Bayesian networks

Chapter 14

Sections 1 - 2

Outline

Syntax

Semantics

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
- a set of nodes, one per variable
- a directed, acyclic graph (link \approx "directly influences")
- a conditional distribution for each node given its parents:
$\mathbf{P}\left(\mathrm{X}_{\mathrm{i}} \mid\right.$ Parents ($\left.\mathrm{X}_{\mathrm{i}}\right)$)
- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_{i} for each combination of parent values

Example

- Topology of network encodes conditional independence assertions:

Weather is independent of the other variables
Toothache and Catch are conditionally independent given Cavity

Example

- I'm at work, neighbor J ohn calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause J ohn to call

Example contd.

Compactness

- A CPT for Boolean X_{i} with k Boolean parents has 2^{k} rows for the combinations of parent values
- Each row requires one number p for $X_{i}=$ true (the number for $X_{i}=$ false is just 1-p)

- If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers
- I.e., grows linearly with n, vs. $O\left(2^{n}\right)$ for the full joint distribution

For burglary net, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$)

Semantics

The full joint distribution is defined as the product of the local conditional distributions:

$$
\boldsymbol{P}\left(X_{1}, \ldots, X_{n}\right)=\pi_{i}{ }_{=1}^{\mathrm{n}} \boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{j}\right)\right)
$$

$$
\begin{aligned}
& \text { e.g., } \boldsymbol{P}(j \wedge m \wedge a \wedge \neg b \wedge \neg e) \\
& \quad=\boldsymbol{P}(j \mid a) \boldsymbol{P}(m \mid a) \boldsymbol{P}(a \mid \neg b, \neg e) \boldsymbol{P}(\neg b) \boldsymbol{P}(\neg e)
\end{aligned}
$$

Constructing Bayesian networks

1. Choose an ordering of variables X_{1}, \ldots, X_{n}
2. For $i=1$ to n

- add X_{i} to the network
- select parents from X_{1}, \ldots, X_{i-1} such that

$$
\boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{j}\right)\right)=\boldsymbol{P}\left(X_{i} / X_{1}, \ldots X_{i-1}\right)
$$

This choice of parents guarantees:
$\boldsymbol{P}\left(X_{1}, \ldots, X_{n}\right)=\pi_{i=1}^{n} \boldsymbol{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \quad$ (chain rule)
$=\pi_{i=1}^{n} \boldsymbol{P}\left(X_{i} \mid\right.$ Parents $\left.\left(X_{i}\right)\right) \quad$ (by construction)

Example

- Suppose we choose the ordering M, J, A, B, E

JohnCalls
$\boldsymbol{P}(J / M)=\boldsymbol{P}(J) ?$

Example

Suppose we choose the ordering M, J, A, B, E

$\boldsymbol{P}(/ / M)=\boldsymbol{P}(J) ?$ No
$\boldsymbol{P}(A / J, M)=\boldsymbol{P}(A / /) \boldsymbol{P} \boldsymbol{P}(A / J, M)=\boldsymbol{P}(A) ?$

Example

Suppose we choose the ordering M, J, A, B, E

$\boldsymbol{P}(/ / M)=\boldsymbol{P}(J) ?$ No
$\boldsymbol{P}(A / J, M)=\boldsymbol{P}(A / /) \boldsymbol{P} \boldsymbol{P}(A / J, M)=\boldsymbol{P}(A)$? No
$\boldsymbol{P}(B / A, J, M)=\boldsymbol{P}(B / A) ?$
$\boldsymbol{P}(B / A, J, M)=\boldsymbol{P}(B)$?

Example

Suppose we choose the ordering M, J, A, B, E
$\boldsymbol{P}(/ / M)=\boldsymbol{P}(J) ?$ No

Burglary
$\boldsymbol{P}(A / J, M)=\boldsymbol{P}(A / /) \boldsymbol{P} \boldsymbol{P}(A / J, M)=\boldsymbol{P}(A)$? No
$\boldsymbol{P}(B / A, J, M)=P(B / A) ?$ Yes
$\boldsymbol{P}(B / A, J, M)=\boldsymbol{P}(B)$? No
$\boldsymbol{P}(E / B, A, J, M)=\boldsymbol{P}(E / A) ?$
$\boldsymbol{P}(E / B, A, J, M)=\boldsymbol{P}(E / A, B)$?
10 Mar 2004
CS 3243 - Bayesian Networks

Example

Suppose we choose the ordering M, J, A, B, E
$\boldsymbol{P}(/ / M)=\boldsymbol{P}(J) ?$ No

$\boldsymbol{P}(A / J, M)=\boldsymbol{P}(A / /) \boldsymbol{P} \boldsymbol{P}(A / J, M)=\boldsymbol{P}(A)$? No
$P(B / A, J, M)=P(B / A)$? Yes
$\boldsymbol{P}(B / A, J, M)=\boldsymbol{P}(B)$? No
$\boldsymbol{P}(E / B, A, J, M)=\boldsymbol{P}(E / A)$? No
$\boldsymbol{P}(E / B, A, J, M)=\boldsymbol{P}(E / A, B)$? Yes
10 Mar 2004
CS 3243 - Bayesian Networks

Example contd.

- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: $1+2+4+2+4=13$ numbers needed

Summary

- Bayesian networks provide a natural representation for (causally induced) conditional independence
Topology + CPTs $=$ compact representation of joint distribution
Generally easy for domain experts to construct

