Final Exam

- Venue: PGP General Purpose Room
- Date: 23 April (Friday)
- Time: 2:00 – 4:00 pm
Format

- One A4 sized sheet allowed to the test
- Eight questions, emphasizing material covered after the midterm
 - Yes, all material in the course will be covered on the exam
No class next week

- Today is the final lecture for the course
- You had your “extra” lecture in webcast as the vision, NLP or robotics advanced topics lecture
Outline

- Agents
- Search
 - Uninformed Search
 - Informed Search
- Adversarial Search
- Constraint Satisfaction
- Knowledge-Based Agents
- Uncertainty and Learning
Agent types

Four basic types in order of increasing generality:

- Simple reflex agents
- Model-based reflex agents
- Goal-based agents
- Utility-based agents
Simple reflex agents
Model-based reflex agents
Goal-based agents
Utility-based agents
Creating agents

Where does the intelligence come from?

- Coded by the designers
 Knowledge representation – predicate and first order logic

- Learned by the machine
 Machine learning – expose naïve agent to examples to learn useful actions
Learning agents

![Diagram showing the components of a learning agent: Performance standard, Sensors, Environment, Agent, Critic, Learning element, Performance element, Problem generator, Actuators, feedback, changes, knowledge, learning goals.](image)
Searching for solutions

In most agent architectures, deciding what action to take involves considering alternatives.

- Searching is judged on optimality, completeness and complexity.

- Do I have a way of gauging how close I am to a goal?
 - No: Uninformed Search
 - Yes: Informed Search
Uninformed search

- Formulate the problem, search and then execute actions

- Apply Tree-Search

- For environments that are
 - Deterministic
 - Fully observable
 - Static
Tree search algorithm

- **Basic idea:**
 - offline, simulated exploration of state space by generating successors of already-explored states

```plaintext
function TREE-SEARCH(problem, strategy) returns a solution, or failure
    initialize the search tree using the initial state of problem
    loop do
        if there are no candidates for expansion then return failure
        choose a leaf node for expansion according to strategy
        if the node contains a goal state then return the corresponding solution
        else expand the node and add the resulting nodes to the search tree
```
Summary of algorithms

- **Breadth-First** – FIFO order
- **Uniform-Cost** – in order of cost
- **Depth-First** – LIFO order
- **Depth-Limited** – DFS to a maximum depth
- **Iterative Deepening** – Iterative DLS.

- **Bidirectional** – also search from goal towards origin

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform Cost</th>
<th>Depth First</th>
<th>Depth Limited</th>
<th>Iterative Deepening</th>
<th>Bidirectional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>O(b^{d+1})</td>
<td>O(b^{C*/e\ell})</td>
<td>O(b^m)</td>
<td>O(b^l)</td>
<td>O(b^d)</td>
<td>O(b^{d/2})</td>
</tr>
<tr>
<td>Space</td>
<td>O(b^{d+1})</td>
<td>O(b^{C*/e\ell})</td>
<td>O(bm)</td>
<td>O(bl)</td>
<td>O(bd)</td>
<td>O(b^{d/2})</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
function \texttt{GRAPH-SEARCH}(\texttt{problem}, \texttt{fringe}) \textbf{returns} a solution, or failure

\texttt{closed} \leftarrow \texttt{an empty set}
\texttt{fringe} \leftarrow \texttt{INSERT}(\texttt{MAKE-NODE(\texttt{INITIAL-STATE[problem]}), fringe})
\textbf{loop do}
\hspace{1em} \textbf{if} \texttt{fringe} \textbf{is empty} \textbf{then} \textbf{return} \texttt{failure}
\hspace{1em} \texttt{node} \leftarrow \texttt{REMOVE-FRONT(\texttt{fringe})}
\hspace{1em} \textbf{if} \texttt{GOAL-TEST[problem](\texttt{STATE[node]})} \textbf{then} \textbf{return} \texttt{SOLUTION(node)}
\hspace{1em} \textbf{if} \texttt{STATE[node]} \textbf{is not in} \texttt{closed} \textbf{then}
\hspace{1.5em} \texttt{add \texttt{STATE[node]} to \texttt{closed}}
\hspace{1.5em} \texttt{fringe} \leftarrow \texttt{INSERTALL(\texttt{EXPAND(node, problem), fringe})}
\hspace{1em} \textbf{end loop}
Informed search

- Heuristic function $h(n) = \text{estimated cost of the cheapest path from } n \text{ to goal.}$

- Greedy Best First Search
 - Minimizing estimated cost to goal

- A* Search
 - Minimizing total cost
Properties of heuristic functions

- **Admissible**: never overestimates cost.
- **Consistent**: estimated cost from node $n+1$ is \geq than cost from node n + step cost.

- A^* using Tree-Search is optimal if the heuristic used is admissible.
 - Graph-Search needs an consistent heuristic. Why?
Local search

- Good for solutions where the path to the solution doesn’t matter
 - Often work on a complete state
 - Don’t search systematically
 - Often require very little memory

- Correlated to online search
 - Have only access to the local state
Local search algorithms

- Hill climbing search – choose best successor
- Beam search – take the best k successor
- Simulated annealing – allow backward moves during beginning steps
- Genetic algorithm – breed k successors using crossover and mutation
Searching in specialized scenarios

- Properties of the problem often allow us to formulate
 - Better heuristics
 - Better search strategy and pruning

- Adversarial search
 - Working against an opponent

- Constraint satisfaction problem
 - Assigning values to variables
 - Path to solution doesn’t matter
 - View this as an incremental search
Adversarial Search

- Turn-taking, two-player, zero-sum games
- Minimax algorithm:
 - One ply: agent’s move then opponent’s
 - Max nodes: agent’s move, maximize utility
 - Min nodes: opponent’s move, minimize utility
 - Alpha-Beta pruning: rid unnecessary computation.
Constraint Satisfaction

- Discrete or continuous solutions
 - Discretize and limit possible values

- Modeled as a constraint graph

- As the path to the solution doesn’t matter, *local search* can be very useful.
Techniques in CSPs

- **Basic**: backtracking search
 - DFS for CSP
 - A leaf node (at depth v) is a solution

- **Speed ups**
 - Choosing variables
 - Minimum remaining values
 - Most constrained variable / degree
 - Choosing values
 - Least constraining value
Pruning CSP search space

Before expanding node, can prune the search space
- Forward checking
 - Pruning values from remaining variables
- Arc consistency
 - Propagating stronger levels of consistency
 - E.g., AC-3 (applicable before searching and during search)

- Balancing arc consistency with actual searching.
Propositional and First Order Logic

- Propositional Logic
 - Facts are true or false

- First Order Logic
 - Relationships and properties of objects
 - More expressive and succinct
 - Quantifiers, functions
 - Equality operator
 - Can convert back to prop logic to do
Inference in logic

- Given a KB, what can be inferred?
 - Query- or goal-driven
 - Backward chaining, model checking (e.g. DPLL), resolution
 - Deducing new facts
 - Forward chaining
 - Efficiency: track # of literals of premise using a count or Rete networks
Inference in logic

- **Chaining**
 - Requires Definite Clauses or Horn Clauses
 - Uses Modus Ponens for sound reasoning
 - Forward or Backward types

- **Resolution**
 - Requires Conjunctive Normal Form
 - Uses Resolution for sound reasoning
 - Proof by Contradiction
Inference in FOL

- Don’t have to propositionalize
 - Could lead to infinite sentences functions

- Use unification instead
 - Standardizing apart
 - Dropping quantifiers
 - Skolem constants and functions

- Inference is semidecidable
 - Can say yes to entailed sentences, but non-entailed sentences will never terminate
Connection to knowledge-based agents

- CSP can be formulated as logic problems and vice versa
- CSP search as model checking
 - Local search: WalkSAT with min-conflict heuristic

<table>
<thead>
<tr>
<th>Model checking (DPLL)</th>
<th>CSP Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Symbol</td>
<td>Least constraining value</td>
</tr>
<tr>
<td>Unit Clause</td>
<td>Most constrained value</td>
</tr>
<tr>
<td>Early Termination</td>
<td>Minimum remaining values</td>
</tr>
</tbody>
</table>
Inference and CSPs

- **Solving a CSP via inference**
 - Handles special constraints (e.g., AllDiff)
 - Can learn new constraints not expressed by KB designer

- **Solving inference via CSP**
 - Whether a query is true under all possible constraints (satisfiable)

- Melding the two: Constraint Logic Programming (CLP)
Uncertainty

- Leads us to use probabilistic agents
 - Only one of many possible methods!
- Modeled in terms of random variables
 - Again, we examined only the discrete case
- Answer questions based on full joint distribution
Inference by enumeration

 Interested in the posterior joint distribution of *query variables* given specific values for *evidence variables*

- Summing over *hidden variables*
- Cons: Exponential complexity

○ Look for absolute and conditional independence to reduce complexity
Bayesian networks

- One way to model dependencies
- Variable’s probability only depends on its parents
- Use product rule and conditional dependence to calculate joint probabilities
- Easiest to structure causally
 - From root causes forward
 - Leads to easier modeling and lower complexity
Learning

- Inductive learning - based on past examples
- Learn a function $h()$ that approximates real function $f(x)$ on examples x

- Balance complexity of hypothesis with fidelity to the examples
 - Minimize $\alpha E(h,D) + (1-\alpha) C(h)$
Learning Algorithms

Many out there but the basics are:

- **K nearest neighbors**
 - Instance-based
 - Ignores global information

- **Naïve Bayes**
 - Strong independence assumption
 - Scales well due to assumptions
 - Needs normalization when dealing with unseen feature values

- **Decision Trees**
 - Easy to understand its hypothesis
 - Decides feature based on information gain
Training and testing

- Judge induced $h()$’s quality by using a **test set**
- Training and test set must be separate; otherwise *peeking* occurs
- Modeling noise or specifics of the training data can lead to *overfitting*
 - Use pruning to remove parts of the hypothesis that aren’t justifiable
Where to go from here?

- Just the tip of the iceberg
- Many advanced topics
 - Introduced only a few
 - Textbook can help in exploration of AI
That’s it

- Thanks for your attention over the semester
- See you in April!

One last favor: Please complete the **IVLE Survey on Homework #2**. We need your feedback to decide whether to continue with this format or not.