendantG i which is at least as general as the parent
G , as opposed to the weakest precondition. In section 6, we demon-
strate such an algorithm based upon an efficient implementation of
constraint deletions.

The step (JOIN) serves to combine several constraints into one
such that the result is safe. Note that although these constraints are
in fact safe summarizations of states that are descendants of the
current state, the disjunction of these constraints is not necessarily
safe. (Recall the abstraction family SIGN above, and suppose there
are two constraints to be joined:even(x)∧ even(y) andeven(x)∧
odd(y). Clearly there can be no join of these two constraints, and
our algorithm would abort at this point.) The operationJOIN can in
principle be implemented simply as a disjunction of its arguments.
However, this would not be scalable, for the number of disjunctions
would increase exponentially.

Fortunately, it is often not necessary to represent precisely this
disjunction. Recall that the obligation of a summarization’s answer
is just that itentailsan abstraction. Thus for example, if we were
dealing with a safety property and therefore a single abstraction
A, then JOIN() can simply returnA itself (This is assuming that
the disjunction is in fact safe; if not,JOIN() must say so, and the
algorithm aborts.).

Now if we were dealing with a finite or infinite abstract domain,
JOIN() can simply return one of the abstractions. However, it may
be the case that the abstraction used may not be the most precise
possible. More specifically, recall that a summarizationΣ = (G 7→
Ψ) should be such that for any instance ofG of G , GΣ should entail
an abstraction. The problem however is thatGΣ may not entail the
most precise abstraction. Recall that in the example of Section 2,
in the scenario where¬b1 ∧¬b2 was unsatisfiable, we computed
a summarization whose answer wasx2 − x0 ≤ 6 for the stateG0,
and when we apply this to the stateG1, we finally concluded that
x2−x0 ≤ 6. This is safe, but not precise, forx2−x0 ≤ 5 is a better
abstraction.

In summary for (JOIN), one needs to combine two summarized
answers with a constraint must trade off two things: to be

• precise enough to ensure safety, and yet

• abstract enough so that the disjunction can be efficiently repre-
sented.

6 2007/12/13

SOLVE(G ≡ ((k, x̃k),Ψ)) returns (G 7→ Ψ′)

• G is false: return (false7→ false)

• G is final:
if (Ψ is unsafe)abort
return ((k, x̃k) 7→ Ψ)

• G is summarized by some memoizedΣ: return Σ (SAFE?)

• G is composite:

for each derivationG
R
7→ Gi(x̃k+1),1≤ i ≤ n

let the constraint inRbeφi(ỹ, ỹ′)
let (G i 7→ Ψi) = SOLVE(Gi)
let Hi(x̃k) = WP(R,Gi) (GEN)

let H = H1∧ · · ·∧Hn
let Ψ′ = JOIN(φ1∧Ψ1, · · · ,φn∧Ψn) (JOIN)
memoize the summarizationΣ ≡ (H 7→ Ψ′)
return Σ

Figure 5. Idealized Algorithm for Safe Summarizations

While the choice of any implementation of (JOIN) which preserves
safety will ultimately produce a safe summarization, this choice
does affect the precision. In the next section, we refine the algo-
rithm to ensure that the answers to summarizations are, in some
sense, exact.

We now exemplify possible implementations ofJOIN() for the
example abstractions in Section 2. To simplify matters, assume that
JOIN() takes two argumentsA1 andA2.

For an abstract domain representing just a single abstraction
A , JOIN(), can simply beA . Note that there is no need to check
that bothA1 and A2 imply A , because the current stateG is
in the precondition of descendant states which are already safely
summarized to the answerA .

For finite or infinite abstract domains, it is safe thatJOIN() re-
turns any abstraction in this domain as long as it is safe. In gen-
eral, of course, the most precise should be chosen. However,as ex-
plained above, even ifJOIN() consistently chooses the most precise
abstraction possible and eventually constructs a summarization, it
is not the case that this summarization will exactly represent those
states within its coverage.

Reconsider now the abstract domain “SIGN” of Example 1.
An implementation forJOIN() is straightforward: simply determine
the sign of the two variablesx andy in each ofA1 and A2. We
abort if the sign of one of them is not determined, or if the sign
of one of them is different inA1 andA2. Otherwise, the return of
JOIN(A1,A2) is the single constraint expressing the sign of bothx
andy that is evident in bothA1 andA2. For the abstract domain
“PARITY”, implementation is equally straightforward: simply de-
termine the parity of the two variablesx andy in each ofA1 andA2.
the return ofJOIN(A1,A2) is the single constraint parity of bothx
andy that is evident in bothA1 andA2.

Finally consider the domain “INTERVAL”. An implementa-
tion of JOIN(A1,A2) would simply construct an interval from the
two intervals indicated inA1 and A2. That is, whereA1 is of
the form α1 ≤ x ≤ β1 and A2 is of the formα2 ≤ x ≤ β2, ob-
viously JOIN(A1,A2) is the single constraintmin(α1,α2) ≤ x ≤
max(β1,β2). Thus in all three cases, the implementation ofJOIN()
is straightforward.

THEOREM 1 (Safety).Given a stateG and a family of abstrac-
tions Ã for var(G), the algorithm in Figure 5 returns a safe sum-

marization forG in caseG is safe wrtÃ ; otherwise, the algorithm
aborts.

PROOF OUTLINE: We proceed by induction. First, the base
cases: both the false state and final state cases return exactsum-
marizations to the parent state is easy to see. Now assume, inthe
processing of stateG , that the return values(G i 7→ Ψi) are ex-
act summarizations of the descendant statesG i , 1 ≤ i ≤ n. Now,
sinceG runs toG i and sinceG i is more general thanG i , it follows
from step (GEN) thatG is in the weakest precondition ofG i . Thus
φi ∧Ψi , 1≤ i ≤ n, is safe. Finally, since (JOIN) combines these as
a disjunction, the resultΨ′ is safe.

The key reason why this idealized algorithm has potentially
good performance is that once it has summarized a stateG , it can
use this summarization for future encountered statesG ′ whosefinal
paths are contained in those ofG . that is,G ′ does not allow a path
which was infeasible inG . Now, even ifG ′ were not summarized, it
means the work about to be performed onG accounts for a path that
is not yet explored. Further, even ifG ′ were not summarized, there
is every opportunity for one of its descendants to be summarized
(by a descendant ofG) so long as this descendant is not on the
same said path.

Even so, in general, the search process can be intractable, as
explained above for the program in Figure 4.

5. Exact Summarizations
In most settings, proving safety is just a decision problem.In
our setting, we seek not just to prove safety, but todiscoverthe
abstraction which establishes the safety. More importantly, we seek
to discover thebestabstraction which establishes the safety. The
motivation for this is partly due to the fact that we are dealing with
straight-line programs and we wish to ensure that our algorithm
performs exact propagation with respect to a given abstractdomain.

This section extends the previous to the case where we desire
not just a safe summarization, but, in some sense, an “exact”sum-
marization.

Given an abstract domaiñA , we say that an abstractionA ∈ Ã is
strictly more precisethat anotherA ′ ∈ Ã if A |= A ′ but notA ′ 6|= A .

DEFINITION 10 (Exact Summarization).A summarizationΣ of G

is exact wrtan abstract domaiñA if GΣ |= A for someA ∈ Ã .
Furthermore, for any abstractionA ′ in Ã which is strictly more
precise thanA is unsafefor G , that is,ANS(G) 6|= A ′.

The algorithm in Figure 5 does not in general produce an exact
summarization for the input stateG . Recall that a summarization
Σ ≡ (G 7→ Ψ) guarantees that a stateG covered byG , sayG ≡
G ∧ θ, has its answers covered byθ ∧ Ψ. Thus if Σ were a safe
summarization, thenG is safe. That is,GΣ implies an abstraction.
In contrast, ifΣ were anexactsummarization, whileGΣ is safe and
entails some abstractionA , it is in generalnot the case thatA is a
maximally precise abstraction. Recall that we have exemplified this
in Section 2.

We now present a new and refined definition of summarization.
Previously, a summarization was a pair, the first of component of
which is coverage, and the second was an answer constraint. We
now refine the definition of summarization so that there are now
two components of coverage.

DEFINITION 11 (Summarization, Second Version).A summariza-
tion is a triple comprising a stateG , a setΨ̃ of constraints over
var(G) and final variables, and a constraintΨ over var(G) and
final variables such thatANS(G) |= Ψ. We shall callG theMAX
coverage, Ψ̃ the MIN coverage, andΨ the answerof the summa-
rization. We write(G ,Ψ̃) 7→ Ψ to denote such a summarization.

7 2007/12/13

SOLVE(G ≡ ((k, x̃k),Ψ)) returns ((G ,Ψ̃) 7→ Ψ′)

• G is false: return ((false,{}) 7→ false)

• G is final:
if (Ψ is unsafe)abort
return (((k, x̃k),{Ψ}) 7→ Ψ)

• G is summarized by some memoizedΣ: return Σ (SAFE?)

• G is composite:

for each derivationG
R
7→ Gi(x̃k+1),1≤ i ≤ n

let the constraint inRbeφi(ỹ, ỹ′)
let ((G i ,Ψ̃i) 7→ Ψi) = SOLVE(Gi)
let Hi(x̃k) = WP(R,Gi) (GEN)

let H = H1∧ · · ·∧Hn

let Ψ̃ = REP(φ1∧ Ψ̃1, · · · ,φn∧ Ψ̃n) (REP)
let Ψ′ = JOIN(φ1∧Ψ1, · · · ,φn∧Ψn) (JOIN)
memoize the summarizationΣ ≡ ((H ,Ψ̃) 7→ Ψ′)
return Σ

Figure 6. Idealized Algorithm for Exact Summarization

A stateG is summarizedby Σ = ((G ,Ψ̃) 7→ Ψ) if

• (a) G is a generalization ofG (as before), and

• (b) G ∧Ψi , for all Ψi ∈ Ψ̃, is satisfiable.

SupposeG ≡G∧θ. As before, we writeGΣ to denote the answer of
G as given by the summarizationΣ, and this iscons(G)∧θ∧Ψ. The
reason that the condition in (a) is called MAX is that it represents
a “maximum generalization” of a potentially summarized state. In
(b) however, the condition represents a “minimum specialization”
of a potentially summarized state.

We now refine our algorithm and obtain the algorithm in Figure
6. The first change is the definition of whether a state is summarized
by a previously computed summarization, and this is given above
in Definition 11. The major change however, is the (REP) step,
which serves to produce, given a family of constraints, one set of
constraints. The notationφ∧ Ψ̃ used in the new step (REP) denotes
the set of constraints obtained by conjoiningφ with each constraint
in Ψ̃.

The input toREP() is a family representing the various represen-
tative sets̃Ψ1, · · · ,Ψ̃n obtained from summarizations of the descen-
dant statesG1, · · · ,Gn. These summarizations produce answers for
G1, · · · ,Gn which together imply that a certain abstraction, sayA ,
is the most precise one that applies. The functionREP() then com-
putes, from this family, a representative set of constraints which,
when conjoined withG , demonstrates thatA holds. It thus follows
thatREP() computes a best set of constraints that demonstrates “ex-
act safety”.

We next exemplify that computingREP() can be efficient.
Consider some examples from Example 1 for the function

REP(Ψ̃1, · · · ,Ψ̃n). For the abstract domains “SIGN” and “PAR-
ITY”, the return value can simply beany subsetof constraints̃Ψ in
Ψ̃1∪ · · · ∪ Ψ̃n that precisely describes the signs/parities appearing
in all the constraints. Note that the choice of which set constraint
does however affect how often a summarization is effective on
summarizing a candidate state. Clearly we could use an arbitrary
set of constraints larger thañΨ. This would increase the likelihood
of a summarization being able to cover a candidate state, butat the
expense of increased cost in the storage of this representative set.

Next consider the domain “INTERVAL”. Recall that the pro-
posedJOIN(A1,A2, · · · ,An), whereA i is of the formαi ≤ x≤ βi ,
1 ≤ i ≤ n, is to choose the intervalα ≤ x ≤ β such thatα =
min(α1, · · · ,αn) andβ = max(α1, · · · ,αn). Supposeαmin were the
least number in{α1, · · · ,αn}, and βmax the greatest number in
{β1, · · · ,βn}.

ConsiderREP(Ψ̃1, · · · ,Ψ̃n). Following the interval logic above,
each set̃Ψi would contain at most two constraintsΨmin

i andΨmax
i

corresponding to the two answers that give rise to the interval
representing the answer to the summarization of descendantstate
Gi . We now choose, amongst these 2∗ n constraints, just theone
or twoconstraints that demonstrates that the new interval is indeed
α ≤ x≤ β.

We now return to the example in Section 2, and consider the
infinite abstract domain{x2 − x0 ≤ α : 0 ≤ α}. Recall that after
analyzing the subtree forG0, we obtained the summarization

((1,x1),x1−x0 ≤ y+2,y≥ 0 7→ x2−x0 ≤ y+6,y≥ 0)

of G0. This was derived by considering two subtrees ofG0. cor-
responding to the adding of the constraintsb2,x2 = x1 +3 toward
G00, and the constraint¬b2,x2 = x1 +4, towardG01. For the rep-
resentative set ofG0, we would need to consider just one, the latter.
This is because any candidate stateG ′ which is summarized by this
summarizationΣ, would indeed produce the exact increment ofx
in the answerG ′Σ. If of course this candidate state did not satisfy
¬b2,x2 = x1 +4, then it is not considered summarized, and its tree
would have to be analyzed. In either case, we would produce, at the
end, an exact summarization.

The following theorem statement and proof outline are slight
modifications of those of Theorem 1.

THEOREM 2 (Exact Summarization).Given a stateG and a fam-
ily of abstractions̃A for var(G), the algorithm in Figure 6 returns
an exact summarization forG in caseG is safe wrtÃ ; otherwise,
the algorithm aborts.

PROOF OUTLINE: We proceed by induction. First, the base
cases: both the false state and final state cases return safe sum-
marizations to the parent state is easy to see. Now assume, inthe
processing of stateG , that the return values((G i ,Ψ̃i) 7→ Ψi) are
exact summarizations of the descendant statesG i , 1 ≤ i ≤ n. As
before, sinceG runs toG i and sinceG i is more general thanG i ,
it follows from step (GEN) thatG is in the weakest precondition
of G i . Thusφi ∧Ψi , 1≤ i ≤ n, is safe, and since (JOIN) combines
these as a disjunction, the resultΨ′ is safe.

But now, we use the fact that the set of constraints:{φi ∧ψ̃i : 1≤
i ≤ n} which is input toREP(), will produce as output a constraint
whose abstraction is the same as the abstraction of the inputset.
The theorem now follows easily.

6. Experimental Evaluation
In our experimental evaluation, we have employed CLP technol-
ogy [7], which provides an efficient mechanism for the internal rep-
resentation of an incrementally growing a proof sequence asa set of
constraints, and for structure sharing of common constraints across
different proof sequences. One important feature of this technol-
ogy is an efficient projection algorithm. Our experimental system
is based on the CLP(R) system [10] with an adaptation of the
Fourier-Motzkin algorithm [9].

Our implementation of the GEN operation uses a process
of constraint deletion to compute preconditions. A constraint is
deemed to be redundant, and therefore deletable, at a node inthe
computation tree, if its removal does not change the status of any
of the leaf nodes in the corresponding subtree. That is, uponthe
removal of a redundant constraint,false state remainfalse, and

8 2007/12/13

Array No Summarization Safe Summarization % Space (Time) Exact Summarization % Space (Time)
Problem Size Nodes Time (s) Nodes Time (s) Answer Reduction Nodes Time (s) Answer Reduction

Unrestricted 5 2233 11.22 58 0.04 10 97.40% (99.64%) 58 0.05 10 97.40% (99.55%)
10 ∞ 218 0.92 45 218 0.96 45
15 ∞ 478 6.92 105 478 7.04 105

Binary 4 381 0.70 162 0.27 4 57.48% (61.43%) 169 0.30 4 55.64% (57.14%)
Elements 6 2825 27.47 729 4.64 9 74.19% (83.11%) 873 6.54 9 69.10% (76.19%)

Table 1. Bubble Sort

No Summarization Safe Summarization % Space (Time) Exact Summarization % Space (Time)
Problem Nodes Time (s) Nodes Time (s) Answer Reduction Nodes Time (s) Answer Reduction

decoder 344 0.31 38 0.02 22 88.95% (93.55%) 132 0.19 22 61.63% (38.71%)
sqrt 923 4.25 236 1.37 209 74.43% (67.76%) 253 1.43 141 72.59% (66.35%)
qurt 1104 14.47 273 2.52 220 75.27% (82.58%) 290 2.60 152 73.73% (82.03%)

jannecomplex 1517 17.93 410 2.13 105 72.97% (88.12%) 683 4.36 81 55.98% (75.68%)

Table 2. Some Random Programs
for (i=0; i<n-1; i++) {

for (j = 0; j<n-i-1; j++) {
if (a[j] > a[j+1])

swap(a,j,j+1);
}}

Figure 7. Bubble Sort

subsumed states remain subsumed. In principle, this obligation is
as hard as discovering a minimal unsatisfiable subset of constraints
in an unsatisfiable collection; see eg. [4]. However, in practice
(and in all the examples in this paper), a simple algorithm suffices:
consider the constraints one at a time, and perform the necessary
redundancy test. We further suggest that is probable that faster
heuristic algorithms can be developed based on the intuition that
often, the only possible candidates are easily detectable.

For the JOIN operation of the algorithm in Figure 5, we use
numeric bounds, as illustrated in Section 2. Whenever it is known
that a minimal or maximal bound of the variation of a variableis
sought, we aggregate interval constraints in the obvious way. These
two very straightforward abstraction algorithms account for much
of the efficiency of our approach. Nevertheless, new abstraction
methods can be easily embedded into our main algorithm in a
natural way.

Our prototype summarization system has been implemented as
a pure CLP(R) [10] program, with emphasis on its meta-level fa-
cilities [6]. We performed our experiments on a Pentium 4 system,
with a 2.8GHz clock, 512Mb RAM, and running Linux 2.4.22. The
tests have been performed on several randomly chosen programs,
instrumented so that each primitive action would incrementa re-
source counter.

For the bubble sort program in Figure 7, we have performed a
variety of tests, considering several array sizes, as well as the case
when the array elements are binary (i.e. restricted to two values
only). In our experiments, we have assumed that the value ofn is
given. In the case when the array elements are unrestricted,a proof
tree would have very fewfalsestates (just those corresponding to
leaving the loop early). Here our algorithm, proceeding along the
lines of the abstractions described in section 2, would havea linear
performance in the size of the array.

If however the array elements are restricted in some way, per-
formance is far less predictable. When the array elements are re-
stricted to binary values, the number of false states (correspond-
ing to impossible combinations of swap operations) is far larger,
and in practice, unpredictable. In this case, our algorithmexhibits
less impressive performance because of fewer subsumed nodes, but
nevertheless provides significant improvement.

Our prototype simply generates the entire state space, and for
the purpose of verifying an error condition, an on-the-fly error state
reachability check can be easily added.

Results are shown in Table 1. For both unrestricted and binary
elements, we use fixed array sizes given in the 2nd column. The
“Nodes” columns in the table contain the numbers of nodes in the
search tree of our prototype, and “Time” is the running time in sec-
onds. Note the linear growth in nodes traversed for the unrestricted
version. The binary version of bubble sort introduced more con-
straints, as expected, leading to a more complex analysis which
decreases the amount of reduction. Nevertheless, summarizations
produced huge savings.

We also tested our prototype by generating the state-space
search tree of several programs for WCET analysis benchmarking,
which exhibit a variety of program control structures. The decoder
program is taken from the ADPCM encoder and decoder that ap-
pears in [17]. Thesqrt andqurt programs are from the SNU RT
Benchmark Suite [19], and thejanne complex program is from
the Mälardalen Benchmark Suite [12]. The results are shown in Ta-
ble 2. All the experiments show a significant amount of reduction.

7. Conclusion
We considered the problem of exact propagation through a straight-
line program in the pursuit of a final assertion. The final assertion
is a user-defined function and so we in fact address the problem
of discovering a final abstraction, in addition to just proving safety
in terms of a given final condition. Our method is fundamentally
a path enumeration method, but the main contribution is an op-
timization based on the use of summarizations that are obtained
dynamically. The method is designed to produce, for each summa-
rization, the most general context for its use, and the most specific
conclusion for its result. Importantly, these summarizations apply
to arbitrary program fragments and hence there is a fine-grain res-
olution to their potential usefulness. Finally, we demonstrated the
efficiency of the optimization on several programs.

References
[1] T. Ball, T. Millstein, and S. K. Rajamani. Polymorphic predicate

abstraction. ACM Transactions on Programming Languages and
Systems, 27(2):314–343, 2005.

[2] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. In R. Cleaveland, editor,5th TACAS,
volume 1579 ofLNCS, pages 193–207. Springer, 1999.

[3] P. Cousot and R. Cousot. Static determination of dynamicproperties
of recursive procedures. In E.Neuhold, editor,Formal Description of
Prog. Concepts. North-Holland, 1978.

9 2007/12/13

[4] Maria Garcia de la Banda, Peter J. Stuckey, and Jeremy Wazny.
Finding all minimal unsatisfiable subsets. InACM PPDP, pages
32–43, 2003.

[5] S. Graf and H. Säıdi. Construction of abstract state graphs of infinite
systems with PVS. In O. Grumberg, editor,9th CAV, volume 1254 of
LNCS, pages 72–83. Springer, 1997.

[6] N. Heintze, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. Meta
programming in CLP(R). Journal of Logic Programming, 33(3):221–
259, December 1997.

[7] J. Jaffar, M. Maher, P. Stuckey, and R. Yap. Projecting CLP(R)
constraints. InNew Generation Computing, volume 11, pages 449–
469. Ohmsha and Springer-Verlag, 1993.

[8] J. Jaffar and M. J. Maher. Constraint logic programming:A survey.
Journal of Logic Programming, 19/20:503–581, May/July 1994.

[9] J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Output in
CLP(R). In Proc. Int. Conf. on Fifth Generation Computer Systems,
Tokyo, Japan, volume 2, pages 987–995, 1992.

[10] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R)
language and system.ACM TOPLAS, 14(3):339–395, 1992.

[11] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT techniques for
fast predicate abstraction. In T. Ball and R. B. Jones, editors, 18th
CAV, volume 4144 ofLNCS, pages 424–437. Springer, 2006.

[12] Mälardalen WCET research group benchmarks. URLhtt-
p://www.mrtc.mdh.se/projects/wcet/benchmarks.html.

[13] K. L. McMillan. Interpolation and SAT-based model checking. In
Jr. W. A. Hunt and F. Somenzi, editors,15th CAV, volume 2725 of
LNCS, pages 1–13. Springer, 2003.

[14] K. L. McMillan. An inerpolating theorem prover.Theoretical
Computer Science, 345(1):101–121, 2005.

[15] S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizing procedures in
concurrent programs. In31st POPL. ACM Press, 2004.

[16] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In22nd POPL, pages 49–61. ACM
Press, 1995.

[17] R. Richey. Adaptive Differential Pulse Code Modulation Using
PICmicro Microcontrollers. Microchip Technology, Inc., 1997.

[18] M. Sharir and A. Pnueli. Two approaches to interprocedural dataflow
analysis. In S. S. Muchnick and N. D. Jones, editors,Program Flow
Analysis: Theory and Applications, pages 189–233. Prentice-Hall,
1981.

[19] SNU real-time benchmarks. URLhttp://archi.snu.ac.kr/real-
time/benchmark/.

10 2007/12/13

