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Abstract

We consider the problem of determining tight conserva-
tive estimations of the worst case execution time. This prob-
lem is in general difficult even in the presence of simplify-
ing assumptions, hence most methods rely on an interplay
between various methods of abstraction and user provided
(but not validated) annotations to achieve efficient and pre-
cise estimations.

We present an algorithm which enumerates symbolic
traces of a program. A key feature is the use ofdynamic
summarizationsto capture abstract, yet context-dependent,
input-output relationships that can be subsequently reused.
This allows, in general, a reduction in the number of traces
that need be considered. The algorithm is designed for user-
provided input in the form of symbolic constraints. The im-
portant point here is that this information is eventuallyval-
idated, finally resulting in a guaranteed resource estimate.
Finally, the algorithm considers programs that are hierar-
chically structured. Besides leading to acompositionalap-
proach, this facilitates the specification of user assertions
and guides the processes of summarization, re-use, and as-
sertion validation, and allows the user to explore trade-offs
between efficiency and precision.

1 Introduction

Static estimation of the worst case execution time
(WCET) of a program has been identified as an important
problem in the design of safety-critical systems. In the gen-
eral case, computing the exact value of WCET is equivalent
to the halting problem and is thus undecidable. A practical
solution would be to sacrifice generality in favor of decid-
ability, by operating under the simplifying assumptions that
programs have no recursive calls, and that all program loops
are bounded. Even under these assumptions, computing
exact WCET values is potentially intractable, since in the

worst case a program has an exponential number of execu-
tion paths. To cope with this difficulty, current methods and
tools for timing analysis trade off precision for efficiency.
The loss of precision has two major sources: alow-level
one, in the form of the abstraction of hardware (i.e. simpli-
fied modeling of micro-architecture), and ahigh-levelone,
in the form of abstraction of contexts in the path enumer-
ation process. Both sources lead to gross over-estimations
when employed in fully automated methods, and major re-
search efforts have been put into making such estimations
tighter.

In order to overcome the high-level loss of precision in
WCET estimation methods, a key idea is to allow the user to
augment the WCET estimation model with information that
could not be derived automatically from the program. Such
information is typically in the form of linear constraints be-
tween frequency counts of execution path segments, and
leads to the elimination of certain spurious paths from the
path enumeration process. While this approach may lead
to very tight estimations, it has the major drawback that the
user-provided information is not validated, and as such, the
estimation derived by say, a WCET estimation tool is not
certified in the formal sense. The estimation is certified only
on the proviso that the user-provided information is correct.

In this paper we present a method for producing tight
and certified WCET estimations efficiently, for a high-level,
architecture independent execution model. The distinguish-
ing feature of our method is that it employs an abstract path
enumeration process, and allows user specified loop invari-
ant templates, in order to guarantee that our estimate is cor-
rect. This process is based on a postcondition propagation
operator, and is in general efficient due to a novel concept
of dynamic summarization. The key idea of this concept
is to construct reasonably tight abstractions of the input-
output relationships of selected program fragments on the
fly. Whenever a summarized program fragment is about to
be re-traversed in the path enumeration process, the summa-
rization is inspected and possibly used as a shortcut, speed-
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ing up the process. In fact, the summarization is only used
if the summarized entry contextsubsumesthe actual entry
context available upon re-entry. However, if that is not the
case, the program fragment at hand will be re-traversed,
generating an alternative summarization, in a manner that
is similar to polyvariant procedural analysis.

The summarization process is guided byuser-specified
program blocks, whose boundaries act as abstraction points
that trigger the construction of an input-output abstract re-
lation. An important aspect of our method is that when a
block spans over a loop’s body, auser-specified template, in
the form of a linear constraint, can be used to discover an
invariant. Thisvalidatesthe user-specified template which,
alongside with using a postcondition propagation opera-
tor, contributes to proving the correctness of the method’s
WCET estimate. Obviously, the quality of the templates
and abstract domain will affect the tightness of the estimate.

Last but not least, our method iscompositional. For a
given program, the system of user-specified blocks is hier-
archic (i.e. a block may contain smaller blocks), so that dis-
joint blocks can be summarized independently. This makes
it possible to construct a summarization for a block from
the summarizations of its components, making the entire
process incremental and modular.

1.1 Related Work

Worst case execution time analysis is a widely explored
topic. For a survey and discussions see [13, 12, 19]

WCET usually consists of two phases: alow-leveland
a high-levelanalysis [13, 17]. Low level analysis is per-
formed on the object code, and depends on the hardware
(micro-architecture)model. It is complicated for modern ar-
chitectures since it requires the consideration of caches and
pipelines [10], branch prediction, interrupts, out-of-order
instruction execution [8], etc.

In contrast,high-levelWCET analysis is applied to an
architecture independent description of the system and has
the task to computepath information[13]. State of the art
approaches use abstract interpretation [4, 15], path enumer-
ation techniques [9, 10], and hierarchical structuring of pro-
grams into trees [1, 3, 2].

Implicit path enumeration techniques (IPET) [9] concen-
trate on avoiding traversing the exponential space of con-
crete paths by using abstraction. The most common ap-
proach is to represent a program by its control flow graph
(CFG), attach frequency counts to its arcs, and then ex-
press the conservation of flow at every node as a linear con-
straint. Then, integer linear programming (ILP) can be used
to derive a conservative estimate of WCET. Since the CFG
contains no contextual information, this model will allow
the representation of spurious paths, typically resultingin a
gross over-estimation of the WCET. To overcome this draw-

back, IPET methods allow user annotations, in the form of
linear constraints, as a means of eliminating some of the
spurious paths in the model. Since the model is still an ILP
problem, this approach appears to be practical and conve-
nient. However, as argued in [19], this approach does not
scale. Moreover, since the user-provided information is not
validated, the WCET estimation is not certified to be cor-
rect.

Tree-based methods [1, 3, 2] hierarchically decompose
programs according to their syntactic structure. They may
represent program blocks as (possibly non-linear) abstract
input-output relations, and may allow user-specified anno-
tations as a means to improve their precision. This approach
leads to a hierarchical, modular approach, that may result in
more precise estimations for a wider range of input data,
with less restrictions on the program.

In this paper, we are concerned with a high-level WCET
analysis. While we allow the user to structure the program
in order to obtain a modular and incremental approach, we
are not restricted to structured programs. Moreover, while
we believe that user-provided information is crucial for ob-
taining a tight estimate of the resource usage, we also be-
lieve that the information should be validated, in order to
guarantee that the derived estimate is conservative.

2 The Basic Idea

In this section we present the gist of our method by
means of two simple examples. First, consider the pro-
gram fragment given in figure 2. Our method is in fact
based on instrumenting the program of interest withtime
variablesthat are initialized to zero at the beginning of the
program, and then incremented at every program point by
an amount equal to the duration of the corresponding in-
struction. The instrumented program is then analyzed with
the purpose of determining the maximal value of the in-
strumented variables. The instrumentation process can of
course be performed automatically; however, for purposes
of clarity, the program fragment in figure 2 has been in-
strumented by hand. The angle-bracketed numbers repre-
sent program points, andinstr1 · · ·instr6 are instructions
whose execution does not affect the values of the boolean
variablesb1 andb2. We assume that instructionsinstr1,
instr4, andinstr6 take 1 time unit to execute, whereas in-
structionsinstr2, instr3, andinstr5 take 2 time units.

At first sight, in may appear that our program yields as
many as 23 = 8 possible computation paths. On a closer
look however, at least 4 paths are infeasible since the last
two if conditions are correlated. When analyzing this pro-
gram, we shall represent symbolic states as constraints over
instances of program variables. For example, assume that
instr1 were the assignmentx = x + y and that the pro-
gram fragment was entered (via program point〈0〉) in a
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〈0〉 if ( b1 ) { instr1 ; t = t + 1 ; }
else { instr2 ; t = t + 2 ; }

〈1〉 if ( b2 ) { instr3 ; t = t + 2 ; }
else { instr4 ; t = t + 1 ; }

〈2〉 if ( ! b2 ) { instr5 ; t = t + 2 ; }
else { instr6 ; t = t + 1 ; } 〈3〉

Figure 1. Exponential number of paths

context whereb1 were true. Then, the symbolic state at
program point〈1〉 is represented by the constraint

b1,X1 = X0 +Y0,T1 = T0 +1.

Here,X0, T0, andX1, T1, represent the values ofx andt at
program points〈0〉, and〈1〉, respectively.

Again, for reasons of clarity, we shall assume that con-
straints resulting from the analysis ofinstr1, . . . ,instr6

are abstracted away (the details of how abstraction works
will be provided later). Assume now that the path enumer-
ation process starts at program point〈0〉 with the context
true (i.e. the set of all possible states), and traverses the
computation tree of this program in a depth-first manner.
This process is depicted in figure 2, where node (a) repre-
sents the initial symbolic state at program point〈0〉. The
first step is to apply a strongest postcondition operator to
the constraints at node (a), propagating them through the
thenbranch of the firstif statement. This produces node
(b), where the constraints corresponding toinstr1 are ab-
stracted away for clarity. The process continues as long as
the constraints in the current symbolic state are satisfiable,
generating nodes(c) and (d). At this point we notice that the
constraints corresponding to state (d) are unsatisfiable, due
to the presence of bothb2 and¬b2. Thus, the path (abcd) is
infeasible. Following the depth first strategy, we backtrack
to node (c), and then produce node (e) by propagating the
constraints of node (c) through theelsebranch of the lastif
statement. State (e) is anexit state, since it belongs to the
exit program point of the currentprogram block. Since the
constraints at (e) are satisfiable, they produce a valid bind-
ing for T3, leading to a possible value of the execution time
of our program fragment.

Upon backtracking, the current computation subtree is
summarized, in the sense that an abstract input-output re-
lation is computed for that subtree. To explain summariza-
tion, let us first notice that, given a subtree, there exist cer-
tain constraints that are present at every node. For instance,
the constraintT1 = T0 + 1 appears in all the nodes of the
subtree rooted at (b). Assume now that this constraint is
removed from all the nodes of the subtree. Would the re-
manining subtree still be a valid computation subtree? If
yes, then the constraint at hand is redundant and can be ab-

stracted away, as it is the case withT1 = T0 + 1. On the
other hand,b2 is not redundant for the subtree rooted at (c),
since its removal would make node (d) satisfiable and thus
not preserve the infeasability of path (abcd). Once all the
redundant constraints have been removed1 from the current
subtree, we can derive the summarization2 as an abstract
input-output relationship mapping the root of the abstract
tree to the disjunction of the constraints appearing at the
frontier.

Having obtained a summarization[In 7→ Out], whereIn
and Out are constraints, we can use it in the following
way. Assume that the path enumeration process revisits
the program point for which this summarization was ob-
tained, this time under a constraintIn ∧C which is sub-
sumed byIn. Then, we can specialize the summarization
as In∧C 7→ Out∧C, and deriveOut∧C as a shortcut for
the answer. In attaining this very convenient property, it is
important that the summarized tree has the same “shape” as
the original tree, that is, the removal of constraintsdoes not
openinfeasible paths3.

Assume now that the tree rooted at (b) has been com-
pletely traversed. As we move to node (i), we note that the
constraints at this node aresubsumedby the root of the sum-
marization of node (b) (indeed, the implication¬b1,T1 =
T0 +2→ true holds). At this point, we can use the summa-
rization of (b) as a shortcut, in order to avoid the traversal
of the subtree rooted at (i). The frontier of this subtree can
be computed as¬b1,T1 = T0 +2,T3 = T1 +3. The disjunc-
tion of the answers for nodes (b) and (i) produces an answer
for node (a), which indicatesT0 + 5 as an upper bound for
T3. Thus, we can use 5 as an estimate for the WCET of
our program fragment. We note at this point that, due to
summarization, an important part of the actual computation
tree is not traversed, resulting in a substantial reductionof
the search space. Importantly, the path realizing the WCET,
made up ofinstr2, instr3, andinstr5, is never traversed.
The segmentinstr3, instr5 is traversed and summarized
as part of the pathinstr1, instr3, andinstr5. Then, after
the traversal ofinstr2, the summarization of the segment
instr3, instr5 is used to produce the WCET estimate.

Our second introductory example shows informally how
to hierarchically decompose a program into blocks4and pro-
vide user assertions in order to produce tight WCET estima-
tions. Consider the bubblesort program shown in figure 3.
We divide this program into single-entry-single-exit blocks

1Later, the constraint removal operation will be replaced bya more
general abstraction operation.

2The process is recursive: the summarization of a node can be derived
from the summarizations of the children, as shown in Section4.

3In this sense, summarization is opportunistic. Potentially, we could
produce more general summarizations that do open up infeasible paths, to
allow for a wider range of nodes to be subsequently subsumed.However,
that would be more expensive, and with uncertain benefits at point of sum-
marization.

4Formal definitions are provided in Section 3.
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〈0〉 : true −−summarized as [true 7→ T0 + 4 ≤ T3 ≤ T0 + 5]

〈1〉 : b1, T1 = T0 + 1 −−summarized as [true 7→ T3 = T1 + 3]; answer: b1, T1 = T0 + 1, T3 = T1 + 3.

〈2〉 : b1, T1 = T0 + 1, b2, T2 = T1 + 2 −−summarized as [b2 7→ T3 = T2 + 1]

〈2〉 : b1, T1 = T0 + 1,¬b2, T2 = T1 + 1 −−summarized as [¬b2 7→ T3 = T2 + 2]

〈3〉 : b1, T1 = T0 + 1, b2, T2 = T1 + 2,¬b2, T3 = T2 + 2 (infeasible)

〈3〉 : b1, T1 = T0 + 1, b2, T2 = T1 + 2,¬¬b2, T3 = T2 + 1

〈1〉 : ¬b1, T1 = T0 + 2 (subtree not generated due to subsumption)

〈3〉 : b1, T1 = T0 + 1,¬b2, T2 = T1 + 1,¬¬b2, T3 = T2 + 1 (infeasible)

〈3〉 : b1, T1 = T0 + 1,¬b2, T2 = T1 + 1,¬b2, T3 = T2 + 2

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)
subsumed by summarization of (a); answer: ¬b1, T1 = T0 + 2, T3 = T1 + 3

Figure 2. Computation Tree

that can be summarized separately, in the following way.
Block r, which is the innermost one, consists of the pro-
gram fragment between program points〈4〉 and〈6〉. Block
q containsr, and consists of the program fragment between
program points〈2〉 and〈8〉. Finally, blockp consists of the
entire program, and containsq. Each block has its own in-
strumented variablesave tk, which saves the current value
of the time variable right before the block is entered. Here
p is the program point where the block starts.

Block r represents a straight line program fragment, and
its analysis is similar to the one performed in the previous
example (which could be considered as being made up of
a single block). The resulting summarization will be of the
form [true 7→ T6 ≤ T3 + 2,J6 = J3 + 1, which leads to the
estimationWCETr = 2. The summarization of blockr can
now be used in the analysis of blockq, in order to shortcut
all transitions between program points〈4〉 and〈6〉. Block q
however, has a loop that needs to be broken. To that effect,
we employ abstraction on the first looping program point
that appears on a computation path, in an attempt to dis-
cover an invariant. For blockq, the looping program point
is 〈4〉. Taking advantage of the loop counterj, we produce
here the invariantT4 = save t2+2∗ J4

5. Propagating this
invariant outside the loop we obtain at program point〈7〉
thatT7 = save t2+2∗(N− I7). This constraint contributes
to the following summarization for blockq.

[true 7→ T8 = save t2+2∗ (N− I8+1), I8 = I2 +1

where for simplicity, we have abstracted away the value of
j, and have taken advantage of the fact that the value ofN
is constant. Now, in the analysis of blockp, the summa-
rization of blockq can be used to shortcut all transitions
between program points〈2〉 and 〈8〉. Block p also has a
loop, and the first looping point occuring on a computation

5In Section 4, we show that such invariants can be validated using block
r ’s summarization

path is〈2〉. Assume first that the user has not specified an
invariant for this program point. Then, our algorithm will
again take advantage of the loop counter in producing the
following invariant for program point〈2〉.

T2 = save t0+WCETq∗ I2

This invariant can be propagated to program point〈9〉 using
block q’s summarization, resulting in the following invari-
ant.

T9 = save t0+2∗ (N+1)∗N

This results in an estimation of blockp’s WCET of 2∗N ∗
(N+1), which is an over-approximation by a factor of 2.

Suppose now that the user did provide the following in-
variant for program point〈2〉.

T2 = savet0+(2∗N− I2)∗ (I2+1)

Using blockq’s summarization, we can propagate this in-
variant to program point〈8〉, and then, using the transition
〈8〉→〈2〉, back to program point〈2〉. We can now ver-
ify that the propagated constraint issubsumedby the orig-
inal invariant, thusvalidating it. By propagating the user-
specified invariant to program point〈9〉, we obtain theexact
andcertifiedestimateWCETp = N∗ (N+1).

3 Constraint Transition Systems

We start by defining a language of first-order formulas.
Let V denote an infinite set of variables, each of which
has a type in the domainsD 1, · · · ,D n, let Σ denote a set of
functors, andΠ denote a set ofpredicate symbols. We as-
sume that each predicate symbols is given a numeric rank.
A term is either a constant (0-ary functor) inΣ or of the
form f (t1, · · · ,tm), m≥ 1, wheref ∈ Σ and eachti is a term,
1 ≤ i ≤ m. Similarly, anatom is of the formp(t1, · · · ,tm),
m≥ 1, wherep ∈ Π and eachti is a term, 1≤ i ≤ m. A
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〈0〉 i=0; save t0=t ;
〈1〉 while (i<N) {
〈2〉 j=0; save t2=t ;
〈3〉 while (j<N-i) {
〈4〉 if (a[j+1]<a[j])

{ swap(a,j,j+1); t+=2; }
else t++;

〈5〉 j++
〈6〉 }
〈7〉 i++
〈8〉 } 〈9〉

Figure 3. Bubble Sort

primitive constraintis of the formφ(t1, · · · ,tm) whereφ is a
m−ary constraint symbol and eachti is a term, 1≤ i ≤ m.
A constraintis constructed from primitive constraints using
logical connectives in the usual manner. WhereΨ is a con-
straint, we writeΨ(x̃) to denote thatΨ possibly refers to
variables in ˜x, and we write∃̃Ψ(x̃) to denote the existential
closure ofΨ(x̃) over variables away from ˜x.

A substitutionθ simultaneously replaces each variable
in a term or constrainte into some expression, and we write
eθ to denote the result. Arenamingis a substitution which
maps each variable in the expression into a distinct variable.
We write [x̃ 7→ ỹ] to denote such mappings. Agroundingis
a substitution which maps each variable into a value in its
domain. Wheree is an expression containing a constraintΨ,
[[e]] denotes the set of its instantiations obtained by applying
all possiblegroundings which satisfyΨ.

A program is organized hierarchically using blocks, each
of which is represented as a transition system for a predicate
symbol p. A nested block is then represented by a transi-
tion system for a predicate symbol whose rank is less than
that of p. This system can be executed symbolically. The
following key definition serves two main purposes. First, it
is a high level representation of the operational semantics
of p, and in fact, it represents the exacttracesemantics of
p. Second, it is anexecutable specificationagainst which
an assertion can be checked.

We shall model computation by consideringn system
variablesṽ = v1, · · · ,vn with domainsD 1, · · · ,D n respec-
tively, and a program counterk ranging over program
points. In this paper, we shall use just two example do-
mains, that of integers, and that of integer arrays.

Definition 1 (States and Transitions) A system state(or
simply state) is of the form(k,d1, · · · ,dn) where k is a pro-
gram point and di ∈ D i ,1≤ i ≤ n, are values for the system
variables. Atransitionis a pair of states.

In what follows, we use atoms in the formp(k, x̃, ỹ)
where the numberk denotes a program point, and the vari-

p(0, χ̃) 7→ p(1, i′, j,a,t,savet′0,savet2), i′ = 0,savet′0 = t
p(1, χ̃) 7→ p(2, χ̃), i < N
p(1, χ̃) 7→ p(9, χ̃), i ≥ N
p(2, χ̃) 7→ q(2, χ̃, χ̃′), p(8, χ̃′)
p(8, χ̃) 7→ p(2, χ̃), i < N
p(8, χ̃) 7→ p(9, χ̃), i ≥ N,t = 0

q(2, χ̃, χ̃′) 7→ q(3, i, j ′,a,t,savet0,savet′2, χ̃′),
j ′ = 0,savet′2 = t

q(3, χ̃, χ̃′) 7→ q(4, χ̃, χ̃′), j < N− i
q(3, χ̃, χ̃′) 7→ q(7, χ̃, χ̃′), j ≥ N− i
q(4, χ̃, χ̃′′) 7→ r(4, χ̃, χ̃′),q(6, χ̃′, χ̃′′)
q(6, χ̃, χ̃′) 7→ q(4, χ̃, χ̃′), j < N− i
q(6, χ̃, χ̃′) 7→ q(7, χ̃, χ̃′), j ≥ N− i
q(7, χ̃, χ̃′′) 7→ q(8, i′, j,a,t,savet0,savet2, χ̃′′), i′ = i +1

r(4, χ̃, χ̃′′) 7→ r(5, i, j,a′,t ′,savet0,savet2, χ̃′′),
a[ j +1] < a[ j],a′ = swap(a, j +1, j),t ′ = t +2

r(4, χ̃, χ̃′′) 7→ r(5, i, j,a′,t ′,savet0,savet2, χ̃′′),
a[ j +1]≥ a[ j],t ′ = t +1

r(5, χ̃, χ̃′′) 7→ r(6, i, j ′,a,t,savet0,savet2, χ̃′′), j ′ = j +1

Legend:χ̃ abbreviates the sequencei, j,a,t,savet0,savet2
χ̃′ andχ̃′′ are its primed versions.

Figure 4. CTS of Bubble Sort

ables ˜x andỹ respectively denote the input and output sys-
tem states.

Definition 2 (Constraint Transition System) A basic
constraint transitionof p is a formula

p(k, x̃, z̃) 7→ Ψ(x̃, ỹ), p(k1, ỹ, z̃)

The variables̃x andz̃ are, respectively, theprimaryandsec-
ondaryvariables of the transition. The constraintΨ may
possibly contain auxiliary variables in addition tõx andz̃.

A compositeconstraint transition is similar:

p(k, x̃, z̃) 7→ q(0, x̃, ỹ), p(k1, ỹ, z̃)

where the rank of q is higher than that of p.
A constraint transition system(CTS) of p is a finite set of

constraint transitions of p.

The above formulation of program transitions is familiar
in the literature for the purpose of defining a set of transi-
tions. What is new, however, is how we use a CTS to define
a symbolictransition sequences, and thereon, the notion of
a proof. Figure 4 exemplifies a representation of the bub-
blesort program in Figure 3. Note that we have chosen to
represent the inner loop as a blockq, and the body of this
loop as a blockr.
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By similarity with logic programming, we use the term
rule to denote a constraint transition, andgoal to denote a
literal that can be subjected to anunfolding processin order
to infer a logical consequence.

Definition 3 (Goal) A query orgoalhas the same form as
the “body” of a rule, ie

Ψ(ỹ, z̃), p(k1, ỹ, z̃) or q(0, ỹ, ỹ), p(k1, ỹ, z̃)

The variablesx̃ and z̃ are respectively called the primary
and secondary variables of this goal, while any additional
variable in Ψ is called anauxiliary variable of the goal.
WhereG is a goal, we write constraint(G ) to denote the
constraint inG , andG (x̃, z̃) to highlight the primary and
secondary variables inG .

We say the goal is ainitial goal for p if k = 0, the start
program point for the block represented byp. Similarly, a
goal is afinal goalif k is the terminal program point for the
block represented byp. We say that a goalG is subsumed
by anotherG 1 if [[G ]] ⊆ [[G 1]].

Running a initial goal is tantamount to asking the ques-
tion: which values of ˜x which satisfy∃̃Ψ(x̃) will lead to
a goal at the final point? The idea is that we successively
reduce one goal to another until the resulting goal is final
point, and then inspect the results.

Next we define what it means for a CTS to prove a goal.

Definition 4 (Proof Step, Sequence and Tree)Let there
be a CTS for p, and letG = Ψ, p(k, x̃, z̃) be a goal for
this. A proof step from G may be obtained providing
Ψ is satisfiable. It may be obtained using a variant
p(k, x̃′, z̃′) 7→ Ψ′, p(k1, ỹ, z̃′) of a basic rule in the CTS in
which all the variables are fresh. The result is a goal of the
form

Ψ, x̃ = x̃′, z̃= z̃′,Ψ′, p(k1, ỹ, z̃′)

Note that this new goal is a false goal if the constraint
Ψ, x̃ = ỹ,Ψ1 is unsatisfiable. A proof step fromG may
also be obtained using a variant of a composite rule
p(k, x̃′, z̃′) 7→ q(0, x̃′, ỹ′), p(k1, ỹ′, z̃′). The result is a goal of
the form

Ψ, x̃ = x̃′, z̃= z̃′,q(0, x̃′, ỹ′), p(k1, ỹ′, z̃′)6

A proof sequenceis a finite or infinite sequence of proof
steps. Aproof treeis defined from proof sequences in the
obvious way.

Our algorithm accommodates the use of predefined or
static abstraction. Given an arbitrary abstraction function
A which maps a goalΨ, p(k, x̃, z̃) into a goalΨ′, p(k, x̃, z̃)
whereΨ |= Ψ′, we say that a proof tree is obtained with

6We shall not need to describe further proof steps from such a goal.

static abstraction if the proof tree is obtained as before, ex-
cept that when a goalG is obtained via a proof step, we
replaceG by the goal obtained by applying the abstraction
functionG . Note that this allows, in particular, “intermit-
tent” abstraction [7] where abstraction is performed only at
selected goals.

4 The Algorithm

The main algorithm, in Figure 5, produces asummariza-
tion of a given goalG . This is a triple(Ḡ ,Ψ,Ψm) where
Ḡ is a generalization ofG , Ψ a disjunction of constraints,
andΨm a single constraint which represents one of the dis-
juncts inΨ. Implicit in both Ψ andΨm are final variables
which represent the values of the primary variables at the
final program point ofG . The disjunctionΨ describes an
approximation of all possible reachable final values fromḠ
(not necessarilyG ), andΨm describes themaximalvalue of
the difference between the time variable ofḠ and its corre-
sponding final variable. Thus the main use of a summariza-
tion is, as its name suggests, to produce a “closed form”, a
disjunction of constraints, for a goalG , sayΨ0, p(k, ). The
summarization is described as a disjunctionΨ for a gener-
alization ofG . The closed form forG itself is then obtained
by simply conjoiningΨ0 with Ψ. Similarly, the optimal
time consumption ofG is given byΨ0wedgeΨm. Note that
this means the use of a summarization provides the feature
of a “frame rule” allowing certain constraints in an input
context to be also output.

The algorithm performs a depth-first construction of a
proof tree forG , enumerating its symbolic traces. Termi-
nation occurs when there is a finite number of traces, for
example, when the loops in the program have statically de-
termined bounds, because summarization provides a form
of memo’ing which prevents cycling. Note that this does
not mean that the number of program states are finite.

In general, however, termination and indeed, efficiency,
would depend on a judicious use of static abstraction. A
general methodology is that abstraction is performed at the
final program points of each block. The idea here is that a
block represents an encapsulable program fragment with a
defined purpose. Thus its intended purpose should be iden-
tifiable with some abstract statement. A typical example
is that a block only operates on a certain subset of vari-
ables, and so an abstraction function is simply to perform
projection of encountered constraints onto these variables.
Another important example is that a block is the body of a
loop, and therefore abstraction serves to provide aloop in-
variant. We note that in the algorithm in Figure 5, we have
provided for the application of an abstractionA at precisely
the final program points of the subject goalG . The idea here
is thatA curtails the proliferation of constraints in the con-
struction of a disjunction of constraints. This however does
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SolveG ≡ Ψ0, p(k, x̃, z̃), returns(Ḡ , Ψ, Ψm)

(0) if G is subsumed by a previous call
let Ḡ generalizeG and remain subsumed
return (Ḡ , false, false)

(1) if there exists a summarization(Gs,Ψs,Ψm
s ) s.t.

Gs subsumesG and(G ,Ψm
s θ) 6≡ false,

whereθ renamesGs into G
return (Gs, Ψs,Ψm

s )

(2) if G cannot be further reduced

if G is a final goal:return (A (G ), true, true)
if G is false: return (false, false, false)

(3) if G has reductsG 1, . . . ,G p

For each 1≤ i ≤ p, let Ri denote the rule used, and
φi denote the constraints obtained from the one-step
transition fromG to Gi . Now if Ri is

• a basic rule:
solveG i obtaining(Ḡ i ,Ψi ,Ψm

i )
let R′

i be the ruleRi

• a composite rule:
supposeGi is of the formq(0, x̃, ỹ), p(k1, ỹ, z̃)
solveΨ0,q(0, x̃, ỹ) obtaining( , Ψq, )
let R′

i be the rule:p(k, x̃, z̃)7→Ψq, p(k1, ỹ, z̃)
solveΨ0,Ψq, p(k1, ỹ, z̃) obtaining(Ḡi ,Ψi ,Ψm

i )

Let
| φ j ∧Ψm

j | be optimal amongst 1≤ j ≤ p

Ḡ = wp(Ḡ1,R
′
1)∧·· ·∧wp(Ḡp,R

′
p)

Ψ = A ((φ1∧Ψ1)∨·· ·∨ (φp∧Ψp)), and
Ψm ≡ (φ j ,Ψm

j )

summarizeandreturn (Ḡ, Ψ, Ψm).

Figure 5. The Algorithm

not mean that we must abstract (for we can choose a passive
identity abstraction function), and this also does limit usto
perform abstractions at other program points.

An important point is that there is a standard way to use
the algorithmautomatically, with no user input. Essentially,
this means that loops need to be provided with an invariant
in a standard way. This can be done because the algorithm,
in addition to verifying that certain properties hold, alsodis-
coverstime consumption. In particular, where a block rep-
resents a loop body, the algorithm can discover an estimate
of its WCET, either as a single number, or as a symbolic
expression involving the program variables. This expres-
sion, sayα, can be used in conjunction with a variable, say
i, that behaves as the loop counter, in order to specify the
obvious loop invariant:t ≤ t0 + i ∗α where the variablet0
has been instrumented to capture the value oft just before
the loop executes. Now, in addition to this standard loop
invariant, one could also include constraints that are known
to be invariant through the loop. More concretely, suppose
we encounter a loop with contextΨ. Let Ψ′ denote a gen-
eralization ofΨ which is invariant. For example, we could
retain inΨ′ just those constraints inΨ that are not modi-
fied in the loop. It is easy to see that we can now process
the loop using the invariantΨ′ ∧ t ≤ t0 + i ∗α. Note that if
the loop were a single block and when it is summarized by
an invariant, sayΨ, then it can be used in any context, say
Ψ0, so that the output of the loop isΨ0 ∧Ψ. Once again,
note that this use of the loop summarization allows the pas-
sage of constraints in the input contextΨ0 to be propagated
through the loop.

We now provide a few necessary definitions.
Intuitively, theweakest precondition wp(G ,R) of a goal
G when produced by the ruleR is the most general goal
G ′ such that there is a proof stepG ′ 7→ G using the
transition R. Formally, the weakest preconditionof a
goal G ≡ Ψ0(x̃, ỹ), p(k1, x̃, ỹ) wrt to a ruleR of the form
p(k, x̃, z̃)7→Ψ(x̃, ỹ), p(k1, ỹ, z̃) is as follows:

wp(G ,R) ≡ ∀ỹ.Ψ(x̃, ỹ) −→ Ψ0(ỹ, z̃), p(x̃, z̃)

The time consumptionof a constraint is defined as follows.
We shall be applying this concept to a constraint of the
form φ∧Ψ whereφ is obtained from a rule, andΨ is ob-
tained from a summarization. Thusφ has a set of primary
variables, one of which, sayt, represents the time variable.
Similarly, becauseΨ is obtained from a (previous) summa-
rization, its has a set of final variables one of which, sayt f ,
represents the time variable. We now define that the expres-
sion | φ∧Ψ | denotes the value oft f − t. In the algorithm,
we shall be comparing resource consumption over pairs of
such constraintsφ∧Ψ. We remark that since the time con-
sumption is, in general, a symbolic expression, that it is not
always possible to determine which expression is the larger.
We believe however that in practice it is usual that this com-
parison can be made.
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Finally, we remark that this algorithm can in fact be used
to prove general safety properties. For example, we could
instrument the program so that a certain unsafe program
point is goto’d just when the desired safety property fails
to hold at a desired program point. We would then provide
an abstraction function for each loop body which provides a
constraint that is true for every iteration of the loop, ie a loop
invariant. Then, by applying the algorithm to a goal corre-
sponding to the start state of the program, we could verify
that no goal involving the unsafe program point is ever en-
countered. Both the termination of the algorithm and the
determination of safety is guaranteed if the provided loop
invariants are correct and sufficiently precise in the senseof
traditional Hoare-style program verification.

5 Examples

5.1 IPET

In this section we demonstrate how we may perform tim-
ing reasoning similar to those ofimplicit path enumeration
(IPET) technique [9]. Here we use an example of [9]. The
original program, its CFG, and the instrumented program
is shown in Figure 6. Here we assume that each statement
costs 1 t.u. In the CFG,〈p〉 is denoted as a box with variable
xp. Here,xp denotes a counting variable that is incremented
when〈p〉 is visited. In the instrumented program we pro-
vide a loop bound as loop condition. The IPET method also
requires the user to provide the same information.

The steps of timing reasoning using our algorithm is as
follows:

1. p(0,0,x2,0,0,0),0≤ x2

2. p(0,1,x2,0,0,1),0≤ x2

3. p(2,1,x2 +1,0,0,2),0≤ x2

4. p(4,1,10,9,1,21)
5. p(5,1,10,9,1,22)

Steps 1 to 3 and 4 to 5 are obvious, however, here there is
a jump from step 3 to 4. This is because we specify the
while loop in the program as a block, which is analyzed
separately.

We note that we can also write goal 3 as

p(2,1,x2,0,0,t),1≤ x2,t = t0 = 2.

This we can abstract into the following goal, using standard
loop invariant:

p(2,1,x2,x3,0,t),1≤ x2 ≤ 10,t− t0 ≤ 2x2.

The coefficient 2 in the last constraint can be discovered,
but here we assume it is given.

The analysis of the loop itself is shown below:

a. q(2,1,x2,x3,0,t),
1≤ x2 ≤ 10,x2 = x3 +1,t− t0 ≤ 2x2

b. q(3,1,x2,x3 +1,0,t +1),
1≤ x2 ≤ 10,x2 = x3 +1,t− t0 ≤ 2x2

c. q(2,1,x2 +1,x3+1,0,t +1),
1≤ x2 ≤ 10,x2 = x3 +1,t− t0 ≤ 2x2

d. q(4,1,x2,x3,1,t +1),
x2 = 10,x3 = 9,t − t0 ≤ 2x2

Here, the analysis of a branches into b and d. B is further
unfolded to c. We note here that c is subsumed by a.

At d, we are able to produce the final goal
q(4,1,x2,x3,1,t),x2 = 10,x3 = 9,t − t0 ≤ 21
The produced summarization by the analysis of the loop

alone is therefore:
q(2,1,x2,x3,0,t,x′1,x

′
2,x

′
3,x

′
4),1≤ x2 ≤ 10,x2 = x3 +1 7→

x′1 = 1,x2′ = 10,x′3 = 9,x′4 = 1,t ′− t ≤ 20
Applying this summarization to 3 we get 4.
For comparison, given the same CFG, the IPET method

would produce the constraints
x1 = 1,x2 = x1 +x3 = x3 +x4,x2 ≤ 10
where the last constraint is given by the user to bound

the number of loop iterations. The IPET method proceeds
by using an ILP solver to maximizex1+x2+x3+x4, which
would result in 22, which is the same answer as ours. When
IPET uses ILP solver, we use search method to analyze
WCET with the same accuracy by using counting variables.

We note here that when we only have counting variables
in the program, the size of the analysis is alwayslinear
to the number of statements in the program (nodes in the
CFG). Intuitively, we perform longest path computation us-
ing dynamic programming.

The advantage of IPET approach well-touted in the lit-
erature is the user’s ability to specify ad-hoc constraintson
the counting variables, such as demonstrated by the bound-
ing of the variablex2 above. Other such constraints include
mutual exclusive pathsand loop down sampling. In our
method it is also always easy to specify similar constraints
in the CTS transitions.

5.2 Cache Must-Analysis

We briefly demonstrate our algorithm on a well-known
abstract interpretation approach to modelling caches [18,
19], using “must-analysis”. Consider Figure 3 again and
suppose that the inner loop’s time depends on cache behav-
ior, say 5 for a miss and 1 for a hit.

Here we add a list data structure into our CTS repre-
sentation, and we model the cache state as a quadruple
[i1, i2, i3, i4], wherei1 is the youngest instruction, andi4 the
oldest instruction in the cache. In a must analysis, an el-
ement in the quadruple must either be a number denoting
instruction or/0, denoting unknown instruction.
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Original:
〈0〉 /* p>=0 */
〈1〉 q = p;
〈2〉 while (q<10)
〈3〉 q++;
〈4〉 r=q;
〈5〉

CFG:

x3x4

x1

x2

Instrumented:
〈0〉 /* p>=0 */
〈1〉 x1++; t++;
〈2〉 while

(x2<10) {
x2++;
t++;

〈3〉 x3++;
t++;

} x2++; t++;
〈4〉 x4++; t++;
〈5〉

Figure 6. Simple Loop

We then split each CTS rule into two: one which mod-
els the cache hit, and another modeling cache miss. Here
we use the inner loop of the bubble sort (Figure 3) as an
example. Here, the statement at〈3〉 is re-modeled by the
following 2 transitions:

q(3, i, j,c,t) 7→ 1∈ c, j < 99− i,
q(4, i, j, lrupeek(1,c),t +1)

q(3, i, j,c,t) 7→ 1 6∈ c, j < 99− i,
q(4, i, j, lrupush(1,c),t +5)

We note that the argumentc is the list representing the cache
state. Note also that we use the basic functionslrupushand
lrupeekto model the possible updates on the cache.Lru-
pushpushes an intruction into the cache as the youngest,
and flushes the oldest instruction.Lrupeeksets a particular
instruction to be the youngest and increments the age of all
of the previously younger instructions.

At the start of the loop, the reachable states can be ab-
stracted into the following single goal which represents the
loop invariant:

q(1, i, j, [4, /0,2,1],t),1≤ j ≤ 99− i,
i < 99,t− t0 ≤ 8( j −1).

6 Experiments on Subsumption

In this section we provide experimental runs to gauge the
effectiveness of dynamic summarization in increasing the
chance for subsumption (case (1) in Figure 5) to reduce the
size of timing analysis. In these experiments we consider
all programs to be consisting only of a single block, and we
therefore unroll all loops.

We implement a prototype which analyzes timing and
performs optimization using summarization when given a
code fragment. The implementation is a pure CLP(R ) pro-
gram [6]. We augment the CLP(R ) system with a mem-
oization mechanism, storing the best WCET result of each

encountered goal, in order to perform subsumption check-
ing. We also implement an efficient algorithm based on con-
straint deletion to check redundant constraints at every false
and subsumed node.

First consider the bubble sort program above. We con-
sider two variations, in order to demonstrate the handling
of complex contexts: (a) first is without microarchitecture
considerations and where we simply count the number of
swaps, and (b) where underlying data cache is modeled. In
(b), a cache miss results in additional 1 t.u. to the array
element comparison.

Results are shown in Table 1, obtained using Linux
2.4.22 OS on a Pentium 4 2.8GHz processor with 512Mb
RAM. Note that the number of nodes is linear in the square
of array size (which in turn is linear to the maximal path
length), in both versions7. The cached version introduced
more constraints, as expected, leading to a more complex
analysis. Nevertheless, our algorithm remained linear.

Next we ran a few random programs such as the ADPCM
encoder and decoder [14]. Here we simply assumed that
each C statement consumes 1 time unit. For both programs,
we also coded versions with instruction cache, in the same
spirit as Section 5.2. The cache stores up to 8 statements,
where a cache miss costs 10 time units. Here we obtain
the exact answer for the encoder (w/o cache) which is 37,

whereas it is 39 if infeasible paths were included. We also
experimented with an iterative square root algorithm [16]
and jannecomplex [5, 11] examples. The results are shown
in Table 2.

In all examples, our dynamic summarization produced
significant improvements.

7 Conclusion

We have presented a general algorithm for analyzing the
traces of a program, with emphasis on timing constraints.
Its main feature is that it can use, and then prove, user pro-
vided assertions in the form of abstraction functions. Im-
portantly, it is able to operate automatically by resortingto
abstraction functions that are oblivious to everything except
timing constraints.

The main technical feature is that the algorithm pro-
duces, dynamically, a summarization given a program frag-
ment and its context. A summarization in fact describes the
behavior of the program fragment in a context more general
than the original. Its key advantage is thus to provide an
opportunity of avoiding the same program fragment in dif-
ferent contexts. We have shown for a small benchmark suite
that this opportunity indeed occurs frequently in practice.

Finally, the algorithm considers programs that are hier-
archically structured. Besides leading to acompositional

7Standard benchmarks [16, 11] usually fix the array values andconsider
analysis only on a single execution path.
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Array No Summarization W/ Summarization Derived
Problem Size Nodes (Time) Nodes (Time) Answer

Normal 5 1606 (9.98) 58 (0.06) 10
15 ∞ 478 (10.71) 105
25 ∞ 1298 (134.48) 300
35 ∞ 2518 (824.72) 595

Cached 5 2233 (20.46) 88 (0.20) 16
10 ∞ 336 (5.03) 66
15 ∞ 798 (45.02) 149
20 ∞ 1410 (216.60) 266

Table 1. Bubble Sort

No Summarization W/ Summarization Derived
Problem Nodes (Time) Nodes (Time) Answer

Encoder 494 (1.22) 266 (0.69) 37
Decoder 344 (0.46) 164 (0.30) 22

Encoder (Cached) 494 (1.63) 266 (0.95) 82
Decoder (Cached) 344 (0.56) 164 (0.39) 48

Square Root 923 (5.96) 253 (1.91) 140
Jannecomplex 1517 (24.25) 683 (5.8) 81

Table 2. Some Random Programs

approach, this facilitates the specification of user assertions
and guides the processes of summarization, re-use, and as-
sertion validation, and allows the user to explore trade-offs
between efficiency and precision.
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