Uncertainty

Chapter 13

Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule

Uncertainty

Let action $A_{t}=$ leave for airport ${ }_{\mathrm{t}}$ minutes before flight Will A_{t} get me there on time?

Problems:
partial observability (road state, other drivers' plans, etc.)
2. noisy sensors (traffic reports)
3. uncertainty in action outcomes (flat tire, etc.)
4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either risks falsehood: " A_{25} will get me there on time", or
2. leads to conclusions that are too weak for decision making:
" A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."
(A_{1440} might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

Methods for handling uncertainty

- Default or nonmonotonic logic:
- Assume my car does not have a flat tire
- Assume A_{25} works unless contradicted by evidence
- Issues: What assumptions are reasonable? How to handle contradiction?
- Rules with fudge factors:
- $A_{25} / \rightarrow_{0.3}$ get there on time
- Sprinkler $/ \rightarrow 0.99$ WetGrass
- WetGrass $\rightarrow_{0.7}$ Rain
- Issues: Problems with combination, e.g., Sprinkler causes Rain??
- Probability
- Model agent's degree of belief
- Given the available evidence,
- A_{25} will get me there on time with probability 0.04

Probability

Probabilistic assertions summarize effects of

- laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability:

- Probabilities relate propositions to agent's own state of knowledge

$$
\text { e.g., } \mathrm{P}\left(\mathrm{~A}_{25} \mid \text { no reported accidents }\right)=0.06
$$

These are not assertions about the world
Probabilities of propositions change with new evidence: e.g., $\mathrm{P}\left(\mathrm{A}_{25} \mid\right.$ no reported accidents, 5 a.m. $)=0.15$

Making decisions under uncertainty

Suppose I believe the following:
$\mathrm{P}\left(\mathrm{A}_{25}\right.$ gets me there on time | ...) $=0.04$
$\mathrm{P}\left(\mathrm{A}_{90}\right.$ gets me there on time | ...) $=0.70$
$\mathrm{P}\left(\mathrm{A}_{120}\right.$ gets me there on time | ...) $=0.95$
$\mathrm{P}\left(\mathrm{A}_{1440}\right.$ gets me there on time | ...) $=0.9999$

- Which action to choose?

Depends on my preferences for missing flight vs. time spent waiting, etc.

- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory

Syntax

- Basic element: random variable
- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables
e.g., Cavity (do I have a cavity?)
- Discrete random variables
e.g., Weather is one of <sunny,rainy, cloudy,snow>
- Domain values must be exhaustive and mutually exclusive
- Elementary proposition constructed by assignment of a value to a random variable: e.g., Weather = sunny, Cavity = false (abbreviated as \neg cavity)
- Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather $=$ sunny \vee Cavity $=$ false

Syntax

- Atomic event: A complete specification of the state of the world about which the agent is uncertain
E.g., if the world consists of only two Boolean variables Cavity and Toothache, then there are 4 distinct atomic events:
Cavity $=$ false \wedge Toothache $=$ false
Cavity $=$ false \wedge Toothache $=$ true
Cavity $=$ true \wedge Toothache $=$ false
Cavity $=$ true \wedge Toothache $=$ true
- Atomic events are mutually exclusive and exhaustive

Axioms of probability

- For any propositions A, B
- $0 \leq \mathrm{P}(A) \leq 1$
- $\mathrm{P}($ true $)=1$ and $\mathrm{P}($ false $)=0$
= $\mathrm{P}(A \vee B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \wedge B)$
True

Prior probability

- Prior or unconditional probabilities of propositions
e.g., $\mathrm{P}($ Cavity $=$ true $)=0.1$ and $\mathrm{P}($ Weather $=$ sunny $)=0.72$ correspond to belief prior to arrival of any (new) evidence
- Probability distribution gives values for all possible assignments:

$$
\mathbf{P}(\text { Weather })=<0.72,0.1,0.08,0.1\rangle \text { (normalized, i.e., sums to } 1 \text {) }
$$

- Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables
$\mathbf{P}($ Weather, Cavity $)=$ a 4×2 matrix of values:

Weather $=$	sunny	rainy	cloudy	snow
Cavity $=$ true	0.144	0.02	0.016	0.02
Cavity $=$ false	0.576	0.08	0.064	0.08

- Every question about a domain can be answered by the joint distribution

Conditional probability

- Conditional or posterior probabilities
e.g., $\mathrm{P}($ cavity \mid toothache $)=0.8$
i.e., given that toothache is all I know
- Notation for conditional distributions:
\mathbf{P} (cavity | toothache) $=2$-element vector of 2-element vectors
- If we know more, e.g., cavity is also given, then we have $\mathrm{P}($ cavity \mid toothache, cavity $)=1$
- New evidence may be irrelevant, allowing simplification, e.g.,
$\mathrm{P}($ cavity \mid toothache. sunny $)=\mathrm{P}($ cavity \mid toothache $)=0.8$
- This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

- Definition of conditional probability:

$$
P(a \mid b)=P(a \wedge b) / P(b) \text { if } P(b)>0
$$

- Product rule gives an alternative formulation:

$$
P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)
$$

- A general version holds for whole distributions, e.g., $\mathbf{P}($ Weather, Cavity $)=\mathbf{P}($ Weather | Cavity $) \mathbf{P}($ Cavity $)$
- (View as a set of 4×2 equations, not matrix mult.)
- Chain rule is derived by successive application of product rule:

$$
\begin{aligned}
\mathbf{P}\left(X_{1}, \ldots, X_{n}\right) & =\mathbf{P}\left(X_{1}, \ldots, X_{n-1}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\mathbf{P}\left(X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n-1} \mid X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& =\ldots{ }_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

Inference by enumeration

- Start with the joint probability distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- For any proposition φ, sum the atomic events where it is true: $P(\varphi)=\Sigma_{\omega: \omega \mid=\varphi} P(\omega)$

Inference by enumeration

- Start with the joint probability distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	ᄀ catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- For any proposition φ, sum the atomic events where it is true: $\mathrm{P}(\varphi)=\Sigma_{\omega: \omega \mid=\varphi} \mathrm{P}(\omega)$
- $\mathrm{P}($ toothache $)=0.108+0.012+0.016+0.064=0.2$

Inference by enumeration

- Start with the joint probability distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- For any proposition φ, sum the atomic events where it is true: $P(\varphi)=\Sigma_{\omega: \omega \mid \varphi}$ $\mathrm{P}(\omega)$
$\underset{\text { 10 }}{\mathrm{P}} \mathrm{P}$ (tor (toothache $)=0.108+0.012+0.016+$ ก ก $\mathrm{K4}=\mathrm{n}$)

Inference by enumeration

- Start with the joint probability distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

- Can also compute conditional probabilities:

$$
\begin{aligned}
\mathrm{P}(\neg \text { cavity } \mid \text { toothache }) & =\frac{\mathrm{P}(\neg \text { cavity } \wedge \text { toothache })}{\mathrm{P}(\text { toothache })} \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064} \\
& =0.4
\end{aligned}
$$

Normalization

	toothache		ᄀ toothache	
	catch	\neg catch	catch	ᄀ catch
cavity	.108	.012	.072	.008
ᄀ cavity	.016	.064	.144	.576

- Denominator can be viewed as a normalization constant a
$\mathbf{P}($ Cavity \mid toothache $)=\mathrm{a} \cdot \mathbf{P}($ Cavity,
toothache)
$=\mathrm{a} \cdot[\mathbf{P}($ Cavity, toothache, catch $)+\mathbf{P}($ Cavity, 10 mar 20600thache, \neg catcs 3) $\left.^{2}\right]$ - Uncertainty

Inference by enumeration, contd.

Typically, we are interested in
the posterior joint distribution of the query variables \mathbf{Y} given specific values \mathbf{e} for the evidence variables \mathbf{E}

Let the hidden variables be $\mathbf{H}=\mathbf{X}-\mathbf{Y}-\mathbf{E}$
Then the required summation of joint entries is done by summing out the hidden variables:

$$
\mathbf{P}(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})=\mathrm{a} \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\mathbf{a} \Sigma_{h} \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e}, \mathbf{H}=\mathbf{h})
$$

- The terms in the summation are joint entries because \mathbf{Y}, \mathbf{E} and \mathbf{H} together exhaust the set of random variables
- Obvious problems:

1. Worst-case time complexity $O\left(d^{n}\right)$ where d is the largest arity
2. Space complexity $O\left(d^{n}\right)$ to store the joint distribution
3. How to find the numbers for $O\left(d^{n}\right)$ entries?

Independence

- A and B are independent iff $\mathbf{P}(A / B)=\mathbf{P}(A) \quad$ or $\mathbf{P}(B / A)=\mathbf{P}(B) \quad$ or $\mathbf{P}(\mathrm{A}, \mathrm{B})=\mathbf{P}(A) \mathbf{P}(B)$

- 32 entries reduced to 12 ($8+4$); for n independent biased coins, $O\left(2^{n}\right) \rightarrow O(n)$
- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

Conditional independence

- \mathbf{P} (Toothache, Cavity, Catch) has $2^{3}-1=7$ independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $\mathbf{P}($ catch \mid toothache, cavity $)=\mathbf{P}($ catch \mid cavity $)$
- The same independence holds if I haven't got a cavity:
(2) \mathbf{P} (catch \mid toothache, \neg cavity $)=\mathbf{P}($ catch $\mid \neg$ cavity $)$
- Catch is conditionally independent of Toothache given Cavity. $\mathbf{P}($ Catch \mid Toothache, Cavity $)=\mathbf{P}($ Catch \mid Cavity $)$
- Equivalent statements:
$\mathbf{P}($ Toothache \mid Catch, Cavity $)=\mathbf{P}($ Toothache \mid Cavity $)$
$\mathbf{P}($ Toothache, Catch \mid Cavity $)=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $)$

Conditional independence contd.

- Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)
$=\mathbf{P}$ (Toothache | Catch, Cavity) $\mathbf{P}($ Catch, Cavity)
$=\mathbf{P}($ Toothache \mid Catch, Cavity) $\mathbf{P}($ Catch \mid Cavity) $\mathbf{P}($ Cavity $)$
$=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity) \mathbf{P} (Cavity)
I.e., $2+2+1=5$ independent numbers

- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

- Product rule $P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)$ \Rightarrow Bayes' rule: $P(a \mid b)=P(b \mid a) P(a) / P(b)$
- or in distribution form

$$
\mathbf{P}(Y \mid X)=\mathbf{P}(X \mid Y) \mathbf{P}(Y) / \mathbf{P}(X)=a \mathbf{P}(X \mid Y) \mathbf{P}(Y)
$$

- Useful for assessing diagnostic probability from causal probability:
- P(Cause|Effect) $=$ P(Effect|Cause) P(Cause) / P(Effect)
- E.g., let M be meningitis, S be stiff neck:

$$
P(\mathrm{~m} \mid \mathrm{s})=P(\mathrm{~s} \mid \mathrm{m}) P(\mathrm{~m}) / P(\mathrm{~s})=0.5 \times 0.0002 / 0.05=0.0002
$$

- Note: posterior probability of meningitis still very small!

Bayes' Rule and conditional independence

\mathbf{P} (Cavity | toothache \wedge catch $)$

```
= a ' P(toothache ^ catch | Cavity) P(Cavity)
    = a P P(toothache | Cavity) P(catch | Cavity) P(Cavity)
```

- This is an example of a naïve Bayes model: $\mathbf{P}\left(\right.$ Cause, $^{\text {Effect }}{ }_{1}, \ldots$, ,Effect $\left.{ }_{n}\right)=\mathbf{P}($ Cause $) \pi_{i} \mathbf{P}$ (Effect ${ }_{i} \mid$ Cause $)$

- Total number of parameters is linear in n

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- Independence and conditional independence provide the tools

