National University of Singapore
School of Computing
CS3243: Foundations of Artificial Intelligence

Tutorial 4

Readings: AIMA Chapter 5

1. Consider the $\mathrm{AC}-3(\mathrm{csp})$ algorithm (reproduced below), can the last line "add (X_{k}, X_{i}) to queue" be replaced with "if $X_{k} \neq X j$ then add (X_{k}, X_{i}) to queue"? Justify your answer.
function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$
local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do $\left(X_{i}, X_{j}\right) \leftarrow$ Remove-First $(q u e u e)$ if Remove-Inconsistent-Values $\left(X_{i}, X_{j}\right)$ then
for each X_{k} in Neighbors $\left[X_{i}\right]$ do $\operatorname{add}\left(X_{k}, X_{i}\right)$ to queue
function Remove-Inconsistent-Values (X_{i}, X_{j}) returns true iff succeeds removed \leftarrow false
for each x in Domain $\left[X_{i}\right]$ do
if no value y in Domain $\left[X_{j}\right]$ allows (x, y) to satisfy the constraint $X_{i} \leftrightarrow X_{j}$ then delete x from Domain $\left[X_{i}\right]$; removed \leftarrow true
return removed
2. Consider the following constraint satisfaction problem:

Variables:

$$
A, B, C
$$

Domains:

$$
D_{A}=D_{B}=D_{C}=\{0,1,2,3,4\}
$$

Constraints:

$$
\begin{aligned}
& A=B+1 \\
& B=2 C
\end{aligned}
$$

Construct a constraint graph for this problem. Show a trace of the AC-3 algorithm on this problem. Assume that initially, the arcs in queue are in the order $\{(A, B),(B, A),(B, C),(C, B)\}$.
3. Consider the 4 -queens problem on a 4×4 chess board. Suppose the leftmost column is column 1 , and the topmost row is row 1 . Let Q_{i} denote the row number of the queen in column i, $i=1,2,3,4$. Assume that variables are assigned in the order $Q_{1}, Q_{2}, Q_{3}, Q_{4}$, and the domain values of Q_{i} are tried in the order $1,2,3,4$. Show a trace of the backtracking algorithm with forward checking to solve the 4 -queens problem.

Figure 1: Cryptarithmetic puzzle.
4. Show a trace of the backtracking algorithm with forward checking to solve the cryptarithmetic problem shown in Figure 1. Use the most constrained variable heuristic, and assume that the domain values (digits) are tried in ascending order (i.e., $0,1,2, \cdots$).

