

Chapter 13

Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

- 1. partial observability (road state, other drivers' plans, etc.)
- 2. noisy sensors (traffic reports)
- 3. uncertainty in action outcomes (flat tire, etc.)
- 4. immense complexity of modeling and predicting traffic
- Hence a purely logical approach either
 - risks falsehood: " A_{25} will get me there on time", or
 - 2. leads to conclusions that are too weak for decision making:
- "*A*₂₅ will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."
- $(A_{1440} \text{ might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)$

Methods for handling uncertainty

- Default or nonmonotonic logic:
 - Assume my car does not have a flat tire
 - Assume A₂₅ works unless contradicted by evidence
- Issues: What assumptions are reasonable? How to handle contradiction?
- Rules with fudge factors:
 - $A_{25} / \rightarrow_{0.3}$ get there on time
 - Sprinkler $\rightarrow 0.99$ WetGrass
 - WetGrass $\rightarrow 0.7$ Rain
- Issues: Problems with combination, e.g., Sprinkler causes Rain??
- Probability
 - Model agent's degree of belief
 - Given the available evidence,
 - A₂₅ will get me there on time with probability 0.04

Probabilistic assertions summarize effects of

- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability:

 Probabilities relate propositions to agent's own state of knowledge

e.g., $P(A_{25} | \text{no reported accidents}) = 0.06$

These are **not** assertions about the world

Probabilities of propositions change with new evidence: e.g., $P(A_{25} | no reported accidents, 5 a.m.) = 0.15$

Making decisions under uncertainty

Suppose I believe the following:

- $P(A_{25} \text{ gets me there on time } | ...) = 0.04$
- $P(A_{90} \text{ gets me there on time } | ...) = 0.70$
- $P(A_{120} \text{ gets me there on time } | ...) = 0.95$
- $P(A_{1440} \text{ gets me there on time } | ...) = 0.9999$
- Which action to choose?

Depends on my preferences for missing flight vs. time spent waiting, etc.

- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory

Syntax

- Basic element: random variable
- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables
 e.g., *Cavity* (do I have a cavity?)
- Discrete random variables
 e.g., *Weather* is one of <*sunny,rainy,cloudy,snow>*
- Domain values must be exhaustive and mutually exclusive
- Elementary proposition constructed by assignment of a value to a random variable: e.g., Weather = sunny, Cavity = false (abbreviated as ¬cavity)
- Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather = sunny v Cavity = false

Syntax

- Atomic event: A complete specification of the state of the world about which the agent is uncertain
 - E.g., if the world consists of only two Boolean variables *Cavity* and *Toothache*, then there are 4 distinct atomic events:

 $Cavity = false \land Toothache = false$ $Cavity = false \land Toothache = true$ $Cavity = true \land Toothache = false$ $Cavity = true \land Toothache = true$

 Atomic events are mutually exclusive and exhaustive

Axioms of probability

For any propositions A, B

- $0 \leq P(A) \leq 1$
- P(true) = 1 and P(false) = 0
- $\mathsf{P}(A \lor B) = \mathsf{P}(A) + \mathsf{P}(B) \mathsf{P}(A \land B)$

Prior probability

- Prior or unconditional probabilities of propositions
 - e.g., P(*Cavity* = true) = 0.1 and P(*Weather* = sunny) = 0.72 correspond to belief prior to arrival of any (new) evidence
- Probability distribution gives values for all possible assignments:
 P(*Weather*) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)
- Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables
 P(*Weather, Cavity*) = a 4 × 2 matrix of values:

<i>Weather</i> =	sunny	rainy	cloudy	snow
<i>Cavity</i> = true	0.144	0.02	0.016	0.02
<i>Cavity</i> = false	0.576	0.08	0.064	0.08

• Every question about a domain can be answered by the joint distribution

Conditional probability

- Conditional or posterior probabilities
 e.g., P(*cavity* | *toothache*) = 0.8
 i.e., given that *toothache* is all I know
- Notation for conditional distributions:
 P(*cavity* | *toothache*) = 2-element vector of 2-element vectors
- If we know more, e.g., *cavity* is also given, then we have P(*cavity* | *toothache, cavity*) = 1

 New evidence may be irrelevant, allowing simplification, e.g.,
 P(*cavity* | *toothache. sunny*) = P(*cavity* | *toothache*) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

- Definition of conditional probability:
 P(a | b) = P(a lefta b) / P(b) if P(b) > 0
- Product rule gives an alternative formulation:
 P(a \wedge b) = P(a | b) P(b) = P(b | a) P(a)
- A general version holds for whole distributions, e.g.,
 P(*Weather,Cavity*) = P(*Weather* | *Cavity*) P(*Cavity*)
 - (View as a set of 4 × 2 equations, not matrix mult.)
- Chain rule is derived by successive application of product rule: $P(X_{1}, ..., X_{n}) = P(X_{1}, ..., X_{n-1}) P(X_{n} | X_{1}, ..., X_{n-1})$ $= P(X_{1}, ..., X_{n-2}) P(X_{n-1} | X_{1}, ..., X_{n-2}) P(X_{n} | X_{1}, ..., X_{n-1})$ = ... $= \pi_{i=1}^{n} P(X_{i} | X_{1}, ..., X_{i-1})$

Start with the joint probability distribution:

	toothache		⊐ toothache	
	$catch \neg catch$		catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

• For any proposition φ , sum the atomic events where it is true: $P(\varphi) = \Sigma_{\omega:\omega \models \varphi} P(\omega)$

Start with the joint probability distribution:

	toothache		⊐ toothache	
	catch ⊐ catch		catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

- For any proposition φ , sum the atomic events where it is true: $P(\varphi) = \Sigma_{\omega:\omega \models \varphi} P(\omega)$
- P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Start with the joint probability distribution:

	toothache		⊐ toothache	
	$catch \neg catch$		catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

- For any proposition φ , sum the atomic events where it is true: $P(\varphi) = \Sigma_{\omega:\omega \models \varphi} P(\omega)$
- P(toothache) = 0.108 + 0.012 + 0.016 + 0.016 + 0.064 = 0.7

Start with the joint probability distribution:

	toothache		⊐ toothache	
	$catch \neg catch$		catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

• Can also compute conditional probabilities: $P(\neg cavity | toothache) = P(\neg cavity \land toothache)$ P(toothache)P(toothache)

$$= 0.010 \pm 0.004$$

0.108 + 0.012 + 0.016 + 0.064
= 0.4

	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

 Denominator can be viewed as a normalization constant a

P(*Cavity* | *toothache*) = a · P(*Cavity*, *toothache*)

= a · [P(*Cavity, toothache, catch*) + P(*Cavity,* 10 Mar 20**toothache,** ¬*catch*) - Uncertainty

Inference by enumeration, contd.

Typically, we are interested in the posterior joint distribution of the query variables Y given specific values e for the evidence variables E

Let the hidden variables be H = X - Y - E

Then the required summation of joint entries is done by summing out the hidden variables:

 $P(Y | E = e) = aP(Y, E = e) = a\Sigma_h P(Y, E = e, H = h)$

- The terms in the summation are joint entries because Y, E and H together exhaust the set of random variables
- Obvious problems:
 - 1. Worst-case time complexity $O(d^n)$ where d is the largest arity
 - 2. Space complexity $O(d^n)$ to store the joint distribution
 - 3. How to find the numbers for $O(d^n)$ entries?

- 32 entries reduced to 12 (8+4); for *n* independent biased coins, $O(2^n) \rightarrow O(n)$
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

- **P**(*Toothache, Cavity, Catch*) has $2^3 1 = 7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 (1) P(*catch* | *toothache, cavity*) = P(*catch* | *cavity*)
- The same independence holds if I haven't got a cavity:
 (2) P(*catch* | *toothache*, ¬*cavity*) = P(*catch* | ¬*cavity*)
- Catch is conditionally independent of Toothache given Cavity:
 P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:

P(*Toothache* | *Catch*, *Cavity*) = P(*Toothache* | *Cavity*) P(*Toothache*, *Catch* | *Cavity*) = P(*Toothache* | *Cavity*) P(*Catch* | *Cavity*)

Conditional independence contd.

- Write out full joint distribution using chain rule: P(*Toothache, Catch, Cavity*) = P(*Toothache* | *Catch, Cavity*) P(*Catch, Cavity*) = P(*Toothache* | *Catch, Cavity*) P(*Catch* | *Cavity*) P(*Cavity*) = P(*Toothache* | *Cavity*) P(*Catch* | *Cavity*) P(Cavity) I.e., 2 + 2 + 1 = 5 independent numbers
- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in *n* to linear in *n*.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

- Product rule $P(a \land b) = P(a \mid b) P(b) = P(b \mid a) P(a)$ Bayes' rule: $P(a \mid b) = P(b \mid a) P(a) / P(b)$
- or in distribution form P(Y|X) = P(X|Y) P(Y) / P(X) = aP(X|Y) P(Y)
- Useful for assessing diagnostic probability from causal probability:
 - P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)
 - E.g., let *M* be meningitis, *S* be stiff neck:
 P(m|s) = P(s|m) P(m) / P(s) = 0.5 × 0.0002 / 0.05 = 0.0002
 - Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional independence

- P(Cavity | toothache ∧ catch) = a · P(toothache ∧ catch | Cavity) P(Cavity) = a · P(toothache | Cavity) P(catch | Cavity) P(Cavity)
- This is an example of a naïve Bayes model:
 P(Cause, Effect₁, ..., Effect_n) = P(Cause) π_iP(Effect_i|Cause)

Total number of parameters is linear in n

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- Independence and conditional independence provide the tools