
A Complete Method for Symmetry Reduction in

Safety Verification

Duc-Hiep Chu and Joxan Jaffar

National University of Singapore
hiepcd,joxan@comp.nus.edu.sg

Abstract. Symmetry reduction is a well-investigated technique to counter
the state space explosion problem for reasoning about a concurrent sys-
tem of similar processes. Here we present a general method for its ap-
plication, restricted to verification of safety properties, but without any
prior knowledge about global symmetry. We start by using a notion of
weak symmetry which allows for more reduction than in previous notions
of symmetry. This notion is relative to the target safety property. The
key idea is to perform symmetric transformations on state interpolation,
a concept which has been used widely for pruning in SMT and CEGAR.
Our method naturally favors “quite symmetric” systems: more similarity
among the processes leads to greater pruning of the tree. The main re-
sult is that the method is complete wrt. weak symmetry: it only considers
states which are not symmetric to an already encountered state.

1 Introduction

Symmetry reduction is a well-investigated technique to counter the state space
explosion problem when dealing with concurrent systems whose processes are
similar. In fact, traditional symmetry reduction techniques rely on an idealistic
assumption that processes are indistinguishable. Because this assumption ex-
cludes many realistic systems, there is a recent trend to consider systems of
non-identical processes, but where the processes are sufficiently similar that the
original gains of symmetry reduction can be still be accomplished, even though
this necessitates an intricate step of detecting symmetry in the state exploration.

We start by considering an intuitive notion of symmetry which is based on
a standard adaptation of the notion of bisimilarity. We say two states s1 and s2
are symmetric if there is a “permutation” π such that s2 = π(s1), and if each
successor state s′1 of s1 is matched (via π) with a unique successor state s′2 of s2
such that s′1 is symmetric with s′2 wrt. π. When we consider a safety property
φ, we further require that computation from s1 is a safe iff that from s2 is.

We will call this notion strong symmetry. We mention that all recent works
which deal with heterogeneous systems (where processes are not necessarily iden-
tical) have the desire to capture strong symmetry in the sense that they only
consider states which are not strongly symmetric to an already encountered
state.

In this paper, we present a general approach to symmetry reduction for safety
verification of a parameterized system without any prior knowledge about its
global symmetry. In particular, we explicitly explore the possible interleavings of
the reachability tree, while applying pruning on “symmetric” subtrees. We now
introduce a new notion of symmetry: weak symmetry. Informally, this notion
weakens the notion of permutation between states so that only the program
counter is used in consideration of symmetry. In contrast, values of program
variables are used in consideration of strong symmetry. The main result is that
our approach is complete wrt. weak symmetry: it only considers states which are
not weakly symmetric to an already encountered state.

In more details, we address the state explosion problem by employing sym-
bolic learning on the search tree of all possible interleavings. Specifically, our
work is based on the concept of interpolation. Here, interpolation is essentially
a form of backward learning where a completed search of a safe subtree is then
formulated as a recipe for pruning (every state/node is a root associated to some
subtree). There are two key ideas regarding our learning technique: First, each
learned recipe for a node not only can be used to prune other nodes having the
same future (same program point), but also can be transfered to prune nodes
that having symmetric futures (symmetric program points). Second, each recipe
discovered by a node will be conveyed back to its ancestors, which gives rise
to pruning of larger subtree. Another important distinction is that our method
learns symbolically with respect to the safety property and the interleavings. In
the final section, we will confirm the effectiveness of weak symmetry experimen-
tally on some classic benchmarks.

T

C

t1 : ∀j • pcj 6= C t2 : id < 3 ∧ pc3 6= C

TTT

CTT TCT TTC

CCT CCT

X XX X

X X X X X X X X X X

X

t11 t23

t12 t22
t21 t13

t12 t13 t23 t11 t13 t23 t11 t21 t12 t22

t13 t23 t13 t23

t22 t21

(a) (b)

Fig. 1: Modified 3-process reader-writer example and its interleaving tree

We conclude this subsection with two examples in order to demonstrate
strong and weak symmetry. First we borrow with modification from [13, 14]
wherein are two “reader” processes (indices 1, 2) and one “writer” process (in-
dex 3). We denote by C and T the local process states which indicate entering
the critical section and in a “trying” state, respectively. See Figure 1(a). Note
that pcj is is the local control location of process j and for each process, id is its
process identifier. These concepts will be defined more formally in Section 2.

For each process, there are two transitions from T to C. The first, t1, is
executable by any process provided that no process is currently in its critical
section (∀j • pcj 6= C). The second, t2, is however available to only readers
(id < 3), and the writer must be in a non-critical local state pc3 6= C. This
example shows symmetry between the reader processes, but because of their
priority over the writer, we do not have total symmetry.

Figure 1(b) shows the full interleaving tree. Transitions are labelled with
subscripts to indicate the process to which that transition is associated. Infeasible
transitions are (red) arrows ending with (red) crosses. Note that nodes CTT and
TCT are strongly symmetric, but neither is symmetric with TTC.

sum = 0;

process(id) {

<0> sum += id;

<1>

}

〈0〉

〈1〉

〈0〉

〈1〉

t1 : sum += id1 t2 : sum += id2

(a) (b)
〈0,0〉

〈1,0〉 〈0,1〉

〈1,1〉#1 〈1,1〉#2

sum = 0

sum = 1 sum = 2

sum = 3 sum = 3

{sum ≤ 3}

{sum ≤ 3 ∧ sum ≤ 3 − id2} {sum ≤ 3 ∧ sum ≤ 3 − id1}

t1 t2

t2 t1

(c)

Fig. 2: (a) Sum-of-ids system (b) Its 2-process concretization (c) Full interleaving tree

Our second example is the system in Figure 2(a). Initially, the shared vari-
able sum is set to 0. Each process increments sum by the amount of its process
identifier, namely id. The local transition systems for process 1 and process 2
are shown in Figure 2(b). The full interleaving tree is shown in Figure 2(c).

Let π be the function swapping the indices of the two processes. We can see
that the subtree rooted at states 〈〈1, 0〉; sum = 1〉 and 〈〈0, 1〉; sum = 2〉 share
the same shape. However, due to the difference in the value of shared variable
sum, strong symmetry does not apply (in fact, any top-down technique, such
as [13, 14, 11], cannot avoid the subtree rooted at 〈〈0, 1〉; sum = 2〉, even if the
subtree rooted at 〈〈1, 0〉; sum = 1〉 has been traversed and proved safe).

There is however a weaker notion of symmetry that does apply. We explain
this by outlining our own approach, whose key feature is the computation of
an interpolant for a node, by a process of backward learning. Informally, this
interpolant represents a generalization of the values of the variables such that
the traversed tree has the same transition structure, and also remains safe. In
the example, we require the safety property ψ ≡ sum ≤ 3 at every state, and
interpolants are shown as formulas inside curly brackets.

The interpolant for state 〈〈1, 1〉; sum = 3〉 is computed as sum ≤ 3, and the
interpolant for state 〈〈1, 0〉; sum = 1〉 is computed as φ〈1,0〉 ≡ sum ≤ 3∧ sum ≤
3 − id2. Using this, we then infer that φ〈0,1〉 ≡ sum ≤ 3 ∧ sum ≤ 3 − id1

(obtained by applying π on φ〈1,0〉) is a sound interpolant for program point
〈0, 1〉. As 〈〈0, 1〉; sum = 2〉 |= φ〈0,1〉, that subtree can be avoided.

1.1 Related Work

Symmetry reduction has been extensively studied, eg. [4, 2, 8, 5]. Symmetry is
traditionally defined as a transition-preserving equivalence, where an automor-
phism π, other than being a bijection on the reachable states, also satisfies that
(s, s′) is a transition iff (π(s), π(s′)) is. There, this type of symmetry reduction
is enforced by unrealistic assumptions about indistinguishable processes. As a
result, it does not apply to many systems in practice.

One of the first to apply symmetry reduction strategies to “approximately
symmetric” systems is [7], defining notions of near and rough symmetry. Near
and rough symmetry is then generalized in [6] to virtual symmetry, which is con-
sidered as the most general condition that allows a bisimilar symmetry quotient.
Though bisimilarity makes them suitable for full µ-calculus model checking, the
main limitation of these approaches is that they exclude many systems, where
bisimilarity to the quotient is simply not attainable. Also, these approaches work
only for the verification of symmetric properties. No implementation is provided.

The work [11] allows arbitrary divergence from symmetry, and accounts for
this divergence initially by conservative optimism, namely in the form of sym-
metric “super-structure”. Specifically, transitions are added to the structure to
achieve symmetry. A guarded annotated quotient (GAQ) is then obtained from
the super-structure, where added transitions are marked. Loss in precision during
exploration is prevented by means of frequent symmetry checks during runtime.
This approach works well for programs with syntacticly specified static transi-
tion priority. However, in general, the GAQ needs to be unwound frequently to
compensate for the loss in precision. This might affect the running time signif-
icantly as it might need to consider many combinations of transitions which do
not belong to the original structure.

In comparison with our technique, this method has a clear advantage that
it can handle arbitrary CTL∗ property. Nevertheless, our technique is more effi-
cient both in space and time. Our technique is required to store an interpolant
for each non-subsumed state, whereas in [11], a quotient edge might require mul-
tiple annotations. Furthermore, ours does not require a costly preprocessing the
program text, such as in order to determine a symmetric super-structure. Also,
extending [11] to symbolic model checking does not seem possible.

The most recent state-of-the-art regarding symmetry reduction, and also clos-
est to our spirit, is the lazy approach proposed by [13, 14]. Here only safety verifi-
cation is considered. This approach does not assume any prior knowledge about
(global) symmetry. Indeed, they initially and lazily ignore the potential lack of
symmetry. During the exploration, each encountered state is annotated with in-
formation about how symmetry is violated along the path leading to it. The idea

is that more similarity between component processes entails more compression
is achieved.

In summary, the two main related works which are not restricted a priori
on global symmetry are [11] and [13]. That is, these works allow the system to
use process identifiers and therefore do not restrict the behaviors of individual
processes. This is not the case with the previously mentioned works.

These works, [11] and [13], can be categorized as top-down techniques. Fun-
damentally, they look at the syntactic similarities between processes, and then
come up with a reduced structure where symmetric states/nodes are merged into
one abstract node. When model checking is performed, an abstract node might
be concretized into a number of concrete nodes and each is checked one by one
([11] handles that by unwinding). For them, two symmetric parental nodes are
not guaranteed to have correspondingly symmetric children. For us, by backward
learning, we ensure that is the case. Consequently, and most importantly, they
do not exponentially improve the runtime, only compress the state space.

Consider again the first example above (Figure 1). A top-down approach will
consider TTC as a symmetric state of CTT , and all three states CTT , TCT , and
TTC are merged as one abstract state. While having compaction, it is not the
case that the search space traversed is of this compact size. As a non-symmetric
state (TTC) is merged with other mutually symmetric states (CTT and TCT),
in generating the successor abstract state, the parent abstract state is required
to be concretized and both transitions t22 (emanating from CTT) and transition
t21 (emanating from TCT) are considered (in fact, infeasible transition t23 is
also considered). In general, compaction may not lead to any reduction in the
search space.

We finally mention that we consider only safety properties because we wish
to employ abstraction in the search process. And it is precisely a judicious use
of abstraction that enables us to obtain more pruning in comparison with prior
techniques. We prove this in principle by showing that we are complete wrt. weak
symmetry, and we demonstrate this experimentally on some classic benchmarks.

2 Preliminaries

We consider a parameterized system composed of a fixed number n of processes.
In accordance with standard practice in works on symmetry, we assume that
the domain of discourse of the program variables is finite so as to guarantee
termination of the search process of the underlying transition system. (Infinite
domains may be accomodated by some use of abstraction, as we show in one
benchmark example below.)

We employ the usual syntax of a deterministic imperative language, and
communication occurs via shared variables. Each process has a unique and pre-
determined process identifier, and this is denoted parametrically in the system
by the special variable id. Thus the concrete value of id for each individual
process ranges from 1 to n. We note that the variable id cannot be changed.
Even though the processes are defined by one parameterized system, their dy-

namic behaviors can be arbitrarily different. This would depend on how id is
expressed in the parameterized system. Finally, we also allow a blocking primi-
tive await(b) s; where b is a boolean expression and s is an optional program
statement.

Consider the 2-process parameterized system in Figure 3(a). Note the (local)
program points in angle brackets. Figure 3(b) “concretizes” the processes explic-
itly. Note the use in the first process of a local variable id1 which is not writable
in the process, and whose value is 1. Similarly for id2 in the other process.

x = 1;

process(id) {

<0> await(x == id);

<1> x++;

<2>

}

〈0〉

〈1〉

〈2〉

〈0〉

〈1〉

〈2〉

t11 : await(x == id1) t12 : await(x == id2)

t21 : x++ t22 : x++

(a) (b)

Fig. 3: (a) A parameterized system (b) Its 2-process concretization

In general, where Pi (1 ≤ i ≤ n) is a process, let Vi be its local variables
and Vshared be the shared variables of entire system. We note here that Vi does
not include the special local variables which represent the process identifiers. Let
pci ∈ Vi be a special variable represent the local program counter, and the tuple
〈pc1, pc2 · · · , pcn〉 represent the global program point. Let State be the set of all
global states of the given program where s0 ∈ State is the initial state. A state
s ∈ State comprises of three parts: its program point pc(s), which is a tuple of
local program counters, its valuation over the program variables val(s), and its
valuation over the process identifiers pids. In other words, we denote a state s by
〈pc(s); val(s); pids〉. Note that all states from the same parameterized system
share the same valuation of the individual process identifiers. Therefore, when
the context is clear, we omit the valuation pids of a state.

We consider the transitions of states induced by the program. A transition
t pertains to some process Pi. It transfers process Pi from control location l1

to l2. In general, the application of t is guarded by some condition cond (cond
might be just true). At some state s ∈ State, when the ith component of pc(s),
namely pc(s)[i], equals l1, we say that t can be scheduled at s. And when
the valuation val(s); pids satisifies the guard cond, denoted by val(s); pids |=
cond, we say that t is enabled at s. Furthermore, we call the enabling condition
of t the formula: (pc(s)[i] == l1) ∧ cond. For each state s, let Scheduled(s) and
Enabled(s) denote the set of transitions which respectively can be scheduled at s
and are enabled at s. Without further ado, we assume that the effect of applying
an enabled transition t on a state s to arrive at state s′ is well-understood. This
is denoted as s

t
−→ s′.

Again consider in Figure 3 with two processes P1 and P2. with variables id1 =
1 and id2 = 2 respectively. In the system, it is specified parametrically that each

process awaits for x == id. In P1, this is interpreted as await(x == id1) while
P2, this is interpreted as await(x == id2). Each process has 2 transitions: the
first transfers it from control location 〈0〉 to 〈1〉, whereas the second transfers
it from control location 〈1〉 to 〈2〉. Initially we have x = 1, i.e. the initial state
s0 is 〈〈0, 0〉;x = 1; id1 = 1, id2 = 2〉. We note that at s0, both t11 and t12 can
be scheduled. However, among them, only t11 is enabled. By taking transition
t11, P1 moves from control location 〈0〉 to 〈1〉, and the whole system moves from
state 〈〈0, 0〉;x = 1; id1 = 1, id2 = 2〉 to state 〈〈1, 0〉;x = 1; id1 = 1, id2 = 2〉. We
note that here the transition t12 is still disabled. From now on, we will omit the
valuation of process identifiers. The whole system then takes the transition t21

and moves from state 〈〈1, 0〉;x = 1〉 to state 〈〈2, 0〉;x = 2〉. Now, t12 becomes
enabled. Subsequently, the system takes t12 and t22 to move to state 〈〈2, 1〉;x =
1〉 and finally to state 〈〈2, 2〉;x = 3〉.

Definition 1 (Safety). We say the given concurrent system is safe wrt. a safety
property ψ if ∀s ∈ State • s is reachable from s0 −→ s |= ψ.

2.1 Symmetry

Given an n-process system, let I = [1 · · ·n] denote its indices, to be thought of
as process identifiers. We write Sym I to denote the set of all permutations π
on index set I. Let Id be the identity permutation and π−1 the inverse of π.

For an indexed object b, such as a program point, a variable, a transition,
valuation of program variables, or a formula, whose definition depends on I, we
can define the notion of permutation π acting on b, by simultaneously replacing
each occurrence of index i ∈ I by π(i) in b to get the result of π(b).

Example 1. Consider the parameterized system in Figure 3. Let the permutation
π swap the two indices (1 7→ 2, 2 7→ 1). Applying π to the valuation x = 1 gives
us π(x = 1) ≡ x = 1, as x is a shared variable. Applying π to the formula
x = id1 ∧ id1 = 1 gives us π(x = id1 ∧ id1 = 1) ≡ (x = id2 ∧ id2 = 1). On the
other hand, applying π to the transition t11 ≡ await(x = id1) will result in
π(t11) ≡ t12 ≡ await(x = id2).

Definition 2. For π ∈ Sym I and state s ∈ State, s ≡ 〈pc(s); val(s); pids〉,
the application of π on s is defined as 〈π(pc(s));π(val(s)); pids〉,

In other words, permutations do not affect the valuation of process identifiers.

Example 2. Consider again the parameterized system in Figure 3. Assume the
π is the permutation swapping the 2 indices (1 7→ 2, 2 7→ 1). We then can have
π(〈〈1, 0〉;x = 1; id1 = 1, id2 = 2〉) ≡ 〈〈0, 1〉;x = 1; id1 = 1, id2 = 2〉. Please
note that while π has no effect on shared variable x and valuation of process
identifiers id1, id2, it does permute the local program points.

Definition 3. For π ∈ Sym I, a safety property ψ is said to be symmetric wrt.
π if ψ ≡ π(ψ).

We next present a traditional notion of symmetry.

Definition 4 (Strong Symmetry). For π ∈ Sym I, and a safety property ψ,

for s, s′ ∈ State, we say that s is π-similar to s′ wrt. ψ, denoted by s
π,ψ
∼ s′ if ψ

is symmetric wrt. π and the following conditions hold:
• π(s) = s′

• for each transition t such that s
t

−→ d we have s′
π(t)
−→ d′ and d

π,ψ
∼ d′

• for each transition t′ such that s′
t′

−→ d′ we have s
π−1(t′)
−→ d and d

π,ψ
∼ d′.

One of the strengths of this paper is to allow symmetry by disregarding the
values of the program variables.

Definition 5 (Weak Symmetry). For π ∈ Sym I, and a safety property ψ,

for s, s′ ∈ State, we say that s is π-similar to s′ wrt. ψ, denoted by s
π,ψ
∼ s′ if ψ

is symmetric wrt. π and the following conditions hold:
• π(pc(s)) = pc(s′)
• s |= ψ iff s′ |= π(ψ)

• for each transition t such that s
t

−→ d we have s′
π(t)
−→ d′ and d

π,ψ
∼ d′

• for each transition t′ such that s′
t′

−→ d′ we have s
π−1(t′)
−→ d and d

π,ψ
∼ d′.

We note here that, if s is π-similar to s′ then s′ is π−1-similar to s. Therefore,
if s is symmetric with s′, then s′ is symmetric with s also.

3 Motivating Examples

Figure 4 shows a parameterized system and its 2-process concretization. The
shared array x contains 2 elements, initially 0. For convenience, we assume that
array index starts from 1. Process 1 assigns id1 (whose value is 1) to x[1] while
process 2 assigns id2 (2) to x[2].

Consider the safety property ψ ≡ x[1]+x[2] ≤ 3, interpreted as ψ ≡ x[id1]+
x[id2] ≤ 3. The reachability tree explored is in Figure 4(c). Circles are used to
denote states, while double-boundary circles denote subsumed/pruned states.

From the initial state s0 ≡ 〈〈0, 0〉;x[1] = 0, x[2] = 0; id1 = 1, id2 = 2〉 process
1 progresses first and moves the system to the state s1 ≡ 〈〈1, 0〉;x[1] = 1, x[2] =
0; id1 = 1, id2 = 2〉. From s1, process 2 now progresses and moves the system to
the state s2 ≡ 〈〈1, 1〉;x[1] = 1, x[2] = 2; id1 = 1, id2 = 2〉. Note that s0, s1, and s2
are all safe wrt. ψ. As there is no transition emanating from s2, the interpolant
for s2 is computed as φ2 ≡ ψ ≡ x[id1] + x[id2] ≤ 3. The pair 〈〈1, 1〉;φ2〉 is
memoized. The interpolant for s1 can be computed as a conjunction of two
formulas. One concerns the safety of s1 itself, and the other concerns the safety
of the successor state from t2. In other words, we can have φ1 ≡ ψ∧pre(x[id2] =
id2;ψ), where pre(t;φ) denotes a precondition wrt. to the program transition t

and the postcondition φ. Consequently, we can have φ1 ≡ ψ ∧ x[id1] + id2 ≤ 3.
The pair 〈〈1, 0〉;φ1〉 is memoized.

x[1] = x[2] = 0;

process(id) {

<0> x[id] = id;

<1>

}

〈0〉

〈1〉

〈0〉

〈1〉

t1 : x[id1] = id1 t2 : x[id2] = id2

(a) (b)

s0

s1 s′1

s2

t1 t2

t2

x[1] = 0 , x[2] = 0

x[1] = 1 , x[2] = 0

x[1] = 1 , x[2] = 2

x[1] = 0 , x[2] = 2

φ2 ≡ ψ ≡ x[id1] + x[id2] ≤ 3

φ1 ≡ ψ ∧ x[id1] + id2 ≤ 3

(c)

Fig. 4: (a) An example (b) Its 2-process concretization (c) Traversed tree

Now we arrive at state s′1 ≡ 〈〈0, 1〉;x[1] = 0, x[2] = 2; id1 = 1, id2 = 2〉. This
is indeed a symmetric image of state s1 which we have explored and proved safe
before. Here, we discover the permutation π to transform the program point
〈1, 0〉 to program point 〈1, 0〉. (Clearly π simply swaps the two indices.) We also
observe that the safety property ψ is symmetric wrt. this π, i.e. π(ψ) ≡ ψ (in the
literature, we may also say that ψ is invariant wrt. π). In the next step, we check
whether val(s′1) conjoined with pids implies the transformed interpolant π(φ1).
We have π(φ1) ≡ π(x[id1] + x[id2] ≤ 3 ∧ x[id1] + id2 ≤ 3 ≡ x[id2] + x[id1] ≤
3 ∧ x[id2] + id1 ≤ 3. As val(s′1); pids |= x[id2] + x[id1] ≤ 3 ∧ x[id2] + id1 ≤ 3,
we do not need to explore s′1 any further. In other words, the subtree rooted at
s′1 is pruned.

Another example is Figure 5. We are interested in safety property ψ ≡ x < 2.
As x is a shared variable, ψ is symmetric wrt. all possible permutations.

The reachability tree is depicted in Figure 5(c). From the initials state s0 we
arrive at states s1, s2, and s3, where:

s0 ≡ 〈〈0, 0, 0〉;x = 0; id1 = 1, id2 = 2, id3 = 3〉
s1 ≡ 〈〈1, 0, 0〉;x = 1; id1 = 1, id2 = 2, id3 = 3〉
s2 ≡ 〈〈1, 1, 0〉;x = 1; id1 = 1, id2 = 2, id3 = 3〉
s3 ≡ 〈〈1, 1, 1〉;x = 1; id1 = 1, id2 = 2, id3 = 3〉.

At s3 we compute its interpolant φ3 ≡ ψ ≡ x < 2. In a similar manner as
before, we compute the interpolant for s2, which is φ2 ≡ x < 2 ∧ id3 6= 1. When
we are at state s′2 ≡ 〈〈1, 0, 1〉;x = 1; id1 = 1, id2 = 2, id3 = 3〉, we look for a
permutation π1 such that π1(〈1, 1, 0〉) = 〈1, 0, 1〉. Clearly we can have π1 as the
permutation which fixes the first index and swaps the last 2 indices. Moreover,
val(s′2); pids ≡ x = 1; id1 = 1, id2 = 2, id3 = 3 |= π1(φ2) ≡ x < 2 ∧ id2 6= 1.
Therefore, s′2 is pruned.

x = 0;
process(id) {

<0> if (id == 1) x++;
<1>

}

〈0〉

〈1〉

t22 : id2 != 1 t12 : id2 == 1, x++

〈0〉

〈1〉

t21 : id1 != 1 t11 : id1 == 1, x++

〈0〉

〈1〉

t23 : id3 != 1 t13 : id3 == 1, x++

(a) (b)

s0

s1
s′1 s′′1

s2 s′2 s′′2 s′′′2

s3
s′3

X

X

X X X

X X X

X

t11
t21 t12 t22 t13

t23

t12 t22 t13 t23 t11 t21 t13 t23

t13 t23 t11
t21

x = 0

x=1 x=0 x=0

x=1 x=1 x=0

x=1
x=1

φ1 ≡ x < 2 ∧ id3 6= 1 ∧ id2 6= 1

φ2 ≡ x < 2 ∧ id3 6= 1

φ3 ≡ ψ ≡ x < 2

Note: φ′1 ≡ x < 1 ∧ id1 = 1 ∧ id3 6= 1

(c)

Fig. 5: (a) An example (b) Its 3-process concretization (c) Traversed tree

Similarly, the interpolant for s1 is computed as φ1 ≡ x < 2∧id2 6= 1∧id3 6= 1.
When at state s′1 ≡ 〈〈0, 1, 0〉;x = 0; id1 = 1, id2 = 2, id3 = 3〉, we look for
a permutation π2 such that π2(〈1, 0, 0〉) = 〈0, 1, 0〉. Clearly we can have π2 as
the permutation which fixes the third index and swaps the first two indices.
However, val(s′1); pids ≡ x = 0; id1 = 1, id2 = 2, id3 = 3 6|= π2(φ1) ≡ x <

2 ∧ id1 6= 1 ∧ id3 6= 1. Thus the subtree rooted at s′1 cannot be pruned and it
requires further exploration. After having been traversed, the intepolant for s′1 is
computed as φ′1 ≡ x < 1∧id1 = 1∧id3 6= 1. Next we arrive at s′′1 ≡ 〈〈0, 0, 1〉;x =
0; id1 = 1, id2 = 2, id3 = 3〉. We can find a permutation π3 which fixes the first
index and swaps the last 2 indices (π3 ≡ π1). We have π3(〈0, 1, 0〉) = 〈0, 0, 1〉.
Also val(s′′1); pids ≡ x = 0; id1 = 1, id2 = 2, id3 = 3 |= π3(φ

′
1) ≡ x < 1 ∧ id1 =

1 ∧ id2 6= 1. As a result, we can avoid considering the subtree rooted at s′′1 .

In the two above examples, we have shown how the concept of backward
learning with interpolation can help capture the shape of a subtree. More impor-
tantly, computed interpolants can be transformed in order to detect the symme-
try as well as the non-symmetry (mainly due to the use of id) between candidate
subtrees.

4 State Interpolation

State-based interpolation was first described in [9] for finite transition systems.
The essential idea was to prune the search space of symbolic execution, in-
formally described as follows. Symbolic execution is usually depicted as a tree
rooted at the initial state s0 and for each state si therein, the descendants are
just the states obtainable by extending si with an enabled transition. Consider

one particular feasible path represented in the tree: s0
t1→ s1

t2→ s2 · · · sm. The
boundary between each transition can be considered a program point, charac-
terizing a point in the reachability tree in terms of all the remaining possible
transitions. Now, this particular path is safe wrt. to safety property ψ if for
all i, 0 ≤ i ≤ m, we have si |= ψ. A (state) interpolant at program point j,
0 ≤ j ≤ m is simply a set of states Sj containing sj such that for any state

s′j ∈ S, s′j
tj+1

−→ s′j+1

tj+2

−→ s′j+2 · · · s
′
m, it is also the case that for all i, j ≤ i ≤ m,

we have s′i |= ψ. This interpolant was constructed at point j due to the one path.
Consider now all paths from s0 and with prefix t1, · · · , tj−1. Compute each of
their interpolants. Finally, we say that the interpolant for the subtree of paths
just considered is simply the intersection of all the individual interpolants. This
notion of interpolant for a subtree provides a notion of subsumption because
we can now prune a subtree in case the state rooted at this subtree are within
the interpolant computed for some previously encountered subtree of the same
program point.

Definition 6 (Safe Root). Let si be a state which is reachable from the initial
state s0, we say that si is a safe root, denoted by △(si), if all states s′i reachable
from si is safe.

Definition 7 (State Coverage). Let si and sj be two states which are reach-
able from the initial state s0 such that pc(si) ≡ pc(sj). We say that si covers
sj, denoted by si � sj if △(si) → △(sj).

During the traversal of the reachability tree, if we detect that si � sj while
si has been proved to be a safe root, the traversal of the subtree rooted at sj
can be avoided. We thus reduce the search space.

In practice, in order to determine state coverage, during the exploration of
subtree rooted at si we compute a state-interpolant of si, denoted as SI(si, ψ).
Note that trivially, we should have si |= SI(si, ψ). Furthermore, SI(si, ψ) ensures
that for all state sj at program point pc(si), if sj |= SI(si, ψ) then for all
t ∈ Scheduled(si) (note that Scheduled(si) ≡ Scheduled(sj)) the two following
conditions must be satisfied:

– if t was disabled at si, it also must be disabled at sj
– if t was enabled at sj (by the above condition, it must be enabled at si too)

and sj
t
→ s′j and si

t
→ s′i, then s′i must cover s′j .

This observation enables us to determine the coverage relation as the form of
backward learning in a recursive manner. Our symmetry reduction algorithm
presented in Section 5 will implement this idea of state interpolation.

5 Symmetry Reduction Algorithm

〈1〉 Intially : stack = ∅;Explore(s0)
function Explore(s)
〈2〉 if s 6|= ψ Report Error and TERMINATE

〈3〉 if ∃π • π(ψ) ≡ ψ ∧ memoed(PC, φ) ∧ pc(s) ≡ π(PC) ∧ s |= π(φ) return π(φ)
〈4〉 if s ∈ stack return true else stack.push(s)
〈5〉 φ := ψ

〈6〉 foreach t in Scheduled(s) do

〈7〉 if t in Enabled(s)
〈8〉 s′ := succ(s) after t /* Execute t */
〈9〉 φ′ := Explore(s′)
〈10〉 φ := φ ∧ pre(t;φ′)

else

〈11〉 φ := φ ∧ pre(t; false)
endif

〈12〉endfor

〈13〉stack.pop()
〈14〉memo(pc(s), φ) and return φ

end function

Fig. 6: Symmetry Reduction Algorithm (DFS)

Our algorithm, presented in Figure 6, naturally performs a depth first search
of the interleaving tree. It assumes the safety property to be known as ψ. Initially,
stack is initialized as empty and we explore the initial state s0. During the search
process, the function Explore will be recursively called.

Base Cases: The first base case is when the current state does not conform
to the safety property ψ (line 2). We then immediately report an error and
terminate. The second base case applies when the current state (subtree) has
a symmetric image (subtree) which has already been traversed and proved safe
before (line 3). This case corresponds to a subsumed node. The third base case,
we make use of stack to handle cycles (line 4). Termination is ensured due to
finite setting.

Recursive Traversal and Computing the Interpolants: Our algorithm re-
cursively explores the successors of the current state by the recursive call in line
9. The interpolant φ for the current state is computed as from line 5 - 11. The
operation pre(t;φ) denotes the precondition computation wrt. the program tran-
sition t and the postcondition φ. In practice, we implement this as an estimation
of the weakest precondition computation [3].

Theorem 1 (Soundness). Our symmetry reduction algorithm is sound.

Proof (Outline). Let the triple {φ} 〈〈pc1, pc2, · · · , pcn〉;P1||P2|| · · · ||Pn〉 {ψ}
denote the fact that φ is a sound interpolant for program point 〈pc1, pc2, · · · , pcn〉
wrt. the safety property ψ and the concurrent system P1||P2|| · · · ||Pn. Due to
space limit, we will not prove that our interpolant computation (line 5-11) is a
sound computation. Instead, we refer interested readers to [9]. Let us assume

that the soundness of that triple is witnessed by the proof P . By consistently
renaming P with the renaming function π, we can derive a new sound fact (ie.
a proof), which is

{π(φ)} π(〈〈pc1, pc2, · · · , pcn〉;P1||P2|| · · · ||Pn〉) {π(ψ)} ≡
{π(φ)} 〈〈pcπ(1), pcπ(2), · · · , pcπ(n)〉;Pπ(1)||Pπ(2)|| · · · ||Pπ(n)〉 {π(ψ)}

Since P1, P2, · · ·Pn come from the same parameterized system, we have
Pπ(1)||Pπ(2)|| · · · ||Pπ(n) ≡ P1||P2|| · · · ||Pn

Therefore, {π(φ)} 〈〈pcπ(1), pcπ(2), · · · , pcπ(n)〉;P1||P2|| · · · ||Pn〉 {π(ψ)} must hold
too. In the case that ψ is symmetric wrt. π, we have π(φ) is a sound interpolant
for program point 〈pcπ(1), pcπ(2), · · · , pcπ(n)〉 wrt. the same safety property ψ and
the same concurrent system P1||P2|| · · · ||Pn. As a result, the use of interpolant
π(φ) at line 3 in our algorithm is sound. ⊓⊔

Definition 8 (Completeness). In proving a parameterized system with global
state space State is safe wrt. a property ψ, an algorithm is said to be complete
wrt. a symmetry relation R iff for all s, s′ ∈ State, s R s′ implies that the
algorithm will avoid traversing either the subtree rooted at s or the subtree rooted
at s′.

Definition 9 (Symmetry Preserving Precondition Computation). Given
a parameterized system and a safety property ψ, the precondition computation
pre used in our algorithm is said to be symmetry preserving if for all π ∈ Sym I,
for all transition t and all possible interpolants φ • π(pre(t;φ)) ≡ pre(π(t);π(φ)).

This property means that our precondition computation is consistent wrt. to
renaming operation. A reasonable implementation of pre can always ensure this.

Definition 10 (Monotonic Precondition Computation). Given a param-
eterized system and a safety property ψ, the precondition computation pre used
in our algorithm is said to be monotonic if for all transition t and all possible
interpolants φ1, φ2 • φ1 → φ2 implies pre(t;φ1) → pre(t;φ2).

We emphasize here that the weakest precondition computation [3] does pos-
sess the monotonicity property. As is well-known, computing the weakest precon-
dition in all the cases is very expensive. However, in practice (and in particular
in the experiments we have performed), we typically observe this property in
the implementation of the precondition computation. Incidentally, some possi-
ble implementations for this operation are discussed in [1, 9, 10].

Theorem 2 (Completeness). Our symmetry reduction algorithm is complete
wrt. the weak symmetry relation if our operation pre is both monotonic and
symmetry preserving.

Proof (Outline). Assume that s, s′ ∈ State and s is weakly π-similar to s′. As-
sume we encounter s first. If the subtree rooted at s is avoided (due to subsump-
tion), the theorem trivially holds. W.l.o.g. we assume that the subtree rooted at
s is traversed first. The theorem also trivially holds if s is not a safe root. Now we

consider that the subtree rooted as s is proved safe and the returned interpolant
is φ. We will prove by structural induction on that interpolated subtree.

For the base case that φ is true (line 4), it trivially holds that s′ |= π(φ). For
the base case that φ is ψ (when there is no schedulable transition from s) due
to the definition of weak symmetry relation, there is no schedulable transition
from s′ and s′ |= π(ψ). Therefore, the subtree rooted at s′ is avoided.

As the induction hypothesis, assume now that the theorem holds for all the
descendants of state s. Let assume that φ ≡ ψ∧φ1∧φ2∧· · ·∧φk∧φk+1∧· · ·∧φm,
where φ1 · · ·φk are the interpolants contributed by enabled transitions in s and
φk+1 · · ·φm are the interpolants contributed by schedulable but disabled transi-
tions in s (line 10 and 11). Now assume that state s′ violates the subsumption
test, which means that s′ 6|= π(φ). Using the first condition of weak symmetry
relation, obviously s′ |= π(ψ). As such, the must exist some 1 ≤ j ≤ m such that
s′ 6|= π(φj). There are two possible cases: (1) φj is contributed by an enabled
transition; (2) φj contributed by a schedulable but disabled transition.

Let us consider case (1) first. Assume φj corresponds to transition t ∈

Enabled(s) and s
t
→ d. By definition we have s′

π(t)
→ d′ and d is π-similar to

d′. Let φd be interpolant for the subtree rooted at d. By induction hypothe-
sis, we have d′ |= π(φd). Obviously, we have s′ |= pre(π(t); d′), by monotonic-
ity of pre, we deduce s′ |= pre(π(t);π(φd)). As pre is symmetry preserving,
s′ |= pre(π(t);π(φd)) ≡ π(pre(t;φd)) ≡ π(φj). Consequently we arrive at the
fact that s′ |= π(φj) which is a contradiction.

For case (2), by using the symmetry preserving property of pre (and note
that π(false) ≡ false), we also derive a contradiction. ⊓⊔

6 Experimental Evaluation

We used a 3.2 GHz Intel processor and 2GB memory running Linux. Unless
otherwise mentioned, timeout is set at 10 minutes, and ‘-’ indicates timeout.

CSR RSR NSR

Phil Visited Subsumed T(s) Visited Subsumed T(s) Visited Subsumed T(s)

4 230 134 0.09 328 184 0.13 1246 702 0.81
5 662 446 0.28 1509 981 0.71 7517 4893 4.93
6 1778 1304 0.85 7356 5216 4.18 43580 30908 34.53
7 4584 3552 2.55 35079 26335 28.83 − − −
8 11526 9281 7.54 − − − − − −
9 28287 23432 22.6 − − − − − −
10 67920 57504 58.07 − − − − − −
11 159738 137609 226.86 − − − − − −

Table 1. Experiments on Dining Philosophers

Our first example is the classic dining philosophers problem. It exhibits rotational
symmetry; importantly, we exploit more symmetry. We verify a tight safety
property that ‘no more than half the philosophers can eat simultaneously’.

Table 1 presents three variants: Complete Symmetry Reduction (CSR), Ro-
tational Symmetry Reduction (RSR), and No Symmetry Reduction (NSR). The

number of stored states is the difference between the number of visited states
(Visisted column) and subsumed states (Subsumed column). Note that although
RSR achieves linear reduction compared to NSR, it does not scale well. CSR
significantly outperforms RSR and NSR in all the instances.

Complete Symmetry Reduction Lazy Symmetry Reduction

Readers # Writers Visisted Subsumed T(s) Abstract States T(s)

2 1 35 20 0.01 9 0.01
4 2 226 175 0.19 41 0.10
6 3 779 658 0.93 79 67.80
8 4 1987 1750 3.23 165 81969.00
10 5 4231 3820 9.21 − −

Table 2. Experiments on Reader-Writer Protocol

Next consider the Reader-Writer Protocol from [13, 14]. Here we highlight the
aspect of search space size as compared to top-down techniques, of which Lazy

Symmetry Reduction [14] is chosen as a representative. Table 2 shows that al-
though lazy symmetry reduction has aggressively compressed the state space
(which now grows roughly linearly), the running time is still exponential. In
other words, the abstract states is not representative of the search space. In con-
trast, our running significantly outperforms [14]. Note that only in the instance
of 8 readers and 4 writers, we extended the timeout; even so [14] takes almost 1
day to finish.

Complete Symmetry Reduction SPIN-NSR

Processes Visited Subsumed T(s) Visited Subsumed T(s)

10 57 45 0.02 6146 4097 0.03
20 212 190 0.04 11534338 9437185 69.70
40 822 780 0.37 − − −
60 1832 1770 1.91 − − −
80 3242 3160 7.62 − − −
100 5052 4950 22.09 − − −

Table 3. Experiments on sum-of-ids Example

Next we have the ‘sum-of-ids’ example mentioned earlier. To the best of our
knowledge, there is no symmetry reduction algorithm which can detect and
exploit symmetry here. Table 3 shows we have significant symmetry reduction.
In term of memory (stored states), we enjoy linear complexity. For reference,
we also report the running times of this example, without symmetry reduction,
using SPIN 5.1.4 [12].

Complete Symmetry Reduction SI

Processes Visited Subsumed T(s) Visited Subsumed T(s)

3 65 31 0.10 265 125 0.43
4 182 105 0.46 1925 1089 5.89
5 505 325 2.26 14236 9067 74.92
6 1423 983 11.10 − − −

Table 4. Experiments on Bakery Algorithm

In the fourth and last example, we apply our method to handle infinite domain
variables and loops. We choose the well-known Bakery Algorithm to perform the
experiments, and we use the well-known abstraction of using an inequality to
describe each pair of counters. Again, as far as we are aware of, there has been
no symmetry reduction algorithm which can detect and exploit symmetry for
this example. Table 4 shows the significant improvements due to our symmetry
reduction, compared to just symbolic execution with interpolation (SI).

7 Conclusion

We presented a method of symmetry reduction for searching the interleaving
space of a concurrent system of transitions in pursuit of a safety property. The
class of systems considered, by virtue of being defined parametrically, is com-
pletely general; the individual processes may be at any level of similarity to each
other. We then enhanced a general method of symbolic execution with interpo-
lation for traditional safety verification of transition systems, in order to deal
with symmetric states. We then defined a notion of weak symmetry, one that
allows for more symmetry than the stronger notion that is used in the litera-
ture. Finally, we showed that our method, when employed with an interpolation
algorithm which is monotonic, can exploit weak symmetry completely.

References

1. D.H. Chu and J. Jaffar. Symbolic simulation on complicated loops for WCET path
analysis. In EMSOFT, pages 319–328, 2011.

2. E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model
checking. In CAV, pages 450–462, 1993.

3. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, pages 453–457, August 1975.

4. E. A. Emerson and A. P. Sistla. Model checking and symmetry. In CAV’93.
5. E. A. Emerson and A. P. Sistla. Utilizing symmetry when model-checking under

fairness assumptions. ACM TOPLAS, pages 617–638, July 1997.
6. E. A. Emerson, J W. Havlicek, and R. J. Trefler. Virtual symmetry reduction. In

LICS, pages 121–131,2000.
7. E. A. Emerson and R. J. Trefler. From asymmetry to full symmetry: New tech-

niques for symmetry reduction in model checking. In CHARME’99.
8. C. N. Ip and D. L. Dill. Better verification through symmetry. Formal Methods in

System Design, pages 41–75, 1996.
9. J. Jaffar, J. E. Santosa, and R. Voicu. An interpolation method for CLP traversal.

In CP’09, pages 454–469.
10. A. Rybalchenko and V. S. Stokkermans. Constraint solving for interpolation. In

VMCAI, pages 346–362, 2007.
11. A. P. Sistla and P. Godefroid. Symmetry and reduced symmetry in model checking.

ACM TOPLAS, pages 702–734, July 2004.
12. SPIN Model Checker. http://spinroot.com.
13. T. Wahl. Adaptive symmetry reduction. In CAV, pages 393–405, 2007.
14. T. Wahl and V. D’Silva. A lazy approach to symmetry reduction. Form. Asp.

Comput., pages 713–733, November 2010.

