Summarizations for Symbolic Executions

JOXAN JAFFAR, ANDREW E. SANTOSA and RAZVAN VoIcU

School of Computing
National University of Singapore
Republic of Singapore
{j oxan, andr ews, razvan}@onp. nus. edu. sg

Abstract

Consideration of execution paths is basic in program aisagrsd
verification because it represents the process of exacapgation
through the program fragment at hand. This is challengecby t
fact that there are exponentially many paths in generahigga-
per, we consider a straight-line program fragment anndtaféeh
initial and final assertions, and present an optimizatichreue
for this problem based on the use afmmarizationspartial de-
scriptions of the input-output behavior of a program fragimé&he
main advantage of a summarization is that, during prograsome-
ing, invocations of the program fragment using differentteats
may be handled by the one summarization.

The key idea is a method for deriving summarizations dy-
namically. Traditionally, summarizations are sought foegefined
procedures. In contrast, we compute, opportunisticalty@mthe-
fly, summarizations of arbitrary program fragments. Thesotiye
is to to discover its most general form, and to discover itstmo
specific conclusion. This enhances the likelihood that thersa-
rization is both frequently applicable and effective inuit.

1. Introduction

We consider the problem of exact propagation through a foep-
program fragment with respect to given initial and final asses.
This is tantamount to examining the execution paths of tbgnam
fragment. Traditionally, a final assertion is a predicatevanable
values at the end of the program fragment. The objective then
a safetyproof of the final assertion. The main challenge toward
this goal is that there is in general a large number of possibl
execution paths of the program fragment that need be caeside
A main advantage, however, is that proofs of larger progreams
be composed of smaller safety proofs once they are obthired
other words, the final assertion serves to culminate thefpybo
one program fragment into an assertion to be used for the pfoo
another fragment.

In this paper, we start by a generalization of the problerermi
an initial assertion for a program fragmediscoverwhat the final
assertion is. Typically, the final assertion is an abstrastdption
of the input-output behavior of the program fragment. Feamegle,

1For loops, we of course also need to deal with invariants.

[Copyright notice will appear here once "preprint’ opti@removed.]

we could discover a bound for a given variable, or, in theiti@al
of predicate abstraction [5], which finite subset of a urseeof
predicates hold. In general, the abstract formulation ef fihal
assertion also serves, as in the traditional case of a gafety, to
culminate the proof of a program fragment into a simple dsser
that can then be used in a bigger proof.

The key to our algorithm is the use simmarizationsA sum-
marization is a partial description of the input-output &&br of
a program fragment. A program fragment may be executed under
differentcontextsthat is, the program state under which the frag-
ment’s execution begins. This is because the start of thygrfeat
may be reached via various execution paths. A key advantage o
summarization is that, during analysis, invocations ofgifegram
fragment using different contexts may be handled by the are s
marization, without the need to re-analyze the programnfieg
for the various contexts. The main challenge in obtainingrea-
rizations, however, is twofold: to discover its most gehéoam,
and to discover its most specific conclusion.

In this paper, we present a method for deriving summarimatio
dynamically. Traditionally, summarizations are sought fioede-
fined procedures. In contrast, our method computes, oppustitu
cally and on-the-fly, expressive summarizations of arhjtaro-
gram fragments. Our method can thus be used to augment &n exis
ing analysis algorithm, which may or may not use a given abstr
tion function, to perform a symbolic exploration of the stapace
with greater efficiency.

As an illustration, consider a prograRy with the objective
to summarize a certain program fragméhof Py. The fragment
P is in fact invoked several times with different contexts whe
executingPy. As a trivial example, suppose the program fragment
P wereif (x == 0) count++, and that we were just interested
in the variablecount. A summarization ofP would state that
the final valuecount of count, is equal tocount+ 1 in case the
context impliedx = 0; otherwise, the summarization would state
thatcount = count However, it is often the case that the number
of contexts that need be considered is much smaller. Canside
generalizing the above example to a seriesibfstatements. Then,
even if the number of contexts arising from executing thgrfrant
is 2", there are in fact only possible outcomes for the final value
count. Continuing this example, suppose that we were interested
in just the bound focount, as opposed to its precise value. The
summarization could then say thedunt is incremented by at
most 2,regardlessof the context. In general, the challenge is to
coordinate the hypothesis and the conclusion of a sumntiariza
so that it is just expressive enough to obtain the final disgpv

After presenting the main ideas informally in the next sacti
we will present a framework for representing computatieesrof
symbolic traces. Each trace contains a set of constraiptesent-
ing both the history and the set of program states under densi
ation. An important property of the framework is that it isgoo-

2007/12/13

sitional, crucial to the reasoning about the effects of ewtst on
program fragments. We then present the main algorithm wisich
based on the operation of constraint deletion. We finally @em
strate the algorithm on several benchmark examples.

1.1 Related Work

There have been approaches in using summarization forgrogr
analysis. In this section we discuss their representatives
Summarization is typically applied to syntactically idiéable
program fragments, such as blocks, procedures or traosadti
the presence of concurrency. An example for procedures ean b
found in [3], which presents an approximation method for the
semantics of recursive procedures. Similarly, [18] presep-
proaches to interprocedural dataflow analysis of sequemta

grams, where one is based on summarizing each procedure int

an input-output relation, which, in the process of prograraly
sis, can replace the procedure at each call location. Sitoilaur
approach, in [16], summarization is performed on the fly. How
ever, this work only summarizes procedures, not arbitrangi@mm
fragments, as input-output functions. By focusing only ataflow
analysis problems (which in a sense defines a finite abgirgctt
provides a polynomial-time analysis algorithm. The pagécpn-
cerns predicate-abstraction, that is, procedures areagbet with
a predicate which represents input-output relations ofuhetion.
In [15], a method for summarizing procedures in concurrent p
grams is presented. What is actually summarizedraresaction a
sequence of statements of a thread which consists of, fongea
a sequence of lock acquisitions, shared data updates akaddoc
leases, and hence can be treated as atomic. A transactiospaay
across a procedure boundary. A summarization alreadyectean
be reused whenever the thread is to invoke the transaction.

In summary, our approach differs mainly in that summararagi
are computed opportunistically and on the fly, for arbitfaiggram
fragments. A key feature is that our summarization is exathée
sense it describes the strongest postcondition of the &agmat
hand.

Our work is also related to the areas of program verification,
model checking and theorem proving. There are two main aimil
ities. One is that we employ search. Recently, an importéet-a
native to proving safety of programs is to translate thefieation
problem into a boolean formula that can then be subjecte®ia
[2] or SMT [11] solver At the heart of these solvers is a DPLL-
based algorithm for traversing the solution space. In oukywwe
use a symbolic transition system which generates formulabe-
fly in the search for solutions.

The second similarity is in the way we generalize a formula
while preserving certain critical properties. This is agaus to
the notion ofCraig interpolation which generally seeks the most
liberal hypothesis for a given conclusion. The use of sud¢érin
polants is now an important component of model checkersdag]
theorem-proving [14]. In fact, our algorithm generalizeéernula
in case the new formula can be shown to have a similar seaoeh pr
file to a previous search. In more detail, our formulationreba
similarity with the specific method of generalization of fimgl a
minimal unsatisfiable subset of an unsatisfiable formula &g

[4].

2. TheBasicldea

In this section we illustrate, by means
principles of our optimization technique.
Consider the program fragmet

of a simple examyie, t

x + 1 else x :
x + 3 else x :

o
I n
x X
+ +
INIINY

and suppose we are interested in producing a summarization o
this fragment, which is an abstract input-output desaiptiAn
analysis procedure would then be able to use such a desaripti
directly, instead of traversing the program fragment to pota an
analysis for program poin{2). Since in the analysis process the
need to travers® may arise multiple times, the availability of a
summarization would make the process more efficient.

A summarization can be produced with a variety of purposes
in mind. The first, and most straightforward, is proving aesaf
property, which translates into checking whether the @mogfrag-
ment’s output state satisfies a given abstraction acrosts gHb-
stract) input contexts. A second, and more sophisticategdgse
is the discovery of an abstract property over a (possiblyiitefj
abstract domain. Such a summarization would be very usieiul,

dhstance, in computing worst case execution times of prograg-
ments. We shall illustrate both these approaches in theineiereof
this section. To that end, let us first introduce the requieeahinol-
ogy. We shall symbolically describe a set of states in theafor

(k,%),w

wherek denotes the program counter, the sequendenote pro-
gram variable andW is aconstraintor conjunction of constraints
on these variables. Call such an expressgiaX), ¥ a (symbolic)
programstate The semantics of such a state is simply the set of
instances ofk, X) for which the constrain® is true. In this exam-
ple, X containsx, and possibly other variables, and the expressions
b1 andb, are some unspecified boolean conditions unconnected
to x. Whereg is a statek,X), W, we writecong G) to denote the
constraints¥ in G.

A notion of “strongest postcondition” can now be obtained.
Consider an initial state

wherexg is indicates the initial value of program variablgzero,
in this case). This state can be propagated throughhtére branch
of the first statement yielding

go = (17X_‘]_)7X0 = O,bl,Xl = XO+ 1
and a final propagation through the secohen branch yields
goo = (27X2)7X0 = 07 b17Xl = X0+ 17 b27X2 = Xl+3

Note that, since the value of program variablehas changed
throughout the propagations, the symkgIn G has been replaced
by x; in G, and the symbak; in G, has in turn been replaced by
X2 in Gqo. Since this states, is final, we shall call, a “final”
variable. The symbolgy andx; that appear inG, still refer to
the value ofx at program points 0 and 1, and becomexiliary
variables in the statg .

The propagation operation is defined on all edges of the pro-
gram’s control flow graph. For instance, we could propagate
along theel se branch of the first statement to produce a staje
Moreover, we could regard, and G, as children ofg in acompu-
tation treeof G w.r.t. the progranP. Further strongest postcondi-
tion propagation steps can be appliedipand G, resulting in the
statesG o, Go1 G1o @aNd G44. This computation tree is depicted
in Figure 1.

The process of building such a tree proceeds depth-firsdyero
ing the first sequence of statgs G, Go. The last state cannot be
further propagated, and since the constraints attachdusstate

2We use the ternprogram or system variablgo refer to variables that
appear in imperative programs and whose values may changegtiout
a program’s execution. We use the tevariableto refer to logic variables,
which are interpreted as placeholders for values. A (logic)able may be
used to represent the value of a program variable at a speficam point.

2007/12/13

gE(()-)7X0:0
0=(Lx1),%=0,b1,x =x+1
OOE (2~,X2)7X0:O7b17xl:XO+l,b27X2:X1+3
O:I_E (2,)(2)7)(0:O7bl,X1:)(o+17—\b27)(2:X1+4
gl = (1>X1)7X0:07"bl7X1:X0+2
G10=(2,%2),%0 = 0,-b1,x1 = Xg+2,bp, %2 = X1 + 3
G11= (2,%2),X0 = 0,7by, X1 = X0 +2,-bp, % = X1 +4

Figurel. Computation Tree

Go=(1x)x1 <X +2
Goo=(2,%2), X1 <Xo+2,b2, % = X1 +3
Go1= (2,%2), X1 < Xo+2,—b2, %0 =x1 +4

Figure 2. Generalized Computation Tree

are satisfiable, we call this node of the tescessfulHence, the
sequence of state§, G,, G (the “leftmost” path) represents a
feasible computation path, and each solution to the sigigis

a tuple of legal values for the corresponding program véegaht
program point 2.

The depth-first traversal continues with propagatifgto pro-
gram point 2, yielding the statg,,. Suppose for a moment that
the constraint-by, —by is in fact unsatisfiable. Then the sequence
of statesg, G4, G,, (the “rightmost” path) encodes an infeasible
computation to théalsestateqg 4.

The computation tree depicted in Figure 1 provides an ateura
description of program fragmes behavior, and represents the
backbone of our summarization technique.

We now illustrate the process of obtaining a summarization o
P with the purpose of proving a safety property of the finalestatf
the program. Such a property is encoded as a constraint rea gi
possibly infinite family of constraints. We shall call thianfily
an abstract domainand each of its constraints aivstraction in
order to distinguish them from regular constraints. Thesotdye
therefore is to determine if the final states of the progratisfya
one abstraction.

Our algorithm shall, in the process of traversing the corafor
tree starting from the initial state, construcwmmarizatiorof the
various states encountered. More specifically, a summnigmiza of
astateg = (i,x), Wis a pair, writter(G — W'). The first component
G is a generalizatichof G, and is called theoverageof 3. The
second compone¥’ is a constraint and is thenswerof %. The
meaning of a summarizatichis that the final state§ are entailed
by the answekV’. A summarization of the initial state, therefore,
provides the abstraction of the whole program.

An arbitrary statej is summarizedy such a summarizatian
if the coverage ok is a generalization of. If so, the appropriate
specialization of¢’ toward G becomes an answer faj. More
specifically, suppos&; is summarized by a summarizatian=
(G — W). Theng is a generalization off, sayG = G A 0. Then
the final states of; entail the constraintong G) AB A W'

We now provide two examples of the usage of summarization,
one in proving safety, another in discovering safety.

3We formalize the notion of generalization in Section 3. Hegaiffices to
say that the set of program states represented symbolicly isya subset

of that of G.

1. Search Space Reduction in Proving Saféffg. now exemplify

the process of obtaining a summarizatiorPafith the purpose

of proving that our example program satisfies the abstnactio
A =X —Xp < 6. In other words, we are deriving an abstraction
on the amount a variable iscrementedrather than an abstrac-
tion of its maximum value. Later in this section, we will also
show how such an upper bound on the variation of a variable
can bediscovered

Consider a generalizatiofi, of G, where we replace the con-
straintsxg = 0,b1,X1 = Xg+1 in G to becomex; < xg+ 2. That

is, we drop the requirement that the initial valuexat 0, we
drop the constrainb;, and finally we relax the constraint be-
tweenx, andx; so that their difference is at most 2, as opposed
to exactly 1.

Consider now the computation tree of the new sigtg de-
picted in Figure 2. Notice that the behavior of this tree is th
same as the subtree faj, as far as the abstraction is con-
cerned That is, the increment of contained in both trees (4) is
the same.

We may thus produce a summarization
I=(Go—A=%—X <6)

Now, instead of traversing the second subtegein Figure 1,
we may simply apply this summarization ¢ hence reducing
search effort. First we verify tha is indeed a summarization
of G4, and this follows easily from the fact that the coverage
G, of Zis a generalization off,. Then we add the constraints
W =xp=0,by,X; =X+ 2 of G, to G, and conclude that the
summarized answer i A 4. This entails4, and so we con-
clude that runningz, is safe. This demonstrates the essential
usefulness of the summarization.

. Discovering safetyWe have shown that a summarization can

express an abstraction of the amount the value of a variable
varies acros$. Next, we will show that the upper bound of
such a variation can be in fadiscoveredn the summarization
process. Consider the abstract domgip—xg <a:0<a <

6}. That is, each abstraction implies that the incremenk of

is bounded by a nonnegative numleedess than or equal 6.
The objective now is not just to prove that our program is
safe, but also taliscoverone such value. Using the same
arguments above, we can obtain the same summarization
(Go > X2 —xo < 6), and therefore finally conclude that= 6.

However, consider the new scenario in which the constraint
—b1 A —=bs is unsatisfiable. In this case, a more precise answer is
in facta = 5. This is because the path G, G4, which would
have produced the largest incremenkof no longer feasible.
The moral of the story here is that while the use of summariza-
tions preserves safety, it does not presgmezision

In order to preserve precision, we require an additionaticon
tion for a stateG to be summarized by some summarization
3 = (G — W). Presently, it is a notion of coverage only. This
in fact means that the successful pathgjadre a subset of the
successful paths af. For example, in Figure 2, the more gen-
eral stateG, has a successful path &, In contrast, the more
specific summarized statg,, in Figure 1, does not have this
corresponding path.

What is needed for precision is that the state summarized has
exactlythe paths of the summarizing sthte

4We show later that we just nesdmeof these paths.

2007/12/13

Continuing this example, if we now include this new conditio
the stateG, is no longer summarized and its tree must be
traversed in the usual manner.

We finally extend the abstract domain toiafinite number of
abstractions. Consider now abstract the donj&ia —xo < a” :

0 < a}, where an abstraction states that the increment isf
bounded by a nonnegative numlzewhich is arbitrarily large.

The question now is how to summarize the stgy? Previ-
ously, after we traversed the subtreey, we determined that
its successful paths entail the abstractigr xg < 6. The num-
ber 6 arose from the previous definition of the abstract domai
In this example, the subtree gf, can only reasonably answer
that x, — xg < 5. While this is indeed a correct answer to a
summarization o, the problem is that the coverage will be
restricted tax; — xg < 1. That is, the proposed summarization
would be:

((17X1)7X1_X0 S 1’_>X2_XO S 5)

This would then not cover the subsequently encountered stat
G4, and therefore an opportunity for optimization would bet.los

The remedy here is not to summarigg with the specific an-
swerxy —Xg < 5, but instead to use a generalization of this such
thatsafety is preservedror example, we could use the answer
X2 —Xo < 500, which implies that the coverage(ik x1),x; —

Xo < 496. Alternatively, we could use the answer— Xy <
5000, which implies that the coveragée isxs), x; — xo < 4996.

In general, we should use the answer—xp <y+ 6,y >0
wherey is a new variable. This way the coverage becomes
(1,x1),X1 — %o <y-+2,y> 0. That is, our summarization is

(Lx1),x1 =% <y+2,y>0— % —Xx <y+6,y>0)

and this is in fact the best possible summarization for our
purpose of discovering an upper bound for the increment of
To concretize this example, consider a new s@@e/vhich has
the constraink; = xo+ 10. Using the summarization above, we
obtain that the value of is 8, and therefore the answer to this
new state is 14.

Note that this summarization is not the best for all purpoges
we were interested inlawer bound for the increment o, this
summarization is not appropriate.

In summary for this section, we have exemplified an algorithm
for summarizing program fragments toward the goal of satigf
a given abstract domain in the pursuit of safety. A summtdra
provides an answer to a state that preserves safety, andadoath
a covering state which is as general as possible.

In the more common setting of finite abstract domains, the
answer of a summarization can be easily chosen as one dlwstrac
However, if we demanded that only thestabstraction be returned
in case the program is safe, then additional conditions enisie of
summarization is needed. Even so, we have found experithenta
that these additional conditions are not severe.

In the case of an infinite abstract domain, the choice of answe
to a summarization is manual. However, this task is not harthie
small number of interesting infinite domains that we havesabn
ered. In this section, we considered the abstract domaieflect
an upper bound of the difference between two program varsabl

In what follows, we present an algorithm for the three sciesar

e Proving Safetyis a given abstraction satisfied?

e Discovering Safetygiven a possibly infinite set of abstractions,
find one abstraction which is satisfied.

e Discovering Exact Safetgiven a possibly infinite set of ab-
stractions, find the “best” one which is satisfied. That is,caien
specific abstraction would be unsafe.

Section 4 deals with the first two, while Section 5 deals whté t
latter.

3. Constraint Transition Systems

This section presents a formalization of what we considdoeto
a typical abstract interpretation framework, augmenteth \wur

summarization algorithm. The essence of this section foze=
the notion of a computation tree.

3.1 Preliminaries

We start by defining a language of first-order formulas. L&t
denote an infinite set of variables, each of which has a type in
the domains®y,---, Dy, let = denote a set ofunctors and Il
denote a set otonstraint symbolsFunctors represent program
operations such as arithmetic operations and array assigism
while constraints represent conditionals in program states such
as arithmetic relations, in addition to equalities. Thera special
collection offinal variables. Atern® is either a constant (0-ary
functor) inX or of the formf (ty,---,tm), m> 1, wheref € ¥ and
eacht; is a term, 1< i < m. A primitive constraintis of the form
@(t1,---,tm) where@ is am— ary constraint symbol and eadh
is a term, 1< i < m. A constraintis constructed from primitive
constraints using logical connectives in the usual mamibereW

is a constraint, we writé/(X) to denote thatV possibly refers to
variables inx;and we write3W(X) to denote the existential closure
of W(X) over variables away from ~

A substitutiorB simultaneously replaces each variable in a term
or constraink into some expression, and we wré@to denote the
result. Arenamings a substitution which maps each variable in the
expression into a distinct variable. We wrjfe— ¥ to denote such
mappings.

A groundingis a substitution which maps each variable into a
value in its domain. Where is an expression containing a con-
straintW, [[e]] denotes the set of its instantiations obtained by ap-
plying all possiblegroundings which satisfip.

3.2 A Reduction System

A program is represented as a transition system which cax-be e
ecuted symbolically. The following key definition serveotmain
purposes. First, it is a high level representation of theratpenal
semantics, and in fact, it represents the exace semantics. Sec-
ond, it is anexecutable specificaticagainst which an assertion can
be checked.

We shall model computation by consideringystem variables
V1,---,Vp With domainsDq,---, D respectively, and a program
counterk ranging over program points. In this paper, we shall
use just two example domains, that of integers, and thattefjer
arrays.

DEFINITION 1 (States and Transitionsh ground states of the
form (k,d1,---,dn) where k is a program point and; & D;j,1 <
i <n, are values for the system variablestransitionis a pair of
states. |]

DEFINITION 2 (Symbolic State)A symbolic state(or simply,
state) of a CTS is of the form:

(k,%), W(x)

51n this paper, we shall only be using simple integer termsamstraints
as examples. In general, we can code data structures suchags and
pointers.

2007/12/13

Jb, X =x+1.

)
/g,bz,xl =Xx+3.
)

Figure3. CTS of Example in Section 2

where k is a program poing; is a sequence of variables over system
states, andV is a constraint over some or all of the variablésand
possibly some additional variables. The variab¥eare called the
primaryvariables of this state, while any additional variable4h

is called anauxiliary variable of the state. Wherg is a state, we
write cong G) to denote the constraint ig. Finally, we writeG (X)

to indicate thatX are the primary variables of.

DEFINITION 3 (Constraint Transition SystemA constraint tran-
sition of p is a formula

(k%) = (k1. %), W(% %)
where (k,X) and (ki,%X;) are system states, anH is a constraint
overX andXy, and possibly some additional auxiliary variables. A
constraint transition systef€TS) of p is a finite set of constraint
transitions of p.

Clearly the variables in a constraint transition may be mes@d
freely because their scope is local to the transition. We tay
that a constraint transition isvariant of another if one is identical
to the other when a renaming substitution is performed.heurt
we maysimplifya constraint transition by renaming any one of its
variablesx by an expressioy provided thak = y in all groundings
of the constraint transition.

The above formulation of program transitions is familiathe
literature for the purpose of defining a set of transitionsiaiMs
new, however, is how we use a CTS to defirgymbolictransition
sequences, and thereon, the notion of a proof.

Thus a state is just like the conclusion of a constraint ttiems

We say that a state falseif its constraint is unsatisfiable. We
shall also the notatiofalseto denote dalsestate. We say that a
state isfinal if k is the final program point, one from which there
are no transitions. Running an initial state is therefonéemount to
asking the question: which of the valuesxahat satisfy3W(X) will
lead to a state at the final point(s)? The idea is that we ssiveds
reduce one state to another until the resulting state is ahbdfiate,
and then inspect the results.

We say that a stat§ subsumeanother state; if [G]] 2 [G]-
Equivalently, we say that is a generalizationof G. We write
G, = G, if G, andg, are generalizations of each other. Note that
if G is ageneralizatiorof G, then there is a constraikit such that
GAYP=gG.

Given two stateg;; = (k,%1), W1 and G, = (k,%2), W2 sharing
a common program poirk, we write G; A G, to denote the state
(K,%1),% = %o, W1, Wo.

Next we define what it means for a CTS to “prove” a state.

DEFINITION 4 (Transition Step, Sequence and Trdegt there be
a CTS for a program, and leff = (k,X),¥ be a state for this. A
transition stedrom G may be obtained providing is satisfiable.
Itis obtained using a variant, y) — (ki,Y1), W1 of a transition in
the CTS in which all the variables are fresh. The result isatesof
the form(ky,y1), W, X =¥, W1 We say that this new state is a false
state if the constrain®, % = §, W1 is unsatisfiabl&.

A transition sequences a finite sequence of transition steps
which terminate in either a final state or a false statera@nsition

6 This particular treatment is not usual in traditional CLP, fBom where
these definitions are adapted.

pathis a finite sequence of transitions corresponding to a triamsi
sequence. Intuitively, a path denotes the “skeleton” of gussice.
Atransition treas defined from transition sequences in the obvious
way.

[

We shall impose a special condition on transition stepsstea
results in a final state, then the primary variables of thd tate
are thefinal variables. We say that a transition sequence or path is
successfuif it terminates in a final state; otherwise, the sequence
or path isfalse

DEFINITION 5 (Answer).Let G be a state and letG,,---, G,
n> 0, denote the final states in all of the successful paths st
G. The answenNs(G) of a stateg is the disjunction cong;,) v
---vVcongG,,). Note thataNs(G) = false if there are no successful
paths starting ag.]

4, Summarizations

DEFINITION 6 (Summarization)A summarization is a pair com-
prising a stateG and a constraint¥ over varG), final variables
and possibly auxiliary variables, such thatis(G) = . We shall
call G the coverageand W the answerof the summarization. We
write G — W to denote such a summarization.

A stateG is summarizedy a summarizatio = (G — W) if

G is a generalization of;. []

The general purpose of a summarizatios (G — W) is to pro-
duce an abstract answer for a stgtéor which G is a generaliza-
tion. That is,G = G A 6 for someB. We write GZ to denote the an-
swer toG provided bys. In this caseGs is W = con{G) ABA WY,
and it is the case thains(G) = W'.

In this paper, summarizations are used to optimize the peoaie
discovering certain abstract properties about a progrdrasd ab-
stract properties are specified simply by a possibly infiiaiteily 4
of abstractionseach of which is a formula over the final variables.
We shall call the family of abstractions abstract domain

DEFINITION 7 (§afety).A state G is safe wrta Bossibly infinite
abstract domain? if ANS(G) |= A for somea € 4. A program is
safe wrt 4 if all of its final states are safe wrl.]

The simplest example of abstract property is a “safety” prop
and this corresponds to having an abstraction family of qumst
abstraction. In Section 2 for example, we dealt with theralotibn
X2 — Xo < 6. Some further examples:

ExamPLE 1 (Example Abstract Domains).

e “SIGN”

Consider a finite number of abstractions where the formulas
are conjunctions of basic constraints of the form»x0 where

the % range over a finite set of (interesting) variables, ands

one of< and>. Thus if there are two variables X, y, the set of
abstractions iSx < 0Ay < 0,x < 0AYy>0,x> 0AYy < 0,x >

0AYy > 0}. Note here that we have not included the cases where
the sign of x or y is not knownThus a program is safe only if
every trace results in a definite sign for both x and y, and xhat
has the same sign in each trace, and similarly for y.

“PARITY”

Next consider that each abstraction states the parity of-a se
lected set of variables. If these were x and y, then the ab-
stractions are{everix) A everfy), ever{x) A odd(y),odd(x) A

71f we did, the abstract domain would be “disjunction-cldsed

2007/12/13

S + a;

S + Op

Figure4. Sum of Subsets

everty),odd(x) A odd(y)} where the predicates ody and
ever{) have the obvious meanings. Once again, a state in which
the parity of x or y is not determined is considered unsafe.

e “INTERVAL”
Consider now the infinite set of abstractiofst < xAx < B:
a,B € R}. Here we are interested in a real number interval
bounding the final values of x.[]

The main technical result in this paper is an algorithm whigven

an initial stateG, computes summarizations on the fly, toward the
goal of proving that the final states, ieNs(G), satisfy certain
abstract properties.

DEFINITION 8 (Safe SummarizationA summarizatiork of G is
safe wrt4 if there is an abstractioG> |= 4 forsomed € 4. []

The main property of a safe summarization is illustrated by:

LEMMA 1. Let (G — 4) be a safe summarization. L&} be a
specialization ofG, that is, G = (G A 8). Then(G congG) A
B 4) is a safe summarization a@f.

The algorithm is presented in Figure 5. Its input is a stgte
and its return value, if any, is a pafi; — 4) denoting a safe
summarization ofy. The algorithm may abort if a summarization
of the input state cannot be produced. The algorithm comgris
two key operations (GEN) and (JOIN). The first (GEN) dealswit
computing a weakest precondition of a state, which esgintia
necessitates the computation of a “generalization” of taeemt
state. The second operation (JOIN) requires that the cadput
answers of summarizations of descendant states be comibiioed
a summarization answer for the parent state.

Defineweakest preconditiowP(R, G) of a stateg produced by
a transitionR to be a stateg’ such that there is a proof step from
G’ to a variant ofG using the transitioR. Formally,

DEFINITION 9 (Weakest Preconditionpuppose that a transition
R and a states are of the form:

(k%) — WR(%,%),(K,%) and (K,%),¥
respectively. Then
WP(R, G) &' (k, %), V% WR(XX) — WX /T]

In general, it is not practical to compute this functiam() pre-
cisely. Consider, for example, the computationvep(R, false),
whereR is as in Definition 9, precisely. We would require a state
(i,X), ¥ such that¥ A Wr is unsatisfiable, but foany generaliza-
tion W of W, WA W is satisfiable. In general, sutkwould only
be describable as a (large) disjunction in the availablestraimt
language.

A concrete example of the intractability wfP() is given in Fig-
ure 4, where all propositional combinations of thare satisfiable.
Implementing the well-known NP-complete sum-of-subsetdp
lem: given a seSof nnumbers{ay,---,0n} and another numbdg;
does a subset &sum top? Since the program takes no input, this
problem can be reduced to determining if the weakest preétond
of the program w.r.t the constraist= 3 is empty or not.

A possibly practical approach may be obtained from thediter
ture onminimal unsatisfiable subsetghich attempts to find, given
an unsatisfiable set of constraints, a subset thereof whils® un-
satisfiable. See eg. [4]. Note that such a set is not uniquappty
this technique, we simply use the constraints attached:=tpahent
state of thidalsestate in question, conjoin the constraint from the
transitionR, and consider all of these constraints as a set. In case
we were computing the weakest preconditigr(R, G) of a non-
false state instead ofP(R false), this approach can still be used
in case the constraint i can be efficiently negated. That is, we
accumulate the constraints in the parent staig,dahe constraint in
the transitiorR and finally, the constraintcong G), and consider
all of these as a set.

In a more general setting than finding minimal unsatisfiable
subsets is the notion of @raig interpolant which we informally
describe as follows: givel = W', find a generalizatiot’ of W
such that¥ |= W' also. This converges with the minimal subsets
approach whei’ = false The use of such interpolants for model-
checking [13] and theorem-proving [14] is now commonplace.

In summary for (GEN), it is in general not practical to conmgut
theweakesprecondition of state as in the idealized algorithm. In-
deed, computing the weakest precondition is intractalilgl,less we
exemplify later. Thus in practice, one would compute justexpn-
dition of the descendarg; which is at least as general as the parent
G, as opposed to the weakest precondition. In section 6, wedem
strate such an algorithm based upon an efficient implenientat
constraint deletions.

The step (JOIN) serves to combine several constraints imto o
such that the result is safe. Note that although these @ntstrare
in fact safe summarizations of states that are descendéite o
current state, the disjunction of these constraints is roessarily
safe. (Recall the abstraction family SIGN above, and supftere
are two constraints to be joinedver{x) A everty) andeverix) A
odd(y). Clearly there can be no join of these two constraints, and
our algorithm would abort at this point.) The operatiin can in
principle be implemented simply as a disjunction of its angats.
However, this would not be scalable, for the number of disfioms
would increase exponentially.

Fortunately, it is often not necessary to represent prigcibies
disjunction. Recall that the obligation of a summariza@nswer
is just that itentailsan abstraction. Thus for example, if we were
dealing with a safety property and therefore a single atiitra
A4, thenJoiIN() can simply returng itself (This is assuming that
the disjunction is in fact safe; if nogoINn() must say so, and the
algorithm aborts.).

Now if we were dealing with a finite or infinite abstract domain
JOIN() can simply return one of the abstractions. However, it may
be the case that the abstraction used may not be the mossereci
possible. More specifically, recall that a summarizatioa (G —

W) should be such that for any instance®bf G, G= should entail
an abstraction. The problem however is tat may not entail the
most precise abstraction. Recall that in the example ofi@eé,

in the scenario whereb; A —b, was unsatisfiable, we computed
a summarization whose answer was- Xg < 6 for the stateg,,
and when we apply this to the stagg, we finally concluded that
X2 —Xg < 6. This is safe, but not precise, foy —Xg < 5 is a better
abstraction.

In summary for (JOIN), one needs to combine two summarized
answers with a constraint must trade off two things: to be

e precise enough to ensure safety, and yet

e abstract enough so that the disjunction can be efficienfisere
sented.

2007/12/13

SOLVE(G = ((k, %), W) returns (G +— W)
e G isfalse return (false— false

e Gisfinal:
if (W is unsafepbort
return ((k, %) — W)

e G is summarized by some memoizEd return X
e (is composite:
for each derivatiors > G (%1),1<i <n
let the constraint ilR be ¢ (,¥)
let (G; — W) = SOLVE(G)
let H (%) = wpP(R, G)
letH =FHN---NFh
letW = JOIN(@ AWq, -+ ,gh AWp)

memoize the summarizatidh= (H — V)
return x

(SAFE?)

(GEN)

(JOIN)

Figure5. Idealized Algorithm for Safe Summarizations

While the choice of any implementation of (JOIN) which press
safety will ultimately produce a safe summarization, thi®ice
does affect the precision. In the next section, we refine Ipe-a
rithm to ensure that the answers to summarizations are,rnreso
sense, exact.

We now exemplify possible implementations xafin() for the
example abstractions in Section 2. To simplify mattergjm&sthat
JOIN() takes two argumentd; and 4.

For an abstract domain representing just a single absiracti
4, JOIN(), can simply be4. Note that there is no need to check
that both 4; and A4, imply A4, because the current statg is
in the precondition of descendant states which are alreafiyjys
summarized to the answet.

For finite or infinite abstract domains, it is safe thatn() re-
turns any abstraction in this domain as long as it is safe.em g
eral, of course, the most precise should be chosen. Howasex-
plained above, even ifoIN() consistently chooses the most precise
abstraction possible and eventually constructs a sumatemig, it
is not the case that this summarization will exactly repnetigose
states within its coverage.

Reconsider now the abstract domain “SIGN” of Example 1.
An implementation foooIN() is straightforward: simply determine
the sign of the two variables andy in each of4;1 and 4,. We
abort if the sign of one of them is not determined, or if thensig
of one of them is different i@, and 4,. Otherwise, the return of
JOIN(A41, A7) is the single constraint expressing the sign of both
andy that is evident in boti; and 4,. For the abstract domain
“PARITY”, implementation is equally straightforward: spty de-
termine the parity of the two variablesndy in each of4; and45.
the return ofioIN(A41, 4p) is the single constraint parity of both
andy that is evident in botta; and 5.

Finally consider the domain “INTERVAL’. An implementa-
tion of JOIN(A1, 42) would simply construct an interval from the
two intervals indicated in4; and 4,. That is, where4; is of
the formay < x < 1 and 45 is of the forma, < x < B2, ob-
viously JOIN(A431, 43) is the single constrainnin(a,0z) < x <
maxB1,B2). Thus in all three cases, the implementationofi()
is straightforward.

THEOREM1 (Safety).Given a stateg and a family of abstrac-
tions 4 for var(G), the algorithm in Figure 5 returns a safe sum-

marization forG in caseg is safe wrt4; otherwise, the algorithm
aborts.

PROOF OUTLINE We proceed by induction. First, the base
cases: both the false state and final state cases return exmet
marizations to the parent state is easy to see. Now assuntigg in
processing of state;, that the return valuesé?i — W) are ex-
act summarizations of the descendant staggsl < i < n. Now,
sinceG runs toG; and sinceg; is more general thaig;, it follows
from step (GEN) that7 is in the weakest precondition ¢f;.. Thus
@ AW, 1 <i<n,is safe. Finally, since (JOIN) combines these as
a disjunction, the resul’ is safe. []

The key reason why this idealized algorithm has potentially
good performance is that once it has summarized a staiecan
use this summarization for future encountered stgteshosefinal
paths are contained in those gf. that is, G’ does not allow a path
which was infeasible iri;. Now, even ifg’ were not summarized, it
means the work about to be performed@accounts for a path that
is not yet explored. Further, evengf were not summarized, there
is every opportunity for one of its descendants to be sunzedri
(by a descendant off) so long as this descendant is not on the
same said path.

Even so, in general, the search process can be intractable, a
explained above for the program in Figure 4.

5. Exact Summarizations

In most settings, proving safety is just a decision problém.
our setting, we seek not just to prove safety, butliecoverthe
abstraction which establishes the safety. More importante seek
to discover thebestabstraction which establishes the safety. The
motivation for this is partly due to the fact that we are deghvith
straight-line programs and we wish to ensure that our alyori
performs exact propagation with respect to a given absiiaogin.
This section extends the previous to the case where we desire
not just a safe summarization, but, in some sense, an “exant*
marization. ~ ~
Given an abstract domaif, we say that an abstractiche 4 is
strictly more precis¢hat anothes?’ € 4 if 4 = 4’ but not2’ [~ 4.

DEFINITION 10 (Exact SummarizationA summarizatiort of G
is exact wrtan abstract domai if GZ |= A4 for someA € 4.

Furthermore, for any abstractior?’ in 4 which is strictly more
precise thang is unsafefor G, thatis,ANs(G) (= 4'. []

The algorithm in Figure 5 does not in general produce an exact

summarization for the input statg¢. Recall that a summarization
3 = (G — W) guarantees that a statp covered byg, say G =
‘G A8, has its answers covered By\ W. Thus if = were a safe
summarization, thewy is safe. That isGZ implies an abstraction.
In contrast, ifZ were anexactsummarization, whil€sZ is safe and
entails some abstractiof, it is in generanotthe case tha#l is a
maximally precise abstraction. Recall that we have exdiaglthis
in Section 2.

We now present a new and refined definition of summarization.
Previously, a summarization was a pair, the first of compboén
which is coverage, and the second was an answer constragnt. W
now refine the definition of summarization so that there amg no
two components of coverage.

DEFINITION 11 (Summarization, Second Versio) summariza-
tion is a triple comprising a state;, a setW of constraints over
var(G) and final variables, and a constraif¥¢ over var(G) and
final variables such thatNs(G) = W. We shall callG the MAX
coverageqJ the MIN coverage and W the answerof the summa-
rization. We write(G, W) — W to denote such a summarization.

2007/12/13

Next consider the domain “INTERVAL". Recall that the pro-

— & = W /
SOLVE(G = ((kX),¥)) returns (G, W) — W) posedioIN(A1, Az, -+, An), where; is of the forma; < x < Bj,

e Gisfalse return ((false {}) — false 1<i<n, is to choose the interval < x < B such thata =

e Gisfinal: min(ag,---,0n) andP = maxay, -, 0n). SUPPOS® min Were the
if (W is unsafepbort least number in{a1,---,0n}, and Bmax the greatest number in
return (((kvik)v{w}) — l]J) {Blv) n}

ConsideRER(Wy, -, Wy). Following the interval logic above,

is summarized by some memoizEd return X SAFE? .) ;
°G y () each setV; would contain at most two constrair#g™" and Wnax

e G is composite: corresponding to the two answers that give rise to the iaterv
for each derivation; R G(%i1),1<i<n representing the answer to the summarizatior_l of d_escemhmt
let the constraint iR beq (¥,¥) G. We now choose, amongst theser2constraints, just thene
or two constraints that demonstrates that the new interval issithde
let ((G;, Wi) — Wi) = SOLVE(G) a<x<p.
let #(%) = WP(R G) (GEN) We now return to the example in Section 2, and consider the
letH = A---NHh _ infinite abstract domaifx; — %o < a : 0 < a}. Recall that after
letW =REM(@ AW1, -, gh AWn) (REP) | analyzing the subtree faf,, we obtained the summarization

letW = JOIN(@ AWq, -+ ,gh AWp) (JOIN)
memoize the summarizatidh= ((H,¥) — W) () =% <y+2y>0-x-X<y+6y=>0)
return z of G,. This was derived by considering two subtreesf cor-
responding to the adding of the constraibgsx, = x; + 3 toward
Goo @nd the constraintby, xp = X1 +4, towardG,. For the rep-
Figure 6. Idealized Algorithm for Exact Summarization resentative set of;, we would need to consider just one, the latter.
This is because any candidate stgtevhich is summarized by this
summarizatior, would indeed produce the exact incremenkof
in the answerG'%. If of course this candidate state did not satisfy
—by, X2 = X1 +4, then it is not considered summarized, and its tree
. o would have to be analyzed. In either case, we would prodatieea
e (a) G is a generalization of; (as before), and end, an exact summarization.
o (b) GAW;, forall Wi € W, is satisfiable. [] The following theorem statement and proof outline are $ligh
modifications of those of Theorem 1.

A stateG is summarizedy ¥ = (G, W) — W) if

Supposes = G AB. As before, we write5 to denote the answer of
G as given by the summarizati@nand this ixong G) A6 AW. The
reason that the condition in (a) is called MAX is that it reyests

THEOREM2 (Exact Summarization)Given a stateg and a fam-
ily of abstractions4 for var(G), the algorithm in Figure 6 returns

a “maximum generalization” of a potentially summarizedestén an exact summarization faf in caseg is safe wrt4; otherwise,

(b) however, the condition represents a “minimum specigtin” the algorithm aborts.

of a potentially summarized state. PROOF OUTLINE We proceed by induction. First, the base
We now refine our algorithm and obtain the algorithm in Figure cases: both the false state and final state cases return safe s

6. The first change is the definition of whether a state is sutizeth marizations to the parent state is easy to see. Now assurtieg in

by a previously computed summarization, and this is givesvab processing of statg;, that the return value$(G,;, W;) — W) are

in Definition 11. The major change however, is the (REP) step, exact summarizations of the descendant staigsl <i < n. As
which serves to produce, gNiven a family of constraints, ateo$ before, sinceg runs to G; and sinceai is more general tharg,,
constraints. The notatiapA W used in the new step (REP) denotes it follows from step (GEN) thag is in the weakest precondition
the set of constraints obtained by conjoinipgith each constraint of ?i. Thusg AW, 1 <i <n,is safe, and since (JOIN) combines
inY. these as a disjunction, the resuyt is safe.

The input torRER() is a family representing the various represen- But now, we use the fact that the set of constraifsn U : 1 <
tative setsby, - - -, W, obtained from summarizations of the descen- i < n} which is input toRER(), will produce as output a constraint
dant stategs, ,- -, G,,. These summarizations produce answers for whose abstraction is the same as the abstraction of the isgiLit
Gi, G WhICh together imply that a certain abstraction, sgy ~ The theorem now follows easily.]
is the most precise one that applies. The functe@m) then com-
putes, from this family, a representative set of constsaivtich, 6. Experimenta] Evaluation
when conjoined withg, demonstrates that holds. It thus follows
thatReR) computes a best set of constraints that demonstrates “ex-
act safety”.

We next exemplify that computingeR) can be efficient.

ansider~some examples from Example 1 for the function
REAW1,---,W¥,). For the abstract domains “SIGN” and “PAR-

In our experimental evaluation, we have employed CLP telehno
ogy [7], which provides an efficient mechanism for the intémnep-
resentation of an incrementally growing a proof sequeneesas of
constraints, and for structure sharing of common congdtaicross
different proof sequences. One important feature of ttgkriel-
ogy is an efficient projection algorithm. Our experimentgtem

ITY”, the return value can simply bany subseof constraints¥ in is based on the CLEy) system [10] with an adaptation of the
wlu -U Wn that precisely describes the signs/parities appearing Fourier-Motzkin algorithm [9].
in all the constraints. Note that the choice of which set traiirst Our implementation of the GEN operation uses a process

does however affect how often a summarization is effective 0 of constraint deletion to compute preconditions. A coristris
summarizing a candidate state. Clearly we could use amranpit deemed to be redundant, and therefore deletable, at a ndde in
set of constraints larger thab. This would increase the likelihood computation tree, if its removal does not change the stdtasy
of a summarization being able to cover a candidate statatlhe of the leaf nodes in the corresponding subtree. That is, tipen
expense of increased cost in the storage of this represendat. removal of a redundant constrairiglse state remairfalse and

8 2007/12/13

Array | No Summarization Safe Summarization % Space (Time) Exact Summarization % Space (Time)
Problem Size | Nodes Time(s)| Nodes Time(s) Answel Reduction Nodes Time(s) Answel Reduction
Unrestricted 5 2233 11.22 58 0.04 10 97.40% (99.64%)| 58 0.05 10 97.40% (99.55%)
10 0 218 0.92 45 218 0.96 45
15 00 478 6.92 105 478 7.04 105
Binary 4 381 0.70 162 0.27 4 57.48% (61.43%)| 169 0.30 4 55.64% (57.14%)
Elements 6 2825 27.47 729 4.64 9 74.19% (83.11%)| 873 6.54 9 69.10% (76.19%)
Table 1. Bubble Sort
No Summarization Safe Summarization % Space (Time) Exact Summarization % Space (Time)
Problem Nodes Time(s)| Nodes Time(s) Answel Reduction Nodes Time (s) Answel Reduction
decoder 344 0.31 38 0.02 22 88.95% (93.55%)| 132 0.19 22 61.63% (38.71%)
sqrt 923 4.25 236 1.37 209 | 74.43% (67.76%)| 253 1.43 141 | 72.59% (66.35%)
qurt 1104 14.47 273 2.52 220 | 75.27% (82.58%)| 290 2.60 152 | 73.73% (82.03%)
jannecomplex | 1517 17.93 410 2.13 105 | 72.97% (88.12%)| 683 4.36 81 55.98% (75.68%)

for (i=0; i<n-1; i++) {
for (j =0; j<n-i-1; j++) {
if (a[j] > a[j+1])
swap(a, j,j+1);

1

Figure 7. Bubble Sort

subsumed states remain subsumed. In principle, this dioiges
as hard as discovering a minimal unsatisfiable subset otreomis
in an unsatisfiable collection; see eg. [4]. However, in ficac
(and in all the examples in this paper), a simple algorithfficas:
consider the constraints one at a time, and perform the sages
redundancy test. We further suggest that is probable tis¢rfa
heuristic algorithms can be developed based on the intuitiat
often, the only possible candidates are easily detectable.

For the JOIN operation of the algorithm in Figure 5, we use
numeric bounds, as illustrated in Section 2. Whenever inman
that a minimal or maximal bound of the variation of a variaisle
sought, we aggregate interval constraints in the obvioys Weese
two very straightforward abstraction algorithms accowntrfiuch
of the efficiency of our approach. Nevertheless, new alsbrac
methods can be easily embedded into our main algorithm in a
natural way.

Table2—Seme Random Programs

Our prototype simply generates the entire state space,and f
the purpose of verifying an error condition, an on-the-flpestate
reachability check can be easily added.

Results are shown in Table 1. For both unrestricted and pinar
elements, we use fixed array sizes given in the 2nd column. The
“Nodes” columns in the table contain the numbers of nodehkén t
search tree of our prototype, and “Time” is the running timeec-
onds. Note the linear growth in nodes traversed for the tmceed
version. The binary version of bubble sort introduced mare-c
straints, as expected, leading to a more complex analysishwh
decreases the amount of reduction. Nevertheless, sunatiang
produced huge savings.

We also tested our prototype by generating the state-space
search tree of several programs for WCET analysis benchingark
which exhibit a variety of program control structures. Tleeader
program is taken from the ADPCM encoder and decoder that ap-
pears in [17]. Thesqrt andqurt programs are from the SNU RT
Benchmark Suite [19], and theanne_conpl ex program is from
the Malardalen Benchmark Suite [12]. The results are shown in Ta-
ble 2. All the experiments show a significant amount of reiduct

7. Conclusion

We considered the problem of exact propagation througlaasir
line program in the pursuit of a final assertion. The final e&s®e

Our prototype summarization system has been implemented asjs a user-defined function and so we in fact address the proble

a pure CLPR) [10] program, with emphasis on its meta-level fa-
cilities [6]. We performed our experiments on a Pentium 4eys
with a 2.8GHz clock, 512Mb RAM, and running Linux 2.4.22. The
tests have been performed on several randomly chosen pregra
instrumented so that each primitive action would increnseng-
source counter.

For the bubble sort program in Figure 7, we have performed a
variety of tests, considering several array sizes, as \gédlha case
when the array elements are binary (i.e. restricted to twoeg
only). In our experiments, we have assumed that the valuei®f
given. In the case when the array elements are unrestrecf@oof
tree would have very fevialse states (just those corresponding to
leaving the loop early). Here our algorithm, proceedingnglthe
lines of the abstractions described in section 2, would ladireear
performance in the size of the array.

If however the array elements are restricted in some way, per
formance is far less predictable. When the array elemeetsear
stricted to binary values, the number of false states (spmed-
ing to impossible combinations of swap operations) is fayda
and in practice, unpredictable. In this case, our algorigximbits
less impressive performance because of fewer subsumed,rimde
nevertheless provides significant improvement.

of discovering a final abstraction, in addition to just praysafety

in terms of a given final condition. Our method is fundamemptal
a path enumeration method, but the main contribution is an op
timization based on the use of summarizations that are roddai
dynamically. The method is designed to produce, for eachnsasm
rization, the most general context for its use, and the nyestific
conclusion for its result. Importantly, these summaradi apply

to arbitrary program fragments and hence there is a finerges-
olution to their potential usefulness. Finally, we demoetsd the
efficiency of the optimization on several programs.

References

[1] T. Ball, T. Millstein, and S. K. Rajamani. Polymorphiceqtficate
abstraction. ACM Transactions on Programming Languages and
Systems27(2):314-343, 2005.

[2] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic el
checking without BDDs. In R. Cleaveland, edit@th TACAS
volume 1579 oL NCS pages 193-207. Springer, 1999.

[3] P. Cousot and R. Cousot. Static determination of dyngmoperties
of recursive procedures. In E.Neuhold, edit@rmal Description of
Prog. ConceptsNorth-Holland, 1978.

2007/12/13

[4] Maria Garcia de la Banda, Peter J. Stuckey, and Jeremynyaz
Finding all minimal unsatisfiable subsets. ACM PPDR pages
32-43, 2003.

[5] S. Graf and H. Sali. Construction of abstract state graphs of infinite
systems with PVS. In O. Grumberg, editdth CAV, volume 1254 of
LNCS pages 72-83. Springer, 1997.

[6] N. Heintze, S. Michaylov, P. J. Stuckey, and R. H. C. YapetM
programming in CLPR). Journal of Logic Programming33(3):221—
259, December 1997.

[7] J. Jaffar, M. Maher, P. Stuckey, and R. Yap. Projecting”Ct)
constraints. IfNew Generation Computingolume 11, pages 449-
469. Ohmsha and Springer-Verlag, 1993.

[8] J. Jaffar and M. J. Maher. Constraint logic programmiAgurvey.
Journal of Logic Programmingl9/20:503-581, May/July 1994.

[9] J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Ouwip
CLP(R). In Proc. Int. Conf. on Fifth Generation Computer Systems,
Tokyo, Japanvolume 2, pages 987-995, 1992.

[10] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yape TLPR)
language and systelACM TOPLAS14(3):339-395, 1992.

[11] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT tedures for
fast predicate abstraction. In T. Ball and R. B. Jones, egifdth
CAV, volume 4144 o NCS pages 424-437. Springer, 2006.

[12] Malardalen WCET research group benchmarks. URL-
p: //ww. nrt c. mdh. se/ proj ect s/ weet / benchmarks. htni .

[13] K. L. McMillan. Interpolation and SAT-based model chkéw. In
Jr. W. A. Hunt and F. Somenzi, editor5th CAV volume 2725 of
LNCS pages 1-13. Springer, 2003.

[14] K. L. McMillan. An inerpolating theorem prover.Theoretical
Computer Scien¢845(1):101-121, 2005.

[15] S. Qadeer, S. K. Rajamani, and J. Rehof. Summarizinggolares in
concurrent programs. [Blst POPLACM Press, 2004.

[16] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocatidataflow
analysis via graph reachability. B2nd POPL. pages 49-61. ACM
Press, 1995.

[17] R. Richey. Adaptive Differential Pulse Code Modulation Using
PICmicro Microcontrollers Microchip Technology, Inc., 1997.

[18] M. Sharir and A. Pnueli. Two approaches to interprocatidataflow
analysis. In S. S. Muchnick and N. D. Jones, editBresgram Flow
Analysis: Theory and Applicationpages 189-233. Prentice-Hall,
1981.

[19] SNU real-time benchmarks. URitt p: //archi . snu. ac. kr/ real -
time/ benchmark/ .

10

2007/12/13

