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Abstract

The thesis studies a new constraint, named minimum quantity commitments, for the

selection and assignment problem. It is motivated by the Royal Philips Electronics and

a special stipulation of the US Federal Maritime Commission. Our work is expected

to initiate the research on this novel constraint for the selection and assignment prob-

lem. We first classify all the special cases and prove their computational complexity, and

then, focus on a basic problem by analyzing its mixed integer programming model and

proposing two heuristics algorithms to solve it. On top of the theoretical analysis, we

also implement the different methods, and provide extensive experimentations to mea-

sure their performance.
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Summary

We study a new constraint, named minimum quantity commitments, for the selection and

assignment problem. It is motivated by Royal Philips Electronics, who needs to select

and assign shipping agents to satisfy its shipping needs with a minimal total costs. Be-

cause the US Federal Maritime Commission stipulates that any company sending goods

to US via any shipping agent must commit to a minimum quantity for all its inbound

goods to the US, Philips has to assign enough containers to every shipping agent engaged

to transport cargoes to US.

This thesis is expected to initiate the research on this new practical constraint for

the selection and assignment problem.

various special cases with this new constraint have been classified, and their compu-

tational complexity results are all proved. For each case considered, either an efficient

algorithm or a proof to show that such an algorithm unlikely exists is given. The complex-

ity result tells that the new minimum quantity commitment constraint brings difficulties

to the selection and assignment problem, because finding optimal solutions turns out to

be NP-hard for most special cases. In contrast, when this new constraint is relaxed,

some cases can be efficiently solved.

To study the new constraint further, the author works on a basic special case. This

basic problem can be formulated as a mixed integer programming model, where a strong

inequality is proved to be its facet under mild conditions. Experiments shows that this

facet improves the performance of the mixed integer programming model significantly,

such that an exhaustive branch and cut algorithm solves small and medium problem

instances well.

vi
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To solve large problem instances practically, two heuristic algorithms are invented.

One is a linear programming rounding method, which behaves well in experiments. The

other is a greedy scheme, which guarantees a non-constant approximation ratio in theory

under some circumstances.

In addition, extensive experiments have been made to measure both the performance

of the mixed integer programming formulation, and the performance of the two heuristic

algorithms.



Chapter 1

Introduction

1.1 Overview

A brief introduction is given in this chapter. Section 1.2 explains the motivation of

our study on a new constraint, named Minimum Quantity Commitment (MQC), for the

selection and assignment problem. Although the study of this new MQC constraint is

scarce in the literature, other various selection and problems are extensively studied.

We survey some related problems in Section 1.3, and epitomize their common solving

techniques adopted before. They suggest us some idea of how to deal with the new MQC

constraint. After the survey, we summarize our research contributions and depict the

thesis outline in Section 1.4.

1.2 Motivations

Traditional selection and assignment problems analyze how to select and assign the sup-

pliers to feed the demanders within minimum total costs. The maximum capacities and

the fixed selection costs are two major restrictions imposed on the suppliers. However,

in practice, the selected suppliers also need to satisfy the constraint of certain minimum

capacities. Usually, this takes the form of a commitment by forcing each selected supplier

to provide a certain minimum quantity of demands.

Restricted to the minimum quantity commitment, we consider a selection and assign-

1



CHAPTER 1. INTRODUCTION 2

ment problem, motivated by the requirement of the Royal Philips Electronics Company.

The Philips Electronics is one of the largest electronics companies in the world. Be-

cause of its worldwide presence in sourcing of raw materials, manufacturing and sales,

Philips has a large number of shipping needs from one city to another all over the world.

To handle its shipping needs, Philips conducts an annual tendering exercise in which

it informs various shipping agents of its shipping needs in terms of original-destination

transportation requests and a container demand for each transportation request. These

transportation requests can be serviced by a selected subset of the shipping agents where

each agent will bid a transportation cost for shipping a container in every transportation

request. In order for Philips to minimize the number of agents that it has to deal with

and negotiate, each agent has an associated fixed selection costs. To reduce its reliance

on a particular agent, Philips sets a maximum capacity for each agent.

In additional to these traditional restrictions, Philips has to consider a new one im-

posed on the selection and assignment, because the US Federal Maritime Commission

stipulates that the total quantity of containers shipped to the cities in US by an agent

for a company must either be zero or be at least as large as a minimum quantity, which is

often denoted as Minimum Quantity Commitment (MQC). This rule or constraint may

also hold for other regions, each having its particular minimum quantity.

Accordingly, the selection and assignment problem for Royal Philips Electronics is

to select shipping agents and assign them the shipping containers in each transportation

request, such that the total cost, including the transportation costs and agents’ selection

costs, is minimized subject to the constraints of satisfying the transportation demands,

the maximum handling capacity of each agent, and the important MQC constraint. This

explains the practical reasons for introducing the new MQC constraint into the selection

and assignment problem, and illustrates the motivations of the study presented in this

thesis.
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1.3 Related Problems and Techniques

The MQC constraint has been studied in the analysis of supply contracts [6, 24], but

never appeared in literature on selection and assignment problems.

However, without considering the MQC constraint, two basic selection and assign-

ment problems have been extensively studied. One is the transportation problem in which

only the maximum capacities of agents and the shipping demands need to be satisfied.

This simple assignment problem can be solved in polynomial time by the minimum cost

flow algorithm [3]. The other one is the facility location problem which can be regarded

as an extension of the transportation problem by introducing a fixed selection cost for

each agent. Since selections of agents impose costs, the problem turns harder. Unfortu-

nately, the facility location problem unlikely has an efficient algorithm and is proved to

be NP-hard, even for the uncapacitated case where the maximum capacities of suppliers

are relaxed to be infinity [10].

Other variants have also been studied. For example, the p-median problem [14] is a

variant of the transportation problem by restricting the number of selected agents, and

the capacitated concentrator location problem [21] is a variant of the facility location

problem by stipulating that each shipping request must be served by exactly one agent.

For most of these variants, finding an optimal solution is intractably NP-hard. Even for

some of them, like the capacitated concentrator location problem, finding only a feasible

solution is intractable.

To solve these traditional selection and assignment problems practically, different op-

timization techniques have been invented and applied in literature. They can be classified

into the three categories: search algorithms, approximation algorithms and heuristics.

Search Algorithms

Most selection and assignment problems, like facility location problem and the p-

median problem, can be formulated as an integer or mixed integer programming model.

As a result, a branch and cut search algorithm [26] can be applied to find the exact

optimal solutions for small scale problem instances.
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In order to prune invalid branches when searching a solution with a minimum total

cost, we need to obtain a lower bound by solving a relaxed linear programming problem

and an upper bound by transforming the relaxed infeasible solution to be feasible. The

performance of the pruning depends on the tightness of the lower bound and the upper

bound, both of which can be improved by adding some strong valid inequalities or facets

[26] to the integer or mixed integer programming model.

Aardal and van Hoesel [1][2] illustrated an outline of the branch and cut algorithm

and discussed several ways of finding strong valid inequalities for mixed integer program-

ming problems. K. Aardal and Wolsey [17] analyzed a number of valid inequalities and

facets for the facility location problem. Moreover, de Farias Jr [11] incorporated a family

of non-trivial facets in a branch and cut scheme for p-median problems, and produced

optimal solutions even for some large scale instances. They demonstrated the importance

of good formulations for integer or mixed integer programming problems.

However, search algorithms can solve only some special cases. As we known, most

selection and assignment problems are NP-hard, so that they unlikely have efficient

polynomial-time algorithms to generate exact optimal solutions in theory. Fortunately,

approximation algorithms might exist for them.

Approximation Algorithms

An approximation algorithm guarantees that the solution it generates is near the op-

timal. Theoretically speaking, we use the approximation ratio a to indicate its distance

from the optimal and define an a-approximation algorithm as a polynomial-time algo-

rithm that computes a solution with cost at most a times the optimum.

The basic techniques for inventing good approximation algorithms for selection and

assignment problems are greedy method, linear programming analysis and local search

schemes. For instance, Hochbaum [15] gave a simple greedy algorithm for uncapacitated

facility location problem in 1982. Its approximation ratio is O(logn) where n is the num-

ber of agents. For the same uncapacitated facility location problem, if we restrict the

transportation cost to be a distance matrix or metric, (where the triangle inequality are

satisfied), the first constant ratio approximation algorithm was obtained through a linear
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programming analysis by Shmoys, Tardos and Aardal [25] in 1997, and till now, its best

approximation ratio is 1.61 achieved by Jain, Mahdian and Saberi in 2002 [16]. Under

the same restriction of the transportation cost, the p-median problem has a local search

algorithm which guarantees 5.0 approximation ratio [5]. Furthermore, Korupolu, Plaxton

and Rajaraman summarized approximation results of various selection and assignment

problems in [19].

Heuristics

Differently from the approximation algorithms, heuristics methods guarantee neither

its approximation ratio nor its running time. However, good heuristics can generate near

optimal solutions on most practical instances of a problem. it may even outperform the

best approximation algorithms in practice.

Most approximation techniques, like greedy methods, linear programming analysis

and local search schemes, can also be adopted as heuristics for selection and assignment

problems. Furthermore, some advanced local search techniques, like genetic algorithm

[22], tabu search [13], and simulated annealing [18] have been extensively applied as well.

For example, both tabu search [23] and genetic algorithms [7] have been applied for solv-

ing p-median problem, and they exhibit good performance in practical experiments. So

does the tabu search for the uncapacitated facility location problem [4].

1.4 Contributions

Our thesis presents the first research work on the MQC constraint for selection and

assignment problems. To initiate the study, we begin with the fundamental notations

and formulations in Chapter 2. Under the background of the original bidding selection

and assignment problem for Philips, various special cases are classified in terms of three

aspects of restrictions, which are maximum capacities of agents, fixed selection costs of

agents, and the number of regions holding MQC constraints. Among these special cases,

their reduction relations establish a hierarchy of difficulties for solving them.

Our main study seeks the answers to the following two questions for solving the
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selection and assignment problems with MQC constraints.

1. What is its computational complexity?

2. Can we give efficient algorithms?

For computational complexity, we are interested in how the new MQC constraint

increases the difficulty of solving the selection and assignment problem. Chapter 3 elab-

orates the computational complexity results for various special cases. Their reduction

relations allow us to study only some of them, from which a whole mapping of compu-

tational complexity can be derived for all. For each case considered, we provide either

an efficient algorithm to solve it, or a proof that such an algorithm is unlikely to exist.

Our result shows that the new MQC constraint significantly increases the difficulty of

solving the selection and assignment problems. Under the new MQC constraint, finding

an optimal solution turns out to be intractable for most special cases. And that, for some

special cases, finding only a feasible solution is intractable as well. In contrast, without

considering the new MQC constraint, feasible solutions are easily found for most cases,

and so are optimal solutions except for a few cases.

For the efficient algorithm, although the computational complexity results have shown

the selection and assignment problem with MQC constraints to be theoretically in-

tractable, we still interest in how to solve it practically. To simplify the problem, we

focus on a basic special case where only the new MQC constraints and the shipping de-

mands are considered. In Chapter 4, three optimization techniques are applied.

Firstly, a branch and cut search scheme can be adopted, since the basic special case

can be formulated as a mixed integer programming model. To improve the performance

of the search algorithm, we utilize a strong valid inequality which is proved to be a facet

of the model in mild conditions. Therefore, the search scheme can generate exact optimal

solutions for all small scale instances and most medium ones.

Then, two heuristics algorithms are invented to solve those large problem instances

practically. One is a linear programming rounding method, which behaves well in exper-

iments. The other is a greedy method, which guarantees a tight non-constant approxi-
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mation ratio in theory under some circumstances.

The extensive experiments have been made and reported in Chapter 5. To measure

the performance of our mixed integer programming formulation, we compare the effi-

ciency of branch and cut algorithms under the two different models. One is the mixed

integer programming model with the facet we found, and the other is not. The results

show that the facet significantly improves the search performance and makes the branch

and cut scheme work well on medium scale instances. To measure the performance of

the two heuristics algorithms, instances with different features have been tested. During

the experiments, although the greedy method runs faster and guarantees a theoretical

approximation ratio under some circumstances, the linear programming rounding scheme

generates better solution and exhibits stabler behaviors.

Along with the experimental results, the work presented in this thesis may suggest

further improvements, and is expected to initiate the research on the new MQC con-

straints for the selection and assignment problems.

1.5 Summary

This chapter introduced the background and depicted an outline of the thesis. The rest

of the thesis will be organized as follows. Chapter 2 gives preliminaries, including the

basic notations we adopted and the classification of various special cases we considered

throughout this work. Chapter 3 presents the results of computational complexity, along

with the proofs and algorithms needed. In Chapter 4, we focus on a basic selection and

assignment problem with the new MQC constraint by applying different optimization

approaches to solve it practically. Its related experiments are reported in Chapter 5.

Finally, we give some conclusions and suggestions for future work in Chapter 6.



Chapter 2

Preliminary

2.1 Overview

This chapter gives the preliminaries for the thesis. We begin with some notations in

Section 2.2, and formulate various constraints, especially the new MQC constraint, for

selection and assignment problems. Afterwards, in Section 2.3, we classify various spe-

cial cases for selection and assignment problems with the new MQC constraint. These

special cases are specified in terms of three aspects of restrictions, and their reduction

relations can be derived to help the study on computational complexity presented in next

Chapter 3.

2.2 Notations and Formulations

Let J = {1, ..., n} denote the set of transportation requests, each with the demand dj

for j ∈ J . Let I = {1, ..., m} denote the set of shipping agents, each with the maximum

capacity si and fixed selection cost fi for i ∈ I. The cost bid by agent i for shipping a

container in the transportation request j is ci,j , for i ∈ I and j ∈ J . Let R = {1, ..., w}

denote the set of regions holding MQC rules. The minimum quantity for region r is br,

and the set of transportation requests with destinations in region r is Jr ⊆ J , for r ∈ R.

It is reasonable to assume that Jp and Jq are disjoint for any two different regions p and

q in R. We suppose throughout that dj , si and br are non-negative integers, and that fi

8
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and ci,j are non-negative real numbers, for i ∈ I, j ∈ J and r ∈ R.

For a solution to this selection and assignment problem, let A ⊆ I denote the set

of agents selected for shipping containers. Let a non-negative integer zi,j denote the

quantity of containers assigned to the selected agent i in transportation request j, for

i ∈ A and j ∈ J . Therefore, the total cost of a solution is:

∑

i∈A

fi +
∑

i∈A

∑

j∈J

ci,jzi,j . (2.1)

In order to feed the demands, all the containers of each transportation request j ∈ J

should be assigned to some selected agents, i.e.

∑

i∈A

zi,j = dj . (2.2)

For restrictions of maximum capacities, the total quantity assigned to each selected agent

i ∈ A should not exceed si, i.e.

∑

j∈J

zi,j ≤ si. (2.3)

Because of the MQC rules, the total containers assigned to each selected agent i ∈ A to

ship for those transportation requests with destinations in each region r ∈ R need to be

either zero or at least as large as br, i.e.

∑

j∈Jr

zi,j = 0, or
∑

j∈Jr

zi,j ≥ br (2.4)

Accordingly, the solution is feasible if and only if it satisfies the above three constraints (2.2)–

(2.4), and is optimal if and only if it is a feasible solution with minimum total costs.

Problems of finding an optimal (or feasible) solution is named optimization (or feasibil-

ity) problem.

To simplify and make consistent the notations throughout this thesis, let J0 be the set

of transportation requests unrestricted to the MQC rule, and fix its minimum quantity

b0 to be zero. Correspondingly, we let U = R∪{0} denote the universal set, while region

0 can be regarded as the complement of all the regions holding MQC rules. Moreover, we

let D =
∑

j∈J dj denote the total demands of transportation requests and S =
∑

i∈I si
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denote the total maximum capacity of shipping agents, because these two totals will be

often used in this paper.

Figure 2.1 gives an instance of the selection and assignment problem with only one

region (U.S.) holding MQC rules. It is easy to verify that the solution shown in Fig-

ure 2.1(d) is feasible.

Regions’ Info. MQC Transportation Requests
Jr br j in J Original & Destination Demands dj

J0: destinations 0 1 from Amsterdam to Singapore 450
outside U.S. 2 from Beijing to Shanghai 400

3 from New York to Singapore 500
4 from Shanghai to Amsterdam 350

J1: destinations 450 5 from Shanghai to New York 400
inside U.S. 6 from Singapore to San Francisco 500

(a) The Information of Transportation Requests

Agents Maximum Fixed Selection
i in I Capacities si Costs fi

1 800 2200
2 1500 1000
3 1500 1100

(b) The Information of Agents

Agents Bidding Costs ci,j

i in I j in J0 j in J1

1 2 3 4 5 6

1 150 100 150 100 150 200
2 100 50 100 100 100 300
3 150 150 200 150 150 150

(c) The Information of Bidding Costs

Selected Assignments zi,j ∑
j∈J1

zi,j
∑

j∈J zi,jAgents j in J0 j in J1

i in A 1 2 3 4 5 6

2 0 400 500 150 400 50 450 1500
3 450 0 0 200 0 450 450 1100∑

i∈S zi,j 450 400 500 350 400 500

(d) A Feasible Solution

Figure 2.1: An Instance of the Bid Selection and Assignment Problem
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2.3 Classification of Special Cases

We will discuss various special cases of the selection and assignment problem with MQC

constraints in this thesis. These cases can be classified in terms of a four-field notation

Obj(α, β, γ), where Obj defines the objective (optimization or feasibility) considered, α

indicates the number of regions holding MQC rules, β describes the agents’ maximum

capacities, and γ describes the agents’ fixed selection costs.

The reasons for studying feasibility problem include two aspects. On one hand, some

further complexity results of the optimization problem can be derived directly from that

of the feasibility problem, because usually the former can be reduced from the latter. On

the other hand, experience suggests that for those problems with difficulties of finding

feasible solutions, to find their optimal solutions is much harder than for those problems

with feasible solutions in hand. So the feasibility is worth studying.

In the rest of this section, we will illustrate the specifications of the four fields in our

notation, along with their reduction relations shown in Figure 2.2. A reduction from

one special case to the other indicates that solving the latter case implies solving the

former one [12][8]. Based on this, only a part of special cases need to be studied for their

complexity, while others can be derived by the reduction relations. This helps the study

of their computational complexity presented in Chapter 3.

Firstly, the field Obj defines the objective considered. Under Obj, we may have:

• Optimization: the objective is to find an optimal solution;

• Feasibility: the objective is relaxed to find only a feasible solution.

It is easy to see that if we have an efficient way to find an optimal solution, we can find

a feasible solution in the same way, because any optimal solution must be feasible. In

other words, the specification Feasibility can be directly reduced to the Optimization,

as shown in Figure 2.2(a).

Secondly, the field α indicates the number of regions holding MQC rules. Under α,

we may have:
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Optimization

Fesibility

(a) Obj

w

w = λ

w = 0 w = 1 w = 2 ... ...

(b) α

si

si = ∞

(c) β

fi

fi = 0

(d) γ

Figure 2.2: The Reduction Relations

• w: the number of regions holding MQC rules is arbitrary, specified as part of the

problem input;

• w = λ: the number or regions holding MQC rules is a constant, excluded from the

problem input;

• w = 0, 1, 2, or etc.: the number of regions holding MQC rules is equal to the given

integer. For example, if α is equal to w = 1, only one region holding the MQC rule.

Figure 2.2(b) shows the reduction relations for the field α. The reduction from the w = λ

to the w is straightforward by specifying the latter w to be λ. Similarly, we can reduce

the w = 0, 1, 2, ... to the w = λ by specifying λ to be the given integer of the former case.

Furthermore, to reduce the w = 0 to the w = 1, we set the R1 to be empty in the latter

case. This can be generalized to reduce the w = k to the w = k + 1 for any non-negative

integer k by setting Rk+1 to be empty.

Thirdly, we consider the specification of the field β that describes the maximum

capacities of agents. The field β may equal to:

• si: the maximum capacities of agents are arbitrary;
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• si = ∞: the maximum capacities of agents are all infinity, i.e. the maximum

capacity restriction (2.3) is relaxed.

As shown in Figure 2.2(c), the specification si = ∞ can be reduced to the si, because we

can set the latter si to be sufficiently large, say at least as large as the total demands D,

so that the maximum capacity restriction (2.3) can be relaxed in the latter case.

Lastly, we specify the field γ that describes the fixed selection costs of agents. Under

γ, we may have:

• fi: the fixed selection costs of agents are arbitrary;

• fi = 0: the fixed selection costs of agents are all zero, i.e. the total cost of a solution

is relaxed from (2.1) to

∑

i∈A

∑

j∈J

ci,jzi,j . (2.5)

Clearly, the specification fi = 0 can be directly reduced to the fi by setting the latter fi

to be zero, as shown in Figure 2.2(d).

2.4 Summary

The basic notations introduced in this chapter will be used throughout the thesis. Al-

though there are many constraints for selection and assignment problems in literature,

we only consider and formulate some of them, i.e. those related to the Philips’ bidding

problem, because that is the motivation of the study on the new MQC constraints for

selection and assignment problem. Besides these, our classification of various special

cases and their reduction relations will be helpful in later study, especially the study on

computational complexity.



Chapter 3

Complexity Results

3.1 Overview

This chapter presents the computational complexity results of the selection and assign-

ment problem with MQC constraints for various special cases, which are specified in

terms of a four-field notation Obj(α, β, γ) in the last Chapter 2.

We summarize the main result of this chapter in Table 3.1. From these results, we

can derive a complete mapping of the computational complexity for all the special cases

by their reduction relations shown in Figure 2.2. For Table 3.1, we use Unary NP-hard

and Binary NP-hard, defined by [12], to express that the particular problem is NP-hard

with respect to a unary and binary encoding of the data, respectively. Recall that the

only difference between unary NP-hardness and binary NP-hardness is whether or not

the NP-hard problem has a pseudo-polynomial algorithm if P 6= NP . Along with each

result, we provide a reference to where its proof can be found. The entries “∗” in the

γ column and rows of the Feasibility group imply that those results holds true for any

specification of the fixed selection cost (fi or fi = 0), because the total cost (2.1) can be

neglected when we are finding only a feasible solution.

In this chapter, for each special case considered, we will either give a polynomial algo-

rithm, or prove its binary NP-hardness with a pseudo-polynomial algorithm, or prove its

unary NP-hardness to show that no efficient algorithm seems to exist. The presentation

14
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includes two parts, one for the cases of finding optimal solutions, and the other for the

cases of finding feasible solutions.

Table 3.1: The Complexity Results

Objective α β γ Complexity Results

Optimization

w = 0 si = ∞ fi = 0 O(nm) Thm 3.1

w = 0 si fi = 0 O((n + m)4log(n + m)) [20]

w = 0 si = ∞ fi Unary NP-hard [10]

w = 1 si = ∞ fi = 0 Unary NP-hard Thm 3.4

Feasibility

w si = ∞ ∗ O(n) Thm 3.5

w = 0 si ∗ O(n + m) Thm 3.7

w = 1 si ∗ O(n + m) Thm 3.15

w = 2 si ∗
Binary NP-hard Thm 3.13

O(mD6 + n) Cor 3.12

w = λ si ∗
Binary NP-hard Cor 3.14

O(mD2λ+2 + n) Thm 3.11

w si ∗ Unary NP-hard Thm 3.16

3.2 Complexity of Finding an Optimal Solution

We begin with the case Optimization(w = 0, si = ∞, fi = 0), which can be reduced to

all the other optimization cases by the reduction relations shown in Figure 2.2. For this

easiest optimization case, both the maximum capacity constraint (2.3) and the MQC

rule (2.4) are relaxed. Besides these, the absence of the fixed selection costs allows us

to select all the shipping agents for free. Therefore, we can assign each transportation

request greedily to the agent who bids the lowest transportation cost for that request.

This greedy process is shown in Algorithm 3.1, which holds the following result.

Theorem 3.1 Algorithm 3.1 generates an optimal solution for the case

Optimization(w = 0, si = ∞, fi = 0) in O(nm) time.

Proof The generating solution is optimal, because for any request j ∈ J , shipping one

container will cost at least mini∈I ci,j and this minimum cost has been exactly achieved
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in Algorithm 3.1. Its time complexity is O(nm), because finding a proper agent for one

request needs O(m) time and there are n requests in total.

Algorithm 3.1 Solving Optimization(w = 0, si = ∞, fi = 0)

1: Initially, set zi,j ← 0 for all i ∈ I and j ∈ J ;
2: Select all the shipping agents: A ← {1, 2, ..., m};
3: for all the transportation request j ∈ J do
4: Let k be any agent such that ck,j = mini∈I ci,j ;
5: Assign full demands of request j to agent k: zk,j ← dj ;
6: end for
7: Output the selected set A and assignments zi,j for i ∈ A and j ∈ J ;

The next three cases extend the easiest case Optimization(w = 0, si = ∞, fi = 0) by

appending the maximum capacity constraint (2.3), the fixed selection costs fi, and the

MQC rule (2.4) respectively.

Firstly, the case Optimization(w = 0, si, fi = 0) includes the maximum capacity

constraint, but still ignores the fixed selection costs fi and relaxes the MQC rule. This

case is equivalent to the classical transportation problem [3], which can be solved by the

minimum cost flow algorithm. Moreover, Orlin [20] presents an efficient algorithm for

solving minimum cost flow, leading the following result.

Theorem 3.2 The minimum cost flow algorithm generates an optimal solution for the

case Optimization(w = 0, si, fi = 0) in O((n + m)4log(n + m)) time.

Secondly, we consider the case Optimization(w = 0, si = ∞, fi) that counts the

fixed selection costs fi but relaxes the maximum capacity constraint and the MQC rule.

Since this case is equivalent to the uncapacitated facility location problem (UFLP) [10],

a well-known unary NP-hard problem, we have the following result.

Theorem 3.3 Finding an optimal solution for the case Optimization(w = 0, si = ∞, fi)

is unary NP-hard.

Lastly, we consider the case Optimization(w = 1, si = ∞, fi = 0) that has one region

holding the MQC rule but relaxes the maximum capacity constraint and ignores the

fixed selection costs. We now show that the case Optimization(w = 1, si = ∞, fi = 0) is

intractable by proving the following result.
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Theorem 3.4 Finding an optimal solution for the case Optimization(w = 1, si =

∞, fi = 0) is unary NP-hard.

Proof We use a reduction from the following problem, which is known to be unary NP -

complete.

Cover By 3-Sets (X3C) [12]: given a set X = {1, ..., 3q} and a collection C =

{C1, ..., Cm} with each member Ci ⊆ X and |Ci| = 3 for i = 1, ..., m, does C contain an

exact cover for X, i.e. a subcollection C ′ ⊆ C such that every element of X occurs in

exactly one member of C ′?

From any arbitrary instance of X3C, consider the following polynomial reduction to

an instance of Optimization(w = 1, si = ∞, fi = 0). Let each element j ∈ X indicate a

transportation request with a unit demand, then we have J = {1, ..., 3q} with dj = 1 for

j ∈ J . Suppose the shipping agent set I is {1, ..., m}. For each agent i ∈ I and request

j ∈ J , the bid cost ci,j = 0 if the element j ∈ Ci; otherwise ci,j = 1. For the only region

holding the MQC rule, assume all the transportation requests are shipped to region 1.

Suppose its minimum quantity is three units, then we have R = {1}, J1 = {1, ..., 3q} and

b1 = 3. As assumed in the specification, only the demand constraint (2.2) and the MQC

rule (2.4) need to be considered, and the total cost is relaxed to (2.5) as well. We now

prove that the minimum total cost for the instance of Optimization(w = 1, si = ∞, fi =

0) is zero if and only if the X3C has an exact cover.

On one hand, if there exists an exact cover C ′ for X3C, we select all the agents leading

A = {1, .., m}, and assign the requests based on the exact cover C ′. For each agent i ∈ I

and request j ∈ J , the assignment zi,j = 1 if element j is covered by the subcollection

Ci and Ci is in the exact cover C ′; otherwise zi,j = 0. Because C ′ is an exact cover, the

demand constraint (2.2) is satisfied. Now we examine the MQC constraint (2.4). For each

selected agent i ∈ A, if Ci ∈ C ′ then its total shipment to region 1 is
∑

j∈J1
zi,j = |Ci| = 3,

otherwise Ci /∈ C ′ then we have
∑

j∈J1
zi,j = 0. Both satisfy the MQC constraint. It is

easy to see that its total cost (2.5) is zero achieving the minimum.

On the other hand, if we have a feasible selection A and assignments zi,j for i ∈ A and

j ∈ J with zero total cost, consider the subcollection C ′ = {Ci|i ∈ A and
∑

j∈J zi,j > 0}.
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To see C ′ is an exact cover of X, we need to prove that for each element u ∈ X, there

exists a unique index p such that Cp ∈ C ′ and u ∈ Cp. Since X = J , the corresponding

request u ∈ J . Noting
∑

i∈A zi,u = 1 by the demand constraint (2.2), we can assume p is

the unique index with p ∈ A and zp,u = 1, leading
∑

j∈J zp,j > 0 and Cp ∈ C ′. Because

the total cost (2.5) is zero and zp,u = 1 implying cp,u = 0, we have u ∈ Cp that proves

the existence. For the uniqueness, consider any other subset Cq ∈ C ′ where q 6= p. We

are going to prove the element u /∈ Cq. Because for the request u, its partial assignments

zq,u + zp,u ≤ 1 and zp,u = 1, we have zq,u = 0. Note Cq ∈ C ′ and J1 = J , implying

∑
j∈J1

zq,j > 0. To satisfy the MQC constraint (2.4), we have
∑

j∈J1
zq,j = 3. This leads

∑
j∈Cq

zq,j +
∑

j /∈Cq
zq,j = 3. However, for j /∈ Cq the assignment zq,j = 0, because its

bid cost cq,j = 1 and the total cost (2.1) is zero. So
∑

j∈Cq
zq,j = 3. For all j ∈ Cq, since

|Cq| = 3 and its partial assignment zq,j ≤ 1, we obtain zq,j = 1 . Noting zq,u = 0 we have

u /∈ Cq, which leads the uniqueness and completes the proof.

3.3 Complexity of Finding a Feasible Solution

Feasibility cases are studied in this section. We only need to consider the constraints (2.2)–

(2.4) but the total cost (2.1). We specify the field γ to be “∗”, if the specification of the

fixed selection cost doesn’t change the complexity results for any feasibility case. There-

fore, we can select all the agents for safety, in other words, we can assume A = {1, 2, ..., m}

for each feasibility case, and concentrate on how to obtain the assignment zi,j for i ∈ A

and j ∈ J .

For uncapacitated cases with si = ∞, let us look at the most general one Feasibility(w, si =

∞, ∗). Its feasible assignment can be constructed straightforward by assigning all the

transportation requests with full demands to a certain agent. The process is described

in Algorithm 3.2, which establishes the following result.

Theorem 3.5 Algorithm 3.2 generates a feasible solution for the case

Feasibility(w, si = ∞, ∗) in O(n) time.

Proof Note that the maximum capacity constraint has been relaxed and all the demands
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have been assigned. If the minimum quantity br does not exceed the total demands of

transportation requests in region r for r ∈ R, the MQC rule must be satisfied leading its

feasibility; otherwise br is too large to allow a feasible solution to exist. So Algorithm 3.2

is correct. Its time complexity is O(n), because of the n requests.

Algorithm 3.2 Solving Feasibility(w, si = ∞, ∗)

1: if for some region r ∈ R, br exceed
∑

j∈Jr
dj , the total demand of requests in region

r then
2: Output “No Feasible Solution”;
3: else
4: Initially, zi,j ← 0 for all i ∈ I and j ∈ J ;
5: Select all the shipping agents: A ← {1, 2, ..., m};
6: for all the transportation request j ∈ J do
7: Assign full demands of request j to the agent 1: z1,j ← dj ;
8: end for
9: Output the selected set A and assignments zi,j for i ∈ A and j ∈ J ;

10: end if

For the capacitated case with β = si, we study different specifications for α, the

number of regions holding MQC rules. Before studying the particular cases, we can

easily obtain a general result for the necessary condition of feasibility as follows.

Lemma 3.6 For the capacitated case Feasibility(α, si, ∗) with any specification of α, if

a feasible solution exists, then the total agents’ maximum capacity is at least as large as

the total requests’ demand, i.e. S ≥ D according to our notations.

Let us study the case Feasibility(w = 0, si, ∗), in which the MQC constraint is

relaxed. Since the case Optimization(w = 0, si, fi = 0) is polynomial solvable according

to Theorem 3.1, by the same minimum cost flow algorithm [20] we can obtain a feasible

solution for the case Feasibility(w = 0, si, ∗) in O((n + m)4log(n + m)) time as well.

Here, we present a more efficient algorithm to solve the case Feasibility(w = 0, si, ∗).

It is shown in Algorithm 3.3, which holds the following result.

Theorem 3.7 Algorithm 3.3 generates a feasible solution for the case

Feasibility(w = 0, si, ∗) in O(n + m) time.
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Proof Because the MQC constraints are relaxed, only the demand constraint (2.2) and

the capacity constraint (2.3) need to be satisfied. Algorithm 3.3 maintains a request list

containing all the unsatisfied requests, and an agent list holding all the available agents.

The head of the request list is denoted by u with remnant demand d′u, and the head of the

agent list is denoted by p with remnant capacity s′p. For each loop, we examine whether

the head agent’s remnant capacity s′p can satisfy the head request’s remnant demand d′u.

If it can, we assign all the remnant demand d′u of the head request u to the head agent p,

decrease the remnant capacity s′p, and remove the head request u; otherwise, we can only

assign at most s′p to the head agent p for the request u, decrease the remnant demand

of d′u, and remove the head agent p. Such a process of examination and assignment

continues until all the requests have been satisfied. It is easy to see that if the total

agents’ maximum capacity is at least as large as the total requests’ demand (S ≥ D),

the above process will stop with a feasible solution; otherwise no feasible solution exists

by Lemma 3.6. This proves the correctness of Algorithm 3.3. Noting that for each loop

either a request or an agent is removed, and that there are n requests and m agents, we

obtain its time complexity O(n + m).

Therefore, by Algorithm 3.3 and Theorem 3.7, the necessary feasibility condition

stated in Lemma 3.6 is also sufficient for the case Feasibility(w = 0, si, ∗), leading the

following corollary.

Corollary 3.8 A feasible solution exists for the case Feasibility(w = 0, si, ∗), if and

only the total agents’ maximum capacity is at least as large as the total requests’ demand,

i.e. S ≥ D.

In the rest of this section, we study the feasibility cases holding MQC constraints.

We start with the case Feasibility(w = λ, si, ∗), where the MQC region number w equal

to a fixed integer λ. A new notation ti,r is needed to indicate the total regional shipment

assigned to the selected agent i for all transportation requests in region r, where i ∈ A

and r ∈ U . (Recall that the universal set is U = R∪{0}, where the region 0 holds request

set J0 unrestricted to MQC rules by fixing the minimum quantity b0 = 0.)
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Algorithm 3.3 Solving Feasibility(w = 0, si, ∗)

1: if the total agents’ maximum capacity is less than the total requests’ demand (S < D)
then

2: Output “No Feasible Solution”;
3: else
4: Assume the requests and the agents are listed in the order 1, 2, ..., n and 1, 2, ..., m

respectively.
5: Let u indicate the head of the unsatisfied request list;
6: Let p indicate the head of the available agent list;
7: Let d′j denote the remnant demand of request j for j ∈ J ;
8: Let s′i denote the remnant capacity of agent i for i ∈ I;
9: Initially, u ← 1, p ← 1, d′j = dj for j ∈ J , s′i = si for i ∈ I, and zi,j ← 0 for i ∈ I

and j ∈ J ;
10: Select all the shipping agents: A ← {1, 2, ..., m};
11: while the request list is not empty (u ≤ n) do
12: if the head agent’s remnant capacity can satisfy the head request’s remnant

demand (s′p ≥ d′u) then
13: Assign all remnant demand of request u to agent p: zp,u ← d′u;
14: Decrease head agent’s remnant capacity: s′p ← s′p − zp,u;
15: Remove the head request: u ← u + 1;
16: else
17: Assign part remnant demand of request u to agent p: zp,u ← s′p;
18: Decrease head request’s remnant demand: d′u ← d′u − zp,u;
19: Remove the head agent: p ← p + 1;
20: end if
21: end while
22: Output the selected set A and assignments zi,j for i ∈ A and j ∈ J ;
23: end if

Our basic idea for solving the case Feasibility(w = λ, si, ∗) is:

Stage 1: Select all the agents, i.e. A = {1, 2, ..., m};

Stage 2: For each agent i ∈ A and region r ∈ U , determine the total regional shipment

ti,r;

Stage 3: Based on A and ti,r, obtain the assignment zi,j for i ∈ A and j ∈ J .

The reason for selecting all the agents in Stage 1 has been discussed in the beginning of

this section. To see what constraints the total regional shipment ti,r for i ∈ A and r ∈ U

should satisfy, let us examine any feasible assignment zi,j for the case Feasibility(w =

λ, si, ∗), where i ∈ A and j ∈ J . By the definition of ti,r, we have that for each selected
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agent i ∈ A and region r ∈ U ,

ti,r =
∑

j∈Jr

zi,j (3.1)

Therefore, the demand constraint (2.2) implies that the total shipments to region r should

be the same as its total demands for r ∈ U , i.e.

∑

i∈A

ti,r =
∑

j∈Jr

dj . (3.2)

The capacity constraint (2.3) implies that the total shipments to all regions by one agent

i should not exceed its maximum capacity si for i ∈ A, i.e.

∑

r∈U

ti,r ≤ si. (3.3)

And, the MQC constraint (2.4) implies that for each agent i ∈ A and each MQC region

r ∈ R, the total regional shipment ti,r must satisfy:

ti,r = 0 or ti,r ≥ br. (3.4)

Therefore, we obtain a sufficient condition of the feasibility for the case Feasibility(w =

λ, si, ∗) as follows.

Lemma 3.9 if there exists a feasible assignment zi,j for i ∈ A and j ∈ J for the case

Feasibility(w = λ, si, ∗), we can have its total regional shipment ti,r for i ∈ A and r ∈ U

by (3.1) to satisfy the constraints (3.2)–(3.4).

The condition is also sufficient. We show this by proving the following result, which

partially solves the case Feasibility(w = λ, si, ∗).

Lemma 3.10 Algorithm 3.4 generates a feasible assignment zi,j with i ∈ A and j ∈ J for

the case Feasibility(w = λ, si, ∗) in O(n+λm) time, if given the total regional shipment

ti,r for i ∈ A and r ∈ U such that the constraints (3.2)–(3.4) are satisfied.

Proof The idea follows. Suppose we have the total regional shipment ti,r satisfying

constraints (3.2)–(3.4) for i ∈ A and r ∈ U . Note the regional request sets J0, J1, ..., Jλ
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forms a disjoint partition of the whole set J . We can obtain feasible assignments zi,j of

all the agents i ∈ A, for requests j in J0, J1, ..., Jλ respectively.

For each job set Jr where region r ∈ U , consider the following instance of the case

Feasibility(w = 0, si, ∗). The request set becomes Jr holding requests only in region

r, and the demand of request j ∈ Jr is still dj . The agent set is A, and the maximum

capacity of agent i ∈ A changes to ti,r, which indicates the total regional shipment of

agent i for region r.

In this new instance, since the total agents’ maximum capacity is
∑

i∈A ti,r equal to

the total demands
∑

j∈Jr
dj by the constraint (3.2), we can apply the Algorithm 3.3 to

generate feasible assignments zi,j for i ∈ A and j ∈ Jr. Because the demand is unchanged,

zi,j also satisfies the original demand constraint (2.2) for i ∈ A and j ∈ Jr. In addition,

since the total capacity
∑

i∈A ti,r is the same as the total demand
∑

j∈Jr
dj , to satisfy all

the demands in this new instance, considering the restriction of capacities ti,r for i ∈ A

and r ∈ R, we have that the relation (3.1) must hold true, i.e.
∑

j∈Jr
zi,j = ti,r. Because

ti,r satisfies the constraint (3.4), the original MQC rule (2.4) is satisfied for region r.

We solve those λ + 1 instances of the case Feasibility(w = 0, si, ∗) for J0, J1, ..., Jλ

respectively. Afterwards, we can obtain assignments zi,j for i ∈ A and j ∈ J such that

both the original demand constraint (2.2) and MQC rules (2.4) are satisfied. To see the

original maximum capacity constraint (2.3) is also satisfied, recall that for each region

r ∈ U the relation (3.1) holds true. This indicates that ti,r is exactly equal to the total

regional shipment of zi,j for i ∈ A, r ∈ U and j ∈ Jr. So by (3.3), we know that zi,j

satisfies its original maximum capacity constraint (2.3) for i ∈ A and j ∈ J .

We give a formal statement of the above process in Algorithm 3.4. Note that the

Algorithm 3.3 has been called for |U | times and each consumes O(|Jr| + m) time. So

its time complexity of Alogrithm 3.3 is O(n + λm), for |J0| + |J1| + ... + |Jλ| = n and

|U | = λ + 1.

To complete solving the case Feasibility(w = λ, si, ∗), we need to obtain the total

regional shipment ti,r to satisfy constraints (3.2)–(3.4) for i ∈ A and r ∈ U before using

the Algorithm 3.4. This can be achieved by a dynamic programming algorithm proposed
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Algorithm 3.4 Solving Feasibility(w = λ, si, ∗) with Total Regional Shipments Given

1: The selected set is A = {1, 2, ..., m}, and the total regional shipment is ti,r for i ∈ A
and r ∈ U , which satisfy constraints (3.2)–(3.4);

2: Initially, set zi,j ← 0 for i ∈ A and j ∈ J ;
3: for all region r ∈ U do
4: Construct a instance of Feasibility(w = 0, si, ∗), where the request set is Jr with

each request j ∈ Jr having demand dj , and the agent set is A with each agent
i ∈ A holding maximum capacity ti,r;

5: Solve this instance by Algorithm 3.3 to obtain a feasible assignment zi,j for i ∈ A
and j ∈ Jr;

6: end for
7: Output assignments zi,j for i ∈ A and j ∈ J ;

as follows.

Let I(p) = {1, ..., p} denote the set of the first p agents in I for 1 ≤ p ≤ m. Let

Dr =
∑

j∈Jr
dj denote the total demands for requests in region r ∈ U . To satisfy

demands in the constraint (3.2), we indicate the partial regional shipments transported

by those agents i ∈ I(p) for region r ∈ U as follows, where p = 1, ..., m respectively.

Let vr =
∑

i∈I(p) ti,r denote the partial regional shipments for region r ∈ U , so that

state variables of the dynamic programming algorithm are (p,−→v ), where vector −→v =

〈v0, v1, ..., vλ〉 and vr ≤ Dr for all r ∈ U . Then, the algorithm recursively computes

G(p,−→v ) that denotes the true value of the statement: there exists integer values of ti,r

for i ∈ I(p) and r ∈ U , such that

∑

i∈I(p)

ti,r = vr, for all r ∈ U ; (3.5)

∑

r∈U

ti,r ≤ si, for all i ∈ I(p); (3.6)

ti,r = 0 or ti,r ≥ br, for all i ∈ I(p) and r ∈ U. (3.7)

It is easy to see that there exists ti,r to satisfy these constraints (3.2)–(3.4) for i ∈ A

and r ∈ U , if and only if G(m, 〈D0, D1, ..., Dλ〉) is true. Let
−→
V denote the vector

〈D0, D1, ..., Dλ〉. So our objective is to obtain the value of G(m,
−→
V ).

Initially, set G(0,−→v ) true if −→v = 〈0, 0, ..., 0〉; otherwise set it false.

In the iteration p = 1, 2, ..., m, consider each vector −→v with field vr ≤ Dr for r ∈ U .

To obtain the current value of G(p,−→v ), we need to enumerate all the possible values
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of tp,r for r ∈ U . Note that tp,r can not exceed vr by (3.5). We let Ψ be the set of

vectors
−→
t = 〈tp,0, tp,1, , ..., tp,λ〉 with tp,r ≤ vr for r ∈ U and satisfying (3.6) and (3.7).

Accordingly by (3.5), we can obtain the following recursion: the value of G(p,−→v ) is true

if and only if there exists a vector
−→
t ∈ Ψ such that the value of G(p− 1,−→v −

−→
t ) is true.

After these m iterations, we can examine the value of G(m,
−→
V ). If it is true, then

the feasible values of ti,r, satisfying constraints (3.2)–(3.4) for i ∈ A and r ∈ U , can be

derived based on the previous process of recurrent computations; otherwise no feasible

ti,r exists.

Whenever we having a feasible ti,r, we can solve Feasibility(w = λ, si, ∗) by Algo-

rithm 3.4. This establishes the following results.

Theorem 3.11 Algorithm 3.5 generates a feasible solution for the case

Feasibility(w = λ, si, ∗) in O(mD2λ+2 + n) time.

Proof The correctness of Algorithm 3.5 has been discussed. Let us estimate its time

performance. Consider each iteration p and each vector −→v with field vr ≤ Dr for r ∈ U .

By the definition of set Ψ, we know that its size |Ψ| is at most O(Dλ+1). So the time

complexity for each recursion is O(Dλ+1). Because there are m iterations, each with

at most Dλ+1 vectors, the total time complexity of the whole recurrent computations is

O(mD2λ+2). Noting that Algorithm 3.4 will be called once, consuming O(n + λm) time,

we obtain that the time complexity of Algorithm 3.5 is O(mD2λ+2 + n).

We have given a pseudo-polynomial algorithm for Feasibility(w = λ, si, ∗). More-

over, Feasibility(w = λ, si, ∗) is also binary NP-hard, which indicates that no poly-

nomial algorithm exists. This binary NP-hardness can be proved even for a restricted

case, Feasibility(w = 2, si, ∗), with w = 2 particularly. Before proving its binary NP-

hardness, we can have the following corollary for Feasibility(w = 2, si, ∗) from Theo-

rem 3.11 directly.

Corollary 3.12 Algorithm 3.5 generates a feasible solution for the case

Feasibility(w = 2, si, ∗) in O(mD6 + n) time by specifying λ = 2.
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Algorithm 3.5 Solving Feasibility(w = λ, si, ∗)

1: if the total agents’ maximum capacity is less than the total requests’ demand (S < D)
then

2: Output “No Feasible Solution”;
3: else
4: Select all the shipping agents: A ← {1, 2, ..., m};
5: Initially, set G(0,−→v ) ←true, if −→v = 〈0, 0, ..., 0〉; otherwise G(0,−→v ) ←false;
6: for p = 1 to m do
7: for all −→v with all fields vr ≤ Dr for r ∈ U do
8: let Ψ denote the set of vectors

−→
t = 〈tp,0, tp,1, , ..., tp,λ〉, where tp,r ≤ vr for

r ∈ U and constraints (3.6)(3.7) are satisfied;
9: G(p,−→v ) ←false;

10: Set G(p,−→v ) ←true, if there exists t ∈ Ψ such that G(p − 1,−→v −
−→
t ) is true;

otherwise G(p,−→v ) ←false;
11: end for
12: end for
13: Let

−→
V denote the vector 〈D0, D1, ..., Dλ〉;

14: if G(m,
−→
V ) is false then

15: Output “No Feasible Solution”;
16: else
17: Retrieve ti,r for i ∈ S and r ∈ U based on Ψ;
18: Call Algorithm 3.4 to obtain assignments zi,j for i ∈ A and j ∈ J ;
19: Output the set A and assignments zi,j for i ∈ A and j ∈ J ;
20: end if
21: end if

Now let us prove that Feasibility(w = 2, si, ∗) is binary NP-hard.

Theorem 3.13 Finding a feasible solution for the case Feasibility(w = 2, si, ∗) is binary

NP-hard.

Proof We use a reduction from the following problem, which is known to be binary

NP-complete.

Partition [12]: given a set X = {1, ..., 2q} with a positive integer value g(i) for each

i ∈ X. Does there exists a subset X ′ with half size and half sum of values of X, i.e.

|X ′| = 1
2 |X| and

∑
i∈X′ g(i) = 1

2

∑
i∈X g(i)?

From any instance of Partition, consider the following polynomial reduction to the

instance of Feasibility(w = 2, si, ∗). Let each element i ∈ X indicate a shipping agent,

so I equals to {1, ..., 2q}. Noting X needed to be participated, we consider two trans-

portation request to the two different regions holding MQC rules. So we have J = {1, 2},
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R = {1, 2} and Jr = {r} for region r ∈ R. Moreover, to agree with the requirements

of Partition, we set the maximum capacities, the demands and the minimum quan-

tity properly as follows. Let δ denote an integer larger than the sum of values g(i) for

i ∈ X, say δ =
∑

i∈X g(i) + 1. Therefore, we set the maximum capacity si = g(i) + δ

for i ∈ I, the demand dj = 1
2

∑
i∈X g(i) + qδ for j = 1 and 2, and the minimum quan-

tity br = δ for r = 1 and 2. We now prove that a feasible solution for the instance of

Feasibility(w = 2, si, ∗) exists if and only if there is a solution X ′ to Partition.

On one hand, if Partition has a subset X ′ ⊆ X satisfying |X ′| = 1
2 |X| and

∑
i∈X′ g(i) =

1
2

∑
i∈X g(i), we can select all the agents by A = {1, ..., 2q}, and assign requests based on

X ′. We assign request 1 (respectively, 2) to agent i for i ∈ X ′ (resp., i ∈ X −X ′) leading

zi,1 = si. It is easy to verify that this assignments is feasible.

On the other hand, if we have a feasible selection set A and assignments zi,j for

j = 1, 2 and i ∈ A, consider the set X ′ that consists of all the agents having shipments of

request 1, i.e. X ′ = {i|i ∈ A, zi,1 > 0}. Clearly X ′ ⊆ X. And for each agent i ∈ X ′, by

the MQC constraint (2.4) for region 1, we have zi,1 ≥ b1 = δ. Then its remanent capacity

becomes si − zi,1 ≤ g(i), which is less than the minimum quantity b2 = δ of region 2.

From the MQC constraint (2.4) for region 2, we have zi,2 = 0 for each agent i ∈ X ′. Note

that the total capacity exactly equals to the total demand (i.e.
∑

i∈I si =
∑

j∈J dj). To

satisfy all the demands, each agent must have as many of the shipments as its capacity,

implying A = I and zi,1 + zi,2 = si for agent i ∈ A. Therefore, if i ∈ X ′, we have

zi,1 = si = g(i) + δ because zi,2 = 0; otherwise if i ∈ X −X ′, we have zi,2 = si = g(i) + δ

because zi,1 = 0. Since the demands of two requests 1 and 2 are equal, their shipments

must be equal, that is
∑

i∈X′ zi,1 =
∑

i∈X−X′ zi,2. Equivalently, we have:

∑

i∈X′

g(i) + |X ′|δ =
∑

i∈X−X′

g(i) + |X − X ′|δ.

By δ >
∑

i∈X g(i), we know |X ′| = |X −X ′| and
∑

i∈X′ g(i) =
∑

i∈X−X′ g(i). This leads

|X ′| = 1
2 |X| and

∑
i∈X′ g(i) = 1

2

∑
i∈X g(i).

The complexity result above can be applied for Feasibility(w = λ, si, ∗) as well, by

the reduction from w = 2 to w = λ in the field α shown in Figure 2.2(b). This derived
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the following corollary.

Corollary 3.14 Finding a feasible solution for the case Feasibility(w = λ, si, ∗) is bi-

nary NP-hard.

We have seen that the capacitated feasibility case of w ≥ 2 is binary NP-hard and

has a pseudo-polynomial algorithm. For w = 1, we now present an efficient polynomial

algorithm. In this case Feasibility(w = 1, si, ∗), we have R = {1} and U = {0, 1}. Recall

that the polynomial Algorithm 3.4 can be still applied for the case Feasibility(w =

1, si, ∗) to obtain feasible assignments zi,j for i ∈ A and j ∈ J , if given the total regional

shipments ti,r for i ∈ A and r ∈ U .

Now let us consider how to obtain ti,r for i ∈ A and r ∈ R in this case. We suppose

S ≥ D because otherwise no feasible solution exists by Lemma 3.6, and assume that the

agents are ordered non-decreasingly on their maximum capacities, i.e. s1 ≥ s2 ≥ ... ≥ sm.

Moreover, let c1 indicate the number of agents whose capacities are large enough (i.e. at

least b1) to serve request in region 1.

Suppose we have got the total regional shipment ti,r for i ∈ A and r ∈ U satisfying

constraints (3.2)–(3.4). We now prove the condition
∑c

i=1 si ≥ D1 is satisfied, where

c = min(c1, bD1/b1c). Let A1 = {i|ti,1 > 0} be the set of agents who has shipments

to region 1. Let D1 =
∑

j∈J1
dj denote the total demands of requests in region 1. By

the MQC constraint (3.4), we have ti,1 ≥ b1 for i ∈ A1. Thus the number of agents

serving requests in region 1 is at most c by (3.2), i.e. |A1| ≤ c. So
∑

i∈A1
si ≤

∑c
i=1 si,

because of the non-decreasing order of si for i ∈ I. According to the capacity and demand

constraints (2.2)(2.3), we obtain the necessary condition:
∑c

i=1 si ≥ D1.

To see the condition is also sufficient, we will show that if
∑c

i=1 si ≥ D1, we can safely

choose A1 = {1, ..., c} to serve the requests in region 1 and obtain ti,r for i ∈ S and r ∈ U

as follows. Firstly, excluding quantity b1 reserved for the minimum quantity of region 1,

the remnant capacity of agent i can be denoted by s′i = si−b1 for 1 ≤ i ≤ c and the total

remnant demands in region 1 is reduced to D′

1 = D1 − cb1. By
∑

i∈A1
si ≥ D1, we have

∑
i∈A1

s′i ≥ D′

1. Let τ be such an index that c ≥ τ ≥ 1 and
∑τ

i=1 s′i ≥ D′

1 >
∑τ−1

i=1 s′i.

Then the first τ agents can satisfy the remnant demands D′

1, since we can assign s′i to each
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agent i where i < τ , and assign the rest D′

1−
∑τ−1

i=1 s′i to agent τ . Furthermore, including

the reserved quantity b1, we can satisfy all the demands D1 by assigning agents in A1

with ti,1 = si if i ≤ τ − 1, and tτ,1 = D1 − (c− τ)b1 −
∑τ−1

i=1 si, and ti,1 = b1 if τ < i ≤ c.

It is easy to verify that both the demand constraint (3.2) and the MQC constraints (3.4)

are satisfied for region 1. On the other hand, for region 0, note that the total demands is

D0 = D−D1 and the total remnant capacity of all agents is S0 = S−D1. By S ≥ D, we

have S0 ≥ D0. In the same manner of satisfying the remnant demands D′

1 in region 1, we

can obtain the regional shipment ti,0 for i ∈ A to satisfy constraints (3.2)(3.4) for region

0. Moreover, it is easy to see that the capacity constraint (3.3) for ti,r, where i ∈ A and

r ∈ U , is satisfied by all.

When ti,r has been obtained for i ∈ A and r ∈ U , we can employ Algorithm 3.4

to solve the feasible zi,j for i ∈ A and j ∈ J . The whole process is formalized in

Algorithm 3.6, which leads the following result.

Theorem 3.15 Algorithm 3.6 generates a feasible solution for the case

Feasibility(w = 1, si, ∗) in O(n + m) time.

Proof The correctness of Algorithm 3.6 has been discussed. Now we consider its the

time performance. Because choosing agents having c largest capacities si consumes O(m)

time [9] and all the other parts cost O(n+m), the total time complexity is O(n+m).

Lastly, we prove that the general capacitated feasibility case with arbitrary w is unary

NP-hard.

Theorem 3.16 Finding a feasible solution for the case Feasibility(w, si, ∗) is unary

NP-hard.

Proof We use a polynomial reduction from the following problem, which is known to be

unary NP-complete.

3-Partition: given a positive integer bound B and a set X = {1, 2, ..., 3w} with

a positive integer value g(i) for each i ∈ X such that the sum
∑

i∈X g(i) = wB and

B/4 < g(i) < B/2 for i ∈ X, can X be partitioned into q disjoint sets X1, X2, ..., Xw
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such that |Xj | = 3 and
∑

i∈Xj
g(i) = B for j = 1, ..., w?

The reduction to Feasibility(w, si, ∗) is similar to that constructed in the proof of

Theorem 3.13, except that instead of only two MQC regions there, we consider w re-

gions here. For any instance of 3-Partition, let each element i ∈ X indicate a shipping

agent, so we have I = {1, ..., 3w}. Since X needed to be partitioned into w subsets, we

correspondingly consider w regions holding MQC rules, and each region holds exactly

one transportation request. In other words, we let J = {1, ..., w}, R = {1, ..., w} and

Jr = {r} for r ∈ R. Besides, let δ denote an integer, larger than the sum of values g(i)

for i ∈ X, say δ = wB + 1. So, we set the maximum capacity si = g(i) + δ for i ∈ I, the

demand dj = B + 3δ for j ∈ J , and the minimum quantity br = δ for r ∈ R. We now

prove that a feasible solution for the instance of Feasibility(w, si, ∗) exists if and only if

there is a solution for 3-Partition.

On one hand, from a solution X1, X2, ..., Xw for 3-Partition, we can obtain a fea-

sible solution for Feasibility(w, si, ∗) straightforward as follows. Let S = {1, 2, ..., 3w}

indicating that all agents are selected. Then we assign the request j to those agents

i ∈ Xj with quantity si for j ∈ J , i.e. for each request j ∈ J , we set zi,j = si if i ∈ Xj ,

otherwise set zi,j = 0. It is easy to verify that such an assignment satisfies all the con-

straints (2.2)–(2.4).

On the other hand, if we have a feasible solution with a selection set A and as-

signments zi,j for i ∈ I and j ∈ J , consider the following w subsets of X. For each

request j ∈ J , let subset Xj = {i|i ∈ A, zi,j > 0}, indicating the set of agents serving

the request j. Noting the MQC constraint (2.4), we have zi,j ≥ bj = δ for j ∈ J and

i ∈ Xj . Because twice the δ is larger than the maximum capacity for every agent (i.e.

2δ > si for i ∈ I), each agent can serve at most one request. So the w subsets X1, ..., Xw

are disjoint. Note the total capacity exactly equal to the total demand. To satisfy all

those demands, each agent must ship as many quantities as its capacity, i.e. A = I and

zi,1 + zi,2 + ... + zi,w = si > 0 for i ∈ A. Recalling that X1, ..., Xw is disjoint, we know

that for each element i ∈ X, there is exactly one index j in {1, ..., w} with zi,j > 0 such

that i ∈ Xj . Therefore X1, ..., Xw forms a disjoint partition of X, and zi,j = si = g(i)+ δ
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for each agent i ∈ Xj and request j ∈ J . Since the demands of the w requests are equal,

the total shipment for each request j ∈ J must be the same as that for the first request,

that is
∑

i∈Xj
zi,1 =

∑
i∈X1

zi,1. Equivalently, we have:

∑

i∈Xj

g(i) + |Xj |δ =
∑

i∈X1

g(i) + |X1|δ.

By δ >
∑

i∈X g(i), we know |Xj | = |X1| and
∑

i∈Xj
g(i) =

∑
i∈X1

g(i), which leads

|Xj | = 3 and
∑

i∈Xj
g(i) = B for j = 1, ..., w.

3.4 Summary

The computational complexity results are presented in this chapter. various special

cases have been studied here. Furthermore, a number of other results can be directed

derived based on the reduction relations shown in Figure 2.2. For example, the case

Optimization(w = λ, si = ∞, fi = 0) for any λ ≥ 1 is unary NP -hard, by its reduc-

tion from Optimization(w = 1, si = ∞, fi = 0). Accordingly, we can generalize the

computational complexity results for all special cases as follows.

1. Finding an optimal solution is unary NP-hard unless both MQC restrictions and

fixed selection costs are relaxed, i.e. w = 0 and fi = 0.

2. Finding only a feasible solution is at least binary NP-hard unless at most one

region holds the MQC rule or the maximum capacity are relaxed, i.e. w ≤ 1 or

si = ∞, and is even unary NP-hard when an arbitrary number of regions hold the

MQC rule, i.e. w is arbitrary.

From this statement, we can see that the bidding selection and assignment problem with

MQC restrictions is very hard to solve.
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Algorithm 3.6 Solving Feasibility(w = 1, si, ∗)

1: if the total agents’ maximum capacity is less than the total requests’ demand (S < D)
then

2: Output “No Feasible Solution”;
3: else
4: Select all the shipping agents: A ← {1, 2, ..., m};
5: Let c1 indicate the number of agents with at least b1 capacities.
6: Choose the c = min(c1, bD1/b1c) agents having c largest capacities si to be the

first c agents 1, 2, ..., c, and form the set A1 = {1, ..., c} to serve requests in region
1.

7: Let D0 and D1 denote the total demands in region 0 and 1 respectively;
8: if

∑
i∈A1

si <
∑

j∈J1
dj then

9: Output “No Feasible Solution”;
10: else
11: Set remnant capacities: s′i ← si for i ∈ S;
12: Set ti,r ← 0 for i ∈ S and r = 0, 1;
13: Set ti,1 ← b1 for all i ∈ A1 to reserve minimum quantity for region 1;
14: Set the remnant demand of region 1: D′

1 ← D1 − cb;
15: Decrease remnant capacities: s′i ← si − b for i ∈ A1;
16: Let τ be the index s.t.

∑τ
i=1 s′i ≥ D′

1 >
∑τ−1

i=1 s′i;
17: for i = 1 to τ − 1 do
18: ti,1 ← ti,1 + s′i;
19: Decrease the remnant demand D′

1 ← D′

1 − s′i for region 1;
20: end for
21: tτ,1 ← tτ,1 + D′

1

22: Decrease the remnant capacities s′i ← s′i − ti,1 for i ∈ A1;
23: Set the remnant demand of region 0: D′

0 ← D0;
24: Let σ be the index s.t.

∑τ
i=1 s′i ≥ D′

0 >
∑σ−1

i=1 si;
25: for i = 1 to σ − 1 do
26: ti,0 ← ti,0 + s′i;
27: Decrease the remnant demand D′

0 ← D′

0 − s′i for region 0;
28: end for
29: tσ,0 ← tσ,0 + D′

0

30: Call Algorithm 3.4 to obtain assignments zi,j for i ∈ A and j ∈ J ;
31: Output the set A and assignments zi,j for i ∈ A and j ∈ J ;
32: end if
33: end if
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Optimization Approaches

4.1 Overview

As we presented in the last Chapter 3, the new MQC constraint is hard to deal with for

the selection and assignment problem theoretically. But in this chapter, we are interested

in how to apply optimization approaches to solve it practically. We will focus on solving

a basic problem, for which only the MQC constraint and the demand constraint are

considered. This basic problem is introduced in Section 4.2 and formulated as a mixed

integer programming model in Section 4.3. To solve the basic problem practically, we

study its polyhedral structure of the mixed integer programming model, and find a strong

valid inequality to strengthen the model. Based on this mixed integer programming

model, we apply a branch and cut search scheme in Section 4.5 to solve those medium size

instances. For those large size instances, we invent two heuristic algorithms to solve them

practically. A linear rounding heuristics is given in Section 4.6, and a greedy algorithm

is analyzed in Section 4.7. For the greedy algorithm, a non-constant approximation

ratio is proved to be guaranteed under some circumstances. Afterwards, their related

experiments will be discussed in the next Chapter 5.

33
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4.2 A Basic Problem

The basic problem studied in this chapter rises from the simple special case Optimization(w =

1, si = ∞, fi = 0) of the selection and assignment problems with MQC constraint. Recall

that Optimization(w = 1, si = ∞, fi = 0) relaxes the agents’ maximum capacities con-

straint, ignores their fixed selection costs , and has only one region holding MQC rules.

Therefore, the request set J can be partitioned into two subsets J0 and J1, and we can

write the total cost as the sum of two partial costs:

∑

j∈J0

∑

i∈I

ci,jzi,j +
∑

j∈J1

∑

i∈I

ci,jzi,j .

Correspondingly, the case Optimization(w = 1, si = ∞, fi = 0) can be regarded as to

minimize the two partial costs separately. On one hand, to minimize the cost
∑

j∈J0

∑
i∈I0

ci,jzi,j ,

only the demand constraint need to be satisfied. It is easy to see that this sub-case

is Optimization(r = 0, si = ∞, fi = 0), which can be solved efficiently according to

Theorem 3.2 in the last Chapter 3. On the other hand, we need to minimize the cost

∑
j∈J1

∑
i∈I0

ci,jzi,j . For this sub-case, both the demand constraint and MQC constraints

need to be considered. Since this second sub-case is the only difficult part, we name it

the Basic Problem, and will focus on it in the rest of this thesis. Thence, we may assume

that J0 is empty. Under this assumption, the Basic Problem is equivalent to the case

Optimization(w = 1, si = ∞, fi = 0).

Formally speaking, we define the Basic Problem as follows.

Basic Problem: suppose the agent set is I = {1, ..., m}, and the request set is

J = {1, ..., n}. Each request j ∈ J has demand dj . Suppose all requests are shipped into

the only region holding MQC rule, where its minimum quantity is b. The Basic Problem

is to minimize the total cost:

∑

i∈I

∑

j∈J

ci,jzi,j , (4.1)

such that the demand is satisfied for each request j ∈ J , i.e.

∑

i∈I

zi,j = dj , (4.2)
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and that the MQC rule is satisfied for each agent i ∈ I, i.e.

∑

j∈J

zi,j = 0, or
∑

j∈J

zi,j ≥ b. (4.3)

The feasible solution of the Basic Problem satisfies both the Constraint (4.2) and Con-

straint (4.3), while the optimal one is not only feasible but has the minimum total

cost (4.1) as well.

Since the agents’ maximum capacity is relaxed to be infinity, the feasible solution of

the Basic Problem is easy to obtained by the Algorithm 3.2 of Theorem 3.5 in Chapter 3.

So we have the following proposition.

Proposition 4.1 Algorithm 3.2 generates a feasible solution for the Basic Problem in

O(n) time.

Then, let us consider the optimal solution. Although we restrict the request subset

J0 to be empty in the Basic Problem, finding an optimal solution for the Basic Prob-

lem is still unary NP-hard, which can be shown by the same arguments for the case

Optimization(w = 1, si = ∞, fi = 0) in Theorem 3.4 of the last Chapter 3.4. This

establishes the following result.

Proposition 4.2 Whenever the minimum quantity b ≥ 3, finding an optimal solution

for the Basic Problem is unary NP-hard.

Moreover, the Basic Problem is found too difficult to be solved even approximatively.

We prove this non-approximation result as follows.

Proposition 4.3 There exists no approximation algorithm that guarantees finite approx-

imation ratio for the Basic Problem, unless P = NP.

Proof We prove it by contradiction. Assume P 6= NP. Suppose there exists an approx-

imation algorithm A that guarantees finite approximation ratio a for the Basic Problem.

By the same arguments for Theorem 3.2, we can transform any instance of the unary

NP-complete problem X3C to an instance of the Basic Problem, and insure that the

instance of X3C has an exact cover if and only if the minimum total cost for the instance
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of the Basic Problem is zero. Since the approximation ratio a is finite and then a · 0 = 0,

we know that the algorithm A can generate a feasible solution with zero total cost for

the instance of the Basic Problem in polynomial time, if and only if its exact minimum

total cost is zero. This condition is equivalent to the existence of an exact cover for the

instance of X3C. So X3C can be solved by the algorithm A polynomially. This implies

X3C ∈ P, leading contradiction to our assumption of P 6= NP.

The last two propositions demonstrate the theoretical difficulties to solve the Basic

Problem efficiently. However, the rest of this chapter is interested in how to solve it in

practice.

4.3 Mixed Integer Programming Model

We begin with an integer programming model of the Basic Problem by introducing

a binary decision variable xi for each agent i. We assign xi = 1 if the agent i has

containers to ship, otherwise xi = 0. Therefore, the Basic Problem can be formulated as

the following integer programming model.

Integer Programming Model (IP)

min
∑

i∈I

∑

j∈J

ci,jzi,j (4.4)

s.t.
∑

i∈I

zi,j = dj , for j ∈ J (4.5)

bxi ≤
∑

j∈J

zi,j ≤ Dxi, for i ∈ I (4.6)

xi ∈ {0, 1}, for i ∈ I (4.7)

zi,j ∈ Z+, for i ∈ I and j ∈ J. (4.8)

where Z+ is the set of non-negative integers, and D is the total demands of requests, i.e.

D =
∑

j∈J dj .

In the IP model, the objective function (4.4) and the first constraint (4.5) are straight-

forward from the total cost (4.1) and the demand constraint (4.2) of the Basic Problem

respectively. Moreover, by the second constraint (4.6) of the IP model, we have either
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∑
j∈J zi,j = 0 (when xi = 1), or b ≤

∑
j∈J zi,j ≤ D (when xi = 1), for each agent i ∈ I.

Since the inequality
∑

j∈J zi,j ≤ D can be independently derived from the previous con-

straint (4.5), the second constraint (4.6) is equivalent to the MQC constraint (4.3) of the

Basic Problem. Therefore, the IP model describes the the Basic Problem exactly.

There are m + mn integer variables in this IP model, including m binary xi and mn

integral zi,j , for i ∈ I and j ∈ J . Fortunately, we can relax every integral zi,j to be

real variable, and then, only m binary variables xi are restricted integral. To explain

the correctness of such a relaxation for zi,j , we need to prove that after the relaxation,

the convex hull of feasible solutions for the IP model is unchanged, i.e. the vertex of

the convex hull must be unchanged. So, if this relaxation is correct, we can only solve

a mixed integer programming model instead of the pure integer programming one. For

further concepts and theories of the integer programming, please refer the textbook [26].

In the following elaboration, we will firstly show that the relaxation of zi,j is correct

if the values of xi are determined, and then generalize the fact for the original IP model,

which conducts a mixed integer programming model for the Basic Problem.

First, suppose the values of m binary variables xi for i ∈ I have been determined.

Let’s see what the IP model will become. We use S to denote the set of agents i with

xi = 1, where i ∈ I. Given the subset S ⊆ I, we can rewrite the IP model by replacing

xi with its value. Moreover, by the MQC constraint (4.6) and xi = 0 for i /∈ S, we know

that for j ∈ J and i /∈ S, the assignments zi,j = 0 can be removed from the IP model

. This leads a new integer programming model depending on the subset S, or IP (S) in

short.

Integer Programming Model on S (IP(S))

min
∑

i∈S

∑

j∈J

ci,jzi,j (4.9)

s.t.
∑

i∈S

zi,j = dj , for j ∈ J (4.10)

b ≤
∑

j∈J

zi,j , for i ∈ S (4.11)

zi,j ∈ Z+, for i ∈ S and j ∈ J. (4.12)
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Basically, the new IP (S) model is a minimum cost network flow problem with lower

bounds on arcs. To see this, consider a bipartite network with cross arcs between S and

J . Besides nodes in S and J , there are a source node s and a demand node t. Then the

whole node set of the network is V = S ∪ J ∪ {s, t}. Let zs,i denote the total number of

containers shipped by agent i ∈ S, i.e.

zs,i −
∑

j∈J

zi,j = 0,

and let zj,t indicate the total number of containers shipped for request j ∈ J , i.e.

∑

i∈S

zi,j − zj,t = 0.

Imagine zu,v to be the flow on arc (u, v) for u, v ∈ V , then the constraint (4.10) and

(4.11) imply the lower bound or upper bound on some arcs, that is zj,t = dj for j ∈ J ,

and b ≤ zi,t for i ∈ S. The cost of each arc from i ∈ S to j ∈ J is ci,j , otherwise is

zero. This keeps the total cost of flow the same as (4.9). Therefore, the IP (S) model is

nothing but a minimum cost network flow problem with lower bounds on arcs. Since the

latter problem can be solved in polynomial time[3], we obtain the following proposition.

Proposition 4.4 A minimum cost network flow algorithm can solve the IP (S) model

in polynomial time.

Now, let us consider the relaxation of integral variables zi,j to real for the IP (S)

model. Since the IP (S) is a minimum cost network flow problem with lower bounds on

arcs, the following integrity property holds true.

Lemma 4.5 In the IP (S) model, if the minimum quantity b and the demands dj for

j ∈ J are integral, constraints (4.10)–(4.11) and zi,j ∈ R+ (for i ∈ S and j ∈ J) describe

the convex hull of the IP (S), where R+ is the set of non-negative real numbers.

Proof According to the same arguments for the integrity property of the minimum cost

network flow problem presented in [26], we know that the above result is true for the

IP (S) model. [26].
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Lemma 4.5 insures that the relaxation of integral variables zi,j to real will keep the

convex hull of the feasible solutions in the IP (S) unchanged. So, even if we relaxing zi,j

to real, the convex hull of the relaxed IP (S) model still consists of only integral vertex.

Since the IP (S) is derived from the original IP model by assigning the values of only xi

for i ∈ I, the integrity property of zi,j is still held for the IP model. This implies the

following theorem.

Theorem 4.6 In the IP model, if the minimum quantity b and the demands dj for j ∈ J

are integral, the constraints (4.5)–(4.7) and zi,j ∈ R+ (for i ∈ I and j ∈ J) describe the

convex hull of the IP.

Proof We prove it by contradiction. Suppose the statement is false. Then, on the convex

hull of the relaxed IP model, where zi,j ∈ R+ for i ∈ S and j ∈ J , there exists a vertex

with integral xi and fractional zi,j for i ∈ I and j ∈ J . Let S = {i : xi = 1, i ∈ I}.

We have that the point {zi,j} is a fractional vertex on the convex of the relaxed IP (S)

model, leading contradiction to Lemma 4.5.

We have shown the correctness of relaxing integral variables zi,j to real for the IP

model. Therefore, we can obtain the mixed integer programming model for the Basic

Problem as follows.

Mixed Integer Programming Model (MIP)

min
∑

i∈I

∑

j∈J

ci,jzi,j (4.13)

s.t.
∑

i∈I

zi,j = dj , for j ∈ J (4.14)

bxi ≤
∑

j∈J

zi,j , for i ∈ I (4.15)

∑

j∈J

zi,j ≤ Dxi, for i ∈ I (4.16)

xi ∈ {0, 1}, for i ∈ I (4.17)

zi,j ≥ 0, for i ∈ I and j ∈ J. (4.18)

In the MIP model, we separate the MQC constraint into two inequalities (4.15) and

(4.16), for (4.16) will be tightened in the later Section 4.4.
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Compared with the IP model that has n + mn integral variables, the MIP has m

only and is expected to be easier for solving. Moreover, although a feasible solution to

the MIP model might have fractional assignments zi,j for i ∈ I and j ∈ J , the values

of xi are integral for i ∈ I. Based on xi, we can solve a corresponding IP(S) model,

by Proposition 4.4, to get an integral feasible solution of the IP model with even better

objective value. For this reason, the only necessary work on solving the Basic Problem

is to solve its MIP model.

4.4 Strengthening the Model

We propose to solve the MIP model by branch and cut search scheme and other heuristics

algorithms. The performance for most of these methods depends on the tightness of the

model. In this section, we will examine the tightness of the MIP model, and explore

ways to strengthen it as well.

To measure the tightness of a model, we adopt the concept of facet [26], which is

effective in the analysis of the models for selection and assignment problems [11][17].

Intuitively speaking, facets are the necessary inequalities that determines the convex hull

of the feasible set for an integer (or mixed integer) programming model. The convex hull

forms a polyhedron, and its boundaries are defined by the facets. So, the more facets we

have, the stronger the model we defined is. If we had all of them, the integrity condition

could be totally relaxed and turns to a linear programming model. However, finding all

the facets for the integer (or mixed integer) programming model is intractable, although

the number of them is finite [26].

Now, let’s examine the tightness of the MIP model to see whether all the inequalities

are facets. The following theorem shows that our expectation is almost true, except the

inequalities (4.16) of the MQC constraint.

Theorem 4.7 If 2b < D, for the convex hull of the MIP model’s feasible set,

1. its dimension is mn + m − n, and
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2. the inequalities (4.15), xi ≤ 1 for i ∈ I, (4.18), and equality (4.14) are facet-

defining.

Proof Suppose 2b < D is satisfied. Here, we present the proof of the facet only for

the most difficult case (4.15). For other three cases, we can follow similar arguments,

described in Appendix A.1, to prove that they are facets as well. Besides that, the

dimension of the convex hull can also be derived by the end of the following proof.

For any agent p ∈ I, we are going to show the inequality (4.15) for the agent p, i.e.

bxp ≤
∑

j∈J

zp,j , (4.19)

is a facet. To see this, we must prove that if all feasible solutions of the MIP model that

satisfy (4.19) at equality also satisfy

∑

i∈I

∑

j∈J

αi,jzi,j +
∑

i∈I

βixi ≤ θ (4.20)

at equality, then (4.20) must be a linear combination of (4.19) and the equality con-

straint (4.14), which implies the inequality (4.19) is necessary, or facet-defining, for the

MIP model.

Firstly, let u and v denote any two different agents in I other than p, and we now

show αu,j = αv,j for all j ∈ J . Let us construct a feasible solution (x1, z1) as follows.

Let x1
u = x1

v = 1 and other x1
i = 0 for i ∈ I − {u, v}. Since 2b < D, there exist a feasible

assignment z1
i,j for i ∈ I and j ∈ J , such that z1

u,j > 0 and z1
v,j > 0 for all j ∈ J , and that

∑
j∈J z1

u,j > b and
∑

j∈J z1
v,j > b as well. Since xp = 0, we know (x1, z1) satisfies (4.19)

at equality. Consider another feasible solution (x2, z2), where x2
i = x1

i for all i ∈ I, and

z2
i,j = z1

i,j for all i ∈ I − {u, v} and j ∈ J , but

z2
u,j = z1

u,j + ε and z2
v,j = z1

v,j − ε, for j ∈ J,

where ε > 0 is arbitrary close to zero. It is easy to see that by choosing proper small ε

we can keep (x2, z2) feasible and satisfying (4.19) at equality. Substituting (x1, z1) and

(x2, z2) into (4.20) and subtracting one from the other results in αu,j = αv,j . So, we can
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assume αu,j = αj for each agent u ∈ I − {p}, and rewrite (4.20) as

∑

j∈J

αj

∑

i∈I

zi,j +
∑

j∈J

(αp,j − αj)zp,j +
∑

i∈I

βixi ≤ θ. (4.21)

Secondly, we will show βu = 0 for any u ∈ I − {p}. We construct another feasible

solution (x3, z3) from (x1, z1) as follows. Let x3
i = x1

i for all i ∈ I − {u}, but x3
u = 0.

Since only x3
v = 1, we assign zv,j = dj for all j ∈ J . It is easy to see that (x1, z1) is

feasible and satisfies (4.19) at equality. Note

∑

j∈J

αj

∑

i∈I

zi,j =
∑

j∈J

αjdj (4.22)

and zp,j = 0 for j ∈ J . Substituting (x1, z1) and (x3, z3) into (4.21) at equality and

subtracting one from the other results in βu = 0, for u ∈ I − {p}. We can rewrite (4.21)

as

∑

j∈J

αj

∑

i∈I

zi,j +
∑

j∈J

(αp,j − αj)zp,j + βpxp ≤ θ. (4.23)

Thirdly, we will prove (αp,g−αg) = (αp,h−αh), for any two different requests g, h ∈ J .

We construct a new feasible solution (x4, z4) by setting x4
p = x4

u = 1 and other x4
i = 0

for i ∈ I − {p, u}. Since 2b < D, there exists a feasible assignment z4
i,j for i ∈ I and

j ∈ J , such that z4
p,j > 0 and z4

u,j > 0 for j ∈ J , and that (4.19) is satisfied at equality.

Consider another feasible solution (x5, z5), where x5
i = x4

i for i ∈ I, and z5
i,j = z4

i,j for

i ∈ I − {p, u} or j ∈ J − {g, h}, but

z5
p,g = z4

p,g + ε, z5
p,h = z4

p,h − ε,

z5
u,g = z4

u,g − ε, z5
u,h = z4

u,h + ε.

It is easy to verify that (x5, z5) keeps feasible and satisfying (4.19) at equality. Again,

note the equality (4.22). Substituting (x4, z4) and (x5, z5) into (4.23) at equality and

subtracting one from the other results in (αp,g−αg) = (αp,h−αh). Assuming (αp,g−αg) =

λp for each g ∈ J , we can rewrite (4.23) as

∑

j∈J

αj

∑

i∈I

zi,j + λp

∑

j∈J

zp,j + βpxp ≤ θ. (4.24)
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Finally, because of (4.22) and
∑

j∈J z4
p,j = b, substituting (x1, z1) and (x4, z4) into

(4.24) at equality and subtracting one from the other results in βp = −λpb. For the same

reason, by substituting (x1, z1) into (4.24) only, we have θ =
∑

j∈J αjdj . Therefore, we

can rewrite (4.24) as

∑

j∈J

αj

∑

i∈I

zi,j + λp

∑

j∈J

zp,j ≤
∑

j∈J

αjdj + λpbxp, (4.25)

which is a linear combination of (4.19) and the equality constraint (4.14).

By the end of the proof, let us consider the dimension of the convex hull. In (4.20),

there are mn+m+1 unknown parameters αi,j , βi and θ for i ∈ I and j ∈ J . Along with

the MIP model and (4.19) at equality, we solve these equations in (4.20) and obtain (4.25).

Since only n+1 unknown ones are left in (4.25), noting that n independent equations are

in 4.14, we know that the maximum number of affinely independent feasible solutions in

the facet is exactly mn+m−n. This implies the dimension of the facet is mn+m−n−1,

which is one less than that of the whole convex hull. So the dimension of the convex hull

is mn + m − n.

We have shown that if 2b < D, most constraints of the MIP model are facet-defining,

except the (4.16). Actually, inequalities in (4.16) are not facets, because if (4.16) is

satisfied at equality for an agent p ∈ I, there is only a unique feasible solution, in which

xp = 1, zp,j = dj for all j ∈ J and others variables are zero.

To strengthen the model, we reformulate (4.16) as

zi,j ≤ djxi, for i ∈ I and j ∈ J, (4.26)

which is a family of facets of the MIP model if 2b < D. This establishes the following

theorem.

Theorem 4.8 If 2b < D, the inequalities in (4.26) are facet-defining for the convex hull

of the MIP model’s feasible set.

Proof Suppose 2b < D is satisfied. For any agent p ∈ I and any request q ∈ J , we are

going to show that the inequality zp,q ≤ dqxp is a facet. To see this, we must prove that
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if all feasible solutions of the MIP model that satisfy zp,q = dqxp also satisfy ( 4.20) at

equal, then (4.20) must be a linear combination of zp,q = dqxp and the equalities (4.14).

In the same way as the first and second steps of the proof for the case (4.15) in

Theorem 4.7, we can show αu,j = αv,j = αj and βu = 0 for u ∈ I − {p}, v ∈ I − {p, u}

and j ∈ J . So (4.20) can be rewritten as (4.23).

Afterwards, we will show (αp,g − αg) = 0 for any request g in J but other than p.

Similarly to the proof in Theorem 4.7, we construct a new feasible solution (x̃4, z̃4) as

follows. We still let x̃4
p = x̃4

u = 1 and other x̃4
i = 0 for i ∈ I − {p, u}. For the feasible

assignments, we still require z̃4
p,j > 0 and z̃4

u,j > 0 for j ∈ J − {q}, but z̃4
p,q = dq and

z̃4
u,q = 0 in addition. Since 2b < D, it is easy to see such a feasible assignment exist. Now

let us consider another feasible solution (x̃5, z̃5), where x̃5
i = x̃4

i for i ∈ I, and z̃5
i,j = z̃4

i,j

for i ∈ I − {p, u} or j ∈ J − {p}, but we let

z̃5
p,g = z̃4

p,g + ε, z̃5
u,g = z̃4

u,g − ε.

By choosing sufficient small positive ε, we can keep (x̃5, z̃5) feasible and satisfying zp,q =

dq. By (4.22), substituting (x̃4, z̃4) and (x̃5, z̃5) into (4.23) at equality and subtracting

one from the other results in (αp,g − αg) = 0 for any g ∈ J − {q}. Therefore, we can

rewrite (4.23) as

∑

j∈J

αj

∑

i∈I

zi,j + (αp,q − αq)zp,q + βpxp ≤ θ. (4.27)

Finally, recall that (x1, z1) is a feasible solution constructed in the proof of The-

orem 4.7, and x1
p = 0 and z1

p,j = 0 for j ∈ J . Because of (4.22) and z̃4
p,q = dj x̃

4
p,

substituting (x1, z1) and (x̃4, z̃4) into (4.24) at equality and subtracting one from the

other results in βp = (αq − αp,q)dq. For the same reason, by substituting (x1, z1) into

(4.24) only, we have θ =
∑

j∈J αjdj . Therefore, we can rewrite (4.24) as

∑

j∈J

αj

∑

i∈I

zi,j + (αp,q − αq)zp,q ≤
∑

j∈J

αjdj + (αp,q − αq)dqxp, (4.28)

which is a linear combination of zp,q = dqzp and the equality constraint (4.14).

Moreover, it is easy to see that the old inequalities in (4.16) are redundant, because

they can be derived by summing up some new inequalities in (4.26). So, we can replace
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(4.16) with (4.26) in the MIP, and have the following strengthened mixed integer pro-

gramming.

Strengthened Mixed Integer Programming Model (S-MIP)

min
∑

i∈I

∑

j∈J

ci,jzi,j (4.29)

s.t.
∑

i∈I

zi,j = dj , for j ∈ J (4.30)

bxi ≤
∑

j∈J

zi,j , for i ∈ I (4.31)

zi,j ≤ djxi, for i ∈ I and j ∈ J, (4.32)

xi ∈ {0, 1}, for i ∈ I (4.33)

zi,j ≥ 0. for i ∈ I and j ∈ J (4.34)

Before we end this section, let us make some comments on the condition 2b < D of

facets. Intuitively speaking, if the minimum quantity b is close to the total demand D,

only one or two agents can be selected to have xi = 1 at the same time, and the Basic

Problem will become very simple. For instance, if 2b > D, then at most one agent can

have shipments, and only m feasible solutions exist to be explored. Therefore, except for

a few simple instances, the condition 2b < D appears trivial for the Basic Problem.

4.5 Branch and Cut

Given a mixed integer programming model, the traditional way to solve it is branch and

cut search scheme [26]. In this section, we will illustrate the basic idea of applying this

search method to solve the Basic Problem. Along with the illustration, we will point out

that the tightness of the formulated model is important to the performance of the search

process.

We use the S-MIP model as an example to illustrate the outline of the branch and

cut algorithm, and begin with a simple exhaustive search scheme as follows. In S-MIP,

there are m binary variable xi for i ∈ I to be determined. Remember that if {xi} are

determined, we can let S = {i ∈ I : xi = 1} and solve the IP (S) model to generate
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its optimum assignment zi,j for i ∈ I and j ∈ J . Therefore, simply enumerating all the

possible values of {xi} is enough for us to find the optimum solution to the S-MIP model.

However, such a simple exhaustive search scheme can not work in practise, because it

always explores almost the whole search space {0, 1}m whose size is 2m exponentially.

Even though by summing up (4.31) we have x1 + x2 + ... + xm ≤ w where w = bD/bc,

the size of search space is reduced to Cm
1 + Cm

2 + ...+ Cm
w but is still exponentially large.

To improve the efficiency, we need to prune the invalid branch during the search

process. This leads a following branch and bound method. Let (x∗, z∗) denote the current

best feasible solution. Suppose we have assigned values to some xi, and accordingly, let

Π0 (or Π1) indicate the set of xi determined to be zero (or one). So we can use a duplet

(Π0, Π1) to represent a partial determined {xi}. Before exploring the rest undetermined

xi further, let us make a lower estimation of the objective cost that we could at least

have. Unless the lower estimation is less than the current minimum cost of (x∗, z∗), we

don’t need to assign the values to the rest xi further for i ∈ I − (Π0 ∪ Π1) . To make

such a lower estimation, we can keep those values of determined xi for i ∈ Π0 ∪ Π1, and

relax the rest undetermined xi from binary to the closed interval [0, 1]. This changes the

S-MIP model to a relaxed linear programming model, i.e.

Linear Programming Model on (Π0, Π1) by relaxing the S-MIP (LP(Π0, Π1))

min
∑

i∈I

∑

j∈J

ci,jzi,j (4.35)

s.t.
∑

i∈I

zi,j = dj , for j ∈ J (4.36)

bxi ≤
∑

j∈J

zi,j , for i ∈ I (4.37)

zi,j ≤ djxi, for i ∈ I and j ∈ J, (4.38)

xi = 0, for i ∈ Π0 (4.39)

xi = 1, for i ∈ Π1 (4.40)

xi ∈ [0, 1], for i ∈ I − (Π0 ∪ Π1) (4.41)

zi,j ≥ 0. for i ∈ I and j ∈ J, (4.42)
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whose optimum solution, denote by (x′, z′), gives an lower estimation of the further ex-

ploration. If the cost of (x′, z′) is not less than the cost of the current best solution

(x∗, z∗), no better solution might appear in further exploration for (Π0, Π1). So we stop

exploring its rest undetermined xi for i ∈ I − (Π0 ∪ Π1), and turn to other unexplored

duplets (Π′

0, Π
′

1). Otherwise, the cost of (x′, z′) is better. Let us try different values

for an undetermined xi, where i ∈ I − (Π0 ∪ Π1), and generate new duplets for further

exploration. This pruning technique reduces the size of space needed to be explored, and

then improves the performance of the search scheme.

Obviously, the accuracy of the lower estimation plays an important role in the branch

and bound algorithm. If the estimation is close to the actual value of the best solution in

further exploration, most invalid branches will be cut and only a few steps of searching is

needed for us to find the optimum. This explains the reason for strengthening our mixed

integer programming to be tighter (or closer) to its relaxed linear programming model.

To enhance the tightness further, we have the branch and cut algorithm. This algo-

rithm is based on the branch and bound method, but adds new constraints to strengthen

the model during the search process. Remember that during the process of branch and

bound, we have obtained a solution (x′, z′) for the relaxed linear programming model

LP (Π0, Π1). If x′ is integral, then (x′, z′) is a feasible solution of the S-MIP model, and

must be exactly the best solution that can be found in further exploration. However,

we might not be always fortunate to have integral x′. So in most of the time, we have

fractional x′, and the solution (x′, z′) is infeasible to the S-MIP model. In this case, an

intuitive way to strengthen the S-MIP model is to add a constraint, or cutting plane, with

which all the feasible solution are satisfied but (x′, z′) is not. So the infeasible (x′, z′)

is now excluded out of the relaxed linear programming model, and the mixed integer

programming model becomes tighter.

Techniques of cutting plane are proved to be effective in the search scheme, and have

been extensively studied in literature, like gormory’s fractional cutting plane, mixed in-

teger cuts, etc [26]. A detailed survey of the branch and cut method is presented in [1].

Our Algorithm 4.1 summarizes the outline of solving the S-MIP model through branch
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and cut.

Moreover, in the next Chapter 5, we will measure the performance of the branch

Algorithm 4.1 Branch and Cut Search Scheme to Solve the Basic Problem

1: List L stores duplets (Π0, Π1) representing those partial determined {xi} for further
exploration. Suppose we explore {xi} on the increasing order of its index i, therefore,
we have Π0 ∪ Π1 = {x1, x2, ..., xt} where t = |Π0 ∪ Π1| indicating the number of
determined xi.
Initially, L contains only one element (∅, ∅), implying that no xi has been decided;

2: Let (x∗, z∗) denote the current optimum solution found for the S-MIP model.
Initially, (x∗, z∗) is empty but has infinite cost;

3: while the list L is not empty do
4: From L, extract any one duplet (Π0, Π1), for which suppose x1, x2, ..., xt has been

determined, i.e. Π0 ∪ Π1 = {x1, x2, ..., xt}.
5: Solve the relaxed linear programming model LP (Π0, Π1), whose optimum solution

is denoted by (x′, z′);
6: if the cost of (x′, z′) is less than the cost of current best (x∗, z∗) then
7: if x′ is integral then
8: The solution {x′, z′) is feasible.

Update the current optimum solution by replacing (x∗, z∗) with (x′, z′);
9: else

10: Add a proper cut plane to the S-MIP model, such that the infeasible solution
(x′, z′) is excluded.

11: end if
12: Try to assign zero to the undetermined xt+1, and

add a new duplet (Π0 ∪ {xt+1}, Π1) to the list L;
13: Try to assign one to the undetermined xt+1, and

add a new duplet (Π0, Π1 ∪ {xt+1}) to the list L;
14: end if
15: end while
16: Return the optimum solution (x∗, z∗).

and cut algorithm and examine the effectiveness of the facet we add in the S-MIP model.

The experimental results show that the branch and cut algorithm works well for small or

some medium instances, and the facet we add has significantly improved the searching

performance.

4.6 Linear Programming Rounding Heuristics

From Section 4.2 we know that there is no efficient algorithm that can generate exactly

optimal solution or only approximative one for the Basic problem, although we have an
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exact branch and cut search scheme for the small or some medium problem instances

yet.

To solve those large instances practically for the Basic Problem, we invent two heuris-

tics algorithm. One is a combinatorial greedy method, which will be studied in the next

Section 4.7. The other is a linear programming rounding heuristic, or LP rounding heuris-

tic in short, which is as follows.

Similarly to the branch and bound algorithm, the LP rounding heuristic employs the

optimum solution (x′, z′) of the relaxed linear programming model LP (Π0, Π1) also. But

this time, the fractional solution (x′, z′) is used not only for stopping invalid explorations,

but for rounding fractional x′

i to integral as well. The basic idea is whenever having a

fractional solution (x′, z′) for some LP (Π0, Π1), we can round some x′

i with big fractional

values to one, and others to zero. By solving a corresponding IP (S) model, we will get

its best assignments, and then have a feasible solution whose objective cost is expected to

near that of the fractional (x′, z′). However, it is difficult to decide how many xi should

be rounded to one. For this reason, we round xi one by one, until we believe that no

better solution might exist in further rounding. To make such a judgement, after each

rounding, we need to make a lower estimation for further exploration by solving a new

LP (Π0, Π1) to .

Algorithm 4.2 describe the LP rounding heuristic. We let (x∗, z∗) denote the current

best feasible solution found for the S-MIP model, and let t indicate the number of xi

determined. Since no xi will be determined to be zero, the set Π0 is always empty. So

t is nothing but the size of Π1. Then for each rounding, we solve the relaxed linear

programming model LP (∅, Π1) first, obtaining its optimum fractional solution (x′, z′).

The cost of (x′, z′) gives an lower estimation for further exploration. If it is not less than

the current minimum cost of (x∗, z∗), we stop the algorithm and return (x∗, z∗) as the

near-optimum solution. Otherwise, the undetermined xi who has the largest fractional

value x′

i will be assigned to one. Therefore, we have a new LP (∅, Π1∪{i}) model for next

rounding. By solving the IP (S) where S = Π1 ∪{i}, we can have the best assignment as

well, and get a feasible solution (x̃, z̃). If its cost is better than that of the current best
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(x∗, z∗), we should replace (x∗, z∗) by (x̃, z̃).

Obviously, the performance of LP rounding heuristics depends on the accuracy of

the lower estimation generated by the LP (∅, Π1) model, since if the lower estimation is

closer to the exactly optimum value, the fractional solution will be nearer to integral

one, and the cost increased by rounding fractional to integral will be smaller. This again

stresses the importance of our efforts on strengthening the mixed integer programming

model in Section 4.4. Moreover, the experiments in the next Chapter 5 shows that our

LP rounding heuristics performs well in both time consuming and solution generation,

and exhibit stable behavior as well.

Algorithm 4.2 LP Rounding Heuristic to Solve the Basic Problem

1: Let (x∗, z∗) be the current best feasible solution founded. Initially, (x∗, z∗) is empty
with infinite cost.

2: Let t indicate the number of xi determined. Initially, t ← 0.
3: Let Π1 denote the set of xi determined to be one. Since no xi will be determined to

be zero along the following iterations, we have t = |Π1|. Initially, Π1 ← ∅.
4: while t < m do
5: Solve the relaxed linear programming model LP (∅, Π1) and obtain its optimum

fractional solution (x′, z′);
6: if the cost of (x′, z′) is NOT less than that of the current best (x∗, z∗) then
7: There is no need to explore further. Stop iteration and goto 19;
8: else
9: Select an x′

k whose fractional value is largest among x′

i for i ∈ I − Π1;
10: Round x′

k to one by S ← Π1 ∪ {k};
11: Solve the IP (S) model, obtaining its best feasible assignments z̃;
12: Set x̃i ← 1 for i ∈ S, and x̃i ← 0 otherwise;
13: if the cost of (x̃, z̃) is less than that of the current best (x∗, z∗) then
14: Replace (x∗, z∗) ← (x̃, z̃).
15: end if
16: t ← t + 1. By Π1 ← S, we have the new LP (∅, Π1) model for next iteration;
17: end if
18: end while
19: Return (x∗, z∗) as the near-optimum.

4.7 Greedy Approximation Heuristics

Let us change our approach from mathematical programming to the combinatorial man-

ner. We turn back to the original definition of the Basic problem, which is to find
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assignments zi,j for each agent i ∈ I and each request j ∈ J so that the total cost (2.1) is

minimized under the demand constraint (2.2) and the MQC constraint (2.4). We will de-

sign a greedy algorithm to solve the Basic Problem, such that a theoretical performance

can be guaranteed under some circumstances.

Before we illustrate the greedy algorithm, let us make an assumption that the demand

dj of each request j ∈ J is unit, because otherwise, if dj > 1 for some j ∈ J , we can split

the request j to dj requests each of which has unit demand. Later, we will prove that

such a splitting will not invalidate the polynomial time complexity of our implementation

for the greedy method.

Since the demands are assumed unit, the request set J can represent the containers

set. Let C denote the set of containers that have been assigned yet, and Π denote the

set of agents who have been selected to ship containers. The idea of our greedy method

is as follows.

Firstly, we define the following two elemental operations for the Basic Problem.

1. For each unselected agent i ∈ I−Π, we define an operation selection(i), which selects

the agent i to ship containers. To satisfy the minimum quantity commitment for

the new selected agent i, we assign it b containers whose transportation costs are

the b cheapest ci,j for j ∈ J − C.

2. For each selected agent i ∈ Π, we define an operation assignment(i), which assigns

the agent i a new unassigned container j that minimizes the cost ci,j for j ∈ J −C.

For each operation, we measure its cost by the average assignment cost. Accordingly, for

selection(i), its cost is (
∑

j∈A ci,j)/b, where A is the set of b containers assigned to the

agent i. For assignment(i), its cost is ci,j , where j is the container assigned to the agent

i.

Then, a feasible solution can be constructed by a series of the two elemental opera-

tions. In our greedy scheme, we do the operation that has the minimum cost iteratively,

until all the containers in J have been assigned. We formalize the greedy scheme in

Algorithm 4.3.
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To measure the performance of the solution generated, let us look at the approxima-

Algorithm 4.3 Greedy Method to Solve the Basic Problem

1: Suppose all demands dj are unit for j ∈ J , since otherwise, if some dj > 1, we can
split the request j into dj request each with unit demand.

2: Initially, the selected agent set Π is empty. So is the assigned container set C;
3: while NOT all containers have been assigned, i.e. C 6= J do
4: Choose an operation σ with minimum cost among all selection(i) for i ∈ I −Π and

assignment(i) for i ∈ Π;
5: if σ is selection(i) then
6: Select agent i by Π ← Π ∪ {i};
7: Let A denote the set of b containers whose transportation costs are the b cheapest

ci,j for j ∈ J − C.
8: For each container j ∈ A, assign it to agent i by zi,j ← 1 and C ← C ∪ {j};
9: else if σ is assignment(i) then

10: Let j denote the unassigned container that minimizes the transportation cost
ci,j for j ∈ J − C;

11: Assign the container j to the agent i by zi,j ← 1 and C ← C ∪ {j};
12: end if
13: end while
14: Return zi,j as the near-optimum solution.

tion ratio between the cost of generated solution and that of the optimum. As we proved

in Proposition 4.3, no efficient algorithm can guarantee finite approximation ratio for the

Basic Problem. But in the following case, our greedy algorithm can.

We consider a metric version of the Basic Problem, where the transportation cost

are nonnegative, symmetric, and satisfy the triangle inequality. For instance, suppose all

the shipping agent and containers locate at the same place. So the transportation cost

of shipping a container j to its destination by the agent i may linearly depends on the

distance between the source and destination of j, and therefore, the transportation cost

forms a metric.

The metric version of selection and assignment problems is widely studied for the

facility location problem, the p-median problem, and etc [19]. For solving the metric

version of the Basic Problem, we know that our greedy method have a non-constant

approximation ratio, by the following theorem.

Theorem 4.9 For the metric version of the Basic Problem, Algorithm 4.3 generates a

feasible solution whose cost is at most 2b times the optimum.
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Proof The proof is relatively complicated, so we present it in Appendix A.2.

Theorem 4.9 implies that in the metric case, the approximation ratio of the greedy

algorithm is at most 2b. To see that 2b is tight for our greedy algorithm, consider the

following instance whose greedy cost is b − 1 times the optimum.

Suppose the minimum quantity is b. We have 2b containers to ship and two agents to

select. The agent 1 can ship each of the first b+1 containers for free, but of the rest b−1

ones with c cost. On the contrary, the agent 2 can ship each of the first b + 1 containers

with c cost, but of the rest b− 1 ones for free. It is easy to verify the metric satisfaction

of this instance.

By applying our greedy algorithm on this instance, we first do select(1) and assign it

containers 1, 2, ..., b for its zero average cost. Secondly, we will do assign(1) that assigns

the container b + 1 to the selected agent 1 with zero cost. Afterwards, since no other

operation can be done, we will do assign(1) for j times while each cost is c, so that the

containers b+2, ..., 2b are assigned to the agent 1. Totally, the greedy method generate a

feasible solution with cost (b− 1)c. However, it is easy to see that the optimum solution

is to assign the first b containers to agent 1 freely and the rest b to agent i with cost

c only. So the greedy solution is b − 1 times the optimum, which proves the following

result.

Theorem 4.10 The approximation ratio of Algorithm 4.3 is at least b−1 for the metric

version of the Basic Problem.

Finally, let us discuss the time complexity of the greedy Algorithm 4.3. When dj is

unit for j ∈ J , the number of containers to be assigned is n, so the number of iterations

is at most n. During each iteration, exactly m operations will be considered. The cost

of each operation can be computed in O(b) times, since we can list the containers j ∈ J

on the non-decreasing order of ci,j for each agent i ∈ I respectively, and then compute

the operation cost in the following way. For each unselected agent i ∈ Π, the first b

unassigned containers in its container list contribute to the cost of selection(i). On the

other hand, for each selected agent i ∈ I − Π, only the first unassigned container in its
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container list contributes to the cost of assignment(i). Moreover, since those assigned

agents will be deleted from the list when met again, totally there are n deletions for

each list. Amortizedly speaking, computing the cost of each operation takes at most

O(b + n/n), i.e. O(b) time, in average. Since we may assume b is at most n otherwise no

feasible solution exists, we have that the time complexity of Algorithm 4.3 is O(nmb), or

O(n2m), which is polynomial to the length of instance.

In a general case where dj is not unit for some j ∈ J , the number of containers equals

to the total demand D, which leads the time complexity to O(Dmb). Since O(Dmb) might

be exponentially to the length of the instance, we have to improve our implementation

in a more careful manner to keep the polynomial time complexity for this general case.

The improvement is based on the fact that those containers of the same request j ∈ J

have the same transportation cost for all i ∈ I. Therefore, if assignment(i) is the current

operation that assigns a container of request j to the agent i, then the same operation

will be kept doing until all the rest containers of j are assigned to i. For this reason, we

can assign the rest containers of request j together to the agent i in one iteration. In

this way, at most m operations of selection(i) and n operations of assignment(i) will

be done, so the number of iteration is at most m + n. For the same reason, to compute

the cost of each operation, we only need to know the number of unassigned containers

left for every request in its list. Since the length of the list is at most n, the cost of

each operation can be computed in O(n) time. Since there m operations considered for

each iteration, the total time complexity is reduced to O((n+m)mn), or O(n2m+nm2),

which keeps polynomial for the general case. This proves the following theorem.

Theorem 4.11 The greedy Algorithm 4.3 can be implemented in a careful way so that

its time complexity is polynomial to the length of instance, that is O(n2m) for the unit

demand case and O(n2m + nm2) for the general case.

Although the greedy Algorithm 4.3 can guarantee its polynomial time complexity, its

approximation ratio shows that the solution it generates might become worse if the mini-

mum quantity b turns larger. This will be examined in practice through our experiments

reported in the next Chapter 5.



CHAPTER 4. OPTIMIZATION APPROACHES 55

4.8 Summary

We focus on a Basic Problem with the demand constraint and minimum quantity com-

mitments only. To solve this problem, several optimization approaches are applied. Since

the Basic Problem can be formulated as a mixed integer programming model strength-

ened by facets, a branch and cut algorithm works for small or some medium instances.

Moreover, two heuristics are invented to solve large instances practically. One is a lin-

ear rounding heuristics, and the other is a greedy method. These approaches might be

extended to solve more complicated selection and assignment problem with MQC con-

straints. For instance, it is easy to see that the most general case optimization(w, si, fi)

can also be formulated as a mixed integer programming, therefore, the search techniques

and other similar heuristics algorithms can be applied on it as well.

Besides that, the later Chapter 5 will measure the performance of the models and

algorithms proposed here through the experiments.



Chapter 5

Experiments

5.1 Overview

The goal of this chapter is to measure the performance of the optimization methods,

including branch and cut, linear programming rounding heuristics, and greedy approxi-

mation heuristics, which we proposed for the Basic Problem in the last Chapter 4.

We implemented all the algorithms by Microsoft Visual C++ 6.0, and made all the

experiments on a Pentium III 800MHZ PC with 128M memory.

Instances with different features have been generated for the experiments, which will

be described in Section 5.2. The next two sections will present and discuss the experi-

mental results. We firstly examine the branch and cut search scheme in Section 5.3. It

works well for small size instances and even for medium ones as well if the new facet

is introduced. This rewards our efforts of strengthening the model, and allows us to

have good solutions for all test cases by consuming endurable long time. Based on this,

we test the two heuristics algorithms in Section 5.4. By comparing their results, we find

that the linear programming rounding method generates better solutions than the greedy

one. Although both of the two heuristics algorithms generate better solutions when the

minimum quantity decreases, behaviors of the linear programming rounding method are

more stable. Finally, we summarize this chapter in Section 5.5.

56
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5.2 Configurations

An instance of the Basic Problem consists of five features, including the number of agents

m, the number of requests n, the demand d, the transportation costs c, and the minimum

quantity b. These features were generated in the following way.

We let the duplet (m, n) to indicate the instance size, because the mixed integer pro-

gramming model of our Basic Problem has m integral variables and mn real variables.

In our experiments, three scales of instance size were considered. They were (30,60) for

small size, (60,120) for medium size, and (90,120) for large size.

For the demand dj of each request j, we generated it randomly by a uniform distri-

bution on the integral set {10,11,12,...,99,100}, where 1 ≤ j ≤ m.

For transportation cost c, we had two types in our experiments. One was the random

type, where each cost ci,j , for 1 ≤ i ≤ m and 1 ≤ j ≤ n, was chosen randomly by a

uniform distribution on the continuous interval [0, 1]. The other was the metric type,

where the transportation costs were nonnegative, symmetric, and satisfy the triangle in-

equality, as we mentioned in the last Chapter 4. To generate the metric transportation

costs, we randomly chose (m+n) integral points P0, P1, ..., Pm+n from a planar rectangle

[0, 100] × [0, 100], and let the cost ci,j be the distance from Pi to Pm+j for 1 ≤ i ≤ m

and 1 ≤ j ≤ n. Obviously, in this manner, the generated transportation cost c formed a

metric.

The minimum quantity b was generated in a little complicated way. Recall that the

maximum number of selected agents, who transport some shipments, is equal to bD/bc,

where D =
∑n

j=1 dj is the total demands. To let bD/bc distribute uniformly, we defined

wb to be the value of D/b, as a percentage of the agent number m, i.e.

wb =
D

bm
× 100%.

We assigned wb by one of the following 20 values: 5%, 10%, ..., 100%, and calculate the

minimum quantity by b = D/(mwb). But to keep b integral in practice, we preferred

b = bD/(mwb)c instead. It is easy to see that when b is decreasing, wb is increasing.

The whole test cases were generated as follows. Since we had two types of trans-
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portation costs and three scales of instance size, our test cases are categorized into six

groups, as shown in Table 5.1. For random (or metric) type, denoted by character ‘R’ (or

‘M’), we had three groups of different scales, R-I (or M-I) for small size, R-II (or M-II)

for medium size, and R-III (or M-III) for large size.

In each group of test cases, we generated 10 different sets of transportation cost ci,j

and dj for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then, for each set, we had 20 instances with

different values of minimum quantity b, which is from 5%, 10%, ..., to 100%. Totally,

there were 200 test instances within each of the 6 groups.

Our experiments had two parts. First was for the branch and cut search algorithm.

Besides testing its performance, we expected this search scheme to find and prove the

exact optimum solutions for small or some medium size instances, and to generate good

lower bounds and near-optimum solutions for large ones. By comparing the heuristic

solutions with the best lower bounds or best solutions we found, we could test the per-

formance of the heuristics algorithms in the second part of our experiments.

To obtain good lower bounds and solutions for comparisons, we had run our branch

and cut search scheme for endurable long time until the results had good qualities. The

qualities are shown in Table 5.2. In total, we have found and proved all the optimum

solutions for small instance groups M-I and R-I and the medium group M-II. For the

other medium group R-II and the large group M-III, we achieved 199 optimums over

200 instances within each. And their maximum gaps, between the best lower bound and

best solution value, were only 3.30% and 1.58%. For the large random group R-III, we

proved 180 optimums over 200 instances. Although the maximum gap was relatively big

(13.11%), its average gap was only 0.04%. The above observations tell that the best

lower bounds and best solutions we got for the whole six groups of test cases were good

enough for us to measure other experimental results by comparisons.
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Table 5.1: Configurations of each group of test cases

Group IDa Number of Agents m Number of Requests n Transportation Cost ci,j

R-I 30 60 Random
R-II 60 120 Random
R-III 90 180 Random

M-I 30 60 Metric
M-II 60 120 Metric
M-III 90 180 Metric

aCharacter ‘R’/‘M’ represents that the type of transportation cost is Random/Metric,
and its roman index indicate the instance size, i.e. I for small, II for medium, and III for
large.

Table 5.2: Qualities of best lower bound and best solution we found

Group Number of Average Gap Maximum Gap
ID Optimums Proveda of LB from BEST (%)b of LB from BEST (%)c

R-I 200 0.00% 0.00%
R-II 199 0.02 3.30
R-III 180 0.04 13.11

M-I 200 0.00 0.00
M-II 200 0.00 0.00
M-III 199 0.01 1.58

aThe number of optimum solutions found and proved among 200 instances within each
group.
b/cAverage/Maximum difference between best lower bound (LB) and best solution value
(BEST), as a percentage of best solution value, and over 200 instances within each group.

5.3 Performance of Branch and Cut

We had applied the branch and cut search scheme on the mixed integer programming

model (MIP) of the Basic Problem, and on the strengthened model (S-MIP) as well.

Recall that the only difference between the two models is the new facet zi,j ≤ xi for i ∈ I

and j ∈ J , which is excluded from the MIP, but included in S-MIP.

We implemented them by Microsoft Visual C++ 6.0 along with the libraries of

CPLEX 8.0, and adopted the default configurations of the integer programming method

in CPLEX 8.0, except the time limit that was set differently for different situations.
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Table 5.3: Performance of the branch and cut algorithm tested over small problem in-
stances within groups R-I and M-I.

R-I M-I
MIP S-MIP MIP S-MIP

Average Time (s)a 49.19 34.58 10.13 14.93
Maximum time (s)b 680.38 514.62 162.51 281.98

Number of Optimums proved in 300sc 193 195 200 200

a/bAverage/Maximum time in seconds, consumed to find and prove an optimum solution,
over 200 small problem instances within each test case group.
cThe number of optimum solutions found and proved in 300 seconds, and over 200 in-
stances within each test case group.

To examine the effectiveness of the new facet in S-MIP, we tested both MIP and

S-MIP on the small and medium instance groups. For small instances, we examined the

consuming time of finding and proving the optimums. As shown in Table 5.3, MIP and

S-MIP had similar performance, since both of them achieved the optimums in relatively

short average time, and proved optimums for most cases in 300 seconds. Their maximum

consuming time was also comparative. In a word, the branch and cut search scheme

worked well for small size instances, whether or not the new facet was included.

However, for the medium size instances, the new facet did improve the search perfor-

mance. We set the time limits of both MIP and S-MIP to be 300 seconds for each test

case, because MIP was observed to consume quite a long time before stopping for some

medium cases. When the time limits were met, we recorded their best lower bounds and

best solution values respectively. Table 5.4 shows their comparisons. Among all the 200

medium instances within each group, S-MIP proved much more optimums than MIP,

that was 152 vs. 49 in group R-II and 184 vs. 38 in group M-II. By comparing their

average gaps between the lower bounds and the best solution values, we found that S-

MIP had generated much closer lower bounds and solutions than MIP did, and therefore

converged much faster.

Since S-MIP converged relatively fast, we could use it to prove more optimums for

medium test cases, and to generate more good lower bounds and good solutions even for

large cases. By setting the time limit of S-MIP to be 30 hours, we obtain the best lower
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Table 5.4: Convergence speed of branch and cut over medium problem instances within
groups R-II and M-II.

R-II M-II
MIP S-MIP MIP S-MIP

Number of Optimums proved in 300s a 49 152 38 184
Average Gap of LB from BEST in 300s b 18.21% 6.48% 6.54% 0.32%

aThe number of optimum solutions, found and proved in 300 seconds, and over 200
medium problem instances within each test case group.
bAverage difference between the best lower bound (LB) and the best solution value
(BEST), found in 300 seconds, as a percentage of the latter, and over 200 medium
problem instances within each test case group.

bounds and solution values with pretty good qualities, as we seen in Table 5.2 of the last

Section 5.2.

The new facet, included in the S-MIP, had imposed significant improvements on the

search efficiency. To reveal its reason further, we compared S-LP and LP, which denoted

the lower bounds of optimums, by solving the relaxed linear programming model of S-

MIP and S-MIP respectively. Their average deviations from the best solution values are

shown in Table 5.5. Clearly, S-LP was much closer to the best solution values. Among

all the six test case groups, the minimum average deviation of LP was 20.63%, much

bigger than 6.10%, the maximum average deviation of S-LP. In other words, the relaxed

S-MIP model exhibited to be much tighter to the integral solution set than the relaxed

MIP one, which could explain the reason of the significant improvements of convergence

speeds when the new facet were introduced for the S-MIP.

5.4 Performance of Two Heuristics

The two heuristics, proposed in the laster Chapter 4, were implemented by Microsoft Vi-

sual C++ 6.0. One was the linear programming rounding heuristics, denoted by LP-R.

The other was the greedy approximation heuristics, denoted by Greedy.

To measure their performance, we run the two heuristics over all the 200 instances

within each six test case groups. For comparison, we also run the S-MIP search scheme
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Table 5.5: Linear programming lower bound % gap from best solution value.

Gap from Best Solution Value (%)a

Group ID LP S-LP

R-I 33.77% 6.10%
R-II 34.35 4.89
R-III 34.45 5.07

M-I 22.58 2.39
M-II 21.72 1.07
M-III 20.63 1.02

aFigures represent average deviation between linear programming lower bound and best
solution value, as a percentage of best solution value, and over 200 instances within each
test case group.

but with 300 seconds time limit. This various search scheme is denoted by S-MIP(300s).

Its time limit is set to 300 seconds, because the longest time consumed by other two

heuristics seldom exceeded 300 seconds.

Heuristics solutions by the three algorithms were compared with the best lower bounds

we obtained. Their average gaps are shown in Table 5.6. Obviously, the LP-R performed

much better than the Greedy, and even better than the S-MIP(300s) for some large size

instances. Over all the cases, the maximum average gap of LP-R was only 1.16%, much

less than 6.85%, the minimum average gap of Greedy. Moreover, the LP-R performed

well for both random groups (1.29% on average), and metric groups (0.97% on average).

On the contrary, the Greedy generated worse solutions for random groups (27.54% on

average) than metric groups (6.63% on average). In addition, over groups R-III and M-III

of large size instances, the average gap of S-MIP(300s) became worse, 38.02% for R-III

and 0.93% for M-III, however, the average gap of LP-R still kept small, 1.85% for R-III

and 0.66% for M-III. These observations demonstrated the good stability of the LP-R.

Besides the average gaps, we also counted the number of optimum solutions achieved

by heuristics. Table 5.7 summarizes the numbers, and shows that Greedy generated few

optimums, but LP-R generated some. It is interesting to see that the LP-R achieved

more optimums for random cases than metric ones, inversely with S-MIP(300s).

Furthermore, we had examined the time consuming for each heuristics algorithms.
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Table 5.6: Average gaps of heuristics solution from best lower bound

Average Gap from best lower bound (%)a

Group ID S-MIP(300s) LP-R Greedy

R-I 0.02% 1.16% 21.99%
R-II 12.62 0.86 28.57
R-III 38.02 1.85 32.05

M-I 0.00 1.24 6.06
M-II 0.09 1.02 6.98
M-III 0.93 0.66 6.85

aFigures represent the average gaps of the near-optimum solutions, generated by heuris-
tics, from best lower bounds, over 200 instances within each test case group.

Table 5.7: The number of optimums found by heuristics

Number of Optimums founda

Group ID S-MIP(300s) LP-R Greedy

R-I 199 131 0
R-II 167 86 0
R-III 124 47 0

M-I 200 96 5
M-II 190 56 0
M-III 167 30 0

aFigures represent the number of optimum solutions found by heuristics, over 200 in-
stances within each test case group.

It is reported in Table 5.8. The Greedy was no doubt the fastest heuristic, for its aver-

age time consuming was under 1.0 seconds for all the groups. The LP-R is slower than

Greedy, but much faster than the S-MIP(300s).

As we seen, the LP-R had good performance among all the groups, but we could not

prove its theoretical performance guarantee. Remember that Greedy has a 2b approxi-

mation ratio, which make us suspect that the solution generated by Greedy may become

better if b is decreasing. But is it true in practice? And is it true for LP-R as well?

To examine our suspicion, let us see how the two heuristics, LP-R and Greedy, per-

formed in practice when b was decreasing. To make b decrease, we could let wb increase,

since we have b = bD/(mwb)c. Figure 5.1 shows the trends of the average gaps between

the heuristic solutions and the best lower bounds when wb was increasing. Within each
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Table 5.8: Average time consumed by heuristics

Average Time (s)a

Group ID S-MIP(300s) LP-R Greedy

R-I 30.83s 1.21s 0.00s
R-II 101.66 11.94 0.03
R-III 159.44 56.54 0.10

M-I 14.93 0.65 0.01
M-II 52.17 4.22 0.03
M-III 121.90 15.95 0.10

aFigures represent the average time in seconds, consumed by heuristics, over 200 instances
within each test case group.

Table 5.9: Statistics of heuristics performance with wb increasing, over large problem
instances within groups R-III and M-III.

R-III M-III
LP-R Greedy LP-R Greedy

Average Gap (%)a 1.85% 32.05% 0.66% 6.85%
Standard Deviationb 0.04 0.15 0.01 0.03

Linear Trendc -0.08 -0.48 -0.02 -0.11

aAverage difference between heuristics solution value and best lower bound, as percentage
of best lower bound, and over 200 large problem instances within each test case group.
b/cStandard deviation/Linear trend of the difference between heuristic solution value and
best lower bound, over 200 large problem instances within each test case group.

of the two large test groups, R-III and M-III, the average gaps turned smaller for both

LP-R and Greedy. That confirms our suspicion on the effects of b. Moreover, we can

also observe that LP-R not only generated better solution than Greedy, but also had

stabler behaviors as well. To see this more clearly, we present the statistics of Figure 5.1

in Table 5.9. Compared with Greedy, LP-R had smaller average gap, smaller standard

deviation, and smaller absolute linear trends as well.

In summary, the linear programming rounding heuristics has good performance among

all the various test instances in practice. But the greedy approximation heuristics has

not, except for its fast running speed.
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Figure 5.1: Average difference between heuristics solution and best lower bounds, over
10 large problem instances for each wb increasing from 0.05 to 1.00, and within groups
R-III and M-III respectively.
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5.5 Summary

We measured the performance of algorithms proposed for the Basic Problem in this chap-

ter. The branch and cut search scheme on the strengthened mixed integer programming

model helped us to generate almost all the optimum solutions for small and medium test

instances, and good lower bounds and solutions for large ones. Compared with the best

lower bounds, we examined the performance of the two heuristics methods proposed,

that is the linear programming rounding and the greedy approximation. Although the

greedy method can guarantee a theoretical 2b approximation ratio, the linear program-

ming rounding heuristics over-performed the greedy and have a stable behaviors over all

the groups of various test cases.

However, there are still some problems in our experiments. Firstly, the exact search

scheme could not handle large instances in short time, although it produced good lower

bounds, and therefore, fasten the speed of convergence. Its major cause was the speed

of generating good solutions. So, to overcome this disadvantage, we plan to combine the

search scheme with the linear programming rounding method, since the latter heuristic

can generate good solution relatively fast. The other problem is for the test cases. In

current experiments, only random data are generated. To make it more practical, we will

try to collect some real cases for our later experiments and studies.



Chapter 6

Conclusion

The minimum quantity commitment, studied in this thesis, is motivated from the bid-

ding problem of the Philips, and has broad applications for the selection and assignment

problems under other real circumstances. For example, when we try to select locations

to open schools for districts, each school need to hold sufficient number of students. Or,

when we open warehouses for regions, each should keep enough goods in storage. How-

ever, in previous literature, this practical constraint has never been studied for selection

and assignment problems. For this reason, we expect the work presented in this thesis

to initiate the research on this subject.

We formulated and classify various special cases of the selection and assignment with

minimum quantity commits, along with a complete figure of their computational complex-

ity. For most special cases, finding an optimum solution, or sometimes finding a feasible

solution, is intractable. So we focused the work on finding a near-optimum solution for

a basic selection and assignment problem, where only the minimum quantity commit-

ments and the demand constraints were considered. This basic problem was proved to

be NP-hard as well, and even finding its approximate solution was intractable in theory.

To solve it practically, we formulated it by a mixed integer programming model, and

strengthened the model by a new facet. Afterwards, we applied on it a branch and cut

search algorithm, which worked well for small or some median size problem instances.

To solve large size instances, we designed two heuristics. One was linear programming
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rounding method, which performed well in experiments. The other was greedy approx-

imation heuristics, which could theoretically guarantee a approximation ratio for the

metric version of the Basic Problem.

In the study of the Basic Problem, some open problems and further works are still

remained. At the theoretical level, we do not know whether finding an optimal solution

is NP-hard if the minimum quantity b is equal to two. Remember, for b ≥ 3 the problem

is proved to be NP-hard, while for b = 1 it is trivially solvable. The other theoretical

problem is about its approximation. As we shown in Chapter 4, the Basic Problem can

not be solved approximately for general cases, but has a greedy algorithm that guarantees

a non-constant ratio for the metric version. Noting that the metric condition is satisfied

in many practical situations, we are very interested in improving the approximation ratio

for the metric version of the Basic Problem. This seems possible, because for most tra-

ditional selection and assignment problems, like facility location problem and p-median

problem, we have no constant ratio approximation algorithms for general cases, but have

constant approximation ratio for their metric versions. In fact, we are now considering

the approximation ratio of the linear programming rounding heuristics we proposed, be-

cause it over-performed the greedy during the experiments.

At the practical level, we need to improve the branch and cut search scheme to handle

the larger size instances of the Basic Problem. Our improvements may have the following

two ways. On one hand, since the Basic Problem can be formulated as a mixed integer

programming model, we can analyze the polyhedral structures of the integral solution

sets and find more effective strong inequalities, or facets, for the model. This might

strengthen the model further and generate better lower bounds during the search pro-

cess. On the other hand, to improve the branch and cut scheme, we can try to generate

good integral solutions along the searching. Remember during the original branch and

cut scheme, we have got a lot of fractional solutions to compute the lower bounds. If

we can apply an efficient heuristics, like the linear programming rounding method, to

transform those fractional solutions to good feasible solutions, the searching performance

will certainly be improved a lot.
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Besides the study for mixed integer programming, we will apply more heuristics

methods to generate near-optimum solutions of the Basic Problem as well. Ideas can be

illuminated by the meta-heuristics algorithms, like genetic algorithm [22], tabu search

[13], and simulated annealing [18]. Those heuristics algorithms have been extensively

studied for solving other traditional selection and assignment problems. For instance,

tabu search [23] and genetic algorithms [7] have been applied for solving p-median prob-

lem, and exhibit good performance in practical experiments. Therefore, we can apply

them on the Basic Problem, to see whether they are still effective if the new minimum

quantity commitment constraint is introduced.

At the experiment level of the Basic problem, we need to collect more real data,

because currently, only random test cases are available. Besides this, we also have to

enlarge the instance size. Note that the current maximum instance size holds 90 agents

and 180 requests. As we know, in the real application of Philips’ bidding problem, the

number of agent is not more than 100, but the requests number is much bigger, about

1000 or so. So, we should enlarge the instance size for our testing. And correspondingly,

we have to improve the speed of our algorithms as well.

In addition to the Basic Problem, there are many other special cases that need to

consider more constraints, like fixed selection costs, the maximum agents’ capacity, the

number of regions, etc. To solve these complicated special cases, we can employ results

and techniques of the Basic Problem for reference. For example, it is easy to see that

all the special optimization problems we studied in Chapter 3 can be formulated as a

mixed integer programming model. Similarly to the Basic Problem, the branch and cut

algorithm and the linear programming rounding heuristics can also be applied for them.

However, since the special cases turns complicated, the structure of the mixed integer

programming model is difficult to be analyzed and strengthened.

Our practical object is to build up a bidding system for the Philips to help them

improve their performance of selection and assignments agents with minimum quantity

commitments. During our efforts towards this object, we hope to achieve some theoretical

discoveries as well.
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Appendix A

Details of Some Proofs

A.1 Proof of facets for other three cases in Theorem 4.7

Proof Recall that we assume 2b < D. Now we prove that the other three cases in

Theorem 4.7 are also facet-defining for the convex hull of the MIP model’s feasible set.

These three cases includes xi ≤ 1 for i ∈ I, (4.18) and (4.14).

Firstly, for any agent p ∈ I, we are going to prove the inequality xp ≤ 1 is a facet.

To prove this, we must show that if all feasible solutions of the MIP model that satisfy

xp = 1 also satisfy

∑

i∈I

∑

j∈J

αi,jzi,j +
∑

i∈I

βixi = θ, (A.1)

at equality, then (A.1) must be a linear combination of xp ≤ 1 and the equality (4.14).

In the similar way of the first and second steps of the proof for the case (4.15) in

Theorem 4.7, we can show αv,j = αp,j and βu = 0 for v ∈ I, u ∈ I − {p} and j ∈ J . By

assuming αv,j = αj , we can rewrite (A.1) as

∑

j∈J

αj

∑

i∈I

zi,j + βpxp ≤ θ. (A.2)

It is easy to see θ =
∑

j∈J αjdj , therefore, (A.2) is a linear combination of xp ≤ 1 and

the equality constraint (4.14).

Secondly, for any agent p ∈ I and any request q ∈ J , we are going to prove the
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inequality zp,q ≥ 0 is a facet. To prove this, we must show that if all feasible solutions of

the MIP model that satisfy zp,q = 0 also satisfy (A.1) at equality, then (A.1) must be a

linear combination of zp,q ≥ 0 and the equality (4.14).

Similarly to the first and second steps of the proof for the case (4.15) in Theorem 4.7,

we can show αu,j = αv,j = αj for and βu = 0 for u ∈ I, v ∈ I − {u} and j ∈ J − {q}. In

the same way, we can also show αu,q = αv,q = αq for u, v ∈ I −{p}. Therefore, (A.1) can

be written as

∑

j∈J

αj

∑

i∈I

zi,j + (αq − αp,q)zp,q ≤ θ. (A.3)

It is easy to see θ =
∑

j∈J αjdj + βp, therefore, (A.3) is a linear combination of zp,q = 0

and the equality constraint (4.14).

Lastly, for any request q ∈ J , we are going to prove the equality (4.14) for the request

q, i.e.

∑

i∈I

zi,q = dq, (A.4)

is a facet. To prove this, we must show that if all feasible solutions of the MIP model that

satisfy (A.4) also satisfy (A.1), then (A.1) must be a linear combination of the equality

(4.14).

In the same way as the first and second steps of the proof for the case (4.15) in

Theorem 4.7, we can show αu,j = αv,j and βu = 0 for u ∈ I, v ∈ I − {u} and j ∈ J . By

assuming αu,j = αj , we can rewrite (A.1) as

∑

j∈J

αj

∑

i∈I

zi,j = θ. (A.5)

It is easy to see θ =
∑

j∈J αjdj , therefore, (A.5) is a linear combination of the equality

constraint (4.14).
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A.2 Proof of the 2b approximation ratio of Algorithm 4.3

for Theorem 4.9

Under the assumption that the transportation cost ci,j forms a metric for i ∈ I and

j ∈ J , we are going to prove that the greedy Algorithm 4.3 will generate a feasible

solution whose total cost is at most 2b times the optimum. Since we have shown that

any instance can be transformed to the unit demand case by splitting, we can assume

that dj = 1 for all j ∈ J without invalidating the approximation ratio we will prove.

Therefore, the request set J represents the container set as well.

For b = 1, since we assign each container to the agent bidding lowest cost for it,

the greedy Algorithm 4.3 generates the optimum solution and its approximation ratio is

certainly at most 2b.

Otherwise, let us assume b ≥ 2. Under this assumption, the proof of 2b approximation

ratio needs more notations. On one hand, in the optimum assignment, for each agent i ∈

I, we let Ai denote the set of containers assigned to i , and ni denote the size of Ai. By the

minimum quantity commitment, we have either ni = 0 or ni ≥ b. We use opti to denote

the cost of assignments to the agent i, so that opti =
∑

j∈Ai
ci,j . On the other hand,

in the greedy assignment, for each container j ∈ J , let δ(j) denote the agent to whom

the container j is assigned, and f(j) represent the cost of the operation, selection(δ(j))

or assignment(δ(j)), which assigns j to δ(j) in the greedy Algorithm 4.3. So we have

that the optimum total cost is
∑

i∈I opti, and the greedy total cost is
∑

i∈I

∑
j∈Ai

f(j)

by partitioning the container set J into A1, A2, ..., Am. The only thing we need to prove

becomes

∑

i∈I

∑

j∈Ai

f(j) < 2b
∑

i∈I

opti, (A.6)

which can be directly drawn from the following lemma.

Lemma A.1 For each agent i ∈ I, we have

∑

j∈Ai

f(j) < 2bopti. (A.7)
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Proof We prove (A.7) for the first agent, i.e. i = 1 only, because for others, the proof

is the same. We can also assume n1 ≥ b, since otherwise A1 is empty so that (A.7) is

obviously true for i = 1.

Now, let us consider the n1 containers assigned to the agent 1 in the optimum assign-

ments. Without loss of generality, they are supposed to be the containers 1, 2, ..., n1 that

form the set A1, and to be assigned in an non-decreasing order of time by the greedy

algorithm. In other words, for any two container p and q where 1 ≤ p < q ≤ n1, the

container p is assigned at least as early as q in the greedy Algorithm 4.3. Therefore,

before we try to assign the container q greedily, the agent δ(p) has already been selected.

Since the cost of selection(δ(p)) is at most cδ(p),q at that time, the operation cost f(q)

of assigning q must be at most cδ(p),q as well. Noting that ci,j forms a metric for i ∈ I

and j ∈ J , we have cδ(p),q < cδ(p),p + c1,p + c1,q, and therefore,

f(q) ≤ cδ(p),p + c1,p + c1,q, for 1 ≤ p < q ≤ n1, (A.8)

which gives an upper bound of the greedy operation cost.

Moreover, its lower bound can be computed as well. Consider any container j where

1 ≤ j ≤ m. It is easy to see that either f(j) = cδ(j),j if its greedy operation is

assignment(δ(j)), or f(j) ≥ cδ(j),j/b if that is selection(δ(j)). Both satisfy

f(j) ≥
cδ(j),j

b
, for 1 ≤ j ≤ n1. (A.9)

However (A.9) and (A.8) are not enough. To obtain (A.7), we need a more sophisti-

cated upper bound of the greedy operation for some containers that have large transporta-

tion cost to the agent 1, say larger than or equal to opt1/n1. Because
∑n1

j=1 c1,j = opt1,

we know that t = min{j|c1,j ≤ opt1/n1, j ∈ A1} must exist. So we have

c1,j ≥
opt1
n1

, for 1 ≤ j ≤ t − 1. (A.10)

Consider any container j where 1 ≤ j ≤ min(t, n1 − b + 1). We now going to

prove its greedy operation cost f(j) is at most opt1/n1 as follows. Before we assign the

container j, containers 1, 2, ..., j − 1 have been assigned. Because neither selection(δ(j))
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or assignment(δ(j)) will cost more than the average of c1,p for all unassigned containers

p in A1, we have

f(j) ≤
opt1 −

∑j−1
p=1 c1,p

n1 − j + 1
.

By (A.10), we have
∑g−1

j=1 c1,j ≤ (g − 1)opt1/n1, and therefore, f(g) ≤ opt1/n1, leading:

f(j) ≤
opt1
n1

, for 1 ≤ j ≤ min(t, n1 − b + 1). (A.11)

Now, we finish the proof of (A.7) for i = 1, by considering the following two cases.

One one hand, suppose t ≤ n1 − b + 1, which implies min(t, n1 − b + 1) = t. We

written the greedy total cost in the following form.

∑

j∈A1

f(j) =
t∑

j=1

f(j) +

n1∑

j=t+1

f(j).

By (A.10), we know f(j) ≤ opt1/n1 for 1 ≤ j ≤ t. For t + 1 ≤ j ≤ n1, we have

f(j) ≤ (b + 1)opt1/n1 + c1,j , because f(j) ≤ cδ(t),t + c1,t + c1,j by (A.8), cδ(t),t ≤ bf(t) ≤

b(opt1/n1) by (A.9) and (A.11), and c1,t ≤ opt1/n1. Therefore, noting b ≥ 2, 1 ≤ t and

∑n1

j=t+1 c1,j ≤ opt1, we have:

∑

j∈A1

f(j) ≤ t(opt1/n1) + (n1 − t)(b + 1)opt1/n1 + opt1

≤ (b + 2)opt1

≤ 2bopt1.

On the other hand, suppose n1−b+1 < t, which implies min(t, n1−b+1) = n1−b+1.

Similarly to the first case, we written the greedy total cost in a new form, that is

∑

j∈A1

f(j) =

n1−b+1∑

j=1

f(j) +

n1∑

j=n1−b+2

f(j).

By (A.11), we get f(j) ≤ opt1/n1, for j ≤ n1 − b + 1. For n1 − b + 2 ≤ j ≤ n1, we

can obtain f(j) ≤ b(opt1/n1) + opt1 + c1,j , because f(j) ≤ cδ(1),1 + c1,1 + c1,j by (A.8),

cδ(1),1 ≤ bf(1) ≤ b(opt1/n1) by (A.9) and (A.11), and c1,1 ≤ opt1 obviously. Therefore,
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noting
∑n1

j=n1−b+2 c1,j ≤ opt1 − c1,1 and b ≤ n1, we have

∑

j∈A1

f(j) ≤ (n1 − b + 1)opt1/n1 + (b − 1)b(opt1/n1) + (b − 1)c1,1 + (opt1 − c1,1)

≤

(
b +

(b − 1)2

n1

)
opt1

≤ 2bopt1

The lemma is proved completely.

By summing up (A.7) for i ∈ I, we obtain (A.6), which proves the 2b approximation

ratio of the greedy Algorithm 4.3.


