Informed search algorithms

Chapter 4
Material

- Chapter 4 Section 1 - 3
- Excludes memory-bounded heuristic search
Outline

- Best-first search
- Greedy best-first search
- A* search
- Heuristics
- Local search algorithms
- Hill-climbing search
- Simulated annealing search
- Local beam search
- Genetic algorithms
Review: Tree search

A search strategy is defined by picking the order of node expansion
Best-first search

- Idea: use an evaluation function $f(n)$ for each node
 - estimate of "desirability"
 - Expand most desirable unexpanded node

- Implementation:
 Order the nodes in fringe in decreasing order of desirability

- Special cases:
 - greedy best-first search
 - A^* search
Romania with step costs in km
Greedy best-first search

- Evaluation function $f(n) = h(n)$ (heuristic)
- $= \text{estimate of cost from } n \text{ to } \text{goal}$
- e.g., $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$
- Greedy best-first search expands the node that appears to be closest to goal
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Properties of greedy best-first search

- **Complete?** No – can get stuck in loops, e.g., Iasi → Neamt → Iasi → Neamt →
- **Time?** $O(b^m)$, but a good heuristic can give dramatic improvement
- **Space?** $O(b^m)$ -- keeps all nodes in memory
- **Optimal?** No
A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function \(f(n) = g(n) + h(n) \)
- \(g(n) \) = cost so far to reach \(n \)
- \(h(n) \) = estimated cost from \(n \) to goal
- \(f(n) \) = estimated total cost of path through \(n \) to goal
A* search example

\[h = 0 + 366 \]
A* search example
Admissible heuristics

- A heuristic $h(n)$ is **admissible** if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.

- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is **optimistic**

- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)

- **Theorem**: If $h(n)$ is admissible, A* using TREE-SEARCH is **optimal**
Optimality of A* (proof)

- Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- $g(G_2) > g(G)$ since G_2 is suboptimal
- $f(G) = g(G)$ since $h(G) = 0$
- $f(G_2) > f(G)$ from above
Optimality of A* (proof)

Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f(G_2) > f(G)$ from above
- $h(n) \leq h^*(n)$ since h is admissible
- $g(n) + h(n) \leq g(n) + h^*(n)$
- $f(n) \leq f(G)$

Hence $f(G_2) > f(n)$, and A* will never select G_2 for expansion.
Consistent heuristics

A heuristic is **consistent** if for every node \(n \), every successor \(n' \) of \(n \) generated by any action \(a \),

\[
h(n) \leq c(n,a,n') + h(n')
\]

- If \(h \) is consistent, we have
 \[
f(n') = g(n') + h(n')
 \]
 \[
 = g(n) + c(n,a,n') + h(n')
 \]
 \[
 \geq g(n) + h(n)
 \]
 \[
 = f(n)
 \]

 i.e., \(f(n) \) is non-decreasing along any path.

Theorem: If \(h(n) \) is consistent, A* using \textbf{GRAPH-SEARCH} is optimal.
Optimality of A*

- A* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$
Properties of A*

- **Complete?** Yes (unless there are infinitely many nodes with \(f \leq f(G) \))
- **Time?** Exponential
- **Space?** Keeps all nodes in memory
- **Optimal?** Yes
Admissible heuristics

E.g., for the 8-puzzle:
- $h_1(n) =$ number of misplaced tiles
- $h_2(n) =$ total Manhattan distance
(i.e., no. of squares from desired location of each tile)

- $h_1(S) = ?$
- $h_2(S) = ?$
Admissible heuristics

E.g., for the 8-puzzle:
- $h_1(n) = \text{number of misplaced tiles}$
- $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)

- $h_1(S) = \ ? \ 8$
- $h_2(S) = \ ? \ 3+1+2+2+2+3+3+2 = 18$
Dominance

- If \(h_2(n) \geq h_1(n) \) for all \(n \) (both admissible)
- then \(h_2 \) dominates \(h_1 \)
- \(h_2 \) is better for search

- Typical search costs (average number of nodes expanded):

 - \(d=12 \):
 - IDS = 3,644,035 nodes
 - \(A^*(h_1) = 227 \) nodes
 - \(A^*(h_2) = 73 \) nodes

 - \(d=24 \):
 - IDS = too many nodes
 - \(A^*(h_1) = 39,135 \) nodes
 - \(A^*(h_2) = 1,641 \) nodes
Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem.
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.
Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution.

- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., n-queens

- In such cases, we can use local search algorithms
- keep a single "current" state, try to improve it
Example: n-queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
 neighbor ← a highest-valued successor of current
 if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
 current ← neighbor
Hill-climbing search

- Problem: depending on initial state, can get stuck in local maxima
Hill-climbing search: 8-queens problem

- $h =$ number of pairs of queens that are attacking each other, either directly or indirectly
- $h = 17$ for the above state
Hill-climbing search: 8-queens problem

- A local minimum with $h = 1$
Simulated annealing search

- Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
        schedule, a mapping from time to "temperature"
local variables: current, a node
                next, a node
                T, a "temperature" controlling prob. of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] - VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^{ΔE/T}
```
Properties of simulated annealing search

- One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1.

- Widely used in VLSI layout, airline scheduling, etc.
Genetic algorithms

- A successor state is generated by combining two parent states

- Start with k randomly generated states (population)

- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)

- Evaluation function (fitness function). Higher values for better states.

- Produce the next generation of states by selection, crossover, and mutation
Genetic algorithms

- Fitness function: number of non-attacking pairs of queens (min = 0, max = $8 \times \frac{7}{2} = 28$)
- $\frac{24}{24+23+20+11} = 31\%$
- $\frac{23}{24+23+20+11} = 29\%$ etc
Genetic algorithms